CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 767 results for author: <span class="mathjax">Chen, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Chen%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+Z&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11878">arXiv:2411.11878</a> <span> [<a href="https://arxiv.org/pdf/2411.11878">pdf</a>, <a href="https://arxiv.org/format/2411.11878">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Field theory of non-Hermitian disordered systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Ze Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Kawabata%2C+K">Kohei Kawabata</a>, <a href="/search/cond-mat?searchtype=author&query=Kulkarni%2C+A">Anish Kulkarni</a>, <a href="/search/cond-mat?searchtype=author&query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11878v1-abstract-short" style="display: inline;"> The interplay between non-Hermiticity and disorder gives rise to unique universality classes of Anderson transitions. Here, we develop a field-theoretical description of non-Hermitian disordered systems based on fermionic replica nonlinear sigma models. We classify the target manifolds of the nonlinear sigma models across all the 38-fold symmetry classes of non-Hermitian systems and corroborate th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11878v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11878v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11878v1-abstract-full" style="display: none;"> The interplay between non-Hermiticity and disorder gives rise to unique universality classes of Anderson transitions. Here, we develop a field-theoretical description of non-Hermitian disordered systems based on fermionic replica nonlinear sigma models. We classify the target manifolds of the nonlinear sigma models across all the 38-fold symmetry classes of non-Hermitian systems and corroborate the correspondence of the universality classes of Anderson transitions between non-Hermitian systems and Hermitized systems with additional chiral symmetry. We apply the nonlinear sigma model framework to study the spectral properties of non-Hermitian random matrices with particle-hole symmetry. Furthermore, we demonstrate that the Anderson transition unique to nonreciprocal disordered systems in one dimension, including the Hatano-Nelson model, originates from the competition between the kinetic and topological terms in a one-dimensional nonlinear sigma model. We also discuss the critical phenomena of non-Hermitian disordered systems with symmetry and topology in higher dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11878v1-abstract-full').style.display = 'none'; document.getElementById('2411.11878v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 2 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11243">arXiv:2411.11243</a> <span> [<a href="https://arxiv.org/pdf/2411.11243">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electron Phase Detection in Single Molecules by Interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhixin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jie-Ren Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Mengyun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Farmakidis%2C+N">Nikolaos Farmakidis</a>, <a href="/search/cond-mat?searchtype=author&query=Baugh%2C+J">Jonathan Baugh</a>, <a href="/search/cond-mat?searchtype=author&query=Bhaskaran%2C+H">Harish Bhaskaran</a>, <a href="/search/cond-mat?searchtype=author&query=Mol%2C+J+A">Jan A. Mol</a>, <a href="/search/cond-mat?searchtype=author&query=Anderson%2C+H+L">Harry L. Anderson</a>, <a href="/search/cond-mat?searchtype=author&query=Bogani%2C+L">Lapo Bogani</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+J+O">James O. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11243v1-abstract-short" style="display: inline;"> Interferometry has underpinned a century of discoveries, ranging from the disproval of the ether theory to the detection of gravitational waves, offering insights into wave dynamics with unrivalled precision through the measurement of phase relationships. In electronics, phase-sensitive measurements can probe the nature of transmissive topological and quantum states, but are only possible using co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11243v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11243v1-abstract-full" style="display: none;"> Interferometry has underpinned a century of discoveries, ranging from the disproval of the ether theory to the detection of gravitational waves, offering insights into wave dynamics with unrivalled precision through the measurement of phase relationships. In electronics, phase-sensitive measurements can probe the nature of transmissive topological and quantum states, but are only possible using complex device structures in magnetic fields. Here we demonstrate electronic interferometry in a single-molecule device through the study of non-equilibrium Fano resonances. We show the phase difference between an electronic orbital and a coupled Fabry-Perot resonance are tuneable through electric fields, and consequently it is possible to read out quantum information in the smallest devices, offering new avenues for the coherent manipulation down to single molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11243v1-abstract-full').style.display = 'none'; document.getElementById('2411.11243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11121">arXiv:2411.11121</a> <span> [<a href="https://arxiv.org/pdf/2411.11121">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Multi-topological phases of matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziteng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Bongiovanni%2C+D">Domenico Bongiovanni</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiangdong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Z">Zhichan Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Juki%C4%87%2C+D">Dario Juki膰</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+D">Daohong Song</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+J">Jingjun Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Morandotti%2C+R">Roberto Morandotti</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhigang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Buljan%2C+H">Hrvoje Buljan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11121v1-abstract-short" style="display: inline;"> The discovery of topological phases of matter and topological boundary states had tremendous impact on condensed matter physics and photonics, where topological phases are defined via energy bands, giving rise to topological band theory. However, topological systems that cannot be described by band topology but still support non-trivial boundary states are little-known and largely unexplored. Here… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11121v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11121v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11121v1-abstract-full" style="display: none;"> The discovery of topological phases of matter and topological boundary states had tremendous impact on condensed matter physics and photonics, where topological phases are defined via energy bands, giving rise to topological band theory. However, topological systems that cannot be described by band topology but still support non-trivial boundary states are little-known and largely unexplored. Here, we uncover a new kind of topological phase of matter named "multi-topological phase" (MTP) that features multiple sets of boundary states, where each set is associated with one distinct topological invariant. Unlike conventional topological phase transitions, the MTP transitions can occur without band-gap closing. We present typical examples of MTPs in a one-dimensional topological insulator and a two-dimensional higher-order topological insulator, where the systems are otherwise trivial according to band topology. Furthermore, MTPs can exist also in indirectly gapped Chern insulators, beyond the regime where the conventional bulk-boundary correspondence predicts the existence of boundary states. Experimentally, we demonstrate the first two examples of MTPs in laser-written photonic lattices. Our findings constitute a fundamental advance in topological physics and provide a route for designing novel topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11121v1-abstract-full').style.display = 'none'; document.getElementById('2411.11121v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10786">arXiv:2411.10786</a> <span> [<a href="https://arxiv.org/pdf/2411.10786">pdf</a>, <a href="https://arxiv.org/format/2411.10786">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strongly Anisotropic Charge Dynamics in La3Ni2O7 with Coherent-to-Incoherent Crossover of Interlayer Charge Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Su%2C+B">Bo Su</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+C">Chaoxin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jianzhou Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhi-Guo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10786v1-abstract-short" style="display: inline;"> We report an optical spectroscopy study of the charge-dynamics anisotropy in the La3Ni2O7 single crystals with the electric field of the incident light parallel to the crystalline c-axis and ab-plane respectively. The evolution of the low-energy part of its c-axis optical conductivity spectra (蟽1c(蠅)) from a Drude component to a finite-energy peak, together with the change in the c-axis electron m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10786v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10786v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10786v1-abstract-full" style="display: none;"> We report an optical spectroscopy study of the charge-dynamics anisotropy in the La3Ni2O7 single crystals with the electric field of the incident light parallel to the crystalline c-axis and ab-plane respectively. The evolution of the low-energy part of its c-axis optical conductivity spectra (蟽1c(蠅)) from a Drude component to a finite-energy peak, together with the change in the c-axis electron mean-free-path which is distinctly longer than the c-axis lattice constant at 10 K but is shorter than the c-axis lattice constant at 300 K, demonstrates a crossover from coherent to incoherent interlayer charge dynamics in La3Ni2O7, which is associated with the variation from weak to strong dissipation within its ab-plane. In contrast, the Drude component robust in its 蟽1ab(蠅) and the long ab-plane electron mean-free-path greater than the a-axis and b-axis unit-cell lengths manifest the persistence of coherent in-plane charge dynamics from 10 to 300 K. Thus, the charge dynamics in La3Ni2O7 shows a remarkable anisotropy at high temperatures. At low temperatures, the large values of the ratio between the ab-plane and c-axis Drude weights and the ratio 蟽1ab(蠅 -> 0)/蟽1c(蠅 -> 0) indicate a strong anisotropy of the low-temperature charge dynamics in La3Ni2O7. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10786v1-abstract-full').style.display = 'none'; document.getElementById('2411.10786v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08558">arXiv:2411.08558</a> <span> [<a href="https://arxiv.org/pdf/2411.08558">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of Top Al$_2$O$_3$ Interlayer Thickness on Memory Window and Reliability of FeFETs With TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) Gate Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+T">Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+X">Xinpei Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+R">Runhao Han</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jia Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+M">Mingkai Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+S">Saifei Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zeqi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Y">Yajing Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+K">Kai Han</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanrong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ke%2C+X">Xiaoyu Ke</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+X">Xiaoqing Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Chai%2C+J">Junshuai Chai</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenwu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+T">Tianchun Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08558v1-abstract-short" style="display: inline;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08558v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08558v1-abstract-full" style="display: none;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric field of the ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_2$ in the MIFIS structure with a thicker top Al2O3 after a program operation. The lower electric field makes the charges trapped at the top Al2O3/Hf0.5Zr0.5O$_2$ interface, which are injected from the metal gate, cannot be retained. Furthermore, we study the effect of the top Al$_2$O$_3$ interlayer thickness on the reliability (endurance characteristics and retention characteristics). We find that the MIFIS structure with a thicker top Al$_2$O$_3$ interlayer has poorer retention and endurance characteristics. Our work is helpful in deeply understanding the effect of top interlayer thickness on the MW and reliability of Si-FeFETs with MIFIS gate stacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'none'; document.getElementById('2411.08558v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07465">arXiv:2411.07465</a> <span> [<a href="https://arxiv.org/pdf/2411.07465">pdf</a>, <a href="https://arxiv.org/format/2411.07465">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hybrid skin-topological effect in non-Hermitian checkerboard lattices with large Chern numbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi-Ling Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Li-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhao-Xian Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+J">Jian-Hua Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07465v1-abstract-short" style="display: inline;"> Non-Hermitian topology provides a research frontier for exploring topological phenomena, revealing novel topological effects and driving the development of emergent materials and platforms. Here, we explore the non-Hermitian Chern insulator phases and the hybrid skin-topological effects in checkerboard lattices with synthetic gauge fluxes. Such lattices can be realized in integrated silicon photon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07465v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07465v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07465v1-abstract-full" style="display: none;"> Non-Hermitian topology provides a research frontier for exploring topological phenomena, revealing novel topological effects and driving the development of emergent materials and platforms. Here, we explore the non-Hermitian Chern insulator phases and the hybrid skin-topological effects in checkerboard lattices with synthetic gauge fluxes. Such lattices can be realized in integrated silicon photonic nanocircuits and microresonators as well as in arrays of evanescently coupled helical optical waveguides. With a simple and tunable design, the system is found to support non-Hermitian hybrid skin topological effects, exhibiting corner skin effects when the lattice symmetry either $C_4$ or $C_2$. An unconventional physical mechanism is revealed as the origin of such a transition which is connected to the corner-induced scattering between the multiple chiral edge channels. These properties are enabled by the large Chern number and the rich non-Hermitian topological edge states in our system, revealing the diverse non-Hermitian topological bulk-boundary correspondence. Our design offers excellent controllability and experimental feasibility, making it appealing for studying non-Hermitian topological phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07465v1-abstract-full').style.display = 'none'; document.getElementById('2411.07465v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06801">arXiv:2411.06801</a> <span> [<a href="https://arxiv.org/pdf/2411.06801">pdf</a>, <a href="https://arxiv.org/format/2411.06801">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Time-Varying Strong Coupling and It Induced Time Diffraction of Magnon Modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rao%2C+J">Jinwei Rao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yi-Pu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhijian Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+B">Bimu Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+K">Kaixin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+C">Chunke Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Congyi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R">Runze Li</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+L">Li-Hui Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+W">Wei Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06801v2-abstract-short" style="display: inline;"> Time-varying media break the temporal translation symmetry of wave propagation in materials, enabling advanced wave manipulations. However, this novel phenomenon has been rarely explored in magnonic systems due to the significant challenge of achieving a sudden and prominent change in magnon dispersion within materials. Here, we drive a ferrimagnet with periodic pump pulses to construct time-varyi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06801v2-abstract-full').style.display = 'inline'; document.getElementById('2411.06801v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06801v2-abstract-full" style="display: none;"> Time-varying media break the temporal translation symmetry of wave propagation in materials, enabling advanced wave manipulations. However, this novel phenomenon has been rarely explored in magnonic systems due to the significant challenge of achieving a sudden and prominent change in magnon dispersion within materials. Here, we drive a ferrimagnet with periodic pump pulses to construct time-varying strong coupling between two magnon modes. We observe a change in the beats of Rabi-like oscillations near the pulse edges, indicating the time-varying strong magnon coupling and the formation of time interfaces. Using a frequency comb spectroscopy technique developed in this work, we characterize the frequency conversion of magnon modes induced by the time-varying strong coupling effect. Moreover, we construct time slits with adjacent time interfaces and demonstrate, for the first time, the double-slit time diffraction of magnon modes. The frequency spacing of the multiplied magnon modes inversely correlates with the separation between two time slits, analogous to the well-known Yang's double-slit experiment. These findings rely solely on the time-varying strong magnon coupling, independent of device reconfiguration. Our results open avenues for applications such as all-magnetic mixers or on-chip GHz sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06801v2-abstract-full').style.display = 'none'; document.getElementById('2411.06801v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04481">arXiv:2411.04481</a> <span> [<a href="https://arxiv.org/pdf/2411.04481">pdf</a>, <a href="https://arxiv.org/format/2411.04481">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-throughput Screening of Ferrimagnetic Semiconductors With Ultrahigh N$\acute{e}$el Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haidi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Q">Qingqing Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Weiduo Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhongjun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaofeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xingxing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04481v1-abstract-short" style="display: inline;"> Ferrimagnetic semiconductors, integrated with net magnetization, antiferromagnetic coupling and semi-conductivity, have constructed an ideal platform for spintronics. For practical applications, achieving high N$\acute{e}$el temperatures ($T_{\mathrm{N}}$) is very desirable, but remains a significant challenge. Here, via high-throughput density-functional-theory calculations, we identify 19 intrin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04481v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04481v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04481v1-abstract-full" style="display: none;"> Ferrimagnetic semiconductors, integrated with net magnetization, antiferromagnetic coupling and semi-conductivity, have constructed an ideal platform for spintronics. For practical applications, achieving high N$\acute{e}$el temperatures ($T_{\mathrm{N}}$) is very desirable, but remains a significant challenge. Here, via high-throughput density-functional-theory calculations, we identify 19 intrinsic ferrimagnetic semiconductor candidates from nearly 44,000 structures in the Materials Project database, including 10 ferrimagnetic bipolar magnetic semiconductors (BMS) and 9 ferrimagnetic half semiconductors (HSC). Notably, the BMS \ce{NaFe5O8} possesses a high $T_{\mathrm{N}}$ of 768 K. By element substitutions, we obtain an HSC \ce{NaFe5S8} with a $T_{\mathrm{N}}$ of 957 K and a BMS \ce{LiFe5O8} with a $T_{\mathrm{N}}$ reaching 1059 K. Our results pave a promising avenue toward the development of ferrimagnetic spintronics at ambient temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04481v1-abstract-full').style.display = 'none'; document.getElementById('2411.04481v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03777">arXiv:2411.03777</a> <span> [<a href="https://arxiv.org/pdf/2411.03777">pdf</a>, <a href="https://arxiv.org/format/2411.03777">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Electronic structure and superconducting properties of LaNiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Ziyan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jiangping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03777v1-abstract-short" style="display: inline;"> Motivated by recent photoemission measurements on the La$_{0.8}$Sr$_{0.2}$NiO$_2$, we carry out a systematic study of the infinite-layer nickelate using both dynamical mean-field theory and density matrix embedding theory. The renormalized electronic structure and Fermi surface of correlated La$_{0.8}$Sr$_{0.2}$NiO$_2$ are studied in an effective two-band model through the dynamical mean-field cal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03777v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03777v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03777v1-abstract-full" style="display: none;"> Motivated by recent photoemission measurements on the La$_{0.8}$Sr$_{0.2}$NiO$_2$, we carry out a systematic study of the infinite-layer nickelate using both dynamical mean-field theory and density matrix embedding theory. The renormalized electronic structure and Fermi surface of correlated La$_{0.8}$Sr$_{0.2}$NiO$_2$ are studied in an effective two-band model through the dynamical mean-field calculation. We find the correlation effects reflect mainly on the Ni $d$ band, which is consistent with the experimental findings. We further study the ground state including magnetism and superconductivity through the density matrix embedding theory. Within the experimental doping range and rigid-band approximation, we show that the $d$-wave superconductivity is the lowest energy state, while the static magnetism is absent except very close to zero doping. These findings provide a new understanding of infinite-layer nickelate superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03777v1-abstract-full').style.display = 'none'; document.getElementById('2411.03777v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures and Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16989">arXiv:2410.16989</a> <span> [<a href="https://arxiv.org/pdf/2410.16989">pdf</a>, <a href="https://arxiv.org/format/2410.16989">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Synthetic gain for electron-beam spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yongliang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+K">Kebo Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z">Zetao Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Sha%2C+Y">Yixin Sha</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zeling Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xudong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+S">Shimeng Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yiqin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+H">Huigao Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16989v1-abstract-short" style="display: inline;"> Electron-beam microscopy and spectroscopy featuring atomic-scale spatial resolution have become essential tools used daily in almost all branches of nanoscale science and technology. As a natural supercontinuum source of light, free electrons couple with phonons, plasmons, electron-hole pairs, inter- and intra-band transitions, and inner-shell ionization. The multiple excitations, intertwined with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16989v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16989v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16989v1-abstract-full" style="display: none;"> Electron-beam microscopy and spectroscopy featuring atomic-scale spatial resolution have become essential tools used daily in almost all branches of nanoscale science and technology. As a natural supercontinuum source of light, free electrons couple with phonons, plasmons, electron-hole pairs, inter- and intra-band transitions, and inner-shell ionization. The multiple excitations, intertwined with the intricate nature of nanostructured samples, present significant challenges in isolating specific spectral characteristics amidst complex experimental backgrounds. Here we introduce the approach of synthetic complex frequency waves to mitigate these challenges in free-electron--light interaction. The complex frequency waves, created through causality-informed coherent superposition of real-frequency waves induced by free electrons, offer virtual gain to offset material losses. This amplifies and enhances spectral features, as confirmed by our electron energy loss and cathodoluminescence measurements on multi-layer membranes, suspended nanoparticles, and film-coupled nanostructures. Strikingly, we reveal that our approach can retrieve resonance excitation completed buried underneath the zero-loss peak, substantially enhance the quality of hyperspectral imaging, and resolve entangled multiple-photon--electron events in their quantum interaction. Our findings indicate the versatile utility of complex frequency waves in various electron-beam spectroscopy and their promising diagnostic capabilities in free-electron quantum optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16989v1-abstract-full').style.display = 'none'; document.getElementById('2410.16989v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16987">arXiv:2410.16987</a> <span> [<a href="https://arxiv.org/pdf/2410.16987">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A single-phase epitaxially grown ferroelectric perovskite nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Choi%2C+S">Songhee Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Q">Qiao Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zi%2C+X">Xian Zi</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+D">Dongke Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+J">Jie Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shuai Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+H">Haitao Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Ting%2C+C">Cui Ting</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qianying Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+G">Gang Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+C">Chen Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhiguo Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanmin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+J">Jiawang Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+E">Er-Jia Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16987v1-abstract-short" style="display: inline;"> The integration of ferroelectrics with semiconductors is crucial for developing functional devices, such as field-effect transistors, tunnel junctions, and nonvolatile memories. However, the synthesis of high-quality single-crystalline ferroelectric nitride perovskites has been limited, hindering a comprehensive understanding of their switching dynamics and potential applications. Here we report t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16987v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16987v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16987v1-abstract-full" style="display: none;"> The integration of ferroelectrics with semiconductors is crucial for developing functional devices, such as field-effect transistors, tunnel junctions, and nonvolatile memories. However, the synthesis of high-quality single-crystalline ferroelectric nitride perovskites has been limited, hindering a comprehensive understanding of their switching dynamics and potential applications. Here we report the synthesis and characterizations of epitaxial single-phase ferroelectric cerium tantalum nitride (CeTaN3) on both oxides and semiconductors. The polar symmetry of CeTaN3 was confirmed by observing the atomic displacement of central ions relative to the center of the TaN6 octahedra, as well as through optical second harmonic generation. We observed switchable ferroelectric domains in CeTaN3 films using piezo-response force microscopy, complemented by the characterization of square-like polarization-electric field hysteresis loops. The remanent polarization of CeTaN3 reaches approximately 20 uC/cm2 at room temperature, consistent with theoretical calculations. This work establishes a vital link between ferroelectric nitride perovskites and their practical applications, paving the way for next-generation information and energy-storage devices with enhanced performance, scalability, and manufacturability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16987v1-abstract-full').style.display = 'none'; document.getElementById('2410.16987v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13202">arXiv:2410.13202</a> <span> [<a href="https://arxiv.org/pdf/2410.13202">pdf</a>, <a href="https://arxiv.org/format/2410.13202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Anatomy of Thermally Interplayed Spin-Orbit Torque Driven Antiferromagnetic Switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+W">Wenlong Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zanhong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yuzhang Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">Daoqian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+G">Guang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+A">Ao