CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 102 results for author: <span class="mathjax">Lake, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Lake%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lake, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lake%2C+R&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lake, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lake%2C+R&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lake%2C+R&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lake%2C+R&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lake%2C+R&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08873">arXiv:2501.08873</a> <span> [<a href="https://arxiv.org/pdf/2501.08873">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0253293">10.1063/5.0253293 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant inter-mode second harmonic generation by backward spin waves in YIG nano-waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nikolaev%2C+K+O">K. O. Nikolaev</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+S+R">S. R. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Mohapatra%2C+B+D">B. Das Mohapatra</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+G">G. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Demokritov%2C+S+O">S. O. Demokritov</a>, <a href="/search/cond-mat?searchtype=author&query=Demidov%2C+V+E">V. E. Demidov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08873v1-abstract-short" style="display: inline;"> We experimentally study nonlinear generation of the second harmonic by backward volume spin waves propagating in microscopic magnonic waveguides fabricated from a low-loss magnetic insulator with a thickness of several tens of nanometers. We show that highly efficient resonant second harmonic generation is possible in the inter-mode regime at microwave powers of the order of 10^-4 W. In contrast t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08873v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08873v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08873v1-abstract-full" style="display: none;"> We experimentally study nonlinear generation of the second harmonic by backward volume spin waves propagating in microscopic magnonic waveguides fabricated from a low-loss magnetic insulator with a thickness of several tens of nanometers. We show that highly efficient resonant second harmonic generation is possible in the inter-mode regime at microwave powers of the order of 10^-4 W. In contrast to previously observed second harmonic generation processes, the generation by backward waves is characterized by the nonlinearly generated waves propagating opposite to the initial waves, and can be realized at zero bias magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08873v1-abstract-full').style.display = 'none'; document.getElementById('2501.08873v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 126, 082408 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13052">arXiv:2410.13052</a> <span> [<a href="https://arxiv.org/pdf/2410.13052">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Exploring Nanoscale Photoresponse Mechanisms for Enhanced Photothermoelectric Effects in van der Waals Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Da Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qiushi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+B">Boqun Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+N">Ning Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xuezhi Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+R">Ruoxue Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M">Ming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13052v1-abstract-short" style="display: inline;"> Integrated photodetectors are crucial for their high speed, sensitivity, and efficient power consumption. In these devices, photocurrent generation is primarily attributed to the photovoltaic (PV) effect, driven by electron hole separations, and the photothermoelectric (PTE) effect, which results from temperature gradients via the Seebeck effect. As devices shrink, the overlap of these mechanisms-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13052v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13052v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13052v1-abstract-full" style="display: none;"> Integrated photodetectors are crucial for their high speed, sensitivity, and efficient power consumption. In these devices, photocurrent generation is primarily attributed to the photovoltaic (PV) effect, driven by electron hole separations, and the photothermoelectric (PTE) effect, which results from temperature gradients via the Seebeck effect. As devices shrink, the overlap of these mechanisms-both dependent on the Fermi level and band structure-complicates their separate evaluation at the nanoscale. This study introduces a novel 3D photocurrent nano-imaging technique specifically designed to distinctly map these mechanisms in a Schottky barrier photodiode featuring a molybdenum disulfide and gold (MoS2 Au) interface. We uncover a significant PTE-dominated region extending several hundred nanometers from the electrode edge, a characteristic facilitated by the weak electrostatic forces typical in 2D materials. Unexpectedly, we find that incorporating hexagonal boron nitride (hBN), known for its high thermal conductivity, markedly enhances the PTE response. This counterintuitive enhancement stems from an optimal overlap between thermal and Seebeck profiles, presenting a new pathway to boost device performance. Our findings highlight the capability of this imaging technique to not only advance optoelectronic applications but also to deepen our understanding of light matter interactions within low-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13052v1-abstract-full').style.display = 'none'; document.getElementById('2410.13052v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09354">arXiv:2410.09354</a> <span> [<a href="https://arxiv.org/pdf/2410.09354">pdf</a>, <a href="https://arxiv.org/format/2410.09354">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological magnonic properties of an antiferromagnetic chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+T">Topojit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Soundararaj%2C+S+H">Shri Hari Soundararaj</a>, <a href="/search/cond-mat?searchtype=author&query=Kwon%2C+S">Sohee Kwon</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09354v1-abstract-short" style="display: inline;"> The magnonic excitations of a dimerized, one-dimensional, antiferromagnetic chain can be trivial or topological depending on the signs and magnitudes of the alternating exchange couplings and the anisotropy. The topological phase that occurs when the signs of the two different exchange couplings alternate is qualitatively different from that of the Su-Schrieffer-Heeger model. A material that may e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09354v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09354v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09354v1-abstract-full" style="display: none;"> The magnonic excitations of a dimerized, one-dimensional, antiferromagnetic chain can be trivial or topological depending on the signs and magnitudes of the alternating exchange couplings and the anisotropy. The topological phase that occurs when the signs of the two different exchange couplings alternate is qualitatively different from that of the Su-Schrieffer-Heeger model. A material that may exhibit these properties is the quasi-one-dimensional material MoI$_3$ that consists of dimerized chains weakly coupled to adjacent chains. The magnetic ground state and its excitations are analyzed both analytically and numerically using exchange and anisotropy parameters extracted from density functional theory calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09354v1-abstract-full').style.display = 'none'; document.getElementById('2410.09354v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02315">arXiv:2404.02315</a> <span> [<a href="https://arxiv.org/pdf/2404.02315">pdf</a>, <a href="https://arxiv.org/format/2404.02315">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evolution of Berry Phase and Half-Metallicity in Cr$_2$Te$_3$ in Response to Strain, Filling, Thickness, and Surface Termination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kwon%2C+S">Sohee Kwon</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuhang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+H">Hang Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+G">Gen Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Neupane%2C+M+R">Mahesh R. Neupane</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02315v1-abstract-short" style="display: inline;"> Cr$_2$Te$_3$ is a ferromagnetic, quasi-two-dimensional layered material with perpendicular magnetic anisotropy, strong spin-orbit coupling, and non-trivial band topology. The non-trivial topology results in an intrinsic anomalous Hall conductivity (AHC) that switches sign under filling and biaxial strain. Thin films can exhibit half metallicity. Using density functional theory combined with maxima… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02315v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02315v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02315v1-abstract-full" style="display: none;"> Cr$_2$Te$_3$ is a ferromagnetic, quasi-two-dimensional layered material with perpendicular magnetic anisotropy, strong spin-orbit coupling, and non-trivial band topology. The non-trivial topology results in an intrinsic anomalous Hall conductivity (AHC) that switches sign under filling and biaxial strain. Thin films can exhibit half metallicity. Using density functional theory combined with maximally localized Wannier functions, we reveal the physical origins of the sensitivity of the sign of the AHC to strain and filling, and we determine the effect of surface termination on the half metallicity. We find that thin films terminated on the Te layers are the most energetically stable, but only the thin films terminated on both sides with the partially occupied Cr layers are half metals. In bulk Cr$_2$Te$_3$, the sensitivity of the sign of the AHC to strain and filling results from the complex Fermi surface comprised of three bands. Filling of local minima and bands near anti-crossings alters the local Berry curvature consistent with the negative to positive switching of the AHC. Similarly, strain depopulates a local minimum, shifts a degenerate point closer to the Fermi energy, and causes two spin-orbit split bands to reverse their order. These findings provide a physical understanding of the evolution of the Berry phase, AHC, and half-metallicity in Cr$_2$Te$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02315v1-abstract-full').style.display = 'none'; document.getElementById('2404.02315v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18964">arXiv:2402.18964</a> <span> [<a href="https://arxiv.org/pdf/2402.18964">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46108-y">10.1038/s41467-024-46108-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant generation of propagating second-harmonic spin waves in nano-waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nikolaev%2C+K+O">K. O. Nikolaev</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+S+R">S. R. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+G">G. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Demokritov%2C+S+O">S. O. Demokritov</a>, <a href="/search/cond-mat?searchtype=author&query=Demidov%2C+V+E">V. E. Demidov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18964v1-abstract-short" style="display: inline;"> Generation of second-harmonic waves is one of the universal nonlinear phenomena that have found numerous technical applications in many modern technologies, in particular, in photonics. This phenomenon also has great potential in the field of magnonics, which considers the use of spin waves in magnetic nanostructures to implement wave-based signal processing and computing. However, due to the stro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18964v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18964v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18964v1-abstract-full" style="display: none;"> Generation of second-harmonic waves is one of the universal nonlinear phenomena that have found numerous technical applications in many modern technologies, in particular, in photonics. This phenomenon also has great potential in the field of magnonics, which considers the use of spin waves in magnetic nanostructures to implement wave-based signal processing and computing. However, due to the strong frequency dependence of the phase velocity of spin waves, resonant phase-matched generation of second-harmonic spin waves has not yet been achieved in practice. Here, we show experimentally that such a process can be realized using a combination of different modes of nano-sized spin-wave waveguides based on low-damping magnetic insulators. We demonstrate that our approach enables efficient spatially-extended energy transfer between interacting waves, which can be controlled by the intensity of the initial wave and the static magnetic field. The demonstrated approach can be used for the generation of short-wavelength spin waves that are difficult to excite directly, as well as for the implementation of novel devices for magnonic logic and unconventional computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18964v1-abstract-full').style.display = 'none'; document.getElementById('2402.18964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in Nature Communications, and is available online at https://doi.org/10.1038/s41467-024-46108-y</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun. 15, 1827 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02724">arXiv:2311.02724</a> <span> [<a href="https://arxiv.org/pdf/2311.02724">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Phonon States in NbTe$_4$ and TaTe$_4$ Quasi-One-Dimensional van der Waals Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nataj%2C+Z+E">Zahra Ebrahim Nataj</a>, <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">Fariborz Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Krylyuk%2C+S">Sergiy Krylyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+T">Topojit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Taheri%2C+M">Maedeh Taheri</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Subhajit Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Huairuo Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Davydov%2C+A+V">Albert V. Davydov</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02724v1-abstract-short" style="display: inline;"> We report the results of polarization-dependent Raman spectroscopy of phonon states in single-crystalline quasi-one-dimensional NbTe$_4$ and TaTe$_4$ van der Waals materials. The measurements were conducted in the wide temperature range from 80 K to 560 K. Our results show that although both materials have identical crystal structures and symmetries, there is a drastic difference in the intensity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02724v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02724v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02724v1-abstract-full" style="display: none;"> We report the results of polarization-dependent Raman spectroscopy of phonon states in single-crystalline quasi-one-dimensional NbTe$_4$ and TaTe$_4$ van der Waals materials. The measurements were conducted in the wide temperature range from 80 K to 560 K. Our results show that although both materials have identical crystal structures and symmetries, there is a drastic difference in the intensity of their Raman spectra. While TaTe4 exhibits well-defined peaks through the examined frequency and temperature ranges, NbTe4 reveals extremely weak Raman signatures. The measured spectral positions of the phonon peaks agree with the phonon band structure calculated using the density-functional theory. We offer possible reasons for the in-tensity differences between the two van der Waals materials. Our results provide insights into the phonon properties of NbTe$_4$ and TaTe$_4$ van der Waals materials and indicate the potential of Raman spectroscopy for studying charge-density-wave quantum condensate phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02724v1-abstract-full').style.display = 'none'; document.getElementById('2311.02724v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages; 6 figures; 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09805">arXiv:2307.09805</a> <span> [<a href="https://arxiv.org/pdf/2307.09805">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c02725">10.1021/acs.nanolett.3c02725 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zero-field spin waves in YIG nano-waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nikolaev%2C+K+O">K. O. Nikolaev</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+S+R">S. R. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+G">G. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Demokritov%2C+S+O">S. O. Demokritov</a>, <a href="/search/cond-mat?searchtype=author&query=Demidov%2C+V+E">V. E. Demidov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09805v1-abstract-short" style="display: inline;"> Spin-wave based transmission and processing of information is a promising emerging nano-technology that can help overcome limitations of traditional electronics based on the transfer of electrical charge. Among the most important challenges for this technology is the implementation of spin-wave devices that can operate without the need for an external bias magnetic field. Here we experimentally de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09805v1-abstract-full').style.display = 'inline'; document.getElementById('2307.09805v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09805v1-abstract-full" style="display: none;"> Spin-wave based transmission and processing of information is a promising emerging nano-technology that can help overcome limitations of traditional electronics based on the transfer of electrical charge. Among the most important challenges for this technology is the implementation of spin-wave devices that can operate without the need for an external bias magnetic field. Here we experimentally demonstrate that this can be achieved using sub-micrometer wide spin-wave waveguides fabricated from ultrathin films of low-loss magnetic insulator - Yttrium Iron Garnet (YIG). We show that these waveguides exhibit a highly stable single-domain static magnetic configuration at zero field and support long-range propagation of spin waves with gigahertz frequencies. The experimental results are supported by micromagnetic simulations, which additionally provide information for optimization of zero-field guiding structures. Our findings create the basis for the development of energy-efficient zero-field spin-wave devices and circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09805v1-abstract-full').style.display = 'none'; document.getElementById('2307.09805v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 23, 8719 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08047">arXiv:2307.08047</a> <span> [<a href="https://arxiv.org/pdf/2307.08047">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Conductance Fluctuations and Domain Depinning in Quasi-2D Charge-Density-Wave 1T-TaS$_2$ Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Brown%2C+J+O">Jonas O. Brown</a>, <a href="/search/cond-mat?searchtype=author&query=Taheri%2C+M">Maedeh Taheri</a>, <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">Fariborz Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Salgado%2C+R">Ruben Salgado</a>, <a href="/search/cond-mat?searchtype=author&query=Geremew%2C+T">Tekwam Geremew</a>, <a href="/search/cond-mat?searchtype=author&query=Rumyantsev%2C+S">Sergey Rumyantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08047v1-abstract-short" style="display: inline;"> We investigated the temperature dependence of the conductance fluctuations in thin films of the quasi-two-dimensional 1T-TaS$_2$ van der Waals material. The conductance fluctuations, determined from the derivative current-voltage characteristics of two-terminal 1T-TaS$_2$ devices, appear prominently at the electric fields that correspond to the transitions between various charge-density-wave macro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08047v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08047v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08047v1-abstract-full" style="display: none;"> We investigated the temperature dependence of the conductance fluctuations in thin films of the quasi-two-dimensional 1T-TaS$_2$ van der Waals material. The conductance fluctuations, determined from the derivative current-voltage characteristics of two-terminal 1T-TaS$_2$ devices, appear prominently at the electric fields that correspond to the transitions between various charge-density-wave macroscopic quantum condensate phases and at the onset of the depinning of the charge density wave domains. The depinning threshold field, $E_D$, monotonically increases with decreasing temperature within the nearly commensurate charge-density-wave phase. The $E_D$ value increases with the decreasing 1T-TaS$_2$ film thickness, revealing the surface pinning of the charge density waves. Our analysis suggests that depinning is absent in the commensurate phase. It is induced by the electric field but facilitated by local heating. The measured trends for $E_D$ of the domain depinning are important for understanding the physics of charge density waves in quasi-two-dimensional crystals and for developing electronic devices based on this type of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08047v1-abstract-full').style.display = 'none'; document.getElementById('2307.08047v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages; 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09743">arXiv:2305.09743</a> <span> [<a href="https://arxiv.org/pdf/2305.09743">pdf</a>, <a href="https://arxiv.org/format/2305.09743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin scattering and Hall effects in monolayer Fe3GeTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+L">Luyan Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+J">Jie-Xiang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Zang%2C+J">Jiadong Zang</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Zhuang%2C+H">Houlong Zhuang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+G">Gen Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09743v1-abstract-short" style="display: inline;"> We theoretically show that the carrier transport in monolayer Fe3GeTe2 experiences a transition between anomalous Hall effect and spin Hall effect when the spin polarization of disorders switches between out-of-plane and in-plane. These Hall effects are allowed when the magnetization is polarized in-plane, breaking the C3 rotation symmetry. The transition originates from the selection rule of spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09743v1-abstract-full').style.display = 'inline'; document.getElementById('2305.09743v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09743v1-abstract-full" style="display: none;"> We theoretically show that the carrier transport in monolayer Fe3GeTe2 experiences a transition between anomalous Hall effect and spin Hall effect when the spin polarization of disorders switches between out-of-plane and in-plane. These Hall effects are allowed when the magnetization is polarized in-plane, breaking the C3 rotation symmetry. The transition originates from the selection rule of spin scattering, the strong spin-orbit coupling, and the van Hove singularities near the Fermi surface. The scattering selection rule tolerates the sign change of the disorder spin, which provides a convenient method to detect the switching of antiferromagnetic insulators regardless of the interfacial roughness in a heterostructure. This provides a convenient platform for the study of 2D spintronics through various van-der-Waals heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09743v1-abstract-full').style.display = 'none'; document.getElementById('2305.09743v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00168">arXiv:2305.00168</a> <span> [<a href="https://arxiv.org/pdf/2305.00168">pdf</a>, <a href="https://arxiv.org/format/2305.00168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.084004">10.1103/PhysRevMaterials.6.084004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural, electronic, and magnetic properties of CrTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuhang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kwon%2C+S">Sohee Kwon</a>, <a href="/search/cond-mat?searchtype=author&query=de+Coster%2C+G+J">George J. de Coster</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Neupane%2C+M+R">Mahesh R. Neupane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00168v1-abstract-short" style="display: inline;"> Two-dimensional chromium ditelluride (CrTe2) is a promising ferromagnetic layered material that exhibits long-range ferromagnetic ordering in the monolayer limit. The formation energies of the different possible structural phases (1T, 1H, 2H) calculated from density functional theory (DFT) show that the 1T phase is the ground state, and the energetic transition barriers between the phases, calcula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00168v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00168v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00168v1-abstract-full" style="display: none;"> Two-dimensional chromium ditelluride (CrTe2) is a promising ferromagnetic layered material that exhibits long-range ferromagnetic ordering in the monolayer limit. The formation energies of the different possible structural phases (1T, 1H, 2H) calculated from density functional theory (DFT) show that the 1T phase is the ground state, and the energetic transition barriers between the phases, calculated by the nudged elastic band method, are large, on the order of 0.5 eV. The self-consistent Hubbard $U$ correction parameters are calculated for all the phases of CrTe$_2$. The calculated magnetic moment of 1T-CrTe$_2$ with $\geq 2$ layers lies in the plane, whereas the magnetic moment of a monolayer is out-of-plane. Band filling and tensile bi-axial strain cause the magnetic moment of a monolayer to switch from out-of-plane to in-plane, and compressive bi-axial strain in a bilayer causes the magnetic moment to switch from in-plane to out-of-plane. The magnetic anisotropy is shown to originate from the large spin orbit coupling (SOC) of the Te atoms and the anisotropy of the exchange coupling constants $J_{xy}$ and $J_z$ in an XXZ type Hamiltonian. Renormalized spin wave theory using experimental values for the magnetic anisotropy energy and Curie temperatures provides a range of values for the nearest neighbor exchange coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00168v1-abstract-full').style.display = 'none'; document.getElementById('2305.00168v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review MATERIALS 6, 084004 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09254">arXiv:2302.09254</a> <span> [<a href="https://arxiv.org/pdf/2302.09254">pdf</a>, <a href="https://arxiv.org/format/2302.09254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Fabrication of Specimens for Atom Probe Tomography Using a Combined Gallium and Neon Focused Ion Beam Milling Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Allen%2C+F+I">Frances I. Allen</a>, <a href="/search/cond-mat?searchtype=author&query=Blanchard%2C+P+T">Paul T. Blanchard</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R">Russell Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Pappas%2C+D">David Pappas</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+D">Deying Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Notte%2C+J+A">John A. Notte</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Ruopeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Minor%2C+A+M">Andrew M. Minor</a>, <a href="/search/cond-mat?searchtype=author&query=Sanford%2C+N+A">Norman A. Sanford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09254v2-abstract-short" style="display: inline;"> We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip-shaping after conventional annulus milling using gallium ions. This dual-ion approach combines the benefits of the faster milling capability of the higher current gallium ion beam with the chemically inert and higher precision… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09254v2-abstract-full').style.display = 'inline'; document.getElementById('2302.09254v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09254v2-abstract-full" style="display: none;"> We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip-shaping after conventional annulus milling using gallium ions. This dual-ion approach combines the benefits of the faster milling capability of the higher current gallium ion beam with the chemically inert and higher precision milling capability of the noble gas neon ion beam. Using a titanium-aluminum alloy and a layered aluminum/aluminum oxide material as test cases, we show that atom probe tips prepared using the combined gallium and neon ion approach are free from the gallium contamination that typically frustrates composition analysis of these materials due to implantation, diffusion, and embrittlement effects. We propose that by using a focused ion beam from a noble gas species, such as the neon ions demonstrated here, atom probe tomography can be more reliably performed on a larger range of materials than is currently possible using conventional techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09254v2-abstract-full').style.display = 'none'; document.getElementById('2302.09254v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03078">arXiv:2301.03078</a> <span> [<a href="https://arxiv.org/pdf/2301.03078">pdf</a>, <a href="https://arxiv.org/format/2301.03078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural tuning magnetism and topology in a magnetic topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Eckberg%2C+C">Christopher Eckberg</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+G">Gang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+T">Tao Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Kwon%2C+S">Sohee Kwon</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuhang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Tai%2C+L">Lixuan Tai</a>, <a href="/search/cond-mat?searchtype=author&query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&query=Chong%2C+S+K">Su Kong Chong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wong%2C+K+L">Kin L. Wong</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Neupane%2C+M+R">Mahesh R. Neupane</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03078v1-abstract-short" style="display: inline;"> To date, the most widely-studied quantum anomalous Hall insulator (QAHI) platform is achieved by dilute doping of magnetic ions into thin films of the alloyed tetradymite topological insulator (TI) (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ (BST). In these films, long-range magnetic ordering of the transition metal substituants opens an exchange gap $螖$ in the topological surface states, stabilizing spin-polari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03078v1-abstract-full').style.display = 'inline'; document.getElementById('2301.03078v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03078v1-abstract-full" style="display: none;"> To date, the most widely-studied quantum anomalous Hall insulator (QAHI) platform is achieved by dilute doping of magnetic ions into thin films of the alloyed tetradymite topological insulator (TI) (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ (BST). In these films, long-range magnetic ordering of the transition metal substituants opens an exchange gap $螖$ in the topological surface states, stabilizing spin-polarized, dissipationless edge channels with a nonzero Chern number $\mathcal{C}$. The long-range ordering of the spatially separated magnetic ions is itself mediated by electronic states in the host TI, leading to a sophisticated feedback between magnetic and electronic properties. Here we present a study of the electronic and magnetic response of a BST-based QAHI system to structural tuning via hydrostatic pressure. We identify a systematic closure of the topological gap under compressive strain accompanied by a simultaneous enhancement in the magnetic ordering strength. Combining these experimental results with first-principle calculations we identify structural deformation as a strong tuning parameter to traverse a rich topological phase space and modify magnetism in the magnetically doped BST system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03078v1-abstract-full').style.display = 'none'; document.getElementById('2301.03078v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05081">arXiv:2210.05081</a> <span> [<a href="https://arxiv.org/pdf/2210.05081">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0129904">10.1063/5.0129904 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Specifics of the Elemental Excitations in "True One-Dimensional" MoI$_3$ van der Waals Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">Fariborz Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Barani%2C+Z">Zahra Barani</a>, <a href="/search/cond-mat?searchtype=author&query=Sesing%2C+N+R">Nicholas R. Sesing</a>, <a href="/search/cond-mat?searchtype=author&query=Mai%2C+T+T">Thuc T. Mai</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+T">Topojit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Huairuo Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuhang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yanbing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Subhajit Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Biacchi%2C+A+J">Adam J. Biacchi</a>, <a href="/search/cond-mat?searchtype=author&query=da+Jornada%2C+F+H">Felipe H. da Jornada</a>, <a href="/search/cond-mat?searchtype=author&query=Bartels%2C+L">Ludwig Bartels</a>, <a href="/search/cond-mat?searchtype=author&query=Adel%2C+T">Tehseen Adel</a>, <a href="/search/cond-mat?searchtype=author&query=Walker%2C+A+R+H">Angela R. Hight Walker</a>, <a href="/search/cond-mat?searchtype=author&query=Davydov%2C+A+V">Albert V. Davydov</a>, <a href="/search/cond-mat?searchtype=author&query=Salguero%2C+T+T">Tina T. Salguero</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05081v1-abstract-short" style="display: inline;"> We report on the temperature evolution of the polarization-dependent Raman spectrum of exfoliated MoI$_3$, a van der Waals material with a "true one-dimensional" crystal structure that can be exfoliated to individual atomic chains. The temperature evolution of several Raman features reveals anomalous behavior suggesting a phase