CINXE.COM
Shubhashis Sengupta | Indian Institute of Management Calcutta - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Shubhashis Sengupta | Indian Institute of Management Calcutta - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="JKO46VHlrCEIYcmUQ+DTCdfmlnpI9Dri0ytZngobep6LAnAOjYwBqyAOqAUmSy2MnnSjT1ROaFtdGxmvrrotKw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="shubhashis sengupta" /> <meta name="description" content="Shubhashis Sengupta, Indian Institute of Management Calcutta: 14 Followers, 11 Following, 86 Research papers. Research interest: Engineering." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277186719,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732457486000); window.Aedu.timeDifference = new Date().getTime() - 1732457486000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://iimcal.academia.edu/ShubhashisSengupta" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta","photo":"https://0.academia-photos.com/4646101/1948174/2304095/s65_shubhashis.sengupta.jpg","has_photo":true,"department":{"id":30309,"name":"Management Information Systems","url":"https://iimcal.academia.edu/Departments/Management_Information_Systems/Documents","university":{"id":4751,"name":"Indian Institute of Management Calcutta","url":"https://iimcal.academia.edu/"}},"position":"Alumnus","position_id":8,"is_analytics_public":false,"interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://iimcal.academia.edu/ShubhashisSengupta","location":"/ShubhashisSengupta","scheme":"https","host":"iimcal.academia.edu","port":null,"pathname":"/ShubhashisSengupta","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-4ec6e3d3-2f10-4be3-9f3c-8b22637b93ec"></div> <div id="ProfileCheckPaperUpdate-react-component-4ec6e3d3-2f10-4be3-9f3c-8b22637b93ec"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Shubhashis Sengupta" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/4646101/1948174/2304095/s200_shubhashis.sengupta.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Shubhashis Sengupta</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://iimcal.academia.edu/">Indian Institute of Management Calcutta</a>, <a class="u-tcGrayDarker" href="https://iimcal.academia.edu/Departments/Management_Information_Systems/Documents">Management Information Systems</a>, <span class="u-tcGrayDarker">Alumnus</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Shubhashis" data-follow-user-id="4646101" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="4646101"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">14</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">11</p></div></a><a href="/ShubhashisSengupta/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address: </b>Bangalore, Karnataka, India<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="4646101" href="https://www.academia.edu/Documents/in/Engineering"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://iimcal.academia.edu/ShubhashisSengupta","location":"/ShubhashisSengupta","scheme":"https","host":"iimcal.academia.edu","port":null,"pathname":"/ShubhashisSengupta","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Engineering"]}" data-trace="false" data-dom-id="Pill-react-component-ae3791d2-89bd-451c-8d85-4042042d5581"></div> <div id="Pill-react-component-ae3791d2-89bd-451c-8d85-4042042d5581"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Shubhashis Sengupta</h3></div><div class="js-work-strip profile--work_container" data-work-id="106373319"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/106373319/Predicting_Reputation_Score_of_Users_in_Stack_overflow_with_Alternate_Data"><img alt="Research paper thumbnail of Predicting Reputation Score of Users in Stack-overflow with Alternate Data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/106373319/Predicting_Reputation_Score_of_Users_in_Stack_overflow_with_Alternate_Data">Predicting Reputation Score of Users in Stack-overflow with Alternate Data</a></div><div class="wp-workCard_item"><span>Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="106373319"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="106373319"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 106373319; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=106373319]").text(description); $(".js-view-count[data-work-id=106373319]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 106373319; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='106373319']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 106373319, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=106373319]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":106373319,"title":"Predicting Reputation Score of Users in Stack-overflow with Alternate Data","translated_title":"","metadata":{"publisher":"SCITEPRESS - Science and Technology Publications","publication_name":"Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management"},"translated_abstract":null,"internal_url":"https://www.academia.edu/106373319/Predicting_Reputation_Score_of_Users_in_Stack_overflow_with_Alternate_Data","translated_internal_url":"","created_at":"2023-09-07T17:30:23.284-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Predicting_Reputation_Score_of_Users_in_Stack_overflow_with_Alternate_Data","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":48977,"name":"Reputation","url":"https://www.academia.edu/Documents/in/Reputation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="101436549"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/101436549/Neural_response_generation_for_task_completion_using_conversational_knowledge_graph"><img alt="Research paper thumbnail of Neural response generation for task completion using conversational knowledge graph" class="work-thumbnail" src="https://attachments.academia-assets.com/101978991/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/101436549/Neural_response_generation_for_task_completion_using_conversational_knowledge_graph">Neural response generation for task completion using conversational knowledge graph</a></div><div class="wp-workCard_item"><span>PLOS ONE</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Effective dialogue generation for task completion is challenging to build. The task requires the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Effective dialogue generation for task completion is challenging to build. The task requires the response generation system to generate the responses consistent with intent and slot values, have diversity in response and be able to handle multiple domains. The response also needs to be context relevant with respect to the previous utterances in the conversation. In this paper, we build six different models containing Bi-directional Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT) based encoders. To effectively generate the correct slot values, we implement a copy mechanism at the decoder side. To capture the conversation context and the current state of the conversation we introduce a simple heuristic to build a conversational knowledge graph. Using this novel algorithm we are able to capture important aspects in a conversation. This conversational knowledge-graph is then used by our response generation model to generate more releva...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5757d3f965601aaf99f484f2b5e6fb03" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101978991,"asset_id":101436549,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101978991/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="101436549"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="101436549"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 101436549; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=101436549]").text(description); $(".js-view-count[data-work-id=101436549]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 101436549; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='101436549']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 101436549, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5757d3f965601aaf99f484f2b5e6fb03" } } $('.js-work-strip[data-work-id=101436549]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":101436549,"title":"Neural response generation for task completion using conversational knowledge graph","translated_title":"","metadata":{"abstract":"Effective dialogue generation for task completion is challenging to build. The task requires the response generation system to generate the responses consistent with intent and slot values, have diversity in response and be able to handle multiple domains. The response also needs to be context relevant with respect to the previous utterances in the conversation. In this paper, we build six different models containing Bi-directional Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT) based encoders. To effectively generate the correct slot values, we implement a copy mechanism at the decoder side. To capture the conversation context and the current state of the conversation we introduce a simple heuristic to build a conversational knowledge graph. Using this novel algorithm we are able to capture important aspects in a conversation. This conversational knowledge-graph is then used by our response generation model to generate more releva...","publisher":"Public Library of Science (PLoS)","publication_name":"PLOS ONE"},"translated_abstract":"Effective dialogue generation for task completion is challenging to build. The task requires the response generation system to generate the responses consistent with intent and slot values, have diversity in response and be able to handle multiple domains. The response also needs to be context relevant with respect to the previous utterances in the conversation. In this paper, we build six different models containing Bi-directional Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT) based encoders. To effectively generate the correct slot values, we implement a copy mechanism at the decoder side. To capture the conversation context and the current state of the conversation we introduce a simple heuristic to build a conversational knowledge graph. Using this novel algorithm we are able to capture important aspects in a conversation. This conversational knowledge-graph is then used by our response generation model to generate more releva...","internal_url":"https://www.academia.edu/101436549/Neural_response_generation_for_task_completion_using_conversational_knowledge_graph","translated_internal_url":"","created_at":"2023-05-08T04:22:19.354-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101978991,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101978991/thumbnails/1.jpg","file_name":"journal.pone.0269856.pdf","download_url":"https://www.academia.edu/attachments/101978991/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neural_response_generation_for_task_comp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101978991/journal.pone.0269856-libre.pdf?1683545283=\u0026response-content-disposition=attachment%3B+filename%3DNeural_response_generation_for_task_comp.pdf\u0026Expires=1732435682\u0026Signature=KsBzjr8Sv1Br1IqwbefD3NUVCdN5HjBLRTsywFyuzkcAZxfwqKNAeYTSFDA~qv4SIcE30Tqjtrdg7P1Xs~zg6LAEqdb0Qc8N5Sx2Xax-MygTX-CDFGCjOx0AUsQ22XzRPz41xK1rFK5ybD7Hd5Tkao69t9RbqApHTaZus7aeEyTTM-e4EPE3xYoVme07QuLY8Jc2nrNfyPI1JpSPR02j5tvBkUFQGcTjZRGtc62lIyTcoWpyJj0FYGbMsrLZpePMtzhJ2FnKWNuSBYLxFX6dEc42Lb40LSFnXVZxFNSjz3bH4Oa~3JbfHvIMaQNmsrHZmi5XXEh2PoLEPO~BgbvckQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Neural_response_generation_for_task_completion_using_conversational_knowledge_graph","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":101978991,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101978991/thumbnails/1.jpg","file_name":"journal.pone.0269856.pdf","download_url":"https://www.academia.edu/attachments/101978991/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neural_response_generation_for_task_comp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101978991/journal.pone.0269856-libre.pdf?1683545283=\u0026response-content-disposition=attachment%3B+filename%3DNeural_response_generation_for_task_comp.pdf\u0026Expires=1732435682\u0026Signature=KsBzjr8Sv1Br1IqwbefD3NUVCdN5HjBLRTsywFyuzkcAZxfwqKNAeYTSFDA~qv4SIcE30Tqjtrdg7P1Xs~zg6LAEqdb0Qc8N5Sx2Xax-MygTX-CDFGCjOx0AUsQ22XzRPz41xK1rFK5ybD7Hd5Tkao69t9RbqApHTaZus7aeEyTTM-e4EPE3xYoVme07QuLY8Jc2nrNfyPI1JpSPR02j5tvBkUFQGcTjZRGtc62lIyTcoWpyJj0FYGbMsrLZpePMtzhJ2FnKWNuSBYLxFX6dEc42Lb40LSFnXVZxFNSjz3bH4Oa~3JbfHvIMaQNmsrHZmi5XXEh2PoLEPO~BgbvckQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":24342,"name":"Conversation","url":"https://www.academia.edu/Documents/in/Conversation"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":958784,"name":"Utterance","url":"https://www.academia.edu/Documents/in/Utterance"}],"urls":[{"id":31267473,"url":"https://dx.plos.org/10.1371/journal.pone.0269856"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="101436548"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/101436548/Towards_Sentiment_and_Emotion_aided_Intent_Detection"><img alt="Research paper thumbnail of Towards Sentiment and Emotion aided Intent Detection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/101436548/Towards_Sentiment_and_Emotion_aided_Intent_Detection">Towards Sentiment and Emotion aided Intent Detection</a></div><div class="wp-workCard_item"><span>2022 26th International Conference on Pattern Recognition (ICPR)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="101436548"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="101436548"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 101436548; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=101436548]").text(description); $(".js-view-count[data-work-id=101436548]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 101436548; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='101436548']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 101436548, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=101436548]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":101436548,"title":"Towards Sentiment and Emotion aided Intent Detection","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2022 26th International Conference on Pattern Recognition (ICPR)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/101436548/Towards_Sentiment_and_Emotion_aided_Intent_Detection","translated_internal_url":"","created_at":"2023-05-08T04:22:18.921-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Towards_Sentiment_and_Emotion_aided_Intent_Detection","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":148827,"name":"Emotion Detection","url":"https://www.academia.edu/Documents/in/Emotion_Detection"}],"urls":[{"id":31267472,"url":"http://xplorestaging.ieee.org/ielx7/9956007/9955631/09956278.pdf?arnumber=9956278"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="101436544"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/101436544/Reinforcing_personalized_persuasion_in_task_oriented_virtual_sales_assistant"><img alt="Research paper thumbnail of Reinforcing personalized persuasion in task-oriented virtual sales assistant" class="work-thumbnail" src="https://attachments.academia-assets.com/101978982/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/101436544/Reinforcing_personalized_persuasion_in_task_oriented_virtual_sales_assistant">Reinforcing personalized persuasion in task-oriented virtual sales assistant</a></div><div class="wp-workCard_item"><span>PLOS ONE</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket book...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable. Methodology Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasio...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="915583f80b51299045779bc50ef15967" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101978982,"asset_id":101436544,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101978982/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="101436544"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="101436544"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 101436544; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=101436544]").text(description); $(".js-view-count[data-work-id=101436544]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 101436544; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='101436544']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 101436544, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "915583f80b51299045779bc50ef15967" } } $('.js-work-strip[data-work-id=101436544]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":101436544,"title":"Reinforcing personalized persuasion in task-oriented virtual sales assistant","translated_title":"","metadata":{"abstract":"Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable. Methodology Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasio...","publisher":"Public Library of Science (PLoS)","publication_name":"PLOS ONE"},"translated_abstract":"Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable. Methodology Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasio...","internal_url":"https://www.academia.edu/101436544/Reinforcing_personalized_persuasion_in_task_oriented_virtual_sales_assistant","translated_internal_url":"","created_at":"2023-05-08T04:22:10.780-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101978982,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101978982/thumbnails/1.jpg","file_name":"journal.pone.0275750.pdf","download_url":"https://www.academia.edu/attachments/101978982/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reinforcing_personalized_persuasion_in_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101978982/journal.pone.0275750-libre.pdf?1683545283=\u0026response-content-disposition=attachment%3B+filename%3DReinforcing_personalized_persuasion_in_t.pdf\u0026Expires=1732435682\u0026Signature=cYrAON0lduT1HyR8r06wUY1~aC9XRzNEmuvA2BoP6GKvXrGTmu4pEnXSfv0-TbwwoHWqlF5Gxb7Dxv7XGK0KsvlFE1xJ6z4sRJjBCFBsP62EOneVBZXcphsQk6oD8JrceGiz8O2~RveSXOlgXZ5gcjTK5gPmf2C9P2hI-QvrfAJK51qr2bOoGQ0jmcqUbAlAcbSkcTf9Z1SBHdPAv71wDk1m-N0RtNXjkJW2j3rvEyquZvmI9uidFjsffFQgU4UiusGSlxHe4mtU0fYR21MBsFntRscMuIIJFdv1ID4ENcab-N2IfhhPWk~l8kdg-btk3Eknr5sr5QdA0eNr3DSHuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reinforcing_personalized_persuasion_in_task_oriented_virtual_sales_assistant","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":101978982,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101978982/thumbnails/1.jpg","file_name":"journal.pone.0275750.pdf","download_url":"https://www.academia.edu/attachments/101978982/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reinforcing_personalized_persuasion_in_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101978982/journal.pone.0275750-libre.pdf?1683545283=\u0026response-content-disposition=attachment%3B+filename%3DReinforcing_personalized_persuasion_in_t.pdf\u0026Expires=1732435682\u0026Signature=cYrAON0lduT1HyR8r06wUY1~aC9XRzNEmuvA2BoP6GKvXrGTmu4pEnXSfv0-TbwwoHWqlF5Gxb7Dxv7XGK0KsvlFE1xJ6z4sRJjBCFBsP62EOneVBZXcphsQk6oD8JrceGiz8O2~RveSXOlgXZ5gcjTK5gPmf2C9P2hI-QvrfAJK51qr2bOoGQ0jmcqUbAlAcbSkcTf9Z1SBHdPAv71wDk1m-N0RtNXjkJW2j3rvEyquZvmI9uidFjsffFQgU4UiusGSlxHe4mtU0fYR21MBsFntRscMuIIJFdv1ID4ENcab-N2IfhhPWk~l8kdg-btk3Eknr5sr5QdA0eNr3DSHuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":20153,"name":"Persuasion","url":"https://www.academia.edu/Documents/in/Persuasion"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":958784,"name":"Utterance","url":"https://www.academia.edu/Documents/in/Utterance"}],"urls":[{"id":31267469,"url":"https://dx.plos.org/10.1371/journal.pone.0275750"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96574653"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96574653/COFAR_Commonsense_and_Factual_Reasoning_in_Image_Search"><img alt="Research paper thumbnail of COFAR: Commonsense and Factual Reasoning in Image Search" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96574653/COFAR_Commonsense_and_Factual_Reasoning_in_Image_Search">COFAR: Commonsense and Factual Reasoning in Image Search</a></div><div class="wp-workCard_item"><span>Cornell University - arXiv</span><span>, Oct 16, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96574653"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96574653"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96574653; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96574653]").text(description); $(".js-view-count[data-work-id=96574653]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96574653; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96574653']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96574653, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96574653]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96574653,"title":"COFAR: Commonsense and Factual Reasoning in Image Search","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":16,"month":10,"year":2022,"errors":{}},"publication_name":"Cornell University - arXiv"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96574653/COFAR_Commonsense_and_Factual_Reasoning_in_Image_Search","translated_internal_url":"","created_at":"2023-02-08T20:43:58.536-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"COFAR_Commonsense_and_Factual_Reasoning_in_Image_Search","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":56486,"name":"Commonsense Reasoning","url":"https://www.academia.edu/Documents/in/Commonsense_Reasoning"},{"id":115847,"name":"Landmark","url":"https://www.academia.edu/Documents/in/Landmark"},{"id":2892975,"name":"Commonsense Knowledge","url":"https://www.academia.edu/Documents/in/Commonsense_Knowledge"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92051150"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92051150/Enabling_Interactive_Answering_of_Procedural_Questions"><img alt="Research paper thumbnail of Enabling Interactive Answering of Procedural Questions" class="work-thumbnail" src="https://attachments.academia-assets.com/95165342/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92051150/Enabling_Interactive_Answering_of_Procedural_Questions">Enabling Interactive Answering of Procedural Questions</a></div><div class="wp-workCard_item"><span>Natural Language Processing and Information Systems</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dfba2954f57ab7b26c6077cde491e5d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":95165342,"asset_id":92051150,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/95165342/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92051150"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92051150"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92051150; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92051150]").text(description); $(".js-view-count[data-work-id=92051150]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92051150; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92051150']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 92051150, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dfba2954f57ab7b26c6077cde491e5d3" } } $('.js-work-strip[data-work-id=92051150]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92051150,"title":"Enabling Interactive Answering of Procedural Questions","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Natural Language Processing and Information Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/92051150/Enabling_Interactive_Answering_of_Procedural_Questions","translated_internal_url":"","created_at":"2022-12-02T04:41:49.583-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95165342,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165342/thumbnails/1.jpg","file_name":"978-3-030-51310-8_7.pdf","download_url":"https://www.academia.edu/attachments/95165342/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Enabling_Interactive_Answering_of_Proced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165342/978-3-030-51310-8_7-libre.pdf?1669988834=\u0026response-content-disposition=attachment%3B+filename%3DEnabling_Interactive_Answering_of_Proced.pdf\u0026Expires=1732435682\u0026Signature=EPWLoLP~opXpBmgVb4yfUYuZrQL6lnXLlB3omkapYH2E6xVwd1szspg2TpoW7X1nBzW0A4oDpM7NGz6~HMXSeLcQY3JW7W-o04IKuWoPtwsuVO0ofWyL0nxC06jr1AUBMx9y30VB-lCT~jwgxIbywtioPS5wCa4FegfleV0yQV0K558QSYTs8bFFYHAkDfiPyAGuy0BuW-rP7N3Xr74vqsgGA8dE0p-zkA-AT~EBvn-dQk8kv1eULju9MYsPMXWgrjLRYffsHL5VEZrVt6AQI6iiu7qT0J3GT51Zo0XbEKKeyQYGgVSYoHKuyNE2Z8dE1Dx5IjMfCB6ErxjUXvHciQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Enabling_Interactive_Answering_of_Procedural_Questions","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":95165342,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165342/thumbnails/1.jpg","file_name":"978-3-030-51310-8_7.pdf","download_url":"https://www.academia.edu/attachments/95165342/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Enabling_Interactive_Answering_of_Proced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165342/978-3-030-51310-8_7-libre.pdf?1669988834=\u0026response-content-disposition=attachment%3B+filename%3DEnabling_Interactive_Answering_of_Proced.pdf\u0026Expires=1732435682\u0026Signature=EPWLoLP~opXpBmgVb4yfUYuZrQL6lnXLlB3omkapYH2E6xVwd1szspg2TpoW7X1nBzW0A4oDpM7NGz6~HMXSeLcQY3JW7W-o04IKuWoPtwsuVO0ofWyL0nxC06jr1AUBMx9y30VB-lCT~jwgxIbywtioPS5wCa4FegfleV0yQV0K558QSYTs8bFFYHAkDfiPyAGuy0BuW-rP7N3Xr74vqsgGA8dE0p-zkA-AT~EBvn-dQk8kv1eULju9MYsPMXWgrjLRYffsHL5VEZrVt6AQI6iiu7qT0J3GT51Zo0XbEKKeyQYGgVSYoHKuyNE2Z8dE1Dx5IjMfCB6ErxjUXvHciQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":95165341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165341/thumbnails/1.jpg","file_name":"978-3-030-51310-8_7.pdf","download_url":"https://www.academia.edu/attachments/95165341/download_file","bulk_download_file_name":"Enabling_Interactive_Answering_of_Proced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165341/978-3-030-51310-8_7-libre.pdf?1669988835=\u0026response-content-disposition=attachment%3B+filename%3DEnabling_Interactive_Answering_of_Proced.pdf\u0026Expires=1732435682\u0026Signature=dB-0by63ge7uAD6FocL0f3P1ig-qI-GMBR2HjRdtOBsPIUXPkwshi7I8pv05hhxVw3TixSLmJHrCzkMBoXsj0HPFjAsuuSW-37GKDn7FynYp3Gjtj-R0Rs0EnHY-b0cyB-o3a0Ba~pLp7yykFciVOKRPlTWvvtSO0AuVcZBDSICD-xW5wVJnPnecTRmkPpBPZB7AHIGDjK6VUq9noB1uga6FZUB9TXxOZ-v8vKHnYsPxxetYNcxE9HLc-9m6aMkPsQf4Ti4YDfHjGliQ7I11sWvKHRHpCx6FU4sTxXFfYBYKxmA0kxwOloRBctI~UzWoR2KETnVhG5H0eASbd9aetQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":184950,"name":"Question Answering","url":"https://www.academia.edu/Documents/in/Question_Answering"}],"urls":[{"id":26611429,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-51310-8_7"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92051149"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92051149/Data_Driven_Application_Maintenance_Experience_from_the_Trenches"><img alt="Research paper thumbnail of Data-Driven Application Maintenance: Experience from the Trenches" class="work-thumbnail" src="https://attachments.academia-assets.com/95165340/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92051149/Data_Driven_Application_Maintenance_Experience_from_the_Trenches">Data-Driven Application Maintenance: Experience from the Trenches</a></div><div class="wp-workCard_item"><span>2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice (SER&IP)</span><span>, May 1, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37cd848975f3156e19463776f515b450" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":95165340,"asset_id":92051149,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/95165340/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92051149"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92051149"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92051149; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92051149]").text(description); $(".js-view-count[data-work-id=92051149]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92051149; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92051149']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 92051149, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37cd848975f3156e19463776f515b450" } } $('.js-work-strip[data-work-id=92051149]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92051149,"title":"Data-Driven Application Maintenance: Experience from the Trenches","translated_title":"","metadata":{"publisher":"IEEE","publication_date":{"day":1,"month":5,"year":2017,"errors":{}},"publication_name":"2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice (SER\u0026IP)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/92051149/Data_Driven_Application_Maintenance_Experience_from_the_Trenches","translated_internal_url":"","created_at":"2022-12-02T04:41:49.419-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95165340,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165340/thumbnails/1.jpg","file_name":"1806.pdf","download_url":"https://www.academia.edu/attachments/95165340/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Data_Driven_Application_Maintenance_Expe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165340/1806-libre.pdf?1669988835=\u0026response-content-disposition=attachment%3B+filename%3DData_Driven_Application_Maintenance_Expe.pdf\u0026Expires=1732435682\u0026Signature=SeMGo3tJ96vPUHV0FwGJA1L4h9KAcfH0Cyi7xH72fOlZIo668cD8OG7veZNgvGlFeNu~9ui77xie3LZGZp3MB-f-iAV8gZv4fMI0qUPI1-Fdo7nQQeJUDb~m7n0HyvpX3dGxinBJXy0BtqQzBBxEbnXXz5gbEaeGLbkuQ-jk-NpuOmmJCPNdKU64invwtAGMJhN1qV5T4KuTkzjhy4S1xGiBfoPqsLS1-fn8zvrGm6RoLXzOlh-WIPT9xoKUKgxF5A028ThVh~Jj-8fJAPXTMY1~KACc6Rg9Peg4Fy9MX4Sa0ULsUiwg~h002uSfqPwLTm9ER3VZ5h18aUHvHfcO2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Data_Driven_Application_Maintenance_Experience_from_the_Trenches","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":95165340,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165340/thumbnails/1.jpg","file_name":"1806.pdf","download_url":"https://www.academia.edu/attachments/95165340/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Data_Driven_Application_Maintenance_Expe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165340/1806-libre.pdf?1669988835=\u0026response-content-disposition=attachment%3B+filename%3DData_Driven_Application_Maintenance_Expe.pdf\u0026Expires=1732435682\u0026Signature=SeMGo3tJ96vPUHV0FwGJA1L4h9KAcfH0Cyi7xH72fOlZIo668cD8OG7veZNgvGlFeNu~9ui77xie3LZGZp3MB-f-iAV8gZv4fMI0qUPI1-Fdo7nQQeJUDb~m7n0HyvpX3dGxinBJXy0BtqQzBBxEbnXXz5gbEaeGLbkuQ-jk-NpuOmmJCPNdKU64invwtAGMJhN1qV5T4KuTkzjhy4S1xGiBfoPqsLS1-fn8zvrGm6RoLXzOlh-WIPT9xoKUKgxF5A028ThVh~Jj-8fJAPXTMY1~KACc6Rg9Peg4Fy9MX4Sa0ULsUiwg~h002uSfqPwLTm9ER3VZ5h18aUHvHfcO2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":66379,"name":"Automation","url":"https://www.academia.edu/Documents/in/Automation"},{"id":69100,"name":"Data Science","url":"https://www.academia.edu/Documents/in/Data_Science"}],"urls":[{"id":26611428,"url":"http://arxiv.org/pdf/1806.08103"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92051138"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92051138/Dynamic_integration_of_heterogeneous_enterprise_data_a_grid_based_approach"><img alt="Research paper thumbnail of Dynamic integration of heterogeneous enterprise data – a grid based approach" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92051138/Dynamic_integration_of_heterogeneous_enterprise_data_a_grid_based_approach">Dynamic integration of heterogeneous enterprise data – a grid based approach</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Business decisions require information to be available at the right time and at the right place. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Business decisions require information to be available at the right time and at the right place. This necessitates information retrieval and query processing from distributed and heterogeneous data sources. Here, we discuss how service-oriented data grid technology can be leveraged to create a scalable information integration platform operating near real time. This concept is being implemented in a framework called GRADIENT.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92051138"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92051138"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92051138; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92051138]").text(description); $(".js-view-count[data-work-id=92051138]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92051138; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92051138']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 92051138, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=92051138]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92051138,"title":"Dynamic integration of heterogeneous enterprise data – a grid based approach","translated_title":"","metadata":{"abstract":"Business decisions require information to be available at the right time and at the right place. This necessitates information retrieval and query processing from distributed and heterogeneous data sources. Here, we discuss how service-oriented data grid technology can be leveraged to create a scalable information integration platform operating near real time. This concept is being implemented in a framework called GRADIENT.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"Business decisions require information to be available at the right time and at the right place. This necessitates information retrieval and query processing from distributed and heterogeneous data sources. Here, we discuss how service-oriented data grid technology can be leveraged to create a scalable information integration platform operating near real time. This concept is being implemented in a framework called GRADIENT.","internal_url":"https://www.academia.edu/92051138/Dynamic_integration_of_heterogeneous_enterprise_data_a_grid_based_approach","translated_internal_url":"","created_at":"2022-12-02T04:41:29.729-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dynamic_integration_of_heterogeneous_enterprise_data_a_grid_based_approach","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142884"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142884/Towards_personalized_persuasive_dialogue_generation_for_adversarial_task_oriented_dialogue_setting"><img alt="Research paper thumbnail of Towards personalized persuasive dialogue generation for adversarial task oriented dialogue setting" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142884/Towards_personalized_persuasive_dialogue_generation_for_adversarial_task_oriented_dialogue_setting">Towards personalized persuasive dialogue generation for adversarial task oriented dialogue setting</a></div><div class="wp-workCard_item"><span>Expert Systems with Applications</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142884"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142884"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142884; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142884]").text(description); $(".js-view-count[data-work-id=88142884]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142884; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142884']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142884, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142884]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142884,"title":"Towards personalized persuasive dialogue generation for adversarial task oriented dialogue setting","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Expert Systems with Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88142884/Towards_personalized_persuasive_dialogue_generation_for_adversarial_task_oriented_dialogue_setting","translated_internal_url":"","created_at":"2022-10-08T21:00:02.489-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Towards_personalized_persuasive_dialogue_generation_for_adversarial_task_oriented_dialogue_setting","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":24596198,"url":"https://api.elsevier.com/content/article/PII:S0957417422017936?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142883"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142883/Document_Retrieval_and_Claim_Verification_to_Mitigate_COVID_19_Misinformation"><img alt="Research paper thumbnail of Document Retrieval and Claim Verification to Mitigate COVID-19 Misinformation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142883/Document_Retrieval_and_Claim_Verification_to_Mitigate_COVID_19_Misinformation">Document Retrieval and Claim Verification to Mitigate COVID-19 Misinformation</a></div><div class="wp-workCard_item"><span>Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142883"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142883"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142883; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142883]").text(description); $(".js-view-count[data-work-id=88142883]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142883; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142883']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142883, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142883]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142883,"title":"Document Retrieval and Claim Verification to Mitigate COVID-19 Misinformation","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","publication_name":"Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88142883/Document_Retrieval_and_Claim_Verification_to_Mitigate_COVID_19_Misinformation","translated_internal_url":"","created_at":"2022-10-08T21:00:02.336-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Document_Retrieval_and_Claim_Verification_to_Mitigate_COVID_19_Misinformation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142881"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142881/From_Opinion_Mining_to_Improvement_Mining_Understanding_Product_Improvements_from_User_Reviews"><img alt="Research paper thumbnail of From Opinion Mining to Improvement Mining : Understanding Product Improvements from User Reviews" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142881/From_Opinion_Mining_to_Improvement_Mining_Understanding_Product_Improvements_from_User_Reviews">From Opinion Mining to Improvement Mining : Understanding Product Improvements from User Reviews</a></div><div class="wp-workCard_item"><span>Forum for Information Retrieval Evaluation</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A valuable trove of information exists for product(s) or services online via user opinions like d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A valuable trove of information exists for product(s) or services online via user opinions like detailed reviews provided by customers on popular e-commerce websites. Users express their individual opinions in the form of overall product/service experiences, which may include explicit positive/negative feedback, preferences, concerns, and suggestions for the future. Such information can be valuable to product/service owners in helping them understand the improvement(s) that must be made to a particular product or service. The primary focus of opinion mining has been on understanding positive and negative aspects within the review effectively. Limited emphasis has been placed on finer topics like user suggestions or conflicting information from users. In this work, we describe a method to extract possible product / service improvements from opinionated text in the form of non-conflicting negative feedback, user tips, recommendations, product usage details, feature suggestions, and sp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142881"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142881"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142881; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142881]").text(description); $(".js-view-count[data-work-id=88142881]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142881; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142881']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142881, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142881]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142881,"title":"From Opinion Mining to Improvement Mining : Understanding Product Improvements from User Reviews","translated_title":"","metadata":{"abstract":"A valuable trove of information exists for product(s) or services online via user opinions like detailed reviews provided by customers on popular e-commerce websites. Users express their individual opinions in the form of overall product/service experiences, which may include explicit positive/negative feedback, preferences, concerns, and suggestions for the future. Such information can be valuable to product/service owners in helping them understand the improvement(s) that must be made to a particular product or service. The primary focus of opinion mining has been on understanding positive and negative aspects within the review effectively. Limited emphasis has been placed on finer topics like user suggestions or conflicting information from users. In this work, we describe a method to extract possible product / service improvements from opinionated text in the form of non-conflicting negative feedback, user tips, recommendations, product usage details, feature suggestions, and sp...","publisher":"FIRE","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Forum for Information Retrieval Evaluation"},"translated_abstract":"A valuable trove of information exists for product(s) or services online via user opinions like detailed reviews provided by customers on popular e-commerce websites. Users express their individual opinions in the form of overall product/service experiences, which may include explicit positive/negative feedback, preferences, concerns, and suggestions for the future. Such information can be valuable to product/service owners in helping them understand the improvement(s) that must be made to a particular product or service. The primary focus of opinion mining has been on understanding positive and negative aspects within the review effectively. Limited emphasis has been placed on finer topics like user suggestions or conflicting information from users. In this work, we describe a method to extract possible product / service improvements from opinionated text in the form of non-conflicting negative feedback, user tips, recommendations, product usage details, feature suggestions, and sp...","internal_url":"https://www.academia.edu/88142881/From_Opinion_Mining_to_Improvement_Mining_Understanding_Product_Improvements_from_User_Reviews","translated_internal_url":"","created_at":"2022-10-08T21:00:02.