Du</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+S">Shiyang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+K">Kaihua Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongxi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+K">Kewen Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13202v1-abstract-short" style="display: inline;"> Current-induced antiferromagnetic (AFM) switching remains critical in spintronics, yet the interplay between thermal effects and spin torques still lacks clear clarification. Here we experimentally investigate the thermally interplayed spin-orbit torque induced AFM switching in magnetic tunnel junctions via pulse-width dependent reversal and time-resolved measurements. By introducing the Langevin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13202v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13202v1-abstract-full" style="display: none;"> Current-induced antiferromagnetic (AFM) switching remains critical in spintronics, yet the interplay between thermal effects and spin torques still lacks clear clarification. Here we experimentally investigate the thermally interplayed spin-orbit torque induced AFM switching in magnetic tunnel junctions via pulse-width dependent reversal and time-resolved measurements. By introducing the Langevin random field into the AFM precession equation, we establish a novel AFM switching model that anatomically explains the experimental observations. Our findings elucidate the currentinduced AFM switching mechanism and offer significant promise for advancements in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13202v1-abstract-full').style.display = 'none'; document.getElementById('2410.13202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12291">arXiv:2410.12291</a> <span> [<a href="https://arxiv.org/pdf/2410.12291">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.202400599">10.1002/lpor.202400599 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly anisotropic Drude-weight-reduction and enhanced linear-dichroism in van der Waals Weyl semimetal Td-MoTe2 with coherent interlayer electronic transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Su%2C+B">Bo Su</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Weikang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jianzhou Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+X">Xiutong Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenhui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhi-Guo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12291v1-abstract-short" style="display: inline;"> Weyl semimetal (WSM) states can be achieved by breaking spatial-inversion symmetry or time reversal symmetry. However, the anisotropy of the energy reduction contributing to the emergence of WSM states has seldom been investigated by experiments. A van der Waals metal MoTe2 exhibits a type-II WSM phase below the monoclinic-to-orthorhombic-phase-transition temperature Tc ~ 250 K. Here, we report a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12291v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12291v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12291v1-abstract-full" style="display: none;"> Weyl semimetal (WSM) states can be achieved by breaking spatial-inversion symmetry or time reversal symmetry. However, the anisotropy of the energy reduction contributing to the emergence of WSM states has seldom been investigated by experiments. A van der Waals metal MoTe2 exhibits a type-II WSM phase below the monoclinic-to-orthorhombic-phase-transition temperature Tc ~ 250 K. Here, we report a combined linearly-polarized optical-spectroscopy and electrical-transport study of MoTe2 at different temperatures. The Drude components in the a-axis, b-axis and c-axis optical conductivity spectra, together with the metallic out-of-plane and in-plane electrical resistivities, indicate the coherent inter-layer and in-plane charge transports. Moreover, the Drude weight in 蟽1a(蠅), rather than the Drude weights in 蟽1b(蠅) and 蟽1c(蠅), decreases dramatically below Tc, which exhibits a highly anisotropic decrease in its Drude weight and thus suggests a strongly anisotropic reduction of the electronic kinetic energy in the WSM phase. Furthermore, below Tc, due to the in-plane anisotropic spectral-weight transfer from Drude component to high-energy region, the in-plane inter-band-absorption anisotropy increases remarkably around 770 meV, and has the largest value (~ 0.68) of normalized linear dichroism among the reported type-II WSMs. Our work sheds light on seeking new WSMs and developing novel photonic devices based on WSMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12291v1-abstract-full').style.display = 'none'; document.getElementById('2410.12291v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Laser & Photonics Reviews</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Laser & Photonics Reviews, 2400599 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12252">arXiv:2410.12252</a> <span> [<a href="https://arxiv.org/pdf/2410.12252">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.matt.2024.09.018">10.1016/j.matt.2024.09.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Enhancement of Properties in Strained Lead-free Multiferroic Solid Solutions with Strong Deviation from Vegard's Law </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+M">Mingjie Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Dehe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ku%2C+Y">Yu-Chieh Ku</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Y">Yawen Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+S">Shen Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zhongqi Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zedong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+H">Haoliang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+W">Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Y">Yunlong Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cheng-En Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+C">Chun-Fu Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Sujit Das</a>, <a href="/search/cond-mat?searchtype=author&query=Bellaiche%2C+L">Laurent Bellaiche</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yurong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiuliang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Kuo%2C+C">Chang-Yang Kuo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xingjun Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zuhuang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12252v1-abstract-short" style="display: inline;"> Efforts to combine the advantages of multiple systems to enhance functionlities through solid solution design present a great challenge due to the constraint imposed by the classical Vegard law. Here, we successfully navigate this trade off by leveraging the synergistic effect of chemical doping and strain engineering in solid solution system of BiFeO3 BaTiO3. Unlike bulks, a significant deviation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12252v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12252v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12252v1-abstract-full" style="display: none;"> Efforts to combine the advantages of multiple systems to enhance functionlities through solid solution design present a great challenge due to the constraint imposed by the classical Vegard law. Here, we successfully navigate this trade off by leveraging the synergistic effect of chemical doping and strain engineering in solid solution system of BiFeO3 BaTiO3. Unlike bulks, a significant deviation from the Vegard law accompanying with enhanced multiferroism is observed in the strained solid solution epitaxial films, where we achieve a pronounced tetragonality, enhanced saturated magnetization, substantial polarization, high ferroelectric Curie temperature, all while maintaining impressively low leakage current. These characteristics surpass the properties of their parent BiFeO3 and BaTiO3 films. Moreover, the superior ferroelectricity has never been reported in corresponding bulks. These findings underscore the potential of strained BiFeO3 BaTiO3 films as lead-free, room-temperature multiferroics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12252v1-abstract-full').style.display = 'none'; document.getElementById('2410.12252v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Matter 8, 1-11, 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span> [<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19748">arXiv:2409.19748</a> <span> [<a href="https://arxiv.org/pdf/2409.19748">pdf</a>, <a href="https://arxiv.org/format/2409.19748">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity-Driven Metallicity and Magnetic Skyrmions in van der Waals Cr2Ge2Te6/Hf2Ge2Te6 Multiferroic Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+H">Hongliang Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenjun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xiaoping Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+P">Ping Li</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+C">Changsheng Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19748v2-abstract-short" style="display: inline;"> Two-dimensional (2D) multiferroic heterostructures present a promising platform for advanced spin devices by leveraging the coexisting ferromagnetic (FM) and ferroelectric (FE) orders. Through first-principles calculations and micromagnetic simulations, we reveal non-volatile control of metallicity and topological spin textures in the Cr2Ge2Te6/Hf2Ge2Te6(CGT/HGT) heterostructure. Notably, manipula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19748v2-abstract-full').style.display = 'inline'; document.getElementById('2409.19748v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19748v2-abstract-full" style="display: none;"> Two-dimensional (2D) multiferroic heterostructures present a promising platform for advanced spin devices by leveraging the coexisting ferromagnetic (FM) and ferroelectric (FE) orders. Through first-principles calculations and micromagnetic simulations, we reveal non-volatile control of metallicity and topological spin textures in the Cr2Ge2Te6/Hf2Ge2Te6(CGT/HGT) heterostructure. Notably, manipulating ferroelectric polarization in HGT significantly modulates the magnetic anisotropy energy (MAE) and Dzyaloshinskii-Moriya interaction (DMI) of CGT/HGT, reversing the easy magnetization axis from in-plane to out-of-plane. By analyzing the atomic-resolved SOC energy (螖Esoc), it is found that the cause of the change comes from the Fert-Levy