transition of a magnetic origin. Theoretical considerations indicate t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05081v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05081v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05081v1-abstract-full" style="display: none;"> We report on the temperature evolution of the polarization-dependent Raman spectrum of exfoliated MoI$_3$, a van der Waals material with a "true one-dimensional" crystal structure that can be exfoliated to individual atomic chains. The temperature evolution of several Raman features reveals anomalous behavior suggesting a phase transition of a magnetic origin. Theoretical considerations indicate that MoI$_3$ is an easy-plane antiferromagnet with alternating spins along the dimerized chains and with inter-chain helical spin ordering. The calculated frequencies of the phonons and magnons are consistent with the interpretation of the experimental Raman data. The obtained results shed light on the specifics of the phononic and magnonic states in MoI$_3$ and provide a strong motivation for future study of this unique material with potential for spintronic device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05081v1-abstract-full').style.display = 'none'; document.getElementById('2210.05081v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02318">arXiv:2207.02318</a> <span> [<a href="https://arxiv.org/pdf/2207.02318">pdf</a>, <a href="https://arxiv.org/format/2207.02318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38995-4">10.1038/s41467-023-38995-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chi%2C+H">Hang Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Y">Yunbo Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Eldred%2C+T+B">Tim B. Eldred</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenpei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Kwon%2C+S">Sohee Kwon</a>, <a href="/search/cond-mat?searchtype=author&query=Murray%2C+J">Joseph Murray</a>, <a href="/search/cond-mat?searchtype=author&query=Dreyer%2C+M">Michael Dreyer</a>, <a href="/search/cond-mat?searchtype=author&query=Butera%2C+R+E">Robert E. Butera</a>, <a href="/search/cond-mat?searchtype=author&query=Foucher%2C+A+C">Alexandre C. Foucher</a>, <a href="/search/cond-mat?searchtype=author&query=Ambaye%2C+H">Haile Ambaye</a>, <a href="/search/cond-mat?searchtype=author&query=Keum%2C+J">Jong Keum</a>, <a href="/search/cond-mat?searchtype=author&query=Greenberg%2C+A+T">Alice T. Greenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuhang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Neupane%2C+M+R">Mahesh R. Neupane</a>, <a href="/search/cond-mat?searchtype=author&query=de+Coster%2C+G+J">George J. de Coster</a>, <a href="/search/cond-mat?searchtype=author&query=Vail%2C+O+A">Owen A. Vail</a>, <a href="/search/cond-mat?searchtype=author&query=Taylor%2C+P+J">Patrick J. Taylor</a>, <a href="/search/cond-mat?searchtype=author&query=Folkes%2C+P+A">Patrick A. Folkes</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+C">Charles Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+G">Gen Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Ross%2C+F+M">Frances M. Ross</a>, <a href="/search/cond-mat?searchtype=author&query=Lauter%2C+V">Valeria Lauter</a>, <a href="/search/cond-mat?searchtype=author&query=Heiman%2C+D">Don Heiman</a>, <a href="/search/cond-mat?searchtype=author&query=Moodera%2C+J+S">Jagadeesh S. Moodera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02318v2-abstract-short" style="display: inline;"> Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as establ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02318v2-abstract-full').style.display = 'inline'; document.getElementById('2207.02318v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02318v2-abstract-full" style="display: none;"> Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr2Te3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr2Te3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic domains. The versatile interface tunability of Berry curvature in Cr2Te3 thin films offers new opportunities for topological electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02318v2-abstract-full').style.display = 'none'; document.getElementById('2207.02318v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 9 pages, 5 figures; SI: 5 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 3222 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12766">arXiv:2205.12766</a> <span> [<a href="https://arxiv.org/pdf/2205.12766">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.014031">10.1103/PhysRevApplied.18.014031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning Spin Transport in a Graphene Antiferromagnetic Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&query=Shcherbakov%2C+D+L">Dmitry L. Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12766v1-abstract-short" style="display: inline;"> Long-distance spin transport through anti-ferromagnetic insulators (AFMIs) is a long-standing goal of spintronics research. Unlike conventional spintronics systems, monolayer graphene in quantum Hall regime (QH) offers an unprecedented tuneability of spin-polarization and charge carrier density in QH edge states. Here, using gate-controlled QH edges as spin-dependent injectors and detectors in an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12766v1-abstract-full').style.display = 'inline'; document.getElementById('2205.12766v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12766v1-abstract-full" style="display: none;"> Long-distance spin transport through anti-ferromagnetic insulators (AFMIs) is a long-standing goal of spintronics research. Unlike conventional spintronics systems, monolayer graphene in quantum Hall regime (QH) offers an unprecedented tuneability of spin-polarization and charge carrier density in QH edge states. Here, using gate-controlled QH edges as spin-dependent injectors and detectors in an all-graphene electrical circuit, for the first time we demonstrate a selective tuning of ambipolar spin transport through graphene $谓$=0 AFMIs. By modulating polarities of the excitation bias, magnetic fields, and charge carriers that host opposite chiralities, we show that the difference between spin chemical potentials of adjacent edge channels in the spin-injector region is crucial in tuning spin-transport observed across graphene AFMI. We demonstrate that non-local response vanishes upon reversing directions of the co-propagating edge channels when the spin-filters in our devices are no longer selective for a particular spin-polarization. Our results establish a versatile set of methods to tune pure spin transport via an anti-ferromagnetic media and open a pathway to explore their applications for a broad field of antiferromagnetic spintronics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12766v1-abstract-full').style.display = 'none'; document.getElementById('2205.12766v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 18, 014031, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04018">arXiv:2203.04018</a> <span> [<a href="https://arxiv.org/pdf/2203.04018">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.17.034010">10.1103/PhysRevApplied.17.034010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay between nonlinear spectral shift and nonlinear damping of spin waves in ultrathin YIG waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lake%2C+S+R">S. R. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Divinskiy%2C+B">B. Divinskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+G">G. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Demokritov%2C+S+O">S. O. Demokritov</a>, <a href="/search/cond-mat?searchtype=author&query=Demidov%2C+V+E">V. E. Demidov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04018v1-abstract-short" style="display: inline;"> We use the phase-resolved imaging to directly study the nonlinear modification of the wavelength of spin waves propagating in 100-nm thick, in-plane magnetized YIG waveguides. We show that, by using moderate microwave powers, one can realize spin waves with large amplitudes corresponding to precession angles in excess of 10 degrees and nonlinear wavelength variation of up to 18 percent in this sys… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04018v1-abstract-full').style.display = 'inline'; document.getElementById('2203.04018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04018v1-abstract-full" style="display: none;"> We use the phase-resolved imaging to directly study the nonlinear modification of the wavelength of spin waves propagating in 100-nm thick, in-plane magnetized YIG waveguides. We show that, by using moderate microwave powers, one can realize spin waves with large amplitudes corresponding to precession angles in excess of 10 degrees and nonlinear wavelength variation of up to 18 percent in this system. We also find that, at large precession angles, the propagation of spin waves is strongly affected by the onset of nonlinear damping, which results in a strong spatial dependence of the wavelength. This effect leads to a spatially dependent controllability of the wavelength by the microwave power. Furthermore, it leads to the saturation of nonlinear spectral shift's effects several micrometers away from the excitation point. These findings are important for the development of nonlinear, integrated spin-wave signal processing devices and can be used to optimize their characteristics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04018v1-abstract-full').style.display = 'none'; document.getElementById('2203.04018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 17, 034010 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13194">arXiv:2202.13194</a> <span> [<a href="https://arxiv.org/pdf/2202.13194">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mattod.2022.03.015">10.1016/j.mattod.2022.03.015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-Dimensional van der Waals Quantum Materials -- State of the Art and Perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a>, <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">Fariborz Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Salguero%2C+T+T">Tina T. Salguero</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13194v1-abstract-short" style="display: inline;"> The advent of graphene and other two-dimensional van der Waals materials, with their unique electrical, optical, and thermal properties, has resulted in tremendous progress for fundamental science. Recent developments suggest that taking one more step down in dimensionality - from monolayer, atomic sheets to individual atomic chains - can bring exciting prospects as the ultimate limit in material… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13194v1-abstract-full').style.display = 'inline'; document.getElementById('2202.13194v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13194v1-abstract-full" style="display: none;"> The advent of graphene and other two-dimensional van der Waals materials, with their unique electrical, optical, and thermal properties, has resulted in tremendous progress for fundamental science. Recent developments suggest that taking one more step down in dimensionality - from monolayer, atomic sheets to individual atomic chains - can bring exciting prospects as the ultimate limit in material downscaling is reached while establishing an entirely new field of one-dimensional quantum materials. Here we review this emerging area of one-dimensional van der Waals quantum materials and anticipate its future directions. We focus on quantum effects associated with the charge-density-wave condensate, strongly-correlated phenomena, topological phases, and other unique physical characteristics, which are attainable specifically in van der Waals materials of lower dimensionality. Possibilities for engineering the properties of quasi-one-dimensional materials via compositional changes, vacancies, and defects, as well as the prospects of their applications in composites are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13194v1-abstract-full').style.display = 'none'; document.getElementById('2202.13194v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages; 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today, 55, 74-91 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12829">arXiv:2111.12829</a> <span> [<a href="https://arxiv.org/pdf/2111.12829">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Metallic vs. Semiconducting Properties of Quasi-One-Dimensional Tantalum Selenide van der Waals Nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">Fariborz Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Krayev%2C+A">Andrey Krayev</a>, <a href="/search/cond-mat?searchtype=author&query=Wurch%2C+M">Michelle Wurch</a>, <a href="/search/cond-mat?searchtype=author&query=Ghafouri%2C+Y">Yassamin Ghafouri</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+T">Topojit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Wickramaratne%2C+D">Darshana Wickramaratne</a>, <a href="/search/cond-mat?searchtype=author&query=Salguero%2C+T+T">Tina T. Salguero</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R">Roger Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Bartels%2C+L">Ludwig Bartels</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12829v1-abstract-short" style="display: inline;"> We conducted a tip-enhanced Raman scattering spectroscopy (TERS) and photoluminescence (PL) study of quasi-1D TaSe3 nanoribbons exfoliated onto gold substrates. At a selenium deficiency of ~0.25 (Se/Ta=2.75,), the nanoribbons exhibit a strong, broad PL peak centered around ~920 nm (1.35 eV), suggesting their semiconducting behavior. Such nanoribbons revealed a strong TERS response under 785-nm las… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12829v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12829v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12829v1-abstract-full" style="display: none;"> We conducted a tip-enhanced Raman scattering spectroscopy (TERS) and photoluminescence (PL) study of quasi-1D TaSe3 nanoribbons exfoliated onto gold substrates. At a selenium deficiency of ~0.25 (Se/Ta=2.75,), the nanoribbons exhibit a strong, broad PL peak centered around ~920 nm (1.35 eV), suggesting their semiconducting behavior. Such nanoribbons revealed a strong TERS response under 785-nm laser excitation, allowing for their nanoscale spectroscopic imaging. Nanoribbons with a smaller selenium deficiency of ~0.15 (Se/Ta=2.85) did not show any PL or TERS response. The confocal Raman spectra of these samples agree with the previously-reported spectra of metallic TaSe3. The differences in the optical response of the nanoribbons examined in this study suggest that even small variations in Se content can induce changes in electronic structure, causing samples to exhibit either metallic or semiconducting character. The temperature-dependent electrical measurements of devices fabricated with both types of materials corroborate these observations. The density-functional-theory calculations revealed that incorporation of an oxygen atom in a Se vacancy can result in band gap opening and thus enable the transition from a metal to a semiconductor. However, the predicted bandgap is substantially smaller than that derived from PL data. These results indicate that the properties of van der Waals materials can vary significantly depending on stoichiometry, defect types and concentration, and possibly environmental and substrate effects. In view of this finding, local probing of nanoribbon properties with TERS becomes essential to understanding such low-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12829v1-abstract-full').style.display = 'none'; document.getElementById('2111.12829v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.02236">arXiv:2111.02236</a> <span> [<a href="https://arxiv.org/pdf/2111.02236">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0071757">10.1063/5.0071757 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient geometrical control of spin waves in microscopic YIG waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lake%2C+S+R">S. R. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Divinskiy%2C+B">B. Divinskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+G">G. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Demokritov%2C+S+O">S. O. Demokritov</a>, <a href="/search/cond-mat?searchtype=author&query=Demidov%2C+V+E">V. E. Demidov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.02236v1-abstract-short" style="display: inline;"> We study experimentally and by micromagnetic simulations the propagation of spin waves in 100-nm thick YIG waveguides, where the width linearly decreases from 2 to 0.5 micrometers over a transition region with varying length between 2.5 and 10 micrometers. We show that this geometry results in a down-conversion of the wavelength, enabling efficient generation of waves with wavelengths down to 350… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02236v1-abstract-full').style.display = 'inline'; document.getElementById('2111.02236v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.02236v1-abstract-full" style="display: none;"> We study experimentally and by micromagnetic simulations the propagation of spin waves in 100-nm thick YIG waveguides, where the width linearly decreases from 2 to 0.5 micrometers over a transition region with varying length between 2.5 and 10 micrometers. We show that this geometry results in a down-conversion of the wavelength, enabling efficient generation of waves with wavelengths down to 350 nm. We also find that this geometry leads to a modification of the group velocity, allowing for almost-dispersionless propagation of spin-wave pulses. Moreover, we demonstrate that the influence of energy concentration outweighs that of damping in these YIG waveguides, resulting in an overall increase of the spin-wave intensity during propagation in the transition region. These findings can be utilized to improve the efficiency and functionality of magnonic devices which use spin waves as an information carrier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02236v1-abstract-full').style.display = 'none'; document.getElementById('2111.02236v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 119, 182401 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05101">arXiv:2108.05101</a> <span> [<a href="https://arxiv.org/pdf/2108.05101">pdf</a>, <a href="https://arxiv.org/format/2108.05101">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Cryogenic sensor enabling broad-band and traceable power measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Girard%2C+J+-">J. -P. Girard</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">R. E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">W. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kokkoniemi%2C+R">R. Kokkoniemi</a>, <a href="/search/cond-mat?searchtype=author&query=Visakorpi%2C+E">E. Visakorpi</a>, <a href="/search/cond-mat?searchtype=author&query=Govenius%2C+J">J. Govenius</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6tt%C3%B6nen%2C+M">M. M枚tt枚nen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05101v2-abstract-short" style="display: inline;"> Recently, great progress has been made in the field of ultrasensitive microwave detectors, reaching even the threshold for utilization in circuit quantum electrodynamics. However, cryogenic sensors lack the compatibility with broad-band metrologically traceable power absorption measurements at ultralow powers, which limits their scope of applications. Here, we demonstrate such measurements using a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05101v2-abstract-full').style.display = 'inline'; document.getElementById('2108.05101v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05101v2-abstract-full" style="display: none;"> Recently, great progress has been made in the field of ultrasensitive microwave detectors, reaching even the threshold for utilization in circuit quantum electrodynamics. However, cryogenic sensors lack the compatibility with broad-band metrologically traceable power absorption measurements at ultralow powers, which limits their scope of applications. Here, we demonstrate such measurements using an ultralow-noise nanobolometer which we extend by an additional direct-current (dc) heater input. The tracing of the absorbed power relies on comparing the response of the bolometer between radio frequency (rf) and dc-heating powers traced to the Josephson voltage and quantum Hall resistance. To illustrate this technique, we demonstrate methods to calibrate the power that is delivered to the base temperature stage of a dilution refrigerator using our in-situ power sensor. As an example, we demonstrate the ability to measure accurately the attenuation of a coaxial input line between the frequencies of 50 MHz and 7 GHz with an uncertainty down to 0.1 dB at typical input power of -114 dBm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05101v2-abstract-full').style.display = 'none'; document.getElementById('2108.05101v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.09073">arXiv:2106.09073</a> <span> [<a href="https://arxiv.org/pdf/2106.09073">pdf</a>, <a href="https://arxiv.org/format/2106.09073">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.184408">10.1103/PhysRevB.104.184408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discrete Quantum Geometry and Intrinsic Spin Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+J">Jie-Xiang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Zang%2C+J">Jiadong Zang</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+G">Gen Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.09073v2-abstract-short" style="display: inline;"> We show that the quantum geometry of the Fermi surface can be numerically described by a 3-dimensional discrete quantum manifold. This approach not only avoids singularities in the Fermi sea, but it also enables the precise computation of the intrinsic Hall conductivity resolved in spin, as well as any other local properties of the Fermi surface. The method assures numerical accuracy when the Ferm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09073v2-abstract-full').style.display = 'inline'; document.getElementById('2106.09073v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.09073v2-abstract-full" style="display: none;"> We show that the quantum geometry of the Fermi surface can be numerically described by a 3-dimensional discrete quantum manifold. This approach not only avoids singularities in the Fermi sea, but it also enables the precise computation of the intrinsic Hall conductivity resolved in spin, as well as any other local properties of the Fermi surface. The method assures numerical accuracy when the Fermi level is arbitrarily close to singularities, and it remains robust when Kramers degeneracy is protected by symmetry. The approach is demonstrated by calculating the anomalous Hall and spin Hall conductivities of a 2-band lattice model of a Weyl semimetal and a full-band ab-initio model of zincblende GaAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09073v2-abstract-full').style.display = 'none'; document.getElementById('2106.09073v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01857">arXiv:2105.01857</a> <span> [<a href="https://arxiv.org/pdf/2105.01857">pdf</a>, <a href="https://arxiv.org/format/2105.01857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0055878">10.1063/5.0055878 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Properties of NbSi2N4, VSi2N4, and VSi2P4 Monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Akanda%2C+M+R+K">Md. Rakibul Karim Akanda</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01857v2-abstract-short" style="display: inline;"> The recent demonstration of MoSi2N4 and its exceptional stability to air, water, acid, and heat has generated intense interest in this family of two-dimensional (2D) materials. Among these materials, NbSi2N4, VSi2N4, and VSi2P4 are semiconducting, easy-plane ferromagnets with negligible in-plane magnetic anisotropy. They thus satisfy a necessary condition for exhibiting a dissipationless spin supe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01857v2-abstract-full').style.display = 'inline'; document.getElementById('2105.01857v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01857v2-abstract-full" style="display: none;"> The recent demonstration of MoSi2N4 and its exceptional stability to air, water, acid, and heat has generated intense interest in this family of two-dimensional (2D) materials. Among these materials, NbSi2N4, VSi2N4, and VSi2P4 are semiconducting, easy-plane ferromagnets with negligible in-plane magnetic anisotropy. They thus satisfy a necessary condition for exhibiting a dissipationless spin superfluid mode. The Curie temperatures of monolayer VSi2P4 and VSi2N4 are determined to be above room temperature based on Monte Carlo and density functional theory calculations. The magnetic moments of VSi2N4 can be switched from in-plane to out-of-plane by applying tensile biaxial strain or electron doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01857v2-abstract-full').style.display = 'none'; document.getElementById('2105.01857v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14051">arXiv:2104.14051</a> <span> [<a href="https://arxiv.org/pdf/2104.14051">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0055401">10.1063/5.0055401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Depinning of the Charge-Density Waves in Quasi-2D 1T-TaS2 Devices Operating at Room Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mohammadzadeh%2C+A">A. Mohammadzadeh</a>, <a href="/search/cond-mat?searchtype=author&query=Rehman%2C+A">A. Rehman</a>, <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">F. Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Rumyantsev%2C+S">S. Rumyantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Smulko%2C+J+M">J. M. Smulko</a>, <a href="/search/cond-mat?searchtype=author&query=Knap%2C+W">W. Knap</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">R. K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">A. A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14051v1-abstract-short" style="display: inline;"> We report on depinning of nearly-commensurate charge-density waves in 1T-TaS2 thin-films at room temperature. A combination of the differential current-voltage measurements with the low-frequency noise spectroscopy provide unambiguous means for detecting the depinning threshold field in quasi-2D materials. The depinning process in 1T-TaS2 is not accompanied by an observable abrupt increase in elec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14051v1-abstract-full').style.display = 'inline'; document.getElementById('2104.14051v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14051v1-abstract-full" style="display: none;"> We report on depinning of nearly-commensurate charge-density waves in 1T-TaS2 thin-films at room temperature. A combination of the differential current-voltage measurements with the low-frequency noise spectroscopy provide unambiguous means for detecting the depinning threshold field in quasi-2D materials. The depinning process in 1T-TaS2 is not accompanied by an observable abrupt increase in electric current - in striking contrast to depinning in the conventional charge-density-wave materials with quasi-1D crystal structure. We explained it by the fact that the current density from the charge-density waves in the 1T-TaS2 devices is orders of magnitude smaller than the current density of the free carriers available in the discommensuration network surrounding the commensurate charge-density-wave islands. The depinning fields in 1T-TaS2 thin-film devices are several orders of magnitude larger than those in quasi-1D van der Waals materials. Obtained results are important for the proposed applications of the charge-density-wave devices in electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14051v1-abstract-full').style.display = 'none'; document.getElementById('2104.14051v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11688">arXiv:2012.11688</a> <span> [<a href="https://arxiv.org/pdf/2012.11688">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Stacking enabled strong coupling of atomic motion to interlayer excitons in van der Waals heterojunction photodiodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Barati%2C+F">Fatemeh Barati</a>, <a href="/search/cond-mat?searchtype=author&query=Arp%2C+T+B">Trevor B. Arp</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+S">Shanshan Su</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Aji%2C+V">Vivek Aji</a>, <a href="/search/cond-mat?searchtype=author&query=van+Grondelle%2C+R">Rienk van Grondelle</a>, <a href="/search/cond-mat?searchtype=author&query=Rudner%2C+M+S">Mark S. Rudner</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+J+C+W">Justin C. W. Song</a>, <a href="/search/cond-mat?searchtype=author&query=Gabor%2C+N+M">Nathaniel M. Gabor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11688v1-abstract-short" style="display: inline;"> We reveal stacking-induced strong coupling between atomic motion and interlayer excitons through photocurrent measurements of WSe$_2$/MoSe$_2$ heterojunction photodiodes. Strong coupling manifests as pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances. The sidebands, which repeat over large swathes of the interlayer exciton pho… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11688v1-abstract-full').style.display = 'inline'; document.getElementById('2012.11688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11688v1-abstract-full" style="display: none;"> We reveal stacking-induced strong coupling between atomic motion and interlayer excitons through photocurrent measurements of WSe$_2$/MoSe$_2$ heterojunction photodiodes. Strong coupling manifests as pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances. The sidebands, which repeat over large swathes of the interlayer exciton photocurrent spectrum, occur in energy increments corresponding directly to a prominent vibrational mode of the heterojunction. Such periodic patterns, together with interlayer photoconductance oscillations, vividly demonstrate the emergence of extraordinarily strong exciton-phonon coupling - and its impact on interlayer excitations - in stack-engineered van der Waals heterostructure devices. Our results establish photocurrent spectroscopy as a powerful tool for interrogating vibrational coupling to interlayer excitons and suggest an emerging strategy to control vibronic physics in the solid-state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11688v1-abstract-full').style.display = 'none'; document.getElementById('2012.11688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.03656">arXiv:2011.03656</a> <span> [<a href="https://arxiv.org/pdf/2011.03656">pdf</a>, <a href="https://arxiv.org/format/2011.03656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0036643">10.1063/5.0036643 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct formation of nitrogen-vacancy centers in nitrogen doped diamond along the trajectories of swift heavy ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">Russell E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Persaud%2C+A">Arun Persaud</a>, <a href="/search/cond-mat?searchtype=author&query=Christian%2C+C">Casey Christian</a>, <a href="/search/cond-mat?searchtype=author&query=Barnard%2C+E+S">Edward S. Barnard</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+E+M">Emory M. Chan</a>, <a href="/search/cond-mat?searchtype=author&query=Bettiol%2C+A+A">Andrew A. Bettiol</a>, <a href="/search/cond-mat?searchtype=author&query=Tomut%2C+M">Marilena Tomut</a>, <a href="/search/cond-mat?searchtype=author&query=Trautmann%2C+C">Christina Trautmann</a>, <a href="/search/cond-mat?searchtype=author&query=Schenkel%2C+T">Thomas Schenkel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.03656v2-abstract-short" style="display: inline;"> We report depth-resolved photoluminescence measurements of nitrogen-vacancy (NV$^-$) centers formed along the tracks of swift heavy ions (SHIs) in type Ib synthetic single crystal diamonds that had been doped with 100 ppm nitrogen during crystal growth. Analysis of the spectra shows that NV$^-$ centers are formed preferentially within regions where electronic stopping processes dominate and not at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03656v2-abstract-full').style.display = 'inline'; document.getElementById('2011.03656v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.03656v2-abstract-full" style="display: none;"> We report depth-resolved photoluminescence measurements of nitrogen-vacancy (NV$^-$) centers formed along the tracks of swift heavy ions (SHIs) in type Ib synthetic single crystal diamonds that had been doped with 100 ppm nitrogen during crystal growth. Analysis of the spectra shows that NV$^-$ centers are formed preferentially within regions where electronic stopping processes dominate and not at the end of the ion range where elastic collisions lead to formation of vacancies and defects. Thermal annealing further increases NV yields after irradiation with SHIs preferentially in regions with high vacancy densities. NV centers formed along the tracks of single swift heavy ions can be isolated with lift-out techniques for explorations of color center qubits in quasi-1D registers with an average qubit spacing of a few nanometers and of order 100 color centers per micrometer along 10 to 30 micrometer long percolation chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03656v2-abstract-full').style.display = 'none'; document.getElementById('2011.03656v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 118, 084002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08165">arXiv:2010.08165</a> <span> [<a href="https://arxiv.org/pdf/2010.08165">pdf</a>, <a href="https://arxiv.org/format/2010.08165">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.034010">10.1103/PhysRevMaterials.5.034010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal conductivity of the quasi-1D materials TaSe3 and ZrTe3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+T">Topojit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+B">Bishwajit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08165v3-abstract-short" style="display: inline;"> The high breakdown current densities and resilience to scaling of the metallic transition metal trichalcogenides TaSe3 and ZrTe3 make them of interest for possible interconnect applications, and it motivates this study of their thermal conductivities and phonon properties. These crystals consist of planes of strongly bonded one-dimensional chains more weakly bonded to neighboring chains. Phonon di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08165v3-abstract-full').style.display = 'inline'; document.getElementById('2010.08165v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08165v3-abstract-full" style="display: none;"> The high breakdown current densities and resilience to scaling of the metallic transition metal trichalcogenides TaSe3 and ZrTe3 make them of interest for possible interconnect applications, and it motivates this study of their thermal conductivities and phonon properties. These crystals consist of planes of strongly bonded one-dimensional chains more weakly bonded to neighboring chains. Phonon dispersions and the thermal conductivity tensors are calculated using density functional theory combined with an iterative solution of the phonon Boltzmann transport equation. The phonon velocities and the thermal conductivities of TaSe3 are considerably more anisotropic than those of ZrTe3. The maximum LA velocity in ZrTe3 occurs in the cross-chain direction, and this is consistent with the strong cross-chain bonding that gives rise to large Fermi velocities in that direction. The thermal conductivities are similar to those of other metallic two-dimensional transition metal dichalcogenides. At room temperature, a significant portion of the heat is carried by the optical modes. In the low frequency range, the phonon lifetimes and mean free paths in TaSe3 are considerably shorter than those in ZrTe3. The shorter lifetimes in TaSe3 are consistent with the presence of lower frequency optical branches and zone-folding features in the acoustic branches that arise due to the doubling of the TaSe3 unit cell within the plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08165v3-abstract-full').style.display = 'none'; document.getElementById('2010.08165v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 034010 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03010">arXiv:2009.03010</a> <span> [<a href="https://arxiv.org/pdf/2009.03010">pdf</a>, <a href="https://arxiv.org/format/2009.03010">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0028951">10.1063/5.0028951 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing cryogenic amplifiers with a matched temperature-variable noise source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Simbierowicz%2C+S">Slawomir Simbierowicz</a>, <a href="/search/cond-mat?searchtype=author&query=Vesterinen%2C+V">Visa Vesterinen</a>, <a href="/search/cond-mat?searchtype=author&query=Milem%2C+J">Joshua Milem</a>, <a href="/search/cond-mat?searchtype=author&query=Lintunen%2C+A">Aleksi Lintunen</a>, <a href="/search/cond-mat?searchtype=author&query=Oksanen%2C+M">Mika Oksanen</a>, <a href="/search/cond-mat?searchtype=author&query=Roschier%2C+L">Leif Roschier</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%B6nberg%2C+L">Leif Gr枚nberg</a>, <a href="/search/cond-mat?searchtype=author&query=Hassel%2C+J">Juha Hassel</a>, <a href="/search/cond-mat?searchtype=author&query=Gunnarsson%2C+D">David Gunnarsson</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">Russell E. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03010v2-abstract-short" style="display: inline;"> We present a cryogenic microwave noise source with a characteristic impedance of 50 $惟$, which can be installed in a coaxial line of a cryostat. The bath temperature of the noise source is continuously variable between 0.1 K and 5 K without causing significant back-action heating on the sample space. As a proof-of-concept experiment, we perform Y-factor measurements of an amplifier cascade that in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03010v2-abstract-full').style.display = 'inline'; document.getElementById('2009.03010v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03010v2-abstract-full" style="display: none;"> We present a cryogenic microwave noise source with a characteristic impedance of 50 $惟$, which can be installed in a coaxial line of a cryostat. The bath temperature of the noise source is continuously variable between 0.1 K and 5 K without causing significant back-action heating on the sample space. As a proof-of-concept experiment, we perform Y-factor measurements of an amplifier cascade that includes a traveling wave parametric amplifier and a commercial high electron mobility transistor amplifier. We observe system noise temperatures as low as $680^{+20}_{-200}$ mK at 5.7 GHz corresponding to $1.5^{+0.1}_{-0.7}$ excess photons. The system we present has immediate applications in the validation of solid-state qubit readout lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03010v2-abstract-full').style.display = 'none'; document.getElementById('2009.03010v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been accepted by Review of Scientific Instruments. After it is published, it will be found at https://doi.org/10.1063/5.0028951</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.04628">arXiv:2008.04628</a> <span> [<a href="https://arxiv.org/pdf/2008.04628">pdf</a>, <a href="https://arxiv.org/format/2008.04628">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-020-2753-3">10.1038/s41586-020-2753-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bolometer operating at the threshold for circuit quantum electrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kokkoniemi%2C+R">R. Kokkoniemi</a>, <a href="/search/cond-mat?searchtype=author&query=Girard%2C+J+-">J. -P. Girard</a>, <a href="/search/cond-mat?searchtype=author&query=Hazra%2C+D">D. Hazra</a>, <a href="/search/cond-mat?searchtype=author&query=Laitinen%2C+A">A. Laitinen</a>, <a href="/search/cond-mat?searchtype=author&query=Govenius%2C+J">J. Govenius</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">R. E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Sallinen%2C+I">I. Sallinen</a>, <a href="/search/cond-mat?searchtype=author&query=Vesterinen%2C+V">V. Vesterinen</a>, <a href="/search/cond-mat?searchtype=author&query=Hakonen%2C+P">P. Hakonen</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6tt%C3%B6nen%2C+M">M. M枚tt枚nen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.04628v1-abstract-short" style="display: inline;"> Radiation sensors based on the heating effect of the absorbed radiation are typically relatively simple to operate and flexible in terms of the input frequency. Consequently, they are widely applied, for example, in gas detection, security, THz imaging, astrophysical observations, and medical applications. A new spectrum of important applications is currently emerging from quantum technology and e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04628v1-abstract-full').style.display = 'inline'; document.getElementById('2008.04628v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.04628v1-abstract-full" style="display: none;"> Radiation sensors based on the heating effect of the absorbed radiation are typically relatively simple to operate and flexible in terms of the input frequency. Consequently, they are widely applied, for example, in gas detection, security, THz imaging, astrophysical observations, and medical applications. A new spectrum of important applications is currently emerging from quantum technology and especially from electrical circuits behaving quantum mechanically. This circuit quantum electrodynamics (cQED) has given rise to unprecedented single-photon detectors and a quantum computer supreme to the classical supercomputers in a certain task. Thermal sensors are appealing in enhancing these devices since they are not plagued by quantum noise and are smaller, simpler, and consume about six orders of magnitude less power than the commonly used traveling-wave parametric amplifiers. However, despite great progress in the speed and noise levels of thermal sensors, no bolometer to date has proven fast and sensitive enough to provide advantages in cQED. Here, we experimentally demonstrate a bolometer surpassing this threshold with a noise equivalent power of $30\, \rm{zW}/\sqrt{\rm{Hz}}$ on par with the current record while providing two-orders of magnitude shorter thermal time constant of 500 ns. Importantly, both of these characteristic numbers have been measured directly from the same device, which implies a faithful estimation of the calorimetric energy resolution of a single 30-GHz photon. These improvements stem from the utilization of a graphene monolayer as the active material with extremely low specific heat. The minimum demonstrated time constant of 200 ns falls greatly below the state-of-the-art dephasing times of roughly 100 渭s for superconducting qubits and meets the timescales of contemporary readout schemes thus enabling the utilization of thermal detectors in cQED. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04628v1-abstract-full').style.display = 'none'; document.getElementById('2008.04628v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.11714">arXiv:2007.11714</a> <span> [<a href="https://arxiv.org/pdf/2007.11714">pdf</a>, <a href="https://arxiv.org/format/2007.11714">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.224414">10.1103/PhysRevB.102.224414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacial Dzyaloshinskii-Moriya Interaction of Antiferromagnetic Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Akanda%2C+M+R+K">Md. Rakibul Karim Akanda</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+I+J">In Jun Park</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.11714v1-abstract-short" style="display: inline;"> The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations. The iDMI is responsible for stabilizing noncollinear spin textures such as skyrmions in materials with bulk inversion symmetry. Interfacial DMI valu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11714v1-abstract-full').style.display = 'inline'; document.getElementById('2007.11714v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.11714v1-abstract-full" style="display: none;"> The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations. The iDMI is responsible for stabilizing noncollinear spin textures such as skyrmions in materials with bulk inversion symmetry. Interfacial DMI values have been previously determined theoretically and experimentally for FM/HM interfaces, and, in this work, values are calculated for the metallic AFM MnPt and the insulating AFM NiO. The heavy metals considered are W, Re, and Au. The effects of the AFM and HM thicknesses are determined. The iDMI values of the MnPt heterolayers are comparable to those of the common FM materials, and those of NiO are lower. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11714v1-abstract-full').style.display = 'none'; document.getElementById('2007.11714v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 224414 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02752">arXiv:2006.02752</a> <span> [<a href="https://arxiv.org/pdf/2006.02752">pdf</a>, <a href="https://arxiv.org/format/2006.02752">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.16.014043">10.1103/PhysRevApplied.16.014043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Magneto Optic Effects from an Antiferromagnet Topological-Insulator Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De%2C+A">Amrit De</a>, <a href="/search/cond-mat?searchtype=author&query=Bhowmick%2C+T+K">Tonmoy K. Bhowmick</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R">Roger Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02752v1-abstract-short" style="display: inline;"> Materials with no net magnetization are generally not magneto-optically active. While this is individually true for a collinear antiferromagnet (AFM) and a topological insulator (TI), it is shown here that the magneto-optic Kerr effect (MOKE) emerges when the TI and AFM films are proximity coupled. Because of the lack of macroscopic magnetization, the AFM only couples to the spin of one of the TI'… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02752v1-abstract-full').style.display = 'inline'; document.getElementById('2006.02752v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02752v1-abstract-full" style="display: none;"> Materials with no net magnetization are generally not magneto-optically active. While this is individually true for a collinear antiferromagnet (AFM) and a topological insulator (TI), it is shown here that the magneto-optic Kerr effect (MOKE) emerges when the TI and AFM films are proximity coupled. Because of the lack of macroscopic magnetization, the AFM only couples to the spin of one of the TI's surfaces breaking time-reversal and inversion symmetry -- which leads to a tiny $渭$deg MOKE signal. This small MOKE can be easily enhanced by 5 orders of magnitude, via cavity resonance, by optimizing the AFM and TI film thicknesses on the substrate. For slightly off-resonant structures, a 6 deg Kerr rotation can be electrically switched on by varying the Fermi energy. This requires less than 20 meV, which is encouraging for low power spintronics and magneto-optic devices. We further show that this simple structure is easily resilient to 5% material growth error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02752v1-abstract-full').style.display = 'none'; document.getElementById('2006.02752v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 16, 014043 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10908">arXiv:2005.10908</a> <span> [<a href="https://arxiv.org/pdf/2005.10908">pdf</a>, <a href="https://arxiv.org/ps/2005.10908">ps</a>, <a href="https://arxiv.org/format/2005.10908">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0048621">10.1063/5.0048621 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overlap junctions for superconducting quantum electronics and amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bal%2C+M">Mustafa Bal</a>, <a href="/search/cond-mat?searchtype=author&query=Long%2C+J">Junling Long</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+R">Ruichen Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haozhi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+S">Sungoh Park</a>, <a href="/search/cond-mat?searchtype=author&query=McRae%2C+C+R+H">Corey Rae Harrington McRae</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+T">Tongyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">Russell E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+D">Daniil Frolov</a>, <a href="/search/cond-mat?searchtype=author&query=Pilipenko%2C+R">Roman Pilipenko</a>, <a href="/search/cond-mat?searchtype=author&query=Zorzetti%2C+S">Silvia Zorzetti</a>, <a href="/search/cond-mat?searchtype=author&query=Romanenko%2C+A">Alexander Romanenko</a>, <a href="/search/cond-mat?searchtype=author&query=Pappas%2C+D+P">David P. Pappas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10908v1-abstract-short" style="display: inline;"> Due to their unique properties as lossless, nonlinear circuit elements, Josephson junctions lie at the heart of superconducting quantum information processing. Previously, we demonstrated a two-layer, submicrometer-scale overlap junction fabrication process suitable for qubits with long coherence times. Here, we extend the overlap junction fabrication process to micrometer-scale junctions. This al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10908v1-abstract-full').style.display = 'inline'; document.getElementById('2005.10908v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10908v1-abstract-full" style="display: none;"> Due to their unique properties as lossless, nonlinear circuit elements, Josephson junctions lie at the heart of superconducting quantum information processing. Previously, we demonstrated a two-layer, submicrometer-scale overlap junction fabrication process suitable for qubits with long coherence times. Here, we extend the overlap junction fabrication process to micrometer-scale junctions. This allows us to fabricate other superconducting quantum devices. For example, we demonstrate an overlap-junction-based Josephson parametric amplifier that uses only 2 layers. This efficient fabrication process yields frequency-tunable devices with negligible insertion loss and a gain of ~ 30 dB. Compared to other processes, the overlap junction allows for fabrication with minimal infrastructure, high yield, and state-of-the-art device performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10908v1-abstract-full').style.display = 'none'; document.getElementById('2005.10908v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, 1 table. Submitted to Applied Physics Letters. After it is published, it will be found at https://publishing.aip.org/resources/librarians/products/journals/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08412">arXiv:2005.08412</a> <span> [<a href="https://arxiv.org/pdf/2005.08412">pdf</a>, <a href="https://arxiv.org/format/2005.08412">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.224426">10.1103/PhysRevB.102.224426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of filling, strain, and electric field on the N茅el vector in antiferromagnetic CrSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Park%2C+I+J">In Jun Park</a>, <a href="/search/cond-mat?searchtype=author&query=Kwon%2C+S">Sohee Kwon</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08412v5-abstract-short" style="display: inline;"> CrSb is a layered antiferromagnet (AFM) with perpendicular magnetic anisotropy, a high N茅el temperature, and large spin-orbit coupling (SOC), which makes it interesting for AFM spintronic applications. To elucidate the various mechanisms of N茅el vector control, the effects of strain, band filling, and electric field on the magnetic anisotropy energy (MAE) of bulk and thin-film CrSb are determined… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08412v5-abstract-full').style.display = 'inline'; document.getElementById('2005.08412v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08412v5-abstract-full" style="display: none;"> CrSb is a layered antiferromagnet (AFM) with perpendicular magnetic anisotropy, a high N茅el temperature, and large spin-orbit coupling (SOC), which makes it interesting for AFM spintronic applications. To elucidate the various mechanisms of N茅el vector control, the effects of strain, band filling, and electric field on the magnetic anisotropy energy (MAE) of bulk and thin-film CrSb are determined and analysed using density functional theory. The MAE of the bulk crystal is large (1.2 meV per unit cell). Due to the significant ionic nature of the Cr-Sb bond, finite slabs are strongly affected by end termination. Truncation of the bulk crystal to a thin film with one surface terminated with Cr and the other surface terminated with Sb breaks inversion symmetry, creates a large charge dipole and average electric field across the film, and breaks spin degeneracy, such that the thin film becomes a ferrimagnet. The MAE is reduced such that its sign can be switched with realistic strain, and the large SOC gives rise to an intrinsic voltage controlled magnetic anisotropy (VCMA). A slab terminated on both faces with Cr remains a compensated AFM, but with the compensation occurring nonlocally between mirror symmetric Cr pairs. In-plane alignment of the moments is preferred, the magnitude of the MAE remains large, similar to that of the bulk, and it is relatively insensitive to filling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08412v5-abstract-full').style.display = 'none'; document.getElementById('2005.08412v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 224426 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.04969">arXiv:2004.04969</a> <span> [<a href="https://arxiv.org/pdf/2004.04969">pdf</a>, <a href="https://arxiv.org/format/2004.04969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.024419">10.1103/PhysRevB.102.024419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron transport through antiferromagnetic spin textures and skyrmions in a magnetic tunnel junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Djavid%2C+N">Nima Djavid</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.04969v1-abstract-short" style="display: inline;"> An ideal layered $\hat{x}$-polarized antiferromagnet (AFM) between two antialigned $\pm \hat{z}$ polarized ferromagnetic (FM) contacts transmits no current due to a $蟺$ phase difference of the matrix elements coupling the spin degenerate states to the two FM contacts. The ratio of the two matrix elements coupling the two spin degenerate $\hat{x}$ AFM states to a $\hat{z}$ FM contact is determined… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04969v1-abstract-full').style.display = 'inline'; document.getElementById('2004.04969v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.04969v1-abstract-full" style="display: none;"> An ideal layered $\hat{x}$-polarized antiferromagnet (AFM) between two antialigned $\pm \hat{z}$ polarized ferromagnetic (FM) contacts transmits no current due to a $蟺$ phase difference of the matrix elements coupling the spin degenerate states to the two FM contacts. The ratio of the two matrix elements coupling the two spin degenerate $\hat{x}$ AFM states to a $\hat{z}$ FM contact is determined by the exchange energy and the eigenstate energy. Inserting a normal metal layer or tunnel barrier layer between one FM contact and the AFM alters this phase difference, and, due to the unequal weighting of the two spins at the interface, it also breaks the spin degeneracy of the two AFM states. The broken symmetry of the matrix elements combined with the broken degeneracy of the AFM states, result in a Fano resonance in the transmission and a turn-on of the $T_{\uparrow,\downarrow}$ transmission channel. Such a magnetic tunnel junction geometry with two antialigned $\pm \hat{z}$ FM contacts can electrically detect an AFM skyrmion. The AFM skyrmion serves as an analogue of the oblique polarizer in the triple polarizer experiment. Resistances and resistance ratios are calculated and compared for FM and AFM skyrmions in a magnetic tunnel junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04969v1-abstract-full').style.display = 'none'; document.getElementById('2004.04969v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 024419 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.00665">arXiv:2004.00665</a> <span> [<a href="https://arxiv.org/pdf/2004.00665">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.094435">10.1103/PhysRevB.101.094435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large spin-Hall effect in Si at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lou%2C+P+C">Paul C. Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Katailiha%2C+A">Anand Katailiha</a>, <a href="/search/cond-mat?searchtype=author&query=Bhardwaj%2C+R+G">Ravindra G. Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&query=Bhowmick%2C+T">Tonmoy Bhowmick</a>, <a href="/search/cond-mat?searchtype=author&query=Beyermann%2C+W+P">W. P. Beyermann</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+S">Sandeep Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.00665v1-abstract-short" style="display: inline;"> Silicon's weak intrinsic spin-orbit coupling and centrosymmetric crystal structure are a critical bottleneck to the development of Si spintronics, because they lead to an insignificant spin-Hall effect (spin current generation) and inverse spin-Hall effect (spin current detection). Here, we undertake current, magnetic field, crystallography dependent magnetoresistance and magneto thermal transport… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00665v1-abstract-full').style.display = 'inline'; document.getElementById('2004.00665v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.00665v1-abstract-full" style="display: none;"> Silicon's weak intrinsic spin-orbit coupling and centrosymmetric crystal structure are a critical bottleneck to the development of Si spintronics, because they lead to an insignificant spin-Hall effect (spin current generation) and inverse spin-Hall effect (spin current detection). Here, we undertake current, magnetic field, crystallography dependent magnetoresistance and magneto thermal transport measurements to study the spin transport behavior in freestanding Si thin films. We observe a large spin-Hall magnetoresistance in both p-Si and n-Si at room temperature and it is an order of magnitude larger than that of Pt. One explanation of the unexpectedly large and efficient spin-Hall effect is spin-phonon coupling instead of spin-orbit coupling. The macroscopic origin of the spin-phonon coupling can be large strain gradients that can exist in the freestanding Si films. This discovery in a light, earth abundant and centrosymmetric material opens a new path of strain engineering to achieve spin dependent properties in technologically highly-developed materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00665v1-abstract-full').style.display = 'none'; document.getElementById('2004.00665v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 094435, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01777">arXiv:2003.01777</a> <span> [<a href="https://arxiv.org/pdf/2003.01777">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Properties of Shape-Engineered Phoxonic Crystals: Brillouin-Mandelstam Spectroscopy and Ellipsometry Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+C+Y+T">Chun Yu Tammy Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">Fariborz Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+T">Topojit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+B">Bishwajit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Valentin%2C+M+D">Michael D. Valentin</a>, <a href="/search/cond-mat?searchtype=author&query=Synowicki%2C+R">Ron Synowicki</a>, <a href="/search/cond-mat?searchtype=author&query=Schoeche%2C+S">Stefan Schoeche</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01777v1-abstract-short" style="display: inline;"> We report the results of Brillouin-Mandelstam spectroscopy and Mueller matrix spectroscopic ellipsometry of the nanoscale "pillar with the hat" periodic silicon structures, revealing intriguing phononic and photonic properties. It has been theoretically shown that periodic structures with properly tuned dimensions can act simultaneously as phononic and photonic - phoxonic - crystals, strongly affe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01777v1-abstract-full').style.display = 'inline'; document.getElementById('2003.01777v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01777v1-abstract-full" style="display: none;"> We report the results of Brillouin-Mandelstam spectroscopy and Mueller matrix spectroscopic ellipsometry of the nanoscale "pillar with the hat" periodic silicon structures, revealing intriguing phononic and photonic properties. It has been theoretically shown that periodic structures with properly tuned dimensions can act simultaneously as phononic and photonic - phoxonic - crystals, strongly affecting the light-matter interactions. Acoustic phonon states can be tuned by external boundaries, either as a result of phonon confinement effects in individual nanostructures, or as a result of artificially induced external periodicity, as in the phononic crystals. The shape of the nanoscale pillar array was engineered to ensure the interplay of both effects. The Brillouin-Mandelstam spectroscopy data indicated strong flattening of the acoustic phonon dispersion in the frequency range from 2 GHz to 20 GHz and the phonon wave vector extending to the higher-order Brillouin zones. The specifics of the phonon dispersion dependence on the pillar arrays orientation suggest the presence of both periodic modulation and spatial localization effects for the acoustic phonons. The ellipsometry data reveal a distinct scatter pattern of four-fold symmetry due to nanoscale periodicity of the pillar arrays. Our results confirm the dual functionality of the nanostructured shape-engineered structure and indicate a possible new direction for fine-tuning the light-matter interaction in the next generation of photonic, optoelectronic, and phononic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01777v1-abstract-full').style.display = 'none'; document.getElementById('2003.01777v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.00356">arXiv:2003.00356</a> <span> [<a href="https://arxiv.org/pdf/2003.00356">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0007043">10.1063/5.0007043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current Oscillations in Quasi-2D Charge-Density-Wave 1T-TaS2 Devices: Revisiting the "Narrow Band Noise" Concept </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Geremew%2C+A+K">Adane K. Geremew</a>, <a href="/search/cond-mat?searchtype=author&query=Rumyantsev%2C+S">Sergey Rumyantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R">Roger Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.00356v1-abstract-short" style="display: inline;"> We report on current oscillations in quasi two-dimensional (2D) 1T-TaS2 charge-density-wave devices. The MHz-frequency range of the oscillations and the linear dependence of the frequency of the oscillations on the current resemble closely the "narrow band noise," which was often observed in the classical bulk quasi-one-dimensional (1D) trichalcogenide charge-density-wave materials. In bulk quasi-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00356v1-abstract-full').style.display = 'inline'; document.getElementById('2003.00356v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.00356v1-abstract-full" style="display: none;"> We report on current oscillations in quasi two-dimensional (2D) 1T-TaS2 charge-density-wave devices. The MHz-frequency range of the oscillations and the linear dependence of the frequency of the oscillations on the current resemble closely the "narrow band noise," which was often observed in the classical bulk quasi-one-dimensional (1D) trichalcogenide charge-density-wave materials. In bulk quasi-1D materials, the "narrow band noise" was interpreted as a direct evidence of the charge-density-wave sliding. Despite the similarities, we argue that the nature of the MHz oscillations in quasi-2D 1T-TaS2 is different from the "narrow band noise." Analysis of the biasing conditions and current indicate that the observed oscillations are related to the current instabilities due to the voltage-induced transition from the nearly commensurate to incommensurate charge-density-wave phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00356v1-abstract-full').style.display = 'none'; document.getElementById('2003.00356v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 116, 163101 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04639">arXiv:1911.04639</a> <span> [<a href="https://arxiv.org/pdf/1911.04639">pdf</a>, <a href="https://arxiv.org/format/1911.04639">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Small Angle and Non-Monotonic Behavior of the Thermal Conductivity in Twisted Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chenyang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04639v2-abstract-short" style="display: inline;"> Nothing is known about the thermal conductivity in twisted bilayer graphene (TBG) at small twist angles, and how it approaches its aligned value as the twist angle approaches 0 degrees. To provide insight into these questions, we perform large scale non-equilibrium molecular dynamics calculations on commensurate TBG structures with angles down to 1.87 degrees. The results show a smooth, non-monoto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04639v2-abstract-full').style.display = 'inline'; document.getElementById('1911.04639v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04639v2-abstract-full" style="display: none;"> Nothing is known about the thermal conductivity in twisted bilayer graphene (TBG) at small twist angles, and how it approaches its aligned value as the twist angle approaches 0 degrees. To provide insight into these questions, we perform large scale non-equilibrium molecular dynamics calculations on commensurate TBG structures with angles down to 1.87 degrees. The results show a smooth, non-monotonic behavior of the thermal conductivity with respect to the commensurate lattice constant. As the commensurate lattice constant increases, the thermal conductivity initially decreases by 50%, and then it returns to 90% of its aligned value as the angle is reduced to 1.89 degrees. These same qualitative trends are followed by the trends in the shear elastic constant, the wrinkling intensity, and the out-of-plane ZA2 phonon frequency. The picture that emerges of the physical mechanism governing the thermal conductivity is that misorientation reduces the shear elastic constant; the reduced shear elastic constant enables greater wrinkling; and the greater wrinkling reduces the thermal conductivity. The small-angle behavior of the thermal conductivity raises the question of how do response functions approach their aligned values as the twist angle approaches 0 degrees. Is the approach gradual, discontinuous, or a combination of the two? <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04639v2-abstract-full').style.display = 'none'; document.getElementById('1911.04639v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09556">arXiv:1908.09556</a> <span> [<a href="https://arxiv.org/pdf/1908.09556">pdf</a>, <a href="https://arxiv.org/format/1908.09556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-020-00287-w">10.1038/s41534-020-00287-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kristen%2C+M">Maximilian Kristen</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+A">Andre Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Stehli%2C+A">Alexander Stehli</a>, <a href="/search/cond-mat?searchtype=author&query=Wolz%2C+T">Tim Wolz</a>, <a href="/search/cond-mat?searchtype=author&query=Danilin%2C+S">Sergey Danilin</a>, <a href="/search/cond-mat?searchtype=author&query=Ku%2C+H+S">Hsiang S. Ku</a>, <a href="/search/cond-mat?searchtype=author&query=Long%2C+J">Junling Long</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xian Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">Russell E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Pappas%2C+D+P">David P. Pappas</a>, <a href="/search/cond-mat?searchtype=author&query=Ustinov%2C+A+V">Alexey V. Ustinov</a>, <a href="/search/cond-mat?searchtype=author&query=Weides%2C+M">Martin Weides</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09556v3-abstract-short" style="display: inline;"> Experiments with superconducting circuits require careful calibration of the applied pulses and fields over a large frequency range. This remains an ongoing challenge as commercial semiconductor electronics are not able to probe signals arriving at the chip due to its cryogenic environment. Here, we demonstrate how the on-chip amplitude and frequency of a microwave signal can be inferred from the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09556v3-abstract-full').style.display = 'inline'; document.getElementById('1908.09556v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09556v3-abstract-full" style="display: none;"> Experiments with superconducting circuits require careful calibration of the applied pulses and fields over a large frequency range. This remains an ongoing challenge as commercial semiconductor electronics are not able to probe signals arriving at the chip due to its cryogenic environment. Here, we demonstrate how the on-chip amplitude and frequency of a microwave signal can be inferred from the ac Stark shifts of higher transmon levels. In our time-resolved measurements we employ Ramsey fringes, allowing us to detect the amplitude of the systems transfer function over a range of several hundreds of MHz with an energy sensitivity on the order of $10^{-4}$. Combined with similar measurements for the phase of the transfer function, our sensing method can facilitate pulse correction for high fidelity quantum gates in superconducting circuits. Additionally, the potential to characterize arbitrary microwave fields promotes applications in related areas of research, such as quantum optics or hybrid microwave systems including photonic, mechanical or magnonic subsystems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09556v3-abstract-full').style.display = 'none'; document.getElementById('1908.09556v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Inf 6, 57 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.05186">arXiv:1908.05186</a> <span> [<a href="https://arxiv.org/pdf/1908.05186">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.9b09839">10.1021/acsnano.9b09839 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductor Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">Fariborz Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Aytan%2C+E">Ece Aytan</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Subhajit Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">Jonathan Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Gomez%2C+M">Michael Gomez</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuhang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Magana%2C+A+S">Andres Sanchez Magana</a>, <a href="/search/cond-mat?searchtype=author&query=Beiranvand%2C+Z+B">Zahra Barani Beiranvand</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+B">Bishwajit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+R">Richard Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.05186v1-abstract-short" style="display: inline;"> We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. The Raman spectroscopy was conducted using three different excitation lasers with the wavelengths of 325 nm (UV), 488 nm (blue), and 633 nm (red). The resonant UV-Raman spectroscopy reveals new spectral features, which are n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05186v1-abstract-full').style.display = 'inline'; document.getElementById('1908.05186v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.05186v1-abstract-full" style="display: none;"> We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. The Raman spectroscopy was conducted using three different excitation lasers with the wavelengths of 325 nm (UV), 488 nm (blue), and 633 nm (red). The resonant UV-Raman spectroscopy reveals new spectral features, which are not detectable via visible Raman light scattering. The thermal conductivity of FePS3 and MnPS3 thin films was measured by two different techniques: the steady-state Raman optothermal and transient time-resolved magneto-optical Kerr effect. The Raman optothermal measurements provided the orientation-average thermal conductivity of FePS3 to be 1.35 W/mK at room temperature. The transient measurements revealed that the through-plane and in-plane thermal conductivity of FePS3 is 0.85 W/mK and 2.7 W/mK, respectively. The films of MnPS3 have higher thermal conductivity of 1.1 W/mK through-plane and 6.3 W/mK in-plane. The data obtained by both techniques reveal strong thermal anisotropy of the films and the dominant contribution of phonons to heat conduction. Our results are important for the proposed applications of the antiferromagnetic semiconductor thin films in spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05186v1-abstract-full').style.display = 'none'; document.getElementById('1908.05186v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano, 14, 2, 2424 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.05392">arXiv:1907.05392</a> <span> [<a href="https://arxiv.org/pdf/1907.05392">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain controlled superconductivity in few-layer NbSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Cliff Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+P">Protik Das</a>, <a href="/search/cond-mat?searchtype=author&query=Aytan%2C+E">Ece Aytan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+W">Weimin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Horowitz%2C+J">Justin Horowitz</a>, <a href="/search/cond-mat?searchtype=author&query=Satpati%2C+B">Biswarup Satpati</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+P">Peng Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.05392v2-abstract-short" style="display: inline;"> The controlled tunability of superconductivity in low-dimensional materials may enable new quantum devices. Particularly in triplet or topological superconductors, tunneling devices such as Josephson junctions etc. can demonstrate exotic functionalities. The tunnel barrier, an insulating or normal material layer separating two superconductors, is a key component for the junctions. Thin layers of N… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05392v2-abstract-full').style.display = 'inline'; document.getElementById('1907.05392v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.05392v2-abstract-full" style="display: none;"> The controlled tunability of superconductivity in low-dimensional materials may enable new quantum devices. Particularly in triplet or topological superconductors, tunneling devices such as Josephson junctions etc. can demonstrate exotic functionalities. The tunnel barrier, an insulating or normal material layer separating two superconductors, is a key component for the junctions. Thin layers of NbSe2 have been shown as a superconductor with strong spin orbit coupling, which can give rise to topological superconductivity if driven by a large magnetic exchange field. Here we demonstrate the superconductor-insulator transitions in epitaxially grown few-layer NbSe2 with wafer-scale uniformity on insulating substrates. We provide the electrical transport, Raman spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction characterizations of the insulating phase. We show that the superconductor-insulator transition is driven by strain, which also causes characteristic energy shifts of the Raman modes. Our observation paves the way for high quality hetero-junction tunnel barriers to be seamlessly built into epitaxial NbSe2 itself, thereby enabling highly scalable tunneling devices for superconductor-based quantum electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05392v2-abstract-full').style.display = 'none'; document.getElementById('1907.05392v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.00794">arXiv:1904.00794</a> <span> [<a href="https://arxiv.org/pdf/1904.00794">pdf</a>, <a href="https://arxiv.org/ps/1904.00794">ps</a>, <a href="https://arxiv.org/format/1904.00794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5096262">10.1063/1.5096262 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration of cryogenic amplification chains using normal-metal--insulator--superconductor junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hyypp%C3%A4%2C+E">Eric Hyypp盲</a>, <a href="/search/cond-mat?searchtype=author&query=Jenei%2C+M">M谩t茅 Jenei</a>, <a href="/search/cond-mat?searchtype=author&query=Masuda%2C+S">Shumpei Masuda</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+K+Y">Kuan Yen Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Silveri%2C+M">Matti Silveri</a>, <a href="/search/cond-mat?searchtype=author&query=Goetz%2C+J">Jan Goetz</a>, <a href="/search/cond-mat?searchtype=author&query=Partanen%2C+M">Matti Partanen</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">Russel E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%B6nberg%2C+L">Leif Gr枚nberg</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6tt%C3%B6nen%2C+M">Mikko M枚tt枚nen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.00794v1-abstract-short" style="display: inline;"> Various applications of quantum devices call for an accurate calibration of cryogenic amplification chains. To this end, we present a convenient calibration scheme and use it to accurately measure the total gain and noise temperature of an amplification chain by employing normal-metal--insulator--superconductor (NIS) junctions. Our method is based on the radiation emitted by inelastic electron tun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00794v1-abstract-full').style.display = 'inline'; document.getElementById('1904.00794v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.00794v1-abstract-full" style="display: none;"> Various applications of quantum devices call for an accurate calibration of cryogenic amplification chains. To this end, we present a convenient calibration scheme and use it to accurately measure the total gain and noise temperature of an amplification chain by employing normal-metal--insulator--superconductor (NIS) junctions. Our method is based on the radiation emitted by inelastic electron tunneling across voltage-biased NIS junctions. We derive an analytical equation that relates the generated power to the applied bias voltage which is the only control parameter of the device. After the setup has been characterized using a standard voltage reflection measurement, the total gain and the noise temperature are extracted by fitting the analytical equation to the microwave power measured at the output of the amplification chain. The 1$蟽$ uncertainty of the total gain of 51.84 dB appears to be of the order of 0.1 dB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00794v1-abstract-full').style.display = 'none'; document.getElementById('1904.00794v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.06050">arXiv:1903.06050</a> <span> [<a href="https://arxiv.org/pdf/1903.06050">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.9b02870">10.1021/acsnano.9b02870 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in Tantalum Disulfide Thin-Film Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Geremew%2C+A">A. Geremew</a>, <a href="/search/cond-mat?searchtype=author&query=Rumyantsev%2C+S">S. Rumyantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">F. Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+B">B. Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Nosek%2C+A">A. Nosek</a>, <a href="/search/cond-mat?searchtype=author&query=Bloodgood%2C+M">M. Bloodgood</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Salguero%2C+T">T. Salguero</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">R. K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">A. A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.06050v1-abstract-short" style="display: inline;"> We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectrosco… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06050v1-abstract-full').style.display = 'inline'; document.getElementById('1903.06050v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.06050v1-abstract-full" style="display: none;"> We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 K to 600 K. Analysis of the experimental data and calculations of heat dissipation suggest that Joule heating plays a dominant role in the electric-field induced transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The possibility of electrical switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06050v1-abstract-full').style.display = 'none'; document.getElementById('1903.06050v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano, 13, 7231 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00413">arXiv:1903.00413</a> <span> [<a href="https://arxiv.org/pdf/1903.00413">pdf</a>, <a href="https://arxiv.org/ps/1903.00413">ps</a>, <a href="https://arxiv.org/format/1903.00413">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5093701">10.1063/1.5093701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain control of the Neel vector in Mn-based antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Park%2C+I+J">In Jun Park</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+T">Taehwan Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+P">Protik Das</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+B">Bishwajit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Carman%2C+G+P">Greg P. Carman</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00413v1-abstract-short" style="display: inline;"> Control of the Neel vector in antiferromagnetic materials is one of the challenges preventing their use as active device components. Several methods have been investigated such as exchange bias, electric current, and spin injection, but little is known about strain-mediated anisotropy. This study of the antiferromagnetic L10-type MnX alloys MnIr, MnRh, MnNi, MnPd, and MnPt shows that a small amoun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00413v1-abstract-full').style.display = 'inline'; document.getElementById('1903.00413v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00413v1-abstract-full" style="display: none;"> Control of the Neel vector in antiferromagnetic materials is one of the challenges preventing their use as active device components. Several methods have been investigated such as exchange bias, electric current, and spin injection, but little is known about strain-mediated anisotropy. This study of the antiferromagnetic L10-type MnX alloys MnIr, MnRh, MnNi, MnPd, and MnPt shows that a small amount of strain effectively rotates the direction of the Neel vector by 90 degrees for all of the materials. For MnIr, MnRh, MnNi, and MnPd, the Neel vector rotates within the basal plane. For MnPt, the Neel vector rotates from out-of-plane to in-plane under tensile strain. The effectiveness of strain control is quantified by a metric of efficiency and by direct calculation of the magnetostriction coefficients. The values of the magnetostriction coefficients are comparable with those from ferromagnetic materials. These results indicate that strain is a mechanism that can be exploited for control of the Neel vectors in this family of antiferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00413v1-abstract-full').style.display = 'none'; document.getElementById('1903.00413v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages including supplementary information. Currently in review at Applied Physics Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02030">arXiv:1901.02030</a> <span> [<a href="https://arxiv.org/pdf/1901.02030">pdf</a>, <a href="https://arxiv.org/format/1901.02030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum Parity Hall effect in ABA Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Myhro%2C+K">Kevin Myhro</a>, <a href="/search/cond-mat?searchtype=author&query=Voigt%2C+G">Greyson Voigt</a>, <a href="/search/cond-mat?searchtype=author&query=Pi%2C+Z">Ziqi Pi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R">R. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=MacDonald%2C+A">Allan MacDonald</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02030v1-abstract-short" style="display: inline;"> The celebrated phenomenon of quantum Hall effect has recently been generalized from transport of conserved charges to that of other approximately conserved state variables, including spin and valley, which are characterized by spin- or valley-polarized boundary states with different chiralities. Here, we report a new class of quantum Hall effect in ABA-stacked graphene trilayers (TLG), the quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02030v1-abstract-full').style.display = 'inline'; document.getElementById('1901.02030v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02030v1-abstract-full" style="display: none;"> The celebrated phenomenon of quantum Hall effect has recently been generalized from transport of conserved charges to that of other approximately conserved state variables, including spin and valley, which are characterized by spin- or valley-polarized boundary states with different chiralities. Here, we report a new class of quantum Hall effect in ABA-stacked graphene trilayers (TLG), the quantum parity Hall (QPH) effect, in which boundary channels are distinguished by even or odd parity under the systems mirror reflection symmetry. At the charge neutrality point and a small perpendicular magnetic field $B_{\perp}$, the longitudinal conductance $蟽_{xx}$ is first quantized to $4e^2/h$, establishing the presence of four edge channels. As $B_{\perp}$ increases, $蟽_{xx}$ first decreases to $2e^2/h$, indicating spin-polarized counter-propagating edge states, and then to approximately $0$. These behaviors arise from level crossings between even and odd parity bulk Landau levels, driven by exchange interactions with the underlying Fermi sea, which favor an ordinary insulator ground state in the strong $B_{\perp}$ limit, and a spin-polarized state at intermediate fields. The transitions between spin-polarized and unpolarized states can be tuned by varying Zeeman energy. Our findings demonstrate a topological phase that is protected by a gate-controllable symmetry and sensitive to Coulomb interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02030v1-abstract-full').style.display = 'none'; document.getElementById('1901.02030v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.02683">arXiv:1812.02683</a> <span> [<a href="https://arxiv.org/pdf/1812.02683">pdf</a>, <a href="https://arxiv.org/format/1812.02683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.134505">10.1103/PhysRevB.100.134505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimized heat transfer at exceptional points in quantum circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Partanen%2C+M">Matti Partanen</a>, <a href="/search/cond-mat?searchtype=author&query=Goetz%2C+J">Jan Goetz</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+K+Y">Kuan Yen Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Kohvakka%2C+K">Kassius Kohvakka</a>, <a href="/search/cond-mat?searchtype=author&query=Sevriuk%2C+V">Vasilii Sevriuk</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">Russell E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Kokkoniemi%2C+R">Roope Kokkoniemi</a>, <a href="/search/cond-mat?searchtype=author&query=Ikonen%2C+J">Joni Ikonen</a>, <a href="/search/cond-mat?searchtype=author&query=Hazra%2C+D">Dibyendu Hazra</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%A4kinen%2C+A">Akseli M盲kinen</a>, <a href="/search/cond-mat?searchtype=author&query=Hyypp%C3%A4%2C+E">Eric Hyypp盲</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%B6nberg%2C+L">Leif Gr枚nberg</a>, <a href="/search/cond-mat?searchtype=author&query=Vesterinen%2C+V">Visa Vesterinen</a>, <a href="/search/cond-mat?searchtype=author&query=Silveri%2C+M">Matti Silveri</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6tt%C3%B6nen%2C+M">Mikko M枚tt枚nen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.02683v1-abstract-short" style="display: inline;"> Superconducting quantum circuits are potential candidates to realize a large-scale quantum computer. The envisioned large density of integrated components, however, requires a proper thermal management and control of dissipation. To this end, it is advantageous to utilize tunable dissipation channels and to exploit the optimized heat flow at exceptional points (EPs). Here, we experimentally realiz… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02683v1-abstract-full').style.display = 'inline'; document.getElementById('1812.02683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.02683v1-abstract-full" style="display: none;"> Superconducting quantum circuits are potential candidates to realize a large-scale quantum computer. The envisioned large density of integrated components, however, requires a proper thermal management and control of dissipation. To this end, it is advantageous to utilize tunable dissipation channels and to exploit the optimized heat flow at exceptional points (EPs). Here, we experimentally realize an EP in a superconducting microwave circuit consisting of two resonators. The EP is a singularity point of the Hamiltonian, and corresponds to the most efficient heat transfer between the resonators without oscillation of energy. We observe a crossover from underdamped to overdamped coupling via the EP by utilizing photon-assisted tunneling as an \emph{in situ} tunable dissipative element in one of the resonators. The methods studied here can be applied to different circuits to obtain fast dissipation, for example, for initializing qubits to their ground states. In addition, these results pave the way towards thorough investigation of parity--time ($\mathcal{PT}$) symmetric systems and the spontaneous symmetry breaking in superconducting microwave circuits operating at the level of single energy quanta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02683v1-abstract-full').style.display = 'none'; document.getElementById('1812.02683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 134505 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.07734">arXiv:1810.07734</a> <span> [<a href="https://arxiv.org/pdf/1810.07734">pdf</a>, <a href="https://arxiv.org/ps/1810.07734">ps</a>, <a href="https://arxiv.org/format/1810.07734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Experimentally Measured Field Effect Mobilities for Few Layer van der Waals Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sylvia%2C+S+S">Somaia Sarawat Sylvia</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.07734v1-abstract-short" style="display: inline;"> A literature survey of experimentally measured mobility values for the two-dimensional materials MoS2, MoSe2, MoTe2, WS2, WSe2, and black phosphorous carried out during 2015. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.07734v1-abstract-full" style="display: none;"> A literature survey of experimentally measured mobility values for the two-dimensional materials MoS2, MoSe2, MoTe2, WS2, WSe2, and black phosphorous carried out during 2015. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07734v1-abstract-full').style.display = 'none'; document.getElementById('1810.07734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SRC publication number P089463 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.07234">arXiv:1810.07234</a> <span> [<a href="https://arxiv.org/pdf/1810.07234">pdf</a>, <a href="https://arxiv.org/format/1810.07234">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-11101-3">10.1038/s41467-019-11101-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Active protection of a superconducting qubit with an interferometric Josephson isolator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Abdo%2C+B">Baleegh Abdo</a>, <a href="/search/cond-mat?searchtype=author&query=Bronn%2C+N+T">Nicholas T. Bronn</a>, <a href="/search/cond-mat?searchtype=author&query=Jinka%2C+O">Oblesh Jinka</a>, <a href="/search/cond-mat?searchtype=author&query=Olivadese%2C+S">Salvatore Olivadese</a>, <a href="/search/cond-mat?searchtype=author&query=Corcoles%2C+A+D">Antonio D. Corcoles</a>, <a href="/search/cond-mat?searchtype=author&query=Adiga%2C+V+P">Vivekananda P. Adiga</a>, <a href="/search/cond-mat?searchtype=author&query=Brink%2C+M">Markus Brink</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">Russell E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xian Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Pappas%2C+D+P">David P. Pappas</a>, <a href="/search/cond-mat?searchtype=author&query=Chow%2C+J+M">Jerry M. Chow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.07234v1-abstract-short" style="display: inline;"> Nonreciprocal microwave devices play several critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They separate input from output, impose unidirectional routing of readout signals, and protect the quantum systems from unwanted noise originated by the output chain. However, state-of-the-art, cryogenic circulators and isolators are disadvantageous in scalable superconduc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07234v1-abstract-full').style.display = 'inline'; document.getElementById('1810.07234v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.07234v1-abstract-full" style="display: none;"> Nonreciprocal microwave devices play several critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They separate input from output, impose unidirectional routing of readout signals, and protect the quantum systems from unwanted noise originated by the output chain. However, state-of-the-art, cryogenic circulators and isolators are disadvantageous in scalable superconducting quantum processors because they use magnetic materials and strong magnetic fields. Here, we realize an active isolator formed by coupling two nondegenerate Josephson mixers in an interferometric scheme. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the Josephson mixers, which play the role of the magnetic field in a Faraday medium. To demonstrate the applicability of this Josephson-based isolator for quantum measurements, we incorporate it into the output line of a superconducting qubit, coupled to a fast resonator and a Purcell filter. We also utilize a wideband, superconducting directional coupler for coupling the readout signals into and out of the qubit-resonator system and a quantum-limited Josephson amplifier for boosting the readout fidelity. By using this novel quantum setup, we demonstrate fast, high-fidelity, QND measurements of the qubit while providing more than 20 dB of protection against amplified noise reflected off the Josephson amplifier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07234v1-abstract-full').style.display = 'none'; document.getElementById('1810.07234v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communicationsvolume 10, Article number: 3154 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.00822">arXiv:1809.00822</a> <span> [<a href="https://arxiv.org/pdf/1809.00822">pdf</a>, <a href="https://arxiv.org/format/1809.00822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0449-0">10.1038/s41567-019-0449-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a broadband Lamb shift in an engineered quantum system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Silveri%2C+M">Matti Silveri</a>, <a href="/search/cond-mat?searchtype=author&query=Masuda%2C+S">Shumpei Masuda</a>, <a href="/search/cond-mat?searchtype=author&query=Sevriuk%2C+V">Vasilii Sevriuk</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+K+Y">Kuan Y. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Jenei%2C+M">M谩t茅 Jenei</a>, <a href="/search/cond-mat?searchtype=author&query=Hyypp%C3%A4%2C+E">Eric Hyypp盲</a>, <a href="/search/cond-mat?searchtype=author&query=Hassler%2C+F">Fabian Hassler</a>, <a href="/search/cond-mat?searchtype=author&query=Partanen%2C+M">Matti Partanen</a>, <a href="/search/cond-mat?searchtype=author&query=Goetz%2C+J">Jan Goetz</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+E">Russell E. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%B6nberg%2C+L">Leif Gr枚nberg</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6tt%C3%B6nen%2C+M">Mikko M枚tt枚nen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.00822v2-abstract-short" style="display: inline;"> The shift of energy levels owing to broadband electromagnetic vacuum fluctuations, the Lamb shift, has been pivotal in the development of quantum electrodynamics and in understanding atomic spectra. Currently, small energy shifts in engineered quantum systems are of paramount importance owing to the extreme precision requirements in applications such as quantum computing. However, without a tunabl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.00822v2-abstract-full').style.display = 'inline'; document.getElementById('1809.00822v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.00822v2-abstract-full" style="display: none;"> The shift of energy levels owing to broadband electromagnetic vacuum fluctuations, the Lamb shift, has been pivotal in the development of quantum electrodynamics and in understanding atomic spectra. Currently, small energy shifts in engineered quantum systems are of paramount importance owing to the extreme precision requirements in applications such as quantum computing. However, without a tunable environment it is challenging to resolve the Lamb shift in its original broadband case. Consequently, the observations in other than atomic systems are limited to environments comprised of narrow-band modes. Here, we observe a broadband Lamb shift in high-quality superconducting resonators, a scenario also accessing static shifts inaccessible in Lamb's experiment. We measure a continuous change of several megahertz in the fundamental resonator frequency by externally tuning the coupling strength of the engineered broadband environment which is based on hybrid normal-metal--superconductor tunnel junctions. Our results may lead to improved control of dissipation in high-quality engineered quantum systems and open new possibilities for studying synthetic open quantum matter using this hybrid experimental platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.00822v2-abstract-full').style.display = 'none'; document.getElementById('1809.00822v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 15, 533 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10853">arXiv:1808.10853</a> <span> [<a href="https://arxiv.org/pdf/1808.10853">pdf</a>, <a href="https://arxiv.org/ps/1808.10853">ps</a>, <a href="https://arxiv.org/format/1808.10853">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.085409">10.1103/PhysRevB.99.085409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged impurity scattering in two-dimensional materials with ring-shaped valence bands: GaS, GaSe, InS, and InSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Das%2C+P">Protik Das</a>, <a href="/search/cond-mat?searchtype=author&query=Wickramaratne%2C+D">Darshana Wickramaratne</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+B">Bishwajit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+G">Gen Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10853v1-abstract-short" style="display: inline;"> The singular density of states and the two Fermi wavevectors resulting from a ring-shaped or "Mexican hat" valence band give rise to unique trends in the charged impurity scattering rates and charged impurity limited mobilities. Ring shaped valence bands are common features of many monolayer and few-layer two-dimensional materials including the III-VI materials GaS, GaSe, InS, and InSe. The waveve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10853v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10853v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10853v1-abstract-full" style="display: none;"> The singular density of states and the two Fermi wavevectors resulting from a ring-shaped or "Mexican hat" valence band give rise to unique trends in the charged impurity scattering rates and charged impurity limited mobilities. Ring shaped valence bands are common features of many monolayer and few-layer two-dimensional materials including the III-VI materials GaS, GaSe, InS, and InSe. The wavevector dependence of the screening, calculated within the random phase approximation, is so strong that it is the dominant factor determining the overall trends of the scattering rates and mobilities with respect to temperature and hole density. Charged impurities placed on the substrate and in the 2D channel are considered. The different wavevector dependencies of the bare Coulomb potentials alter the temperature dependence of the mobilities. Moving the charged impurities 5 $脜$ from the center of the channel to the substrate increases the mobility by an order of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10853v1-abstract-full').style.display = 'none'; document.getElementById('1808.10853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 085409 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.03698">arXiv:1807.03698</a> <span> [<a href="https://arxiv.org/pdf/1807.03698">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Thermal Percolation Threshold and Thermal Properties of Composites with Graphene and Boron Nitride Fillers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kargar%2C+F">Fariborz Kargar</a>, <a href="/search/cond-mat?searchtype=author&query=Barani%2C+Z">Zahra Barani</a>, <a href="/search/cond-mat?searchtype=author&query=Lewis%2C+J+S">Jacob S. Lewis</a>, <a href="/search/cond-mat?searchtype=author&query=Debnath%2C+B">Bishwajit Debnath</a>, <a href="/search/cond-mat?searchtype=author&query=Salgado%2C+R">Ruben Salgado</a>, <a href="/search/cond-mat?searchtype=author&query=Aytan%2C+E">Ece Aytan</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R">Roger Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Balandin%2C+A+A">Alexander A. Balandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.03698v1-abstract-short" style="display: inline;"> We investigated thermal properties of the epoxy-based composites with a high loading fraction - up to f=45 vol.% - of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that both types of the composites revealed a distinctive thermal percolation threshold at the loading fraction f>20 vol.%. The graphene loading required fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03698v1-abstract-full').style.display = 'inline'; document.getElementById('1807.03698v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.03698v1-abstract-full" style="display: none;"> We investigated thermal properties of the epoxy-based composites with a high loading fraction - up to f=45 vol.% - of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that both types of the composites revealed a distinctive thermal percolation threshold at the loading fraction f>20 vol.%. The graphene loading required for achieving the thermal percolation was substantially higher than the loading for the electrical percolation. Graphene fillers outperformed boron nitride fillers in the thermal conductivity enhancement. It was established that thermal transport in composites with the high filler loading, above the thermal percolation threshold, is dominated by heat conduction via the network of percolating fillers. Unexpectedly, we determined that the thermal transport properties of the high loading composites were influenced strongly by the cross-plane thermal conductivity of the quasi-two-dimensional fillers. The obtained results shed light on the debated mechanism of the thermal percolation, and facilitate the development of the next generation of the efficient thermal interface materials for electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03698v1-abstract-full').style.display = 'none'; document.getElementById('1807.03698v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages; 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Mater. Interfaces, 10, 37555 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lake%2C+R&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lake%2C+R&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lake%2C+R&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lake%2C+R&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>