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"From_Opinion_Mining_to_Improvement_Mining_Understanding_Product_Improvements_from_User_Reviews","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"}],"urls":[{"id":24596197,"url":"https://doi.org/10.1145/3503162.3503166"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142878"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142878/A_persona_aware_persuasive_dialogue_policy_for_dynamic_and_co_operative_goal_setting"><img alt="Research paper thumbnail of A persona aware persuasive dialogue policy for dynamic and co-operative goal setting" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142878/A_persona_aware_persuasive_dialogue_policy_for_dynamic_and_co_operative_goal_setting">A persona aware persuasive dialogue policy for dynamic and co-operative goal setting</a></div><div class="wp-workCard_item"><span>Expert Systems with Applications</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142878"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142878"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142878; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142878]").text(description); $(".js-view-count[data-work-id=88142878]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142878; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142878']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142878, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142878]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142878,"title":"A persona aware persuasive dialogue policy for dynamic and co-operative goal setting","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Expert Systems with Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88142878/A_persona_aware_persuasive_dialogue_policy_for_dynamic_and_co_operative_goal_setting","translated_internal_url":"","created_at":"2022-10-08T21:00:00.211-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_persona_aware_persuasive_dialogue_policy_for_dynamic_and_co_operative_goal_setting","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction"},{"id":20153,"name":"Persuasion","url":"https://www.academia.edu/Documents/in/Persuasion"},{"id":74442,"name":"Popularity","url":"https://www.academia.edu/Documents/in/Popularity"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":24596196,"url":"https://api.elsevier.com/content/article/PII:S0957417421016067?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142877"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142877/Combining_exogenous_and_endogenous_signals_with_a_semi_supervised_co_attention_network_for_early_detection_of_COVID_19_fake_tweets"><img alt="Research paper thumbnail of Combining exogenous and endogenous signals with a semi-supervised co-attention network for early detection of COVID-19 fake tweets" class="work-thumbnail" src="https://attachments.academia-assets.com/92175971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142877/Combining_exogenous_and_endogenous_signals_with_a_semi_supervised_co_attention_network_for_early_detection_of_COVID_19_fake_tweets">Combining exogenous and endogenous signals with a semi-supervised co-attention network for early detection of COVID-19 fake tweets</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fake tweets are observed to be ever-increasing, demanding immediate countermeasures to combat the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fake tweets are observed to be ever-increasing, demanding immediate countermeasures to combat their spread. During COVID-19, tweets with misinformation should be flagged and neutralised in their early stages to mitigate the damages. Most of the existing methods for early detection of fake news assume to have enough propagation information for large labelled tweets – which may not be an ideal setting for cases like COVID-19 where both aspects are largely absent. In this work, we present ENDEMIC, a novel early detection model which leverages exogenous and endogenous signals related to tweets, while learning on limited labelled data. We first develop a novel dataset, called ECTF for early COVID-19 Twitter fake news, with additional behavioural test-sets to validate early detection. We build a heterogeneous graph with follower-followee, user-tweet, and tweet-retweet connections and train a graph embedding model to aggregate propagation information. Graph embeddings and contextual featur...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ac564ae0d8e342c1c34efe01bbf1a972" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92175971,"asset_id":88142877,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92175971/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142877"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142877"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142877; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142877]").text(description); $(".js-view-count[data-work-id=88142877]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142877; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142877']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142877, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ac564ae0d8e342c1c34efe01bbf1a972" } } $('.js-work-strip[data-work-id=88142877]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142877,"title":"Combining exogenous and endogenous signals with a semi-supervised co-attention network for early detection of COVID-19 fake tweets","translated_title":"","metadata":{"abstract":"Fake tweets are observed to be ever-increasing, demanding immediate countermeasures to combat their spread. During COVID-19, tweets with misinformation should be flagged and neutralised in their early stages to mitigate the damages. Most of the existing methods for early detection of fake news assume to have enough propagation information for large labelled tweets – which may not be an ideal setting for cases like COVID-19 where both aspects are largely absent. In this work, we present ENDEMIC, a novel early detection model which leverages exogenous and endogenous signals related to tweets, while learning on limited labelled data. We first develop a novel dataset, called ECTF for early COVID-19 Twitter fake news, with additional behavioural test-sets to validate early detection. We build a heterogeneous graph with follower-followee, user-tweet, and tweet-retweet connections and train a graph embedding model to aggregate propagation information. Graph embeddings and contextual featur...","publisher":"PAKDD","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"Fake tweets are observed to be ever-increasing, demanding immediate countermeasures to combat their spread. During COVID-19, tweets with misinformation should be flagged and neutralised in their early stages to mitigate the damages. Most of the existing methods for early detection of fake news assume to have enough propagation information for large labelled tweets – which may not be an ideal setting for cases like COVID-19 where both aspects are largely absent. In this work, we present ENDEMIC, a novel early detection model which leverages exogenous and endogenous signals related to tweets, while learning on limited labelled data. We first develop a novel dataset, called ECTF for early COVID-19 Twitter fake news, with additional behavioural test-sets to validate early detection. We build a heterogeneous graph with follower-followee, user-tweet, and tweet-retweet connections and train a graph embedding model to aggregate propagation information. Graph embeddings and contextual featur...","internal_url":"https://www.academia.edu/88142877/Combining_exogenous_and_endogenous_signals_with_a_semi_supervised_co_attention_network_for_early_detection_of_COVID_19_fake_tweets","translated_internal_url":"","created_at":"2022-10-08T20:59:59.695-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92175971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92175971/thumbnails/1.jpg","file_name":"2104.05321v1.pdf","download_url":"https://www.academia.edu/attachments/92175971/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combining_exogenous_and_endogenous_signa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92175971/2104.05321v1-libre.pdf?1665291953=\u0026response-content-disposition=attachment%3B+filename%3DCombining_exogenous_and_endogenous_signa.pdf\u0026Expires=1732435682\u0026Signature=PVROXgMfo988nNv-ILmU7~dM8HrHLSUGsxlXa4nL3isp1mNQEiaqie~qqFoG1DRlGaZtqbDnDV4oa4si8HsYakuyQ~uEEyBwRF25S5HcDzSC8Yzx2TAn0n37QsrROVWkNkJP12QkABcmZFuIeqSQAhgr8lAbTOr5Wn9I3Hqu~qqYFrbnhNXP57Ktu39gzeXQQ5BHTbFwpcxPtDvgSsBs89CPNW-f42D2bs2q2WRuVnkSND656kTDzIs4-jhR6aCZrDcSAQ~SzgHOSFpD6TPIAEB5C17Eaw9a8tImXuFgUi8ZhCLSqEhqRxFvXkwuGJJwaW1wPZYj748mxq5fz1Fubg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Combining_exogenous_and_endogenous_signals_with_a_semi_supervised_co_attention_network_for_early_detection_of_COVID_19_fake_tweets","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":92175971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92175971/thumbnails/1.jpg","file_name":"2104.05321v1.pdf","download_url":"https://www.academia.edu/attachments/92175971/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combining_exogenous_and_endogenous_signa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92175971/2104.05321v1-libre.pdf?1665291953=\u0026response-content-disposition=attachment%3B+filename%3DCombining_exogenous_and_endogenous_signa.pdf\u0026Expires=1732435682\u0026Signature=PVROXgMfo988nNv-ILmU7~dM8HrHLSUGsxlXa4nL3isp1mNQEiaqie~qqFoG1DRlGaZtqbDnDV4oa4si8HsYakuyQ~uEEyBwRF25S5HcDzSC8Yzx2TAn0n37QsrROVWkNkJP12QkABcmZFuIeqSQAhgr8lAbTOr5Wn9I3Hqu~qqYFrbnhNXP57Ktu39gzeXQQ5BHTbFwpcxPtDvgSsBs89CPNW-f42D2bs2q2WRuVnkSND656kTDzIs4-jhR6aCZrDcSAQ~SzgHOSFpD6TPIAEB5C17Eaw9a8tImXuFgUi8ZhCLSqEhqRxFvXkwuGJJwaW1wPZYj748mxq5fz1Fubg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":266831,"name":"Graph","url":"https://www.academia.edu/Documents/in/Graph"},{"id":276623,"name":"Misinformation","url":"https://www.academia.edu/Documents/in/Misinformation"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"},{"id":3686510,"name":"Coronavirus Disease 2019 (COVID-19)","url":"https://www.academia.edu/Documents/in/Coronavirus_Disease_2019_COVID-19_"}],"urls":[{"id":24596195,"url":"https://arxiv.org/abs/2104.05321"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142876"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142876/A_dynamic_goal_adapted_task_oriented_dialogue_agent"><img alt="Research paper thumbnail of A dynamic goal adapted task oriented dialogue agent" class="work-thumbnail" src="https://attachments.academia-assets.com/92175969/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142876/A_dynamic_goal_adapted_task_oriented_dialogue_agent">A dynamic goal adapted task oriented dialogue agent</a></div><div class="wp-workCard_item"><span>PLOS ONE</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieva...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieval based or static goal-driven. However, in real-world situations, end-users might not have a known and fixed goal beforehand for the task, i.e., they may upgrade/downgrade/update their goal components in real-time to maximize their utility values. Existing VAs are unable to handle such dynamic goal-oriented situations. Methodology Due to the absence of any related dialogue dataset where such choice deviations are present, we have created a conversational dataset called Deviation adapted Virtual Agent(DevVA), with the manual annotation of its corresponding intents, slots, and sentiment labels. A Dynamic Goal Driven Dialogue Agent (DGDVA) has been developed by incorporating a Dynamic Goal Driven Module (GDM) on top of a deep reinforcement learning based dialogue manager. In the course of a conversation, the user sentiment provides grounded feedback about agent behavior, including goal serv...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="daf8e0fa595f635f275083e340aba86b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92175969,"asset_id":88142876,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92175969/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142876"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142876"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142876; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142876]").text(description); $(".js-view-count[data-work-id=88142876]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142876; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142876']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142876, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "daf8e0fa595f635f275083e340aba86b" } } $('.js-work-strip[data-work-id=88142876]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142876,"title":"A dynamic goal adapted task oriented dialogue agent","translated_title":"","metadata":{"abstract":"Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieval based or static goal-driven. However, in real-world situations, end-users might not have a known and fixed goal beforehand for the task, i.e., they may upgrade/downgrade/update their goal components in real-time to maximize their utility values. Existing VAs are unable to handle such dynamic goal-oriented situations. Methodology Due to the absence of any related dialogue dataset where such choice deviations are present, we have created a conversational dataset called Deviation adapted Virtual Agent(DevVA), with the manual annotation of its corresponding intents, slots, and sentiment labels. A Dynamic Goal Driven Dialogue Agent (DGDVA) has been developed by incorporating a Dynamic Goal Driven Module (GDM) on top of a deep reinforcement learning based dialogue manager. In the course of a conversation, the user sentiment provides grounded feedback about agent behavior, including goal serv...","publisher":"Public Library of Science (PLoS)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"PLOS ONE"},"translated_abstract":"Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieval based or static goal-driven. However, in real-world situations, end-users might not have a known and fixed goal beforehand for the task, i.e., they may upgrade/downgrade/update their goal components in real-time to maximize their utility values. Existing VAs are unable to handle such dynamic goal-oriented situations. Methodology Due to the absence of any related dialogue dataset where such choice deviations are present, we have created a conversational dataset called Deviation adapted Virtual Agent(DevVA), with the manual annotation of its corresponding intents, slots, and sentiment labels. A Dynamic Goal Driven Dialogue Agent (DGDVA) has been developed by incorporating a Dynamic Goal Driven Module (GDM) on top of a deep reinforcement learning based dialogue manager. In the course of a conversation, the user sentiment provides grounded feedback about agent behavior, including goal serv...","internal_url":"https://www.academia.edu/88142876/A_dynamic_goal_adapted_task_oriented_dialogue_agent","translated_internal_url":"","created_at":"2022-10-08T20:59:59.238-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92175969,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92175969/thumbnails/1.jpg","file_name":"pone.0249030.pdf","download_url":"https://www.academia.edu/attachments/92175969/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_dynamic_goal_adapted_task_oriented_dia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92175969/pone.0249030-libre.pdf?1665291964=\u0026response-content-disposition=attachment%3B+filename%3DA_dynamic_goal_adapted_task_oriented_dia.pdf\u0026Expires=1732435682\u0026Signature=DNj905wJc4dBdxIOwFsL9qvE1VoUyxQet~Q-j9Pr6VxhjU89mcjgfXbiOm4JWYz~oMhvxx1z1Ep9YA039OAXG7JXObyoYkbzbx63ux7ilDyxXYd1ucD5bCffCFbwAm1s9vfYLt3pgzdLiMj1MbEDqHpnXnGSd-6pxut5BGzjBRt8MWUMd-Aipb14baKHEzJxawYuwYQCNoFlzVy6cgshx1ByzQ37P1BvkgZUxzAM~aIcnXF2xT7ncK2-NSPlpc3AIvVbeP2PLS82LMXhArNzqRiKWgOnwMjfGfyjPD5vd2jMWt6leSIFcHtZoZZM6Ffg1Jos3X3ArvWiYIBXGxR3kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_dynamic_goal_adapted_task_oriented_dialogue_agent","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":92175969,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92175969/thumbnails/1.jpg","file_name":"pone.0249030.pdf","download_url":"https://www.academia.edu/attachments/92175969/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_dynamic_goal_adapted_task_oriented_dia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92175969/pone.0249030-libre.pdf?1665291964=\u0026response-content-disposition=attachment%3B+filename%3DA_dynamic_goal_adapted_task_oriented_dia.pdf\u0026Expires=1732435682\u0026Signature=DNj905wJc4dBdxIOwFsL9qvE1VoUyxQet~Q-j9Pr6VxhjU89mcjgfXbiOm4JWYz~oMhvxx1z1Ep9YA039OAXG7JXObyoYkbzbx63ux7ilDyxXYd1ucD5bCffCFbwAm1s9vfYLt3pgzdLiMj1MbEDqHpnXnGSd-6pxut5BGzjBRt8MWUMd-Aipb14baKHEzJxawYuwYQCNoFlzVy6cgshx1ByzQ37P1BvkgZUxzAM~aIcnXF2xT7ncK2-NSPlpc3AIvVbeP2PLS82LMXhArNzqRiKWgOnwMjfGfyjPD5vd2jMWt6leSIFcHtZoZZM6Ffg1Jos3X3ArvWiYIBXGxR3kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":24342,"name":"Conversation","url":"https://www.academia.edu/Documents/in/Conversation"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":2471191,"name":"Downgrade","url":"https://www.academia.edu/Documents/in/Downgrade"}],"urls":[{"id":24596194,"url":"https://dx.plos.org/10.1371/journal.pone.0249030"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142874"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142874/SETLabs_Briefings_Service_Oriented_Infrastructure"><img alt="Research paper thumbnail of SETLabs Briefings - Service Oriented Infrastructure" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142874/SETLabs_Briefings_Service_Oriented_Infrastructure">SETLabs Briefings - Service Oriented Infrastructure</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There is a palpable sense of anticipation about SOA the “new face” of enterprise computing and IT...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There is a palpable sense of anticipation about SOA the “new face” of enterprise computing and IT services paradigm. Lot of debate is going on the important SOA issues like application models, service granularity, interfaces, re-use economics etc. The story that is left untold is how some of the so called esoteric technologies like Grid and virtualization make true SOA realizable in practice; well, almost. There are many significant technology shifts happening in those dark non-descript gargantuan warehouses that pass by the name “data centers” hosting thousands of computing resources. Research efforts worth millions of dollars are being spent on infrastructure layer virtualization and associated technologies. If we add to this the decades of extensive research done in the area of distributed heterogeneous computing or Grid, we now have a set of technologies that can usher in service orientation in the infrastructure fabric layer. We term this technology paradigm as Service Oriented...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142874"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142874"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142874; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142874]").text(description); $(".js-view-count[data-work-id=88142874]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142874; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142874']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142874, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142874]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142874,"title":"SETLabs Briefings - Service Oriented Infrastructure","translated_title":"","metadata":{"abstract":"There is a palpable sense of anticipation about SOA the “new face” of enterprise computing and IT services paradigm. Lot of debate is going on the important SOA issues like application models, service granularity, interfaces, re-use economics etc. The story that is left untold is how some of the so called esoteric technologies like Grid and virtualization make true SOA realizable in practice; well, almost. There are many significant technology shifts happening in those dark non-descript gargantuan warehouses that pass by the name “data centers” hosting thousands of computing resources. Research efforts worth millions of dollars are being spent on infrastructure layer virtualization and associated technologies. If we add to this the decades of extensive research done in the area of distributed heterogeneous computing or Grid, we now have a set of technologies that can usher in service orientation in the infrastructure fabric layer. We term this technology paradigm as Service Oriented...","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"There is a palpable sense of anticipation about SOA the “new face” of enterprise computing and IT services paradigm. Lot of debate is going on the important SOA issues like application models, service granularity, interfaces, re-use economics etc. The story that is left untold is how some of the so called esoteric technologies like Grid and virtualization make true SOA realizable in practice; well, almost. There are many significant technology shifts happening in those dark non-descript gargantuan warehouses that pass by the name “data centers” hosting thousands of computing resources. Research efforts worth millions of dollars are being spent on infrastructure layer virtualization and associated technologies. If we add to this the decades of extensive research done in the area of distributed heterogeneous computing or Grid, we now have a set of technologies that can usher in service orientation in the infrastructure fabric layer. We term this technology paradigm as Service Oriented...","internal_url":"https://www.academia.edu/88142874/SETLabs_Briefings_Service_Oriented_Infrastructure","translated_internal_url":"","created_at":"2022-10-08T20:59:44.938-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"SETLabs_Briefings_Service_Oriented_Infrastructure","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927600"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927600/An_Inference_Approach_To_Question_Answering_Over_Knowledge_Graphs"><img alt="Research paper thumbnail of An Inference Approach To Question Answering Over Knowledge Graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/89117537/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927600/An_Inference_Approach_To_Question_Answering_Over_Knowledge_Graphs">An Inference Approach To Question Answering Over Knowledge Graphs</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural la...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural language text corpora. The problem of natural language querying over knowledge graphs is essential for the human consumption of this information. This problem is typically addressed by converting the natural language query to a structured query and then firing the structured query on the KG. Direct answering models over knowledge graphs in literature are very few. The query conversion models and direct models both require specific training data pertaining to the domain of the knowledge graph. In this work, we convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs. Using trained deep learning models for the converted proxy inferencing problem, we provide the solution for the original natural language querying problem. Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state of the art. We also p...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b09eec719bf453fd4c9cca096045f120" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89117537,"asset_id":83927600,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89117537/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927600"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927600"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927600; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927600]").text(description); $(".js-view-count[data-work-id=83927600]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927600; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927600']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927600, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b09eec719bf453fd4c9cca096045f120" } } $('.js-work-strip[data-work-id=83927600]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927600,"title":"An Inference Approach To Question Answering Over Knowledge Graphs","translated_title":"","metadata":{"abstract":"Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural language text corpora. The problem of natural language querying over knowledge graphs is essential for the human consumption of this information. This problem is typically addressed by converting the natural language query to a structured query and then firing the structured query on the KG. Direct answering models over knowledge graphs in literature are very few. The query conversion models and direct models both require specific training data pertaining to the domain of the knowledge graph. In this work, we convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs. Using trained deep learning models for the converted proxy inferencing problem, we provide the solution for the original natural language querying problem. Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state of the art. We also p...","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural language text corpora. The problem of natural language querying over knowledge graphs is essential for the human consumption of this information. This problem is typically addressed by converting the natural language query to a structured query and then firing the structured query on the KG. Direct answering models over knowledge graphs in literature are very few. The query conversion models and direct models both require specific training data pertaining to the domain of the knowledge graph. In this work, we convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs. Using trained deep learning models for the converted proxy inferencing problem, we provide the solution for the original natural language querying problem. Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state of the art. We also p...","internal_url":"https://www.academia.edu/83927600/An_Inference_Approach_To_Question_Answering_Over_Knowledge_Graphs","translated_internal_url":"","created_at":"2022-07-29T22:33:02.214-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89117537,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117537/thumbnails/1.jpg","file_name":"2112.11070v1.pdf","download_url":"https://www.academia.edu/attachments/89117537/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Inference_Approach_To_Question_Answer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117537/2112.11070v1-libre.pdf?1659160606=\u0026response-content-disposition=attachment%3B+filename%3DAn_Inference_Approach_To_Question_Answer.pdf\u0026Expires=1732435682\u0026Signature=NVfwtRxpTgys7C2MyrqsYrSZtReVG9MbawXI~TWFdzK8zpuMPbhpqjD7hxfGTfKlggdBTn9VM2BdxjqXk68UW1za9ZdhugFxmqlUEGgdULNf8CW0IZcTydfS1CwgyBYVB4wDMnuO~eKqJWIi8vB1oUHnX6zWJ1Pdesb8Dk0e-T5Qs43qXzxsZVCXoNWziOR0MGYnrH8zAnYGyA9AzEXjZ4kc-Y2ST3NJGDmh60uovif94aNjJzfSR9jiuPg5kgQiFyvdNTO5VjjnUQSy~4IJYoPbCmFWlismCB1fEfOQ5QG05~2NT8qvkFkaV~AivTiWZ8bzyuw~7URNY~GypJRWXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Inference_Approach_To_Question_Answering_Over_Knowledge_Graphs","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":89117537,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117537/thumbnails/1.jpg","file_name":"2112.11070v1.pdf","download_url":"https://www.academia.edu/attachments/89117537/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Inference_Approach_To_Question_Answer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117537/2112.11070v1-libre.pdf?1659160606=\u0026response-content-disposition=attachment%3B+filename%3DAn_Inference_Approach_To_Question_Answer.pdf\u0026Expires=1732435682\u0026Signature=NVfwtRxpTgys7C2MyrqsYrSZtReVG9MbawXI~TWFdzK8zpuMPbhpqjD7hxfGTfKlggdBTn9VM2BdxjqXk68UW1za9ZdhugFxmqlUEGgdULNf8CW0IZcTydfS1CwgyBYVB4wDMnuO~eKqJWIi8vB1oUHnX6zWJ1Pdesb8Dk0e-T5Qs43qXzxsZVCXoNWziOR0MGYnrH8zAnYGyA9AzEXjZ4kc-Y2ST3NJGDmh60uovif94aNjJzfSR9jiuPg5kgQiFyvdNTO5VjjnUQSy~4IJYoPbCmFWlismCB1fEfOQ5QG05~2NT8qvkFkaV~AivTiWZ8bzyuw~7URNY~GypJRWXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":18574,"name":"Inference","url":"https://www.academia.edu/Documents/in/Inference"},{"id":97618,"name":"Natural language","url":"https://www.academia.edu/Documents/in/Natural_language"},{"id":184950,"name":"Question Answering","url":"https://www.academia.edu/Documents/in/Question_Answering"},{"id":197861,"name":"Domain Knowledge","url":"https://www.academia.edu/Documents/in/Domain_Knowledge"},{"id":2451007,"name":"Knowledge Graph","url":"https://www.academia.edu/Documents/in/Knowledge_Graph"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"}],"urls":[{"id":22533076,"url":"https://arxiv.org/abs/2112.11070"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927599"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927599/Towards_Generating_Topic_Driven_and_Affective_Responses_to_Assist_Mental_Wellness"><img alt="Research paper thumbnail of Towards Generating Topic-Driven and Affective Responses to Assist Mental Wellness" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927599/Towards_Generating_Topic_Driven_and_Affective_Responses_to_Assist_Mental_Wellness">Towards Generating Topic-Driven and Affective Responses to Assist Mental Wellness</a></div><div class="wp-workCard_item"><span>Pattern Recognition. ICPR International Workshops and Challenges</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927599"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927599"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927599; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927599]").text(description); $(".js-view-count[data-work-id=83927599]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927599; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927599']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927599, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83927599]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927599,"title":"Towards Generating Topic-Driven and Affective Responses to Assist Mental Wellness","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Pattern Recognition. ICPR International Workshops and Challenges"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83927599/Towards_Generating_Topic_Driven_and_Affective_Responses_to_Assist_Mental_Wellness","translated_internal_url":"","created_at":"2022-07-29T22:33:01.989-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Towards_Generating_Topic_Driven_and_Affective_Responses_to_Assist_Mental_Wellness","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[],"urls":[{"id":22533075,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-68790-8_11"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927598/Smart_Entertainment_A_Critiquing_Based_Dialog_System_for_Eliciting_User_Preferences_and_Making_Recommendations"><img alt="Research paper thumbnail of Smart Entertainment - A Critiquing Based Dialog System for Eliciting User Preferences and Making Recommendations" class="work-thumbnail" src="https://attachments.academia-assets.com/89117525/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927598/Smart_Entertainment_A_Critiquing_Based_Dialog_System_for_Eliciting_User_Preferences_and_Making_Recommendations">Smart Entertainment - A Critiquing Based Dialog System for Eliciting User Preferences and Making Recommendations</a></div><div class="wp-workCard_item"><span>Natural Language Processing and Information Systems</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9622b44ad32f8b42184cff43cc7d8219" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89117525,"asset_id":83927598,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89117525/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927598]").text(description); $(".js-view-count[data-work-id=83927598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927598, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9622b44ad32f8b42184cff43cc7d8219" } } $('.js-work-strip[data-work-id=83927598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927598,"title":"Smart Entertainment - A Critiquing Based Dialog System for Eliciting User Preferences and Making Recommendations","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Natural Language Processing and Information Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83927598/Smart_Entertainment_A_Critiquing_Based_Dialog_System_for_Eliciting_User_Preferences_and_Making_Recommendations","translated_internal_url":"","created_at":"2022-07-29T22:33:01.772-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89117525,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117525/thumbnails/1.jpg","file_name":"978-3-319-91947-8_47.pdf","download_url":"https://www.academia.edu/attachments/89117525/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Smart_Entertainment_A_Critiquing_Based_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117525/978-3-319-91947-8_47-libre.pdf?1659160605=\u0026response-content-disposition=attachment%3B+filename%3DSmart_Entertainment_A_Critiquing_Based_D.pdf\u0026Expires=1732435682\u0026Signature=D4~Jvrd6g-K1MWef9CQ11s9yJhp0KgP76IGP15oGgmgiOUV5eRDCukSVp-XZ5egAyrY45fSYKurVPvYKb6ZB9uNYeJqRsQsJHh2bObOruoTL41XI0RbxNiOB7Nihd0K~BLEzoMHeWc4aaOcaG41tGk38k00nMIUVeXZYJ82HcJrkFvlF6M0bfcJ7X5r5EI0F9B~sKHJFE7BAiThC6DTpPAuj2Ht9sf-q28qdrRObM43oHII-DTfEsLuWmQPHmF2o9hnfqzIlN3oEwzeIcxI6wwMNez~~gzFJ82ep5kS-B4fv00ZbNr9z17~3-KOvxUyU4rIKMMni2D90FBcmmdAEaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Smart_Entertainment_A_Critiquing_Based_Dialog_System_for_Eliciting_User_Preferences_and_Making_Recommendations","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":89117525,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117525/thumbnails/1.jpg","file_name":"978-3-319-91947-8_47.pdf","download_url":"https://www.academia.edu/attachments/89117525/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Smart_Entertainment_A_Critiquing_Based_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117525/978-3-319-91947-8_47-libre.pdf?1659160605=\u0026response-content-disposition=attachment%3B+filename%3DSmart_Entertainment_A_Critiquing_Based_D.pdf\u0026Expires=1732435682\u0026Signature=D4~Jvrd6g-K1MWef9CQ11s9yJhp0KgP76IGP15oGgmgiOUV5eRDCukSVp-XZ5egAyrY45fSYKurVPvYKb6ZB9uNYeJqRsQsJHh2bObOruoTL41XI0RbxNiOB7Nihd0K~BLEzoMHeWc4aaOcaG41tGk38k00nMIUVeXZYJ82HcJrkFvlF6M0bfcJ7X5r5EI0F9B~sKHJFE7BAiThC6DTpPAuj2Ht9sf-q28qdrRObM43oHII-DTfEsLuWmQPHmF2o9hnfqzIlN3oEwzeIcxI6wwMNez~~gzFJ82ep5kS-B4fv00ZbNr9z17~3-KOvxUyU4rIKMMni2D90FBcmmdAEaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction"}],"urls":[{"id":22533074,"url":"http://link.springer.com/content/pdf/10.1007/978-3-319-91947-8_47"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927597"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927597/Active_Learning_Based_Relation_Classification_for_Knowledge_Graph_Construction_from_Conversation_Data"><img alt="Research paper thumbnail of Active Learning Based Relation Classification for Knowledge Graph Construction from Conversation Data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927597/Active_Learning_Based_Relation_Classification_for_Knowledge_Graph_Construction_from_Conversation_Data">Active Learning Based Relation Classification for Knowledge Graph Construction from Conversation Data</a></div><div class="wp-workCard_item"><span>Communications in Computer and Information Science</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927597"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927597"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927597; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927597]").text(description); $(".js-view-count[data-work-id=83927597]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927597; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927597']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927597, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83927597]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927597,"title":"Active Learning Based Relation Classification for Knowledge Graph Construction from Conversation Data","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Communications in Computer and Information Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83927597/Active_Learning_Based_Relation_Classification_for_Knowledge_Graph_Construction_from_Conversation_Data","translated_internal_url":"","created_at":"2022-07-29T22:33:01.578-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Active_Learning_Based_Relation_Classification_for_Knowledge_Graph_Construction_from_Conversation_Data","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"}],"urls":[{"id":22533073,"url":"https://link.springer.com/content/pdf/10.1007/978-3-030-63820-7_70"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927596/Unscripted_Conversation_through_Knowledge_Graph"><img alt="Research paper thumbnail of Unscripted Conversation through Knowledge Graph" class="work-thumbnail" src="https://attachments.academia-assets.com/89117526/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927596/Unscripted_Conversation_through_Knowledge_Graph">Unscripted Conversation through Knowledge Graph</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we introduce “unscripted conversation” free form dialog over a domain knowledge gr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we introduce “unscripted conversation” free form dialog over a domain knowledge graph. We describe a use case around Luggage handling for a commercial airline where we answer users queries regarding various policies such as luggage dimensions, restrictions on carry-on items, travel routes etc. We have encoded the domain entities, relationships, processes and polices in the knowledge graph and created a generic semantic natural language processing engine to process user queries and retrieve the correct results from a knowledge graph.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb0a850ee8f2d54a739ceb5155aaf6c1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89117526,"asset_id":83927596,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89117526/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927596]").text(description); $(".js-view-count[data-work-id=83927596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927596, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb0a850ee8f2d54a739ceb5155aaf6c1" } } $('.js-work-strip[data-work-id=83927596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927596,"title":"Unscripted Conversation through Knowledge Graph","translated_title":"","metadata":{"abstract":"In this paper, we introduce “unscripted conversation” free form dialog over a domain knowledge graph. We describe a use case around Luggage handling for a commercial airline where we answer users queries regarding various policies such as luggage dimensions, restrictions on carry-on items, travel routes etc. We have encoded the domain entities, relationships, processes and polices in the knowledge graph and created a generic semantic natural language processing engine to process user queries and retrieve the correct results from a knowledge graph.","publisher":"SEMWEB","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"In this paper, we introduce “unscripted conversation” free form dialog over a domain knowledge graph. We describe a use case around Luggage handling for a commercial airline where we answer users queries regarding various policies such as luggage dimensions, restrictions on carry-on items, travel routes etc. We have encoded the domain entities, relationships, processes and polices in the knowledge graph and created a generic semantic natural language processing engine to process user queries and retrieve the correct results from a knowledge graph.","internal_url":"https://www.academia.edu/83927596/Unscripted_Conversation_through_Knowledge_Graph","translated_internal_url":"","created_at":"2022-07-29T22:33:01.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89117526,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117526/thumbnails/1.jpg","file_name":"paper603.pdf","download_url":"https://www.academia.edu/attachments/89117526/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unscripted_Conversation_through_Knowledg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117526/paper603-libre.pdf?1659160616=\u0026response-content-disposition=attachment%3B+filename%3DUnscripted_Conversation_through_Knowledg.pdf\u0026Expires=1732435682\u0026Signature=e7RBZEBGNfwV96uek-oZSYmZ6P8Caertm0u3dEbSske5tLX8TDJOZ1YMQopSg~csF59pHm~vZW3jvCOooKBe-uZyfiPVTj19iEs3xSYzc3yNAbCz1WXnFUileOqFxLBNm~4jISyMJzpQtl6mpmVBljcX8P728CiYei-6-T9gbuKV2lTC8LM0JUow--DXzqUu5snjrMXyU8fLRuiFG8ksRz1QQcTb~xSqsTE5C4JsE5B7nZQDg-wv0BU7XIPTnZSDImZckA95m8CurgG8l8r6nAsWDmn6OM8y7wQiqRxkMj2wRF8mO3Din~tI2qzdUFJGH8FqvNUDCWz2Wtb1vRbEZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Unscripted_Conversation_through_Knowledge_Graph","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":89117526,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117526/thumbnails/1.jpg","file_name":"paper603.pdf","download_url":"https://www.academia.edu/attachments/89117526/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unscripted_Conversation_through_Knowledg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117526/paper603-libre.pdf?1659160616=\u0026response-content-disposition=attachment%3B+filename%3DUnscripted_Conversation_through_Knowledg.pdf\u0026Expires=1732435682\u0026Signature=e7RBZEBGNfwV96uek-oZSYmZ6P8Caertm0u3dEbSske5tLX8TDJOZ1YMQopSg~csF59pHm~vZW3jvCOooKBe-uZyfiPVTj19iEs3xSYzc3yNAbCz1WXnFUileOqFxLBNm~4jISyMJzpQtl6mpmVBljcX8P728CiYei-6-T9gbuKV2lTC8LM0JUow--DXzqUu5snjrMXyU8fLRuiFG8ksRz1QQcTb~xSqsTE5C4JsE5B7nZQDg-wv0BU7XIPTnZSDImZckA95m8CurgG8l8r6nAsWDmn6OM8y7wQiqRxkMj2wRF8mO3Din~tI2qzdUFJGH8FqvNUDCWz2Wtb1vRbEZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":24342,"name":"Conversation","url":"https://www.academia.edu/Documents/in/Conversation"}],"urls":[{"id":22533072,"url":"http://ceur-ws.org/Vol-2721/paper603.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="586425" id="papers"><div class="js-work-strip profile--work_container" data-work-id="106373319"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/106373319/Predicting_Reputation_Score_of_Users_in_Stack_overflow_with_Alternate_Data"><img alt="Research paper thumbnail of Predicting Reputation Score of Users in Stack-overflow with Alternate Data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/106373319/Predicting_Reputation_Score_of_Users_in_Stack_overflow_with_Alternate_Data">Predicting Reputation Score of Users in Stack-overflow with Alternate Data</a></div><div class="wp-workCard_item"><span>Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="106373319"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="106373319"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 106373319; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=106373319]").text(description); $(".js-view-count[data-work-id=106373319]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 106373319; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='106373319']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 106373319, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=106373319]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":106373319,"title":"Predicting Reputation Score of Users in Stack-overflow with Alternate Data","translated_title":"","metadata":{"publisher":"SCITEPRESS - Science and Technology Publications","publication_name":"Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management"},"translated_abstract":null,"internal_url":"https://www.academia.edu/106373319/Predicting_Reputation_Score_of_Users_in_Stack_overflow_with_Alternate_Data","translated_internal_url":"","created_at":"2023-09-07T17:30:23.284-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Predicting_Reputation_Score_of_Users_in_Stack_overflow_with_Alternate_Data","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":48977,"name":"Reputation","url":"https://www.academia.edu/Documents/in/Reputation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="101436549"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/101436549/Neural_response_generation_for_task_completion_using_conversational_knowledge_graph"><img alt="Research paper thumbnail of Neural response generation for task completion using conversational knowledge graph" class="work-thumbnail" src="https://attachments.academia-assets.com/101978991/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/101436549/Neural_response_generation_for_task_completion_using_conversational_knowledge_graph">Neural response generation for task completion using conversational knowledge graph</a></div><div class="wp-workCard_item"><span>PLOS ONE</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Effective dialogue generation for task completion is challenging to build. The task requires the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Effective dialogue generation for task completion is challenging to build. The task requires the response generation system to generate the responses consistent with intent and slot values, have diversity in response and be able to handle multiple domains. The response also needs to be context relevant with respect to the previous utterances in the conversation. In this paper, we build six different models containing Bi-directional Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT) based encoders. To effectively generate the correct slot values, we implement a copy mechanism at the decoder side. To capture the conversation context and the current state of the conversation we introduce a simple heuristic to build a conversational knowledge graph. Using this novel algorithm we are able to capture important aspects in a conversation. This conversational knowledge-graph is then used by our response generation model to generate more releva...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5757d3f965601aaf99f484f2b5e6fb03" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101978991,"asset_id":101436549,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101978991/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="101436549"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="101436549"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 101436549; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=101436549]").text(description); $(".js-view-count[data-work-id=101436549]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 101436549; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='101436549']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 101436549, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5757d3f965601aaf99f484f2b5e6fb03" } } $('.js-work-strip[data-work-id=101436549]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":101436549,"title":"Neural response generation for task completion using conversational knowledge graph","translated_title":"","metadata":{"abstract":"Effective dialogue generation for task completion is challenging to build. The task requires the response generation system to generate the responses consistent with intent and slot values, have diversity in response and be able to handle multiple domains. The response also needs to be context relevant with respect to the previous utterances in the conversation. In this paper, we build six different models containing Bi-directional Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT) based encoders. To effectively generate the correct slot values, we implement a copy mechanism at the decoder side. To capture the conversation context and the current state of the conversation we introduce a simple heuristic to build a conversational knowledge graph. Using this novel algorithm we are able to capture important aspects in a conversation. This conversational knowledge-graph is then used by our response generation model to generate more releva...","publisher":"Public Library of Science (PLoS)","publication_name":"PLOS ONE"},"translated_abstract":"Effective dialogue generation for task completion is challenging to build. The task requires the response generation system to generate the responses consistent with intent and slot values, have diversity in response and be able to handle multiple domains. The response also needs to be context relevant with respect to the previous utterances in the conversation. In this paper, we build six different models containing Bi-directional Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT) based encoders. To effectively generate the correct slot values, we implement a copy mechanism at the decoder side. To capture the conversation context and the current state of the conversation we introduce a simple heuristic to build a conversational knowledge graph. Using this novel algorithm we are able to capture important aspects in a conversation. This conversational knowledge-graph is then used by our response generation model to generate more releva...","internal_url":"https://www.academia.edu/101436549/Neural_response_generation_for_task_completion_using_conversational_knowledge_graph","translated_internal_url":"","created_at":"2023-05-08T04:22:19.354-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101978991,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101978991/thumbnails/1.jpg","file_name":"journal.pone.0269856.pdf","download_url":"https://www.academia.edu/attachments/101978991/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neural_response_generation_for_task_comp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101978991/journal.pone.0269856-libre.pdf?1683545283=\u0026response-content-disposition=attachment%3B+filename%3DNeural_response_generation_for_task_comp.pdf\u0026Expires=1732435682\u0026Signature=KsBzjr8Sv1Br1IqwbefD3NUVCdN5HjBLRTsywFyuzkcAZxfwqKNAeYTSFDA~qv4SIcE30Tqjtrdg7P1Xs~zg6LAEqdb0Qc8N5Sx2Xax-MygTX-CDFGCjOx0AUsQ22XzRPz41xK1rFK5ybD7Hd5Tkao69t9RbqApHTaZus7aeEyTTM-e4EPE3xYoVme07QuLY8Jc2nrNfyPI1JpSPR02j5tvBkUFQGcTjZRGtc62lIyTcoWpyJj0FYGbMsrLZpePMtzhJ2FnKWNuSBYLxFX6dEc42Lb40LSFnXVZxFNSjz3bH4Oa~3JbfHvIMaQNmsrHZmi5XXEh2PoLEPO~BgbvckQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Neural_response_generation_for_task_completion_using_conversational_knowledge_graph","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":101978991,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101978991/thumbnails/1.jpg","file_name":"journal.pone.0269856.pdf","download_url":"https://www.academia.edu/attachments/101978991/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neural_response_generation_for_task_comp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101978991/journal.pone.0269856-libre.pdf?1683545283=\u0026response-content-disposition=attachment%3B+filename%3DNeural_response_generation_for_task_comp.pdf\u0026Expires=1732435682\u0026Signature=KsBzjr8Sv1Br1IqwbefD3NUVCdN5HjBLRTsywFyuzkcAZxfwqKNAeYTSFDA~qv4SIcE30Tqjtrdg7P1Xs~zg6LAEqdb0Qc8N5Sx2Xax-MygTX-CDFGCjOx0AUsQ22XzRPz41xK1rFK5ybD7Hd5Tkao69t9RbqApHTaZus7aeEyTTM-e4EPE3xYoVme07QuLY8Jc2nrNfyPI1JpSPR02j5tvBkUFQGcTjZRGtc62lIyTcoWpyJj0FYGbMsrLZpePMtzhJ2FnKWNuSBYLxFX6dEc42Lb40LSFnXVZxFNSjz3bH4Oa~3JbfHvIMaQNmsrHZmi5XXEh2PoLEPO~BgbvckQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":24342,"name":"Conversation","url":"https://www.academia.edu/Documents/in/Conversation"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":958784,"name":"Utterance","url":"https://www.academia.edu/Documents/in/Utterance"}],"urls":[{"id":31267473,"url":"https://dx.plos.org/10.1371/journal.pone.0269856"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="101436548"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/101436548/Towards_Sentiment_and_Emotion_aided_Intent_Detection"><img alt="Research paper thumbnail of Towards Sentiment and Emotion aided Intent Detection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/101436548/Towards_Sentiment_and_Emotion_aided_Intent_Detection">Towards Sentiment and Emotion aided Intent Detection</a></div><div class="wp-workCard_item"><span>2022 26th International Conference on Pattern Recognition (ICPR)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="101436548"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="101436548"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 101436548; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=101436548]").text(description); $(".js-view-count[data-work-id=101436548]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 101436548; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='101436548']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 101436548, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=101436548]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":101436548,"title":"Towards Sentiment and Emotion aided Intent Detection","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2022 26th International Conference on Pattern Recognition (ICPR)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/101436548/Towards_Sentiment_and_Emotion_aided_Intent_Detection","translated_internal_url":"","created_at":"2023-05-08T04:22:18.921-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Towards_Sentiment_and_Emotion_aided_Intent_Detection","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":148827,"name":"Emotion Detection","url":"https://www.academia.edu/Documents/in/Emotion_Detection"}],"urls":[{"id":31267472,"url":"http://xplorestaging.ieee.org/ielx7/9956007/9955631/09956278.pdf?arnumber=9956278"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="101436544"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/101436544/Reinforcing_personalized_persuasion_in_task_oriented_virtual_sales_assistant"><img alt="Research paper thumbnail of Reinforcing personalized persuasion in task-oriented virtual sales assistant" class="work-thumbnail" src="https://attachments.academia-assets.com/101978982/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/101436544/Reinforcing_personalized_persuasion_in_task_oriented_virtual_sales_assistant">Reinforcing personalized persuasion in task-oriented virtual sales assistant</a></div><div class="wp-workCard_item"><span>PLOS ONE</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket book...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable. Methodology Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasio...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="915583f80b51299045779bc50ef15967" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101978982,"asset_id":101436544,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101978982/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="101436544"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="101436544"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 101436544; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=101436544]").text(description); $(".js-view-count[data-work-id=101436544]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 101436544; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='101436544']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 101436544, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "915583f80b51299045779bc50ef15967" } } $('.js-work-strip[data-work-id=101436544]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":101436544,"title":"Reinforcing personalized persuasion in task-oriented virtual sales assistant","translated_title":"","metadata":{"abstract":"Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable. Methodology Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasio...","publisher":"Public Library of Science (PLoS)","publication_name":"PLOS ONE"},"translated_abstract":"Purpose Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable. Methodology Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasio...","internal_url":"https://www.academia.edu/101436544/Reinforcing_personalized_persuasion_in_task_oriented_virtual_sales_assistant","translated_internal_url":"","created_at":"2023-05-08T04:22:10.780-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101978982,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101978982/thumbnails/1.jpg","file_name":"journal.pone.0275750.pdf","download_url":"https://www.academia.edu/attachments/101978982/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reinforcing_personalized_persuasion_in_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101978982/journal.pone.0275750-libre.pdf?1683545283=\u0026response-content-disposition=attachment%3B+filename%3DReinforcing_personalized_persuasion_in_t.pdf\u0026Expires=1732435682\u0026Signature=cYrAON0lduT1HyR8r06wUY1~aC9XRzNEmuvA2BoP6GKvXrGTmu4pEnXSfv0-TbwwoHWqlF5Gxb7Dxv7XGK0KsvlFE1xJ6z4sRJjBCFBsP62EOneVBZXcphsQk6oD8JrceGiz8O2~RveSXOlgXZ5gcjTK5gPmf2C9P2hI-QvrfAJK51qr2bOoGQ0jmcqUbAlAcbSkcTf9Z1SBHdPAv71wDk1m-N0RtNXjkJW2j3rvEyquZvmI9uidFjsffFQgU4UiusGSlxHe4mtU0fYR21MBsFntRscMuIIJFdv1ID4ENcab-N2IfhhPWk~l8kdg-btk3Eknr5sr5QdA0eNr3DSHuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reinforcing_personalized_persuasion_in_task_oriented_virtual_sales_assistant","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":101978982,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101978982/thumbnails/1.jpg","file_name":"journal.pone.0275750.pdf","download_url":"https://www.academia.edu/attachments/101978982/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reinforcing_personalized_persuasion_in_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101978982/journal.pone.0275750-libre.pdf?1683545283=\u0026response-content-disposition=attachment%3B+filename%3DReinforcing_personalized_persuasion_in_t.pdf\u0026Expires=1732435682\u0026Signature=cYrAON0lduT1HyR8r06wUY1~aC9XRzNEmuvA2BoP6GKvXrGTmu4pEnXSfv0-TbwwoHWqlF5Gxb7Dxv7XGK0KsvlFE1xJ6z4sRJjBCFBsP62EOneVBZXcphsQk6oD8JrceGiz8O2~RveSXOlgXZ5gcjTK5gPmf2C9P2hI-QvrfAJK51qr2bOoGQ0jmcqUbAlAcbSkcTf9Z1SBHdPAv71wDk1m-N0RtNXjkJW2j3rvEyquZvmI9uidFjsffFQgU4UiusGSlxHe4mtU0fYR21MBsFntRscMuIIJFdv1ID4ENcab-N2IfhhPWk~l8kdg-btk3Eknr5sr5QdA0eNr3DSHuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":20153,"name":"Persuasion","url":"https://www.academia.edu/Documents/in/Persuasion"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":958784,"name":"Utterance","url":"https://www.academia.edu/Documents/in/Utterance"}],"urls":[{"id":31267469,"url":"https://dx.plos.org/10.1371/journal.pone.0275750"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96574653"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96574653/COFAR_Commonsense_and_Factual_Reasoning_in_Image_Search"><img alt="Research paper thumbnail of COFAR: Commonsense and Factual Reasoning in Image Search" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96574653/COFAR_Commonsense_and_Factual_Reasoning_in_Image_Search">COFAR: Commonsense and Factual Reasoning in Image Search</a></div><div class="wp-workCard_item"><span>Cornell University - arXiv</span><span>, Oct 16, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96574653"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96574653"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96574653; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96574653]").text(description); $(".js-view-count[data-work-id=96574653]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96574653; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96574653']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96574653, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96574653]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96574653,"title":"COFAR: Commonsense and Factual Reasoning in Image Search","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":16,"month":10,"year":2022,"errors":{}},"publication_name":"Cornell University - arXiv"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96574653/COFAR_Commonsense_and_Factual_Reasoning_in_Image_Search","translated_internal_url":"","created_at":"2023-02-08T20:43:58.536-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"COFAR_Commonsense_and_Factual_Reasoning_in_Image_Search","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":56486,"name":"Commonsense Reasoning","url":"https://www.academia.edu/Documents/in/Commonsense_Reasoning"},{"id":115847,"name":"Landmark","url":"https://www.academia.edu/Documents/in/Landmark"},{"id":2892975,"name":"Commonsense Knowledge","url":"https://www.academia.edu/Documents/in/Commonsense_Knowledge"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92051150"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92051150/Enabling_Interactive_Answering_of_Procedural_Questions"><img alt="Research paper thumbnail of Enabling Interactive Answering of Procedural Questions" class="work-thumbnail" src="https://attachments.academia-assets.com/95165342/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92051150/Enabling_Interactive_Answering_of_Procedural_Questions">Enabling Interactive Answering of Procedural Questions</a></div><div class="wp-workCard_item"><span>Natural Language Processing and Information Systems</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dfba2954f57ab7b26c6077cde491e5d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":95165342,"asset_id":92051150,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/95165342/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92051150"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92051150"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92051150; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92051150]").text(description); $(".js-view-count[data-work-id=92051150]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92051150; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92051150']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 92051150, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dfba2954f57ab7b26c6077cde491e5d3" } } $('.js-work-strip[data-work-id=92051150]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92051150,"title":"Enabling Interactive Answering of Procedural Questions","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Natural Language Processing and Information Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/92051150/Enabling_Interactive_Answering_of_Procedural_Questions","translated_internal_url":"","created_at":"2022-12-02T04:41:49.583-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95165342,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165342/thumbnails/1.jpg","file_name":"978-3-030-51310-8_7.pdf","download_url":"https://www.academia.edu/attachments/95165342/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Enabling_Interactive_Answering_of_Proced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165342/978-3-030-51310-8_7-libre.pdf?1669988834=\u0026response-content-disposition=attachment%3B+filename%3DEnabling_Interactive_Answering_of_Proced.pdf\u0026Expires=1732435682\u0026Signature=EPWLoLP~opXpBmgVb4yfUYuZrQL6lnXLlB3omkapYH2E6xVwd1szspg2TpoW7X1nBzW0A4oDpM7NGz6~HMXSeLcQY3JW7W-o04IKuWoPtwsuVO0ofWyL0nxC06jr1AUBMx9y30VB-lCT~jwgxIbywtioPS5wCa4FegfleV0yQV0K558QSYTs8bFFYHAkDfiPyAGuy0BuW-rP7N3Xr74vqsgGA8dE0p-zkA-AT~EBvn-dQk8kv1eULju9MYsPMXWgrjLRYffsHL5VEZrVt6AQI6iiu7qT0J3GT51Zo0XbEKKeyQYGgVSYoHKuyNE2Z8dE1Dx5IjMfCB6ErxjUXvHciQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Enabling_Interactive_Answering_of_Procedural_Questions","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":95165342,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165342/thumbnails/1.jpg","file_name":"978-3-030-51310-8_7.pdf","download_url":"https://www.academia.edu/attachments/95165342/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Enabling_Interactive_Answering_of_Proced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165342/978-3-030-51310-8_7-libre.pdf?1669988834=\u0026response-content-disposition=attachment%3B+filename%3DEnabling_Interactive_Answering_of_Proced.pdf\u0026Expires=1732435682\u0026Signature=EPWLoLP~opXpBmgVb4yfUYuZrQL6lnXLlB3omkapYH2E6xVwd1szspg2TpoW7X1nBzW0A4oDpM7NGz6~HMXSeLcQY3JW7W-o04IKuWoPtwsuVO0ofWyL0nxC06jr1AUBMx9y30VB-lCT~jwgxIbywtioPS5wCa4FegfleV0yQV0K558QSYTs8bFFYHAkDfiPyAGuy0BuW-rP7N3Xr74vqsgGA8dE0p-zkA-AT~EBvn-dQk8kv1eULju9MYsPMXWgrjLRYffsHL5VEZrVt6AQI6iiu7qT0J3GT51Zo0XbEKKeyQYGgVSYoHKuyNE2Z8dE1Dx5IjMfCB6ErxjUXvHciQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":95165341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165341/thumbnails/1.jpg","file_name":"978-3-030-51310-8_7.pdf","download_url":"https://www.academia.edu/attachments/95165341/download_file","bulk_download_file_name":"Enabling_Interactive_Answering_of_Proced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165341/978-3-030-51310-8_7-libre.pdf?1669988835=\u0026response-content-disposition=attachment%3B+filename%3DEnabling_Interactive_Answering_of_Proced.pdf\u0026Expires=1732435682\u0026Signature=dB-0by63ge7uAD6FocL0f3P1ig-qI-GMBR2HjRdtOBsPIUXPkwshi7I8pv05hhxVw3TixSLmJHrCzkMBoXsj0HPFjAsuuSW-37GKDn7FynYp3Gjtj-R0Rs0EnHY-b0cyB-o3a0Ba~pLp7yykFciVOKRPlTWvvtSO0AuVcZBDSICD-xW5wVJnPnecTRmkPpBPZB7AHIGDjK6VUq9noB1uga6FZUB9TXxOZ-v8vKHnYsPxxetYNcxE9HLc-9m6aMkPsQf4Ti4YDfHjGliQ7I11sWvKHRHpCx6FU4sTxXFfYBYKxmA0kxwOloRBctI~UzWoR2KETnVhG5H0eASbd9aetQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":184950,"name":"Question Answering","url":"https://www.academia.edu/Documents/in/Question_Answering"}],"urls":[{"id":26611429,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-51310-8_7"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92051149"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92051149/Data_Driven_Application_Maintenance_Experience_from_the_Trenches"><img alt="Research paper thumbnail of Data-Driven Application Maintenance: Experience from the Trenches" class="work-thumbnail" src="https://attachments.academia-assets.com/95165340/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92051149/Data_Driven_Application_Maintenance_Experience_from_the_Trenches">Data-Driven Application Maintenance: Experience from the Trenches</a></div><div class="wp-workCard_item"><span>2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice (SER&IP)</span><span>, May 1, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37cd848975f3156e19463776f515b450" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":95165340,"asset_id":92051149,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/95165340/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92051149"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92051149"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92051149; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92051149]").text(description); $(".js-view-count[data-work-id=92051149]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92051149; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92051149']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 92051149, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37cd848975f3156e19463776f515b450" } } $('.js-work-strip[data-work-id=92051149]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92051149,"title":"Data-Driven Application Maintenance: Experience from the Trenches","translated_title":"","metadata":{"publisher":"IEEE","publication_date":{"day":1,"month":5,"year":2017,"errors":{}},"publication_name":"2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice (SER\u0026IP)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/92051149/Data_Driven_Application_Maintenance_Experience_from_the_Trenches","translated_internal_url":"","created_at":"2022-12-02T04:41:49.419-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":95165340,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165340/thumbnails/1.jpg","file_name":"1806.pdf","download_url":"https://www.academia.edu/attachments/95165340/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Data_Driven_Application_Maintenance_Expe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165340/1806-libre.pdf?1669988835=\u0026response-content-disposition=attachment%3B+filename%3DData_Driven_Application_Maintenance_Expe.pdf\u0026Expires=1732435682\u0026Signature=SeMGo3tJ96vPUHV0FwGJA1L4h9KAcfH0Cyi7xH72fOlZIo668cD8OG7veZNgvGlFeNu~9ui77xie3LZGZp3MB-f-iAV8gZv4fMI0qUPI1-Fdo7nQQeJUDb~m7n0HyvpX3dGxinBJXy0BtqQzBBxEbnXXz5gbEaeGLbkuQ-jk-NpuOmmJCPNdKU64invwtAGMJhN1qV5T4KuTkzjhy4S1xGiBfoPqsLS1-fn8zvrGm6RoLXzOlh-WIPT9xoKUKgxF5A028ThVh~Jj-8fJAPXTMY1~KACc6Rg9Peg4Fy9MX4Sa0ULsUiwg~h002uSfqPwLTm9ER3VZ5h18aUHvHfcO2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Data_Driven_Application_Maintenance_Experience_from_the_Trenches","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":95165340,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/95165340/thumbnails/1.jpg","file_name":"1806.pdf","download_url":"https://www.academia.edu/attachments/95165340/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Data_Driven_Application_Maintenance_Expe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/95165340/1806-libre.pdf?1669988835=\u0026response-content-disposition=attachment%3B+filename%3DData_Driven_Application_Maintenance_Expe.pdf\u0026Expires=1732435682\u0026Signature=SeMGo3tJ96vPUHV0FwGJA1L4h9KAcfH0Cyi7xH72fOlZIo668cD8OG7veZNgvGlFeNu~9ui77xie3LZGZp3MB-f-iAV8gZv4fMI0qUPI1-Fdo7nQQeJUDb~m7n0HyvpX3dGxinBJXy0BtqQzBBxEbnXXz5gbEaeGLbkuQ-jk-NpuOmmJCPNdKU64invwtAGMJhN1qV5T4KuTkzjhy4S1xGiBfoPqsLS1-fn8zvrGm6RoLXzOlh-WIPT9xoKUKgxF5A028ThVh~Jj-8fJAPXTMY1~KACc6Rg9Peg4Fy9MX4Sa0ULsUiwg~h002uSfqPwLTm9ER3VZ5h18aUHvHfcO2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":66379,"name":"Automation","url":"https://www.academia.edu/Documents/in/Automation"},{"id":69100,"name":"Data Science","url":"https://www.academia.edu/Documents/in/Data_Science"}],"urls":[{"id":26611428,"url":"http://arxiv.org/pdf/1806.08103"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="92051138"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92051138/Dynamic_integration_of_heterogeneous_enterprise_data_a_grid_based_approach"><img alt="Research paper thumbnail of Dynamic integration of heterogeneous enterprise data – a grid based approach" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92051138/Dynamic_integration_of_heterogeneous_enterprise_data_a_grid_based_approach">Dynamic integration of heterogeneous enterprise data – a grid based approach</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Business decisions require information to be available at the right time and at the right place. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Business decisions require information to be available at the right time and at the right place. This necessitates information retrieval and query processing from distributed and heterogeneous data sources. Here, we discuss how service-oriented data grid technology can be leveraged to create a scalable information integration platform operating near real time. This concept is being implemented in a framework called GRADIENT.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92051138"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92051138"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92051138; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92051138]").text(description); $(".js-view-count[data-work-id=92051138]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92051138; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92051138']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 92051138, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=92051138]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92051138,"title":"Dynamic integration of heterogeneous enterprise data – a grid based approach","translated_title":"","metadata":{"abstract":"Business decisions require information to be available at the right time and at the right place. This necessitates information retrieval and query processing from distributed and heterogeneous data sources. Here, we discuss how service-oriented data grid technology can be leveraged to create a scalable information integration platform operating near real time. This concept is being implemented in a framework called GRADIENT.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"Business decisions require information to be available at the right time and at the right place. This necessitates information retrieval and query processing from distributed and heterogeneous data sources. Here, we discuss how service-oriented data grid technology can be leveraged to create a scalable information integration platform operating near real time. This concept is being implemented in a framework called GRADIENT.","internal_url":"https://www.academia.edu/92051138/Dynamic_integration_of_heterogeneous_enterprise_data_a_grid_based_approach","translated_internal_url":"","created_at":"2022-12-02T04:41:29.729-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dynamic_integration_of_heterogeneous_enterprise_data_a_grid_based_approach","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142884"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142884/Towards_personalized_persuasive_dialogue_generation_for_adversarial_task_oriented_dialogue_setting"><img alt="Research paper thumbnail of Towards personalized persuasive dialogue generation for adversarial task oriented dialogue setting" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142884/Towards_personalized_persuasive_dialogue_generation_for_adversarial_task_oriented_dialogue_setting">Towards personalized persuasive dialogue generation for adversarial task oriented dialogue setting</a></div><div class="wp-workCard_item"><span>Expert Systems with Applications</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142884"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142884"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142884; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142884]").text(description); $(".js-view-count[data-work-id=88142884]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142884; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142884']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142884, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142884]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142884,"title":"Towards personalized persuasive dialogue generation for adversarial task oriented dialogue setting","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Expert Systems with Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88142884/Towards_personalized_persuasive_dialogue_generation_for_adversarial_task_oriented_dialogue_setting","translated_internal_url":"","created_at":"2022-10-08T21:00:02.489-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Towards_personalized_persuasive_dialogue_generation_for_adversarial_task_oriented_dialogue_setting","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":24596198,"url":"https://api.elsevier.com/content/article/PII:S0957417422017936?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142883"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142883/Document_Retrieval_and_Claim_Verification_to_Mitigate_COVID_19_Misinformation"><img alt="Research paper thumbnail of Document Retrieval and Claim Verification to Mitigate COVID-19 Misinformation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142883/Document_Retrieval_and_Claim_Verification_to_Mitigate_COVID_19_Misinformation">Document Retrieval and Claim Verification to Mitigate COVID-19 Misinformation</a></div><div class="wp-workCard_item"><span>Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142883"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142883"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142883; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142883]").text(description); $(".js-view-count[data-work-id=88142883]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142883; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142883']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142883, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142883]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142883,"title":"Document Retrieval and Claim Verification to Mitigate COVID-19 Misinformation","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","publication_name":"Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88142883/Document_Retrieval_and_Claim_Verification_to_Mitigate_COVID_19_Misinformation","translated_internal_url":"","created_at":"2022-10-08T21:00:02.336-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Document_Retrieval_and_Claim_Verification_to_Mitigate_COVID_19_Misinformation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142881"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142881/From_Opinion_Mining_to_Improvement_Mining_Understanding_Product_Improvements_from_User_Reviews"><img alt="Research paper thumbnail of From Opinion Mining to Improvement Mining : Understanding Product Improvements from User Reviews" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142881/From_Opinion_Mining_to_Improvement_Mining_Understanding_Product_Improvements_from_User_Reviews">From Opinion Mining to Improvement Mining : Understanding Product Improvements from User Reviews</a></div><div class="wp-workCard_item"><span>Forum for Information Retrieval Evaluation</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A valuable trove of information exists for product(s) or services online via user opinions like d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A valuable trove of information exists for product(s) or services online via user opinions like detailed reviews provided by customers on popular e-commerce websites. Users express their individual opinions in the form of overall product/service experiences, which may include explicit positive/negative feedback, preferences, concerns, and suggestions for the future. Such information can be valuable to product/service owners in helping them understand the improvement(s) that must be made to a particular product or service. The primary focus of opinion mining has been on understanding positive and negative aspects within the review effectively. Limited emphasis has been placed on finer topics like user suggestions or conflicting information from users. In this work, we describe a method to extract possible product / service improvements from opinionated text in the form of non-conflicting negative feedback, user tips, recommendations, product usage details, feature suggestions, and sp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142881"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142881"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142881; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142881]").text(description); $(".js-view-count[data-work-id=88142881]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142881; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142881']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142881, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142881]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142881,"title":"From Opinion Mining to Improvement Mining : Understanding Product Improvements from User Reviews","translated_title":"","metadata":{"abstract":"A valuable trove of information exists for product(s) or services online via user opinions like detailed reviews provided by customers on popular e-commerce websites. Users express their individual opinions in the form of overall product/service experiences, which may include explicit positive/negative feedback, preferences, concerns, and suggestions for the future. Such information can be valuable to product/service owners in helping them understand the improvement(s) that must be made to a particular product or service. The primary focus of opinion mining has been on understanding positive and negative aspects within the review effectively. Limited emphasis has been placed on finer topics like user suggestions or conflicting information from users. In this work, we describe a method to extract possible product / service improvements from opinionated text in the form of non-conflicting negative feedback, user tips, recommendations, product usage details, feature suggestions, and sp...","publisher":"FIRE","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Forum for Information Retrieval Evaluation"},"translated_abstract":"A valuable trove of information exists for product(s) or services online via user opinions like detailed reviews provided by customers on popular e-commerce websites. Users express their individual opinions in the form of overall product/service experiences, which may include explicit positive/negative feedback, preferences, concerns, and suggestions for the future. Such information can be valuable to product/service owners in helping them understand the improvement(s) that must be made to a particular product or service. The primary focus of opinion mining has been on understanding positive and negative aspects within the review effectively. Limited emphasis has been placed on finer topics like user suggestions or conflicting information from users. In this work, we describe a method to extract possible product / service improvements from opinionated text in the form of non-conflicting negative feedback, user tips, recommendations, product usage details, feature suggestions, and sp...","internal_url":"https://www.academia.edu/88142881/From_Opinion_Mining_to_Improvement_Mining_Understanding_Product_Improvements_from_User_Reviews","translated_internal_url":"","created_at":"2022-10-08T21:00:02.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"From_Opinion_Mining_to_Improvement_Mining_Understanding_Product_Improvements_from_User_Reviews","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"}],"urls":[{"id":24596197,"url":"https://doi.org/10.1145/3503162.3503166"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142878"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142878/A_persona_aware_persuasive_dialogue_policy_for_dynamic_and_co_operative_goal_setting"><img alt="Research paper thumbnail of A persona aware persuasive dialogue policy for dynamic and co-operative goal setting" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142878/A_persona_aware_persuasive_dialogue_policy_for_dynamic_and_co_operative_goal_setting">A persona aware persuasive dialogue policy for dynamic and co-operative goal setting</a></div><div class="wp-workCard_item"><span>Expert Systems with Applications</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142878"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142878"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142878; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142878]").text(description); $(".js-view-count[data-work-id=88142878]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142878; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142878']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142878, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142878]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142878,"title":"A persona aware persuasive dialogue policy for dynamic and co-operative goal setting","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Expert Systems with Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88142878/A_persona_aware_persuasive_dialogue_policy_for_dynamic_and_co_operative_goal_setting","translated_internal_url":"","created_at":"2022-10-08T21:00:00.211-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_persona_aware_persuasive_dialogue_policy_for_dynamic_and_co_operative_goal_setting","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction"},{"id":20153,"name":"Persuasion","url":"https://www.academia.edu/Documents/in/Persuasion"},{"id":74442,"name":"Popularity","url":"https://www.academia.edu/Documents/in/Popularity"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":24596196,"url":"https://api.elsevier.com/content/article/PII:S0957417421016067?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142877"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142877/Combining_exogenous_and_endogenous_signals_with_a_semi_supervised_co_attention_network_for_early_detection_of_COVID_19_fake_tweets"><img alt="Research paper thumbnail of Combining exogenous and endogenous signals with a semi-supervised co-attention network for early detection of COVID-19 fake tweets" class="work-thumbnail" src="https://attachments.academia-assets.com/92175971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142877/Combining_exogenous_and_endogenous_signals_with_a_semi_supervised_co_attention_network_for_early_detection_of_COVID_19_fake_tweets">Combining exogenous and endogenous signals with a semi-supervised co-attention network for early detection of COVID-19 fake tweets</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fake tweets are observed to be ever-increasing, demanding immediate countermeasures to combat the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fake tweets are observed to be ever-increasing, demanding immediate countermeasures to combat their spread. During COVID-19, tweets with misinformation should be flagged and neutralised in their early stages to mitigate the damages. Most of the existing methods for early detection of fake news assume to have enough propagation information for large labelled tweets – which may not be an ideal setting for cases like COVID-19 where both aspects are largely absent. In this work, we present ENDEMIC, a novel early detection model which leverages exogenous and endogenous signals related to tweets, while learning on limited labelled data. We first develop a novel dataset, called ECTF for early COVID-19 Twitter fake news, with additional behavioural test-sets to validate early detection. We build a heterogeneous graph with follower-followee, user-tweet, and tweet-retweet connections and train a graph embedding model to aggregate propagation information. Graph embeddings and contextual featur...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ac564ae0d8e342c1c34efe01bbf1a972" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92175971,"asset_id":88142877,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92175971/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142877"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142877"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142877; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142877]").text(description); $(".js-view-count[data-work-id=88142877]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142877; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142877']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142877, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ac564ae0d8e342c1c34efe01bbf1a972" } } $('.js-work-strip[data-work-id=88142877]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142877,"title":"Combining exogenous and endogenous signals with a semi-supervised co-attention network for early detection of COVID-19 fake tweets","translated_title":"","metadata":{"abstract":"Fake tweets are observed to be ever-increasing, demanding immediate countermeasures to combat their spread. During COVID-19, tweets with misinformation should be flagged and neutralised in their early stages to mitigate the damages. Most of the existing methods for early detection of fake news assume to have enough propagation information for large labelled tweets – which may not be an ideal setting for cases like COVID-19 where both aspects are largely absent. In this work, we present ENDEMIC, a novel early detection model which leverages exogenous and endogenous signals related to tweets, while learning on limited labelled data. We first develop a novel dataset, called ECTF for early COVID-19 Twitter fake news, with additional behavioural test-sets to validate early detection. We build a heterogeneous graph with follower-followee, user-tweet, and tweet-retweet connections and train a graph embedding model to aggregate propagation information. Graph embeddings and contextual featur...","publisher":"PAKDD","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"Fake tweets are observed to be ever-increasing, demanding immediate countermeasures to combat their spread. During COVID-19, tweets with misinformation should be flagged and neutralised in their early stages to mitigate the damages. Most of the existing methods for early detection of fake news assume to have enough propagation information for large labelled tweets – which may not be an ideal setting for cases like COVID-19 where both aspects are largely absent. In this work, we present ENDEMIC, a novel early detection model which leverages exogenous and endogenous signals related to tweets, while learning on limited labelled data. We first develop a novel dataset, called ECTF for early COVID-19 Twitter fake news, with additional behavioural test-sets to validate early detection. We build a heterogeneous graph with follower-followee, user-tweet, and tweet-retweet connections and train a graph embedding model to aggregate propagation information. Graph embeddings and contextual featur...","internal_url":"https://www.academia.edu/88142877/Combining_exogenous_and_endogenous_signals_with_a_semi_supervised_co_attention_network_for_early_detection_of_COVID_19_fake_tweets","translated_internal_url":"","created_at":"2022-10-08T20:59:59.695-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92175971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92175971/thumbnails/1.jpg","file_name":"2104.05321v1.pdf","download_url":"https://www.academia.edu/attachments/92175971/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combining_exogenous_and_endogenous_signa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92175971/2104.05321v1-libre.pdf?1665291953=\u0026response-content-disposition=attachment%3B+filename%3DCombining_exogenous_and_endogenous_signa.pdf\u0026Expires=1732435682\u0026Signature=PVROXgMfo988nNv-ILmU7~dM8HrHLSUGsxlXa4nL3isp1mNQEiaqie~qqFoG1DRlGaZtqbDnDV4oa4si8HsYakuyQ~uEEyBwRF25S5HcDzSC8Yzx2TAn0n37QsrROVWkNkJP12QkABcmZFuIeqSQAhgr8lAbTOr5Wn9I3Hqu~qqYFrbnhNXP57Ktu39gzeXQQ5BHTbFwpcxPtDvgSsBs89CPNW-f42D2bs2q2WRuVnkSND656kTDzIs4-jhR6aCZrDcSAQ~SzgHOSFpD6TPIAEB5C17Eaw9a8tImXuFgUi8ZhCLSqEhqRxFvXkwuGJJwaW1wPZYj748mxq5fz1Fubg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Combining_exogenous_and_endogenous_signals_with_a_semi_supervised_co_attention_network_for_early_detection_of_COVID_19_fake_tweets","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":92175971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92175971/thumbnails/1.jpg","file_name":"2104.05321v1.pdf","download_url":"https://www.academia.edu/attachments/92175971/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combining_exogenous_and_endogenous_signa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92175971/2104.05321v1-libre.pdf?1665291953=\u0026response-content-disposition=attachment%3B+filename%3DCombining_exogenous_and_endogenous_signa.pdf\u0026Expires=1732435682\u0026Signature=PVROXgMfo988nNv-ILmU7~dM8HrHLSUGsxlXa4nL3isp1mNQEiaqie~qqFoG1DRlGaZtqbDnDV4oa4si8HsYakuyQ~uEEyBwRF25S5HcDzSC8Yzx2TAn0n37QsrROVWkNkJP12QkABcmZFuIeqSQAhgr8lAbTOr5Wn9I3Hqu~qqYFrbnhNXP57Ktu39gzeXQQ5BHTbFwpcxPtDvgSsBs89CPNW-f42D2bs2q2WRuVnkSND656kTDzIs4-jhR6aCZrDcSAQ~SzgHOSFpD6TPIAEB5C17Eaw9a8tImXuFgUi8ZhCLSqEhqRxFvXkwuGJJwaW1wPZYj748mxq5fz1Fubg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":266831,"name":"Graph","url":"https://www.academia.edu/Documents/in/Graph"},{"id":276623,"name":"Misinformation","url":"https://www.academia.edu/Documents/in/Misinformation"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"},{"id":3686510,"name":"Coronavirus Disease 2019 (COVID-19)","url":"https://www.academia.edu/Documents/in/Coronavirus_Disease_2019_COVID-19_"}],"urls":[{"id":24596195,"url":"https://arxiv.org/abs/2104.05321"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142876"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142876/A_dynamic_goal_adapted_task_oriented_dialogue_agent"><img alt="Research paper thumbnail of A dynamic goal adapted task oriented dialogue agent" class="work-thumbnail" src="https://attachments.academia-assets.com/92175969/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142876/A_dynamic_goal_adapted_task_oriented_dialogue_agent">A dynamic goal adapted task oriented dialogue agent</a></div><div class="wp-workCard_item"><span>PLOS ONE</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieva...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieval based or static goal-driven. However, in real-world situations, end-users might not have a known and fixed goal beforehand for the task, i.e., they may upgrade/downgrade/update their goal components in real-time to maximize their utility values. Existing VAs are unable to handle such dynamic goal-oriented situations. Methodology Due to the absence of any related dialogue dataset where such choice deviations are present, we have created a conversational dataset called Deviation adapted Virtual Agent(DevVA), with the manual annotation of its corresponding intents, slots, and sentiment labels. A Dynamic Goal Driven Dialogue Agent (DGDVA) has been developed by incorporating a Dynamic Goal Driven Module (GDM) on top of a deep reinforcement learning based dialogue manager. In the course of a conversation, the user sentiment provides grounded feedback about agent behavior, including goal serv...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="daf8e0fa595f635f275083e340aba86b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92175969,"asset_id":88142876,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92175969/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142876"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142876"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142876; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142876]").text(description); $(".js-view-count[data-work-id=88142876]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142876; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142876']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142876, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "daf8e0fa595f635f275083e340aba86b" } } $('.js-work-strip[data-work-id=88142876]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142876,"title":"A dynamic goal adapted task oriented dialogue agent","translated_title":"","metadata":{"abstract":"Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieval based or static goal-driven. However, in real-world situations, end-users might not have a known and fixed goal beforehand for the task, i.e., they may upgrade/downgrade/update their goal components in real-time to maximize their utility values. Existing VAs are unable to handle such dynamic goal-oriented situations. Methodology Due to the absence of any related dialogue dataset where such choice deviations are present, we have created a conversational dataset called Deviation adapted Virtual Agent(DevVA), with the manual annotation of its corresponding intents, slots, and sentiment labels. A Dynamic Goal Driven Dialogue Agent (DGDVA) has been developed by incorporating a Dynamic Goal Driven Module (GDM) on top of a deep reinforcement learning based dialogue manager. In the course of a conversation, the user sentiment provides grounded feedback about agent behavior, including goal serv...","publisher":"Public Library of Science (PLoS)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"PLOS ONE"},"translated_abstract":"Purpose Existing virtual agents (VAs) present in dialogue systems are either information retrieval based or static goal-driven. However, in real-world situations, end-users might not have a known and fixed goal beforehand for the task, i.e., they may upgrade/downgrade/update their goal components in real-time to maximize their utility values. Existing VAs are unable to handle such dynamic goal-oriented situations. Methodology Due to the absence of any related dialogue dataset where such choice deviations are present, we have created a conversational dataset called Deviation adapted Virtual Agent(DevVA), with the manual annotation of its corresponding intents, slots, and sentiment labels. A Dynamic Goal Driven Dialogue Agent (DGDVA) has been developed by incorporating a Dynamic Goal Driven Module (GDM) on top of a deep reinforcement learning based dialogue manager. In the course of a conversation, the user sentiment provides grounded feedback about agent behavior, including goal serv...","internal_url":"https://www.academia.edu/88142876/A_dynamic_goal_adapted_task_oriented_dialogue_agent","translated_internal_url":"","created_at":"2022-10-08T20:59:59.238-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92175969,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92175969/thumbnails/1.jpg","file_name":"pone.0249030.pdf","download_url":"https://www.academia.edu/attachments/92175969/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_dynamic_goal_adapted_task_oriented_dia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92175969/pone.0249030-libre.pdf?1665291964=\u0026response-content-disposition=attachment%3B+filename%3DA_dynamic_goal_adapted_task_oriented_dia.pdf\u0026Expires=1732435682\u0026Signature=DNj905wJc4dBdxIOwFsL9qvE1VoUyxQet~Q-j9Pr6VxhjU89mcjgfXbiOm4JWYz~oMhvxx1z1Ep9YA039OAXG7JXObyoYkbzbx63ux7ilDyxXYd1ucD5bCffCFbwAm1s9vfYLt3pgzdLiMj1MbEDqHpnXnGSd-6pxut5BGzjBRt8MWUMd-Aipb14baKHEzJxawYuwYQCNoFlzVy6cgshx1ByzQ37P1BvkgZUxzAM~aIcnXF2xT7ncK2-NSPlpc3AIvVbeP2PLS82LMXhArNzqRiKWgOnwMjfGfyjPD5vd2jMWt6leSIFcHtZoZZM6Ffg1Jos3X3ArvWiYIBXGxR3kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_dynamic_goal_adapted_task_oriented_dialogue_agent","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":92175969,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92175969/thumbnails/1.jpg","file_name":"pone.0249030.pdf","download_url":"https://www.academia.edu/attachments/92175969/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_dynamic_goal_adapted_task_oriented_dia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92175969/pone.0249030-libre.pdf?1665291964=\u0026response-content-disposition=attachment%3B+filename%3DA_dynamic_goal_adapted_task_oriented_dia.pdf\u0026Expires=1732435682\u0026Signature=DNj905wJc4dBdxIOwFsL9qvE1VoUyxQet~Q-j9Pr6VxhjU89mcjgfXbiOm4JWYz~oMhvxx1z1Ep9YA039OAXG7JXObyoYkbzbx63ux7ilDyxXYd1ucD5bCffCFbwAm1s9vfYLt3pgzdLiMj1MbEDqHpnXnGSd-6pxut5BGzjBRt8MWUMd-Aipb14baKHEzJxawYuwYQCNoFlzVy6cgshx1ByzQ37P1BvkgZUxzAM~aIcnXF2xT7ncK2-NSPlpc3AIvVbeP2PLS82LMXhArNzqRiKWgOnwMjfGfyjPD5vd2jMWt6leSIFcHtZoZZM6Ffg1Jos3X3ArvWiYIBXGxR3kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":24342,"name":"Conversation","url":"https://www.academia.edu/Documents/in/Conversation"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":2471191,"name":"Downgrade","url":"https://www.academia.edu/Documents/in/Downgrade"}],"urls":[{"id":24596194,"url":"https://dx.plos.org/10.1371/journal.pone.0249030"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88142874"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88142874/SETLabs_Briefings_Service_Oriented_Infrastructure"><img alt="Research paper thumbnail of SETLabs Briefings - Service Oriented Infrastructure" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88142874/SETLabs_Briefings_Service_Oriented_Infrastructure">SETLabs Briefings - Service Oriented Infrastructure</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There is a palpable sense of anticipation about SOA the “new face” of enterprise computing and IT...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There is a palpable sense of anticipation about SOA the “new face” of enterprise computing and IT services paradigm. Lot of debate is going on the important SOA issues like application models, service granularity, interfaces, re-use economics etc. The story that is left untold is how some of the so called esoteric technologies like Grid and virtualization make true SOA realizable in practice; well, almost. There are many significant technology shifts happening in those dark non-descript gargantuan warehouses that pass by the name “data centers” hosting thousands of computing resources. Research efforts worth millions of dollars are being spent on infrastructure layer virtualization and associated technologies. If we add to this the decades of extensive research done in the area of distributed heterogeneous computing or Grid, we now have a set of technologies that can usher in service orientation in the infrastructure fabric layer. We term this technology paradigm as Service Oriented...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88142874"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88142874"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88142874; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88142874]").text(description); $(".js-view-count[data-work-id=88142874]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88142874; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88142874']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88142874, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88142874]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88142874,"title":"SETLabs Briefings - Service Oriented Infrastructure","translated_title":"","metadata":{"abstract":"There is a palpable sense of anticipation about SOA the “new face” of enterprise computing and IT services paradigm. Lot of debate is going on the important SOA issues like application models, service granularity, interfaces, re-use economics etc. The story that is left untold is how some of the so called esoteric technologies like Grid and virtualization make true SOA realizable in practice; well, almost. There are many significant technology shifts happening in those dark non-descript gargantuan warehouses that pass by the name “data centers” hosting thousands of computing resources. Research efforts worth millions of dollars are being spent on infrastructure layer virtualization and associated technologies. If we add to this the decades of extensive research done in the area of distributed heterogeneous computing or Grid, we now have a set of technologies that can usher in service orientation in the infrastructure fabric layer. We term this technology paradigm as Service Oriented...","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"There is a palpable sense of anticipation about SOA the “new face” of enterprise computing and IT services paradigm. Lot of debate is going on the important SOA issues like application models, service granularity, interfaces, re-use economics etc. The story that is left untold is how some of the so called esoteric technologies like Grid and virtualization make true SOA realizable in practice; well, almost. There are many significant technology shifts happening in those dark non-descript gargantuan warehouses that pass by the name “data centers” hosting thousands of computing resources. Research efforts worth millions of dollars are being spent on infrastructure layer virtualization and associated technologies. If we add to this the decades of extensive research done in the area of distributed heterogeneous computing or Grid, we now have a set of technologies that can usher in service orientation in the infrastructure fabric layer. We term this technology paradigm as Service Oriented...","internal_url":"https://www.academia.edu/88142874/SETLabs_Briefings_Service_Oriented_Infrastructure","translated_internal_url":"","created_at":"2022-10-08T20:59:44.938-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"SETLabs_Briefings_Service_Oriented_Infrastructure","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927600"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927600/An_Inference_Approach_To_Question_Answering_Over_Knowledge_Graphs"><img alt="Research paper thumbnail of An Inference Approach To Question Answering Over Knowledge Graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/89117537/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927600/An_Inference_Approach_To_Question_Answering_Over_Knowledge_Graphs">An Inference Approach To Question Answering Over Knowledge Graphs</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural la...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural language text corpora. The problem of natural language querying over knowledge graphs is essential for the human consumption of this information. This problem is typically addressed by converting the natural language query to a structured query and then firing the structured query on the KG. Direct answering models over knowledge graphs in literature are very few. The query conversion models and direct models both require specific training data pertaining to the domain of the knowledge graph. In this work, we convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs. Using trained deep learning models for the converted proxy inferencing problem, we provide the solution for the original natural language querying problem. Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state of the art. We also p...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b09eec719bf453fd4c9cca096045f120" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89117537,"asset_id":83927600,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89117537/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927600"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927600"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927600; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927600]").text(description); $(".js-view-count[data-work-id=83927600]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927600; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927600']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927600, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b09eec719bf453fd4c9cca096045f120" } } $('.js-work-strip[data-work-id=83927600]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927600,"title":"An Inference Approach To Question Answering Over Knowledge Graphs","translated_title":"","metadata":{"abstract":"Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural language text corpora. The problem of natural language querying over knowledge graphs is essential for the human consumption of this information. This problem is typically addressed by converting the natural language query to a structured query and then firing the structured query on the KG. Direct answering models over knowledge graphs in literature are very few. The query conversion models and direct models both require specific training data pertaining to the domain of the knowledge graph. In this work, we convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs. Using trained deep learning models for the converted proxy inferencing problem, we provide the solution for the original natural language querying problem. Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state of the art. We also p...","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural language text corpora. The problem of natural language querying over knowledge graphs is essential for the human consumption of this information. This problem is typically addressed by converting the natural language query to a structured query and then firing the structured query on the KG. Direct answering models over knowledge graphs in literature are very few. The query conversion models and direct models both require specific training data pertaining to the domain of the knowledge graph. In this work, we convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs. Using trained deep learning models for the converted proxy inferencing problem, we provide the solution for the original natural language querying problem. Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state of the art. We also p...","internal_url":"https://www.academia.edu/83927600/An_Inference_Approach_To_Question_Answering_Over_Knowledge_Graphs","translated_internal_url":"","created_at":"2022-07-29T22:33:02.214-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89117537,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117537/thumbnails/1.jpg","file_name":"2112.11070v1.pdf","download_url":"https://www.academia.edu/attachments/89117537/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Inference_Approach_To_Question_Answer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117537/2112.11070v1-libre.pdf?1659160606=\u0026response-content-disposition=attachment%3B+filename%3DAn_Inference_Approach_To_Question_Answer.pdf\u0026Expires=1732435682\u0026Signature=NVfwtRxpTgys7C2MyrqsYrSZtReVG9MbawXI~TWFdzK8zpuMPbhpqjD7hxfGTfKlggdBTn9VM2BdxjqXk68UW1za9ZdhugFxmqlUEGgdULNf8CW0IZcTydfS1CwgyBYVB4wDMnuO~eKqJWIi8vB1oUHnX6zWJ1Pdesb8Dk0e-T5Qs43qXzxsZVCXoNWziOR0MGYnrH8zAnYGyA9AzEXjZ4kc-Y2ST3NJGDmh60uovif94aNjJzfSR9jiuPg5kgQiFyvdNTO5VjjnUQSy~4IJYoPbCmFWlismCB1fEfOQ5QG05~2NT8qvkFkaV~AivTiWZ8bzyuw~7URNY~GypJRWXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Inference_Approach_To_Question_Answering_Over_Knowledge_Graphs","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":89117537,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117537/thumbnails/1.jpg","file_name":"2112.11070v1.pdf","download_url":"https://www.academia.edu/attachments/89117537/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Inference_Approach_To_Question_Answer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117537/2112.11070v1-libre.pdf?1659160606=\u0026response-content-disposition=attachment%3B+filename%3DAn_Inference_Approach_To_Question_Answer.pdf\u0026Expires=1732435682\u0026Signature=NVfwtRxpTgys7C2MyrqsYrSZtReVG9MbawXI~TWFdzK8zpuMPbhpqjD7hxfGTfKlggdBTn9VM2BdxjqXk68UW1za9ZdhugFxmqlUEGgdULNf8CW0IZcTydfS1CwgyBYVB4wDMnuO~eKqJWIi8vB1oUHnX6zWJ1Pdesb8Dk0e-T5Qs43qXzxsZVCXoNWziOR0MGYnrH8zAnYGyA9AzEXjZ4kc-Y2ST3NJGDmh60uovif94aNjJzfSR9jiuPg5kgQiFyvdNTO5VjjnUQSy~4IJYoPbCmFWlismCB1fEfOQ5QG05~2NT8qvkFkaV~AivTiWZ8bzyuw~7URNY~GypJRWXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":18574,"name":"Inference","url":"https://www.academia.edu/Documents/in/Inference"},{"id":97618,"name":"Natural language","url":"https://www.academia.edu/Documents/in/Natural_language"},{"id":184950,"name":"Question Answering","url":"https://www.academia.edu/Documents/in/Question_Answering"},{"id":197861,"name":"Domain Knowledge","url":"https://www.academia.edu/Documents/in/Domain_Knowledge"},{"id":2451007,"name":"Knowledge Graph","url":"https://www.academia.edu/Documents/in/Knowledge_Graph"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"}],"urls":[{"id":22533076,"url":"https://arxiv.org/abs/2112.11070"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927599"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927599/Towards_Generating_Topic_Driven_and_Affective_Responses_to_Assist_Mental_Wellness"><img alt="Research paper thumbnail of Towards Generating Topic-Driven and Affective Responses to Assist Mental Wellness" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927599/Towards_Generating_Topic_Driven_and_Affective_Responses_to_Assist_Mental_Wellness">Towards Generating Topic-Driven and Affective Responses to Assist Mental Wellness</a></div><div class="wp-workCard_item"><span>Pattern Recognition. ICPR International Workshops and Challenges</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927599"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927599"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927599; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927599]").text(description); $(".js-view-count[data-work-id=83927599]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927599; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927599']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927599, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83927599]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927599,"title":"Towards Generating Topic-Driven and Affective Responses to Assist Mental Wellness","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Pattern Recognition. ICPR International Workshops and Challenges"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83927599/Towards_Generating_Topic_Driven_and_Affective_Responses_to_Assist_Mental_Wellness","translated_internal_url":"","created_at":"2022-07-29T22:33:01.989-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Towards_Generating_Topic_Driven_and_Affective_Responses_to_Assist_Mental_Wellness","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[],"urls":[{"id":22533075,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-68790-8_11"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927598/Smart_Entertainment_A_Critiquing_Based_Dialog_System_for_Eliciting_User_Preferences_and_Making_Recommendations"><img alt="Research paper thumbnail of Smart Entertainment - A Critiquing Based Dialog System for Eliciting User Preferences and Making Recommendations" class="work-thumbnail" src="https://attachments.academia-assets.com/89117525/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927598/Smart_Entertainment_A_Critiquing_Based_Dialog_System_for_Eliciting_User_Preferences_and_Making_Recommendations">Smart Entertainment - A Critiquing Based Dialog System for Eliciting User Preferences and Making Recommendations</a></div><div class="wp-workCard_item"><span>Natural Language Processing and Information Systems</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9622b44ad32f8b42184cff43cc7d8219" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89117525,"asset_id":83927598,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89117525/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927598]").text(description); $(".js-view-count[data-work-id=83927598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927598, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9622b44ad32f8b42184cff43cc7d8219" } } $('.js-work-strip[data-work-id=83927598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927598,"title":"Smart Entertainment - A Critiquing Based Dialog System for Eliciting User Preferences and Making Recommendations","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Natural Language Processing and Information Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83927598/Smart_Entertainment_A_Critiquing_Based_Dialog_System_for_Eliciting_User_Preferences_and_Making_Recommendations","translated_internal_url":"","created_at":"2022-07-29T22:33:01.772-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89117525,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117525/thumbnails/1.jpg","file_name":"978-3-319-91947-8_47.pdf","download_url":"https://www.academia.edu/attachments/89117525/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Smart_Entertainment_A_Critiquing_Based_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117525/978-3-319-91947-8_47-libre.pdf?1659160605=\u0026response-content-disposition=attachment%3B+filename%3DSmart_Entertainment_A_Critiquing_Based_D.pdf\u0026Expires=1732435682\u0026Signature=D4~Jvrd6g-K1MWef9CQ11s9yJhp0KgP76IGP15oGgmgiOUV5eRDCukSVp-XZ5egAyrY45fSYKurVPvYKb6ZB9uNYeJqRsQsJHh2bObOruoTL41XI0RbxNiOB7Nihd0K~BLEzoMHeWc4aaOcaG41tGk38k00nMIUVeXZYJ82HcJrkFvlF6M0bfcJ7X5r5EI0F9B~sKHJFE7BAiThC6DTpPAuj2Ht9sf-q28qdrRObM43oHII-DTfEsLuWmQPHmF2o9hnfqzIlN3oEwzeIcxI6wwMNez~~gzFJ82ep5kS-B4fv00ZbNr9z17~3-KOvxUyU4rIKMMni2D90FBcmmdAEaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Smart_Entertainment_A_Critiquing_Based_Dialog_System_for_Eliciting_User_Preferences_and_Making_Recommendations","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":89117525,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117525/thumbnails/1.jpg","file_name":"978-3-319-91947-8_47.pdf","download_url":"https://www.academia.edu/attachments/89117525/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Smart_Entertainment_A_Critiquing_Based_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117525/978-3-319-91947-8_47-libre.pdf?1659160605=\u0026response-content-disposition=attachment%3B+filename%3DSmart_Entertainment_A_Critiquing_Based_D.pdf\u0026Expires=1732435682\u0026Signature=D4~Jvrd6g-K1MWef9CQ11s9yJhp0KgP76IGP15oGgmgiOUV5eRDCukSVp-XZ5egAyrY45fSYKurVPvYKb6ZB9uNYeJqRsQsJHh2bObOruoTL41XI0RbxNiOB7Nihd0K~BLEzoMHeWc4aaOcaG41tGk38k00nMIUVeXZYJ82HcJrkFvlF6M0bfcJ7X5r5EI0F9B~sKHJFE7BAiThC6DTpPAuj2Ht9sf-q28qdrRObM43oHII-DTfEsLuWmQPHmF2o9hnfqzIlN3oEwzeIcxI6wwMNez~~gzFJ82ep5kS-B4fv00ZbNr9z17~3-KOvxUyU4rIKMMni2D90FBcmmdAEaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction"}],"urls":[{"id":22533074,"url":"http://link.springer.com/content/pdf/10.1007/978-3-319-91947-8_47"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927597"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927597/Active_Learning_Based_Relation_Classification_for_Knowledge_Graph_Construction_from_Conversation_Data"><img alt="Research paper thumbnail of Active Learning Based Relation Classification for Knowledge Graph Construction from Conversation Data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927597/Active_Learning_Based_Relation_Classification_for_Knowledge_Graph_Construction_from_Conversation_Data">Active Learning Based Relation Classification for Knowledge Graph Construction from Conversation Data</a></div><div class="wp-workCard_item"><span>Communications in Computer and Information Science</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927597"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927597"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927597; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927597]").text(description); $(".js-view-count[data-work-id=83927597]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927597; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927597']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927597, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83927597]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927597,"title":"Active Learning Based Relation Classification for Knowledge Graph Construction from Conversation Data","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Communications in Computer and Information Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83927597/Active_Learning_Based_Relation_Classification_for_Knowledge_Graph_Construction_from_Conversation_Data","translated_internal_url":"","created_at":"2022-07-29T22:33:01.578-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Active_Learning_Based_Relation_Classification_for_Knowledge_Graph_Construction_from_Conversation_Data","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"}],"urls":[{"id":22533073,"url":"https://link.springer.com/content/pdf/10.1007/978-3-030-63820-7_70"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83927596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83927596/Unscripted_Conversation_through_Knowledge_Graph"><img alt="Research paper thumbnail of Unscripted Conversation through Knowledge Graph" class="work-thumbnail" src="https://attachments.academia-assets.com/89117526/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83927596/Unscripted_Conversation_through_Knowledge_Graph">Unscripted Conversation through Knowledge Graph</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we introduce “unscripted conversation” free form dialog over a domain knowledge gr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we introduce “unscripted conversation” free form dialog over a domain knowledge graph. We describe a use case around Luggage handling for a commercial airline where we answer users queries regarding various policies such as luggage dimensions, restrictions on carry-on items, travel routes etc. We have encoded the domain entities, relationships, processes and polices in the knowledge graph and created a generic semantic natural language processing engine to process user queries and retrieve the correct results from a knowledge graph.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb0a850ee8f2d54a739ceb5155aaf6c1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89117526,"asset_id":83927596,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89117526/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83927596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83927596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83927596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83927596]").text(description); $(".js-view-count[data-work-id=83927596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83927596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83927596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83927596, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb0a850ee8f2d54a739ceb5155aaf6c1" } } $('.js-work-strip[data-work-id=83927596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83927596,"title":"Unscripted Conversation through Knowledge Graph","translated_title":"","metadata":{"abstract":"In this paper, we introduce “unscripted conversation” free form dialog over a domain knowledge graph. We describe a use case around Luggage handling for a commercial airline where we answer users queries regarding various policies such as luggage dimensions, restrictions on carry-on items, travel routes etc. We have encoded the domain entities, relationships, processes and polices in the knowledge graph and created a generic semantic natural language processing engine to process user queries and retrieve the correct results from a knowledge graph.","publisher":"SEMWEB","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"In this paper, we introduce “unscripted conversation” free form dialog over a domain knowledge graph. We describe a use case around Luggage handling for a commercial airline where we answer users queries regarding various policies such as luggage dimensions, restrictions on carry-on items, travel routes etc. We have encoded the domain entities, relationships, processes and polices in the knowledge graph and created a generic semantic natural language processing engine to process user queries and retrieve the correct results from a knowledge graph.","internal_url":"https://www.academia.edu/83927596/Unscripted_Conversation_through_Knowledge_Graph","translated_internal_url":"","created_at":"2022-07-29T22:33:01.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4646101,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89117526,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117526/thumbnails/1.jpg","file_name":"paper603.pdf","download_url":"https://www.academia.edu/attachments/89117526/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unscripted_Conversation_through_Knowledg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117526/paper603-libre.pdf?1659160616=\u0026response-content-disposition=attachment%3B+filename%3DUnscripted_Conversation_through_Knowledg.pdf\u0026Expires=1732435682\u0026Signature=e7RBZEBGNfwV96uek-oZSYmZ6P8Caertm0u3dEbSske5tLX8TDJOZ1YMQopSg~csF59pHm~vZW3jvCOooKBe-uZyfiPVTj19iEs3xSYzc3yNAbCz1WXnFUileOqFxLBNm~4jISyMJzpQtl6mpmVBljcX8P728CiYei-6-T9gbuKV2lTC8LM0JUow--DXzqUu5snjrMXyU8fLRuiFG8ksRz1QQcTb~xSqsTE5C4JsE5B7nZQDg-wv0BU7XIPTnZSDImZckA95m8CurgG8l8r6nAsWDmn6OM8y7wQiqRxkMj2wRF8mO3Din~tI2qzdUFJGH8FqvNUDCWz2Wtb1vRbEZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Unscripted_Conversation_through_Knowledge_Graph","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":4646101,"first_name":"Shubhashis","middle_initials":null,"last_name":"Sengupta","page_name":"ShubhashisSengupta","domain_name":"iimcal","created_at":"2013-06-24T15:07:02.645-07:00","display_name":"Shubhashis Sengupta","url":"https://iimcal.academia.edu/ShubhashisSengupta"},"attachments":[{"id":89117526,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89117526/thumbnails/1.jpg","file_name":"paper603.pdf","download_url":"https://www.academia.edu/attachments/89117526/download_file?st=MTczMjQ1NzQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unscripted_Conversation_through_Knowledg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89117526/paper603-libre.pdf?1659160616=\u0026response-content-disposition=attachment%3B+filename%3DUnscripted_Conversation_through_Knowledg.pdf\u0026Expires=1732435682\u0026Signature=e7RBZEBGNfwV96uek-oZSYmZ6P8Caertm0u3dEbSske5tLX8TDJOZ1YMQopSg~csF59pHm~vZW3jvCOooKBe-uZyfiPVTj19iEs3xSYzc3yNAbCz1WXnFUileOqFxLBNm~4jISyMJzpQtl6mpmVBljcX8P728CiYei-6-T9gbuKV2lTC8LM0JUow--DXzqUu5snjrMXyU8fLRuiFG8ksRz1QQcTb~xSqsTE5C4JsE5B7nZQDg-wv0BU7XIPTnZSDImZckA95m8CurgG8l8r6nAsWDmn6OM8y7wQiqRxkMj2wRF8mO3Din~tI2qzdUFJGH8FqvNUDCWz2Wtb1vRbEZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":24342,"name":"Conversation","url":"https://www.academia.edu/Documents/in/Conversation"}],"urls":[{"id":22533072,"url":"http://ceur-ws.org/Vol-2721/paper603.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "cadee72e93ed25706c8ade86b1ff997796e8d65f4c3f54251f03f12d84356c6f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="/9LSaJDtm+Xl5i+0rmX5TTI9DQ9POYP+jVOHeKrE0ytQcxqPTIQ2b82JTiXLzgfIe684OlOD0UcDY8dJDmWEng==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://iimcal.academia.edu/ShubhashisSengupta" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="MwxPq8YNk/MrVe/5JE3btOgTbc77tXe3R1cFKPUeAxmcrYdMGmQ+eQM6jmhB5iUxoYFY++cPJQ7JZ0UZUb9UrA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>