mechanism. Additionally, this polarization control enables the creation and annihilation of bimerons and skyrmions, with interlayer sliding further altering magnetic ordering. Our findings offer valuable insights into magnetoelectric coupling and spin texture manipulation in 2D magnets, highlighting their potential for next-generation spintronic and memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19748v2-abstract-full').style.display = 'none'; document.getElementById('2409.19748v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span> [<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/cond-mat?searchtype=author&query=Will%2C+M">Melissa Will</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16616">arXiv:2409.16616</a> <span> [<a href="https://arxiv.org/pdf/2409.16616">pdf</a>, <a href="https://arxiv.org/format/2409.16616">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Broadband measurement of Feibelman's quantum surface response functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zeling Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z">Zetao Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xudong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+Y">Yipu Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Y">Yonggen Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+H">Huirong Su</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+M">Maohai Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Christensen%2C+T">Thomas Christensen</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16616v1-abstract-short" style="display: inline;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16616v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16616v1-abstract-full" style="display: none;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation of a $d$-parameter database for interfaces of interest in nano-optics. However, accurate first-principles calculations of $d$-parameters face computational challenges, whereas existing measurements of $d$-parameters are scarce and restricted to narrow spectral windows. We demonstrate a general broadband ellipsometric approach to measure $d$-parameters at a gold--air interface across the visible--ultraviolet regimes. Gold is found to spill in and spill out at different frequencies. We also observe gold's Bennett mode, a surface-dipole resonance associated with a pole of the $d$-parameter, around 2.5 eV. Our measurements give rise to and are further validated by the passivity and Kramers--Kronig causality analysis of $d$-parameters. Our work advances the understanding of quantum surface response and may enable applications like enhanced electron field emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v1-abstract-full').style.display = 'none'; document.getElementById('2409.16616v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14942">arXiv:2409.14942</a> <span> [<a href="https://arxiv.org/pdf/2409.14942">pdf</a>, <a href="https://arxiv.org/format/2409.14942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Electric imaging and dynamics of photo-charged graphene edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Z">Zhe Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhousheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+X">Xiaodong Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Weihui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+J">Jun Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yumeng Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zhi Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Z">Zhiwei Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+K">Kai Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuxin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xing Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+P">Pengfei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Ya Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+J">Jianhua Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+H">Hualing Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+C">Changgan Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+G">Guosheng Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+F">Fazhan Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14942v1-abstract-short" style="display: inline;"> The one-dimensional side gate based on graphene edges shows a significant capability of reducing the channel length of field-effect transistors, further increasing the integration density of semiconductor devices. The nano-scale electric field distribution near the edge provides the physical limit of the effective channel length, however, its imaging under ambient conditions still lacks, which is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14942v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14942v1-abstract-full" style="display: none;"> The one-dimensional side gate based on graphene edges shows a significant capability of reducing the channel length of field-effect transistors, further increasing the integration density of semiconductor devices. The nano-scale electric field distribution near the edge provides the physical limit of the effective channel length, however, its imaging under ambient conditions still lacks, which is a critical aspect for the practical deployment of semiconductor devices. Here, we used scanning nitrogen-vacancy microscopy to investigate the electric field distribution near edges of a single-layer-graphene. Real-space scanning maps of photo-charged floating graphene flakes were acquired with a spatial resolution of $\sim$ 10 nm, and the electric edge effect was quantitatively studied by analyzing the NV spin energy level shifts due to the electric Stark effect. Since the graphene flakes are isolated from external electric sources, we brought out a theory based on photo-thermionic effect to explain the charge transfer from graphene to oxygen-terminated diamond probe with a disordered distribution of charge traps. Real-time tracing of electric fields detected the photo-thermionic emission process and the recombination process of the emitted electrons. This study provides a new perspective for graphene-based one-dimensional gates and opto-electronics with nanoscale real-space imaging, and moreover, offers a novel method to tune the chemical environment of diamond surfaces based on optical charge transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14942v1-abstract-full').style.display = 'none'; document.getElementById('2409.14942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09551">arXiv:2409.09551</a> <span> [<a href="https://arxiv.org/pdf/2409.09551">pdf</a>, <a href="https://arxiv.org/format/2409.09551">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Elastic moduli and thermal conductivity of quantum materials at finite temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Folkner%2C+D+A">Dylan A. Folkner</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zekun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Barbalinardo%2C+G">Giuseppe Barbalinardo</a>, <a href="/search/cond-mat?searchtype=author&query=Knoop%2C+F">Florian Knoop</a>, <a href="/search/cond-mat?searchtype=author&query=Donadio%2C+D">Davide Donadio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09551v2-abstract-short" style="display: inline;"> We describe a theoretical and computational approach to calculate the vibrational, elastic, and thermal properties of materials from the low-temperature quantum regime to the high-temperature anharmonic regime. This approach is based on anharmonic lattice dynamics and the Boltzmann transport equation. It relies on second and third-order force constant tensors estimated by fitting temperature-depen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09551v2-abstract-full').style.display = 'inline'; document.getElementById('2409.09551v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09551v2-abstract-full" style="display: none;"> We describe a theoretical and computational approach to calculate the vibrational, elastic, and thermal properties of materials from the low-temperature quantum regime to the high-temperature anharmonic regime. This approach is based on anharmonic lattice dynamics and the Boltzmann transport equation. It relies on second and third-order force constant tensors estimated by fitting temperature-dependent empirical potentials (TDEP) from path-integral quantum simulations with a first-principles machine learning Hamiltonian. The temperature-renormalized harmonic force constants are used to calculate the elastic moduli and the phonon modes of materials. Harmonic and anharmonic force constants are combined to solve the phonon Boltzmann transport equation to compute the lattice thermal conductivity. We demonstrate the effectiveness of this approach on bulk crystalline silicon in the temperature range from 50 to 1200~K, showing substantial improvement in the prediction of the temperature dependence of the target properties compared to experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09551v2-abstract-full').style.display = 'none'; document.getElementById('2409.09551v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05654">arXiv:2408.05654</a> <span> [<a href="https://arxiv.org/pdf/2408.05654">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> AC thermal conductivity as a tool for solution mapping from diffusive to ballistic regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+B">Bo Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhen Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05654v1-abstract-short" style="display: inline;"> Although the Boltzmann transport equation (BTE) has been exploited to investigate non-diffusive phonon transport for decades, due to the challenges of solving this integro-differential equation, most standard techniques for thermal measurements still rely on solutions to the diffusion equation, causing inconsistency between measured non-diffusive effects and the diffusion equation based techniques… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05654v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05654v1-abstract-full" style="display: none;"> Although the Boltzmann transport equation (BTE) has been exploited to investigate non-diffusive phonon transport for decades, due to the challenges of solving this integro-differential equation, most standard techniques for thermal measurements still rely on solutions to the diffusion equation, causing inconsistency between measured non-diffusive effects and the diffusion equation based techniques. With the AC thermal conductivity, an analogous concept of the AC electrical conductivity in solid state physics, we transform BTE under the relaxation time approximation into the form of the diffusion equation. This transformation maps any analytical solution of the diffusion equation under periodic heating to that of the BTE, with the nonlocal effect captured by the jump boundary condition. After investigating the validity of this framework, we apply it to generalize the 3蠅 method from diffusive to quasi-ballistic, and propose an experimental scheme to address the inconsistency problem above. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05654v1-abstract-full').style.display = 'none'; document.getElementById('2408.05654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05621">arXiv:2408.05621</a> <span> [<a href="https://arxiv.org/pdf/2408.05621">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/ma16237468">10.3390/ma16237468 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CMOS-Compatible Ultrathin Superconducting NbN Thin Films Deposited by Reactive Ion Sputtering on 300 mm Si Wafer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zihao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+X">Xiucheng Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+P">Pinku Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+P">Ping Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Dhole%2C+S">Samyak Dhole</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haiyan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cucciniello%2C+N">Nicholas Cucciniello</a>, <a href="/search/cond-mat?searchtype=author&query=Patibandla%2C+N">Nag Patibandla</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhebo Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+H">Hao Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+Q">Quanxi Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+M">Mingwei Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05621v1-abstract-short" style="display: inline;"> We report a milestone in achieving large-scale, ultrathin (~5 nm) superconducting NbN thin films on 300 mm Si wafers using a high-volume manufacturing (HVM) industrial physical vapor deposition (PVD) system. The NbN thin films possess remarkable structural uniformity and consistently high superconducting quality across the entire 300 mm Si wafer, by incorporating an AlN buffer layer. High-resoluti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05621v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05621v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05621v1-abstract-full" style="display: none;"> We report a milestone in achieving large-scale, ultrathin (~5 nm) superconducting NbN thin films on 300 mm Si wafers using a high-volume manufacturing (HVM) industrial physical vapor deposition (PVD) system. The NbN thin films possess remarkable structural uniformity and consistently high superconducting quality across the entire 300 mm Si wafer, by incorporating an AlN buffer layer. High-resolution X-ray diffraction and transmission electron microscopy analyses unveiled enhanced crystallinity of (111)-oriented 未-phase NbN with the AlN buffer layer. Notably, NbN films deposited on AlN-buffered Si substrates exhibited a significantly elevated superconducting critical temperature (~2 K higher for the 10 nm NbN) and a higher upper critical magnetic field or Hc2 (34.06 T boost in Hc2 for the 50 nm NbN) in comparison with those without AlN. These findings present a promising pathway for the integration of quantum-grade superconducting NbN films with the existing 300 mm CMOS Si platform for quantum information applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05621v1-abstract-full').style.display = 'none'; document.getElementById('2408.05621v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials 2023, 16, 7468 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02984">arXiv:2408.02984</a> <span> [<a href="https://arxiv.org/pdf/2408.02984">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of topological invariants through temporal adiabatic evolution of bulk states in the synthetic Brillouin zone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhao-Xian Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yuan-hong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+X">Xiao-Chen Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Ruo-Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+J">Jiang-Shan Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xin Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xue-Feng Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Y">Yan-Qing Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02984v1-abstract-short" style="display: inline;"> Mathematically, topological invariants arise from the parallel transport of eigenstates on the energy bands, which, in physics, correspond to the adiabatic dynamical evolution of transient states. It determines the presence of boundary states, while lacking direct measurements. Here, we develop time-varying programmable coupling circuits between acoustic cavities to mimic the Hamiltonians in the B… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02984v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02984v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02984v1-abstract-full" style="display: none;"> Mathematically, topological invariants arise from the parallel transport of eigenstates on the energy bands, which, in physics, correspond to the adiabatic dynamical evolution of transient states. It determines the presence of boundary states, while lacking direct measurements. Here, we develop time-varying programmable coupling circuits between acoustic cavities to mimic the Hamiltonians in the Brillouin zone, with which excitation and adiabatic evolution of bulk states are realized in a unit cell. By extracting the Berry phases of the bulk band, topological invariants, including the Zak phase for the SSH model and the Chern number for the AAH model, are obtained convincingly. The bulk state evolution also provides insight into the topological charges of our newly developed non-Abelian models, which are also verified by observing the adiabatic eigenframe rotation. Our work not only provides a general recipe for telling various topological invariants but also sheds light on transient acoustic wave manipulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02984v1-abstract-full').style.display = 'none'; document.getElementById('2408.02984v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00469">arXiv:2408.00469</a> <span> [<a href="https://arxiv.org/pdf/2408.00469">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-50833-9">10.1038/s41467-024-50833-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of electron interaction with an unidentified bosonic mode in superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+S">Sen Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhicheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Huaxun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+S">Shiwu Su</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiakang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Ziyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Huai%2C+L">Linwei Huai</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Junfeng He</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+S">Shengtao Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Y">Yajun Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+J">Juan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+D">Donglai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00469v1-abstract-short" style="display: inline;"> The kink structure in band dispersion usually refers to a certain electron-boson interaction, which is crucial in understanding the pairing in unconventional superconductors. Here we report the evidence of the observation of a kink structure in Fe-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ using angle-resolved photoemission spectroscopy. The kink shows an orbital selective and momentum depende… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00469v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00469v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00469v1-abstract-full" style="display: none;"> The kink structure in band dispersion usually refers to a certain electron-boson interaction, which is crucial in understanding the pairing in unconventional superconductors. Here we report the evidence of the observation of a kink structure in Fe-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ using angle-resolved photoemission spectroscopy. The kink shows an orbital selective and momentum dependent behavior, which is located at 15 meV below Fermi level along the Gamma-M direction at the band with dxz orbital character and vanishes when approaching the Gamma-X direction, correlated with a slight decrease of the superconducting gap. Most importantly, this kink structure disappears when the superconducting gap closes, indicating that the corresponding bosonic mode (9 meV) is closely related to superconductivity. However, the origin of this mode remains unidentified, since it cannot be related to phonons or the spin resonance mode (15 meV) observed by inelastic neutron scattering. The behavior of this mode is rather unique and challenges our present understanding of the superconducting paring mechanism of the bilayer FeAs-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00469v1-abstract-full').style.display = 'none'; document.getElementById('2408.00469v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15,2024,6433 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18063">arXiv:2407.18063</a> <span> [<a href="https://arxiv.org/pdf/2407.18063">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Imaging interstitial atoms with multislice electron ptychography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+Y">Yu-Tsun Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Zeltmann%2C+S+E">Steven E. Zeltmann</a>, <a href="/search/cond-mat?searchtype=author&query=P.%2C+H+K">Harikrishnan K. P.</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E+R">Ethan R. Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Ross%2C+C+A">Caroline A. Ross</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Muller%2C+D+A">David A. Muller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18063v1-abstract-short" style="display: inline;"> Doping impurity atoms is a strategy commonly used to tune the functionality of materials including catalysts, semiconductors, and quantum emitters. The location of dopants and their interaction with surrounding atoms could significantly modulate the transport, optical, or magnetic properties of materials. However, directly imaging individual impurity atoms inside materials remains a generally unad… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18063v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18063v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18063v1-abstract-full" style="display: none;"> Doping impurity atoms is a strategy commonly used to tune the functionality of materials including catalysts, semiconductors, and quantum emitters. The location of dopants and their interaction with surrounding atoms could significantly modulate the transport, optical, or magnetic properties of materials. However, directly imaging individual impurity atoms inside materials remains a generally unaddressed need. Here, we demonstrate how single atoms can be detected and located in three dimensions via multislice electron ptychography.Interstitial atoms in a complex garnet oxide heterostructure are resolved with a depth resolution better than 2.7 nm, together with a deep-sub-脜ngstrom lateral resolution. Single-scan atomic-layer depth resolution should be possible using strongly divergent electron probe illumination. Our results provide a new approach to detecting individual atomic defects and open doors to characterize the local environments and spatial distributions that underlie a broad range of systems such as single-atom catalysts, nitrogen-vacancy centers, and other atomic-scale quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18063v1-abstract-full').style.display = 'none'; document.getElementById('2407.18063v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures, 10 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14379">arXiv:2407.14379</a> <span> [<a href="https://arxiv.org/pdf/2407.14379">pdf</a>, <a href="https://arxiv.org/format/2407.14379">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deep learning density functional theory Hamiltonian in real space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+X">Xiaoxun Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zezhou Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+M">Minghui Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+B">Boheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14379v1-abstract-short" style="display: inline;"> Deep learning electronic structures from ab initio calculations holds great potential to revolutionize computational materials studies. While existing methods proved success in deep-learning density functional theory (DFT) Hamiltonian matrices, they are limited to DFT programs using localized atomic-like bases and heavily depend on the form of the bases. Here, we propose the DeepH-r method for dee… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14379v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14379v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14379v1-abstract-full" style="display: none;"> Deep learning electronic structures from ab initio calculations holds great potential to revolutionize computational materials studies. While existing methods proved success in deep-learning density functional theory (DFT) Hamiltonian matrices, they are limited to DFT programs using localized atomic-like bases and heavily depend on the form of the bases. Here, we propose the DeepH-r method for deep-learning DFT Hamiltonians in real space, facilitating the prediction of DFT Hamiltonian in a basis-independent manner. An equivariant neural network architecture for modeling the real-space DFT potential is developed, targeting a more fundamental quantity in DFT. The real-space potential exhibits simplified principles of equivariance and enhanced nearsightedness, further boosting the performance of deep learning. When applied to evaluate the Hamiltonian matrix, this method significantly improved in accuracy, as exemplified in multiple case studies. Given the abundance of data in the real-space potential, this work may pave a novel pathway for establishing a ``large materials model" with increased accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14379v1-abstract-full').style.display = 'none'; document.getElementById('2407.14379v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13230">arXiv:2407.13230</a> <span> [<a href="https://arxiv.org/pdf/2407.13230">pdf</a>, <a href="https://arxiv.org/format/2407.13230">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Probing spin textures in atomically thin CrSBr through tunneling magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Ziqi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+C">Chengfeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yuchen Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zuxin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+P">Pingfan Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+Y">Yu Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13230v1-abstract-short" style="display: inline;"> The exploration of spin configurations and magnetoresistance in van der Waals magnetic semiconductors, particularly in the realm of thin-layer structures, holds paramount significance for the development of two-dimensional spintronic nanodevices. In this Letter, we conducted comprehensive magnetotransport measurements on a few-layer CrSBr using a vertical tunneling device configuration. Notably, o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13230v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13230v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13230v1-abstract-full" style="display: none;"> The exploration of spin configurations and magnetoresistance in van der Waals magnetic semiconductors, particularly in the realm of thin-layer structures, holds paramount significance for the development of two-dimensional spintronic nanodevices. In this Letter, we conducted comprehensive magnetotransport measurements on a few-layer CrSBr using a vertical tunneling device configuration. Notably, our investigation revealed that tunneling magnetoresistance possesses a distinctive capability to discern spin configurations that would otherwise remain indistinguishable through alternative techniques such as photoluminescence. We observed the existence of energy-degenerate states exhibiting identical net magnetization and comparable spin configurations, which could be differentiated based on their rectification properties, reminiscent of a diode-like behavior at positive and negative bias voltages. Specifically, in devices comprising 5-layer CrSBr, we observed an intriguing positive magnetoresistive state when subjected to an in-plane magnetic field along the $b$-axis. To gain a deeper understanding of the underlying mechanisms, we developed a one-dimensional linear chain model that successfully computed the magnetic state, thereby elucidating the underlying spin configurations responsible for the observed transport phenomena. These findings not only provide novel perspectives into the intricate spin textures of two-dimensional CrSBr but also underscore the sensitivity of tunneling as a probing technique for investigating the magnetic order in van der Waals materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13230v1-abstract-full').style.display = 'none'; document.getElementById('2407.13230v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10268">arXiv:2407.10268</a> <span> [<a href="https://arxiv.org/pdf/2407.10268">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Weakly Coupled Type-II Superconductivity in a Laves compound ZrRe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Yingpeng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhaolong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhaoxu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yulong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+M">Munan Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yaling Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+C">Chunsheng Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Long Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z">Zhenkai Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+K">Kaiyao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shifeng Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10268v1-abstract-short" style="display: inline;"> We present a comprehensive investigation of the superconducting properties of ZrRe2, a Re-based hexagonal Laves compounds. ZrRe2 crystallizes in a C14-type structure (space group P63/mmc), with cell parameters a=b=5.2682(5) and c=8.63045 . Resistivity and magnetic susceptibility data both suggest that ZrRe2 exhibits a sharp superconducting transition above 6.1 K. The measured lower and upper criti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10268v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10268v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10268v1-abstract-full" style="display: none;"> We present a comprehensive investigation of the superconducting properties of ZrRe2, a Re-based hexagonal Laves compounds. ZrRe2 crystallizes in a C14-type structure (space group P63/mmc), with cell parameters a=b=5.2682(5) and c=8.63045 . Resistivity and magnetic susceptibility data both suggest that ZrRe2 exhibits a sharp superconducting transition above 6.1 K. The measured lower and upper critical fields are 6.27 mT and 12.77 T, respectively, with a large upper critical field that approached the Pauli limit.Measurements of the heat capacity confirm the presence of bulk superconductivity, with a normalized specific heat change of 1.24 and an electron-phonon strength of 0.69 . DFT calculations revealed that the band structure of ZrRe2 is intricate and without van-Hove singularity. The observed large specific heat jump, combined with the electron-phonon strength , suggests that ZrRe2 is a weakly coupled type II superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10268v1-abstract-full').style.display = 'none'; document.getElementById('2407.10268v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages,7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00647">arXiv:2407.00647</a> <span> [<a href="https://arxiv.org/pdf/2407.00647">pdf</a>, <a href="https://arxiv.org/format/2407.00647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Critical fluctuation and noise spectra in two-dimensional Fe$_{3}$GeTe$_{2}$ magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuxin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Z">Zhe Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+H">Haoyu Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhousheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+P">Pengfei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Ya Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+H">Hualing Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+F">Fazhan Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00647v1-abstract-short" style="display: inline;"> Critical fluctuations play a fundamental role in determining the spin orders for low-dimensional quantum materials, especially for recently discovered two-dimensional (2D) magnets. Here we employ the quantum decoherence imaging technique utilizing nitrogen-vacancy centers in diamond to explore the critical magnetic fluctuations and the associated temporal spin noise in van der Waals magnet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00647v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00647v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00647v1-abstract-full" style="display: none;"> Critical fluctuations play a fundamental role in determining the spin orders for low-dimensional quantum materials, especially for recently discovered two-dimensional (2D) magnets. Here we employ the quantum decoherence imaging technique utilizing nitrogen-vacancy centers in diamond to explore the critical magnetic fluctuations and the associated temporal spin noise in van der Waals magnet $\rm{Fe_{3}GeTe_{2}}$. We show that the critical fluctuation contributes to a random magnetic field characterized by the noise spectra, which can be changed dramatically near the critical temperature $T_c$. A theoretical model to describe this phenomenon is developed, showing that the spectral density is characterized by a $1/f$ noise near the $T_c$, while away from this point it behaves like a white noise. The crossover at a certain temperature between these two situations is determined by changing of the distance between the sample and the diamond. This work provides a new way to study critical fluctuation and to extract some of the critical exponents, which may greatly deepen our understanding of criticality in a wide range of physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00647v1-abstract-full').style.display = 'none'; document.getElementById('2407.00647v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17561">arXiv:2406.17561</a> <span> [<a href="https://arxiv.org/pdf/2406.17561">pdf</a>, <a href="https://arxiv.org/format/2406.17561">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Improving density matrix electronic structure method by deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+N">Nianlong Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zezhou Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+B">Boheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+M">Minghui Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+H">Hong Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17561v1-abstract-short" style="display: inline;"> The combination of deep learning and ab initio materials calculations is emerging as a trending frontier of materials science research, with deep-learning density functional theory (DFT) electronic structure being particularly promising. In this work, we introduce a neural-network method for modeling the DFT density matrix, a fundamental yet previously unexplored quantity in deep-learning electron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17561v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17561v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17561v1-abstract-full" style="display: none;"> The combination of deep learning and ab initio materials calculations is emerging as a trending frontier of materials science research, with deep-learning density functional theory (DFT) electronic structure being particularly promising. In this work, we introduce a neural-network method for modeling the DFT density matrix, a fundamental yet previously unexplored quantity in deep-learning electronic structure. Utilizing an advanced neural network framework that leverages the nearsightedness and equivariance properties of the density matrix, the method demonstrates high accuracy and excellent generalizability in multiple example studies, as well as capability to precisely predict charge density and reproduce other electronic structure properties. Given the pivotal role of the density matrix in DFT as well as other computational methods, the current research introduces a novel approach to the deep-learning study of electronic structure properties, opening up new opportunities for deep-learning enhanced computational materials study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17561v1-abstract-full').style.display = 'none'; document.getElementById('2406.17561v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16520">arXiv:2406.16520</a> <span> [<a href="https://arxiv.org/pdf/2406.16520">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Gigantic-oxidative atomic-layer-by-layer epitaxy for artificially designed complex oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+G">Guangdi Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+H">Haoliang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+F">Fengzhe Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Heng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Q">Qishuo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Nie%2C+Z">Zihao Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+W">Wei Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+C">Cui Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yueying Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+J">Jiayi Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+C">Changming Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yujie Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+J">Junhao Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guang-Ming Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhuoyu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16520v2-abstract-short" style="display: inline;"> In designing material functionalities for transition metal oxides, lattice structure and d-orbital occupancy are key determinants. However, the modulation of these two factors is inherently limited by the need to balance thermodynamic stability, growth kinetics, and stoichiometry precision, particularly for metastable phases. We introduce a methodology, namely the gigantic-oxidative atomic-layer-b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16520v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16520v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16520v2-abstract-full" style="display: none;"> In designing material functionalities for transition metal oxides, lattice structure and d-orbital occupancy are key determinants. However, the modulation of these two factors is inherently limited by the need to balance thermodynamic stability, growth kinetics, and stoichiometry precision, particularly for metastable phases. We introduce a methodology, namely the gigantic-oxidative atomic-layer-by-layer epitaxy (GOALL-Epitaxy), enhancing oxidation power 3-4 orders of magnitude beyond oxide molecular beam epitaxy (OMBE) and pulsed laser deposition (PLD), while ensuring atomic-layer-by-layer growth of designed complex structures. Thermodynamic stability is markedly augmented with stronger oxidation at elevated temperatures, whereas growth kinetics is sustained by laser ablation at lower temperatures. We demonstrate the accurate growth of complex nickelates and cuprates, especially an artificially designed structure with alternating single and double NiO2 layers possessing distinct nominal d-orbital occupancy, as a parent of high-temperature superconductor. The GOALL-Epitaxy enables material discovery within the vastly broadened growth parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16520v2-abstract-full').style.display = 'none'; document.getElementById('2406.16520v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11165">arXiv:2406.11165</a> <span> [<a href="https://arxiv.org/pdf/2406.11165">pdf</a>, <a href="https://arxiv.org/format/2406.11165">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable Fano and Dicke resonant tunneling of double quantum dots sandwiched between topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hong%2C+Y">Yuan Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Z">Zhen-Guo Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhou-Wei-Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+F">Feng Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhigang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Ping Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11165v1-abstract-short" style="display: inline;"> We study the resonant tunneling in double quantum dots (DQD) sandwiched between surfaces of topological insulator (TI) Bi$_2$Te$_3$, which possess strong spin-orbit coupling (SOC) and $^{d}C_{3v}$ double group symmetry. Distinct from the spin-conserved case with two-dimensional electron gas (2DEG) electrodes, the conductance displays an asymmetrical double-peak Fano-type lineshape rather than Dick… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11165v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11165v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11165v1-abstract-full" style="display: none;"> We study the resonant tunneling in double quantum dots (DQD) sandwiched between surfaces of topological insulator (TI) Bi$_2$Te$_3$, which possess strong spin-orbit coupling (SOC) and $^{d}C_{3v}$ double group symmetry. Distinct from the spin-conserved case with two-dimensional electron gas (2DEG) electrodes, the conductance displays an asymmetrical double-peak Fano-type lineshape rather than Dicke-type lineshape in the zero-field cases. While a Landau-Zener-like lineshape trajectory, which is identified as a signal of competition effect, could be developed by increasing the strength of interdot hopping. Furthermore, when applying an in-plane Zeeman field, we find that the conductance lineshape crossover between Fano and Dicke type could be driven by tilting the field orientation. Moreover, the rotational symmetry of the system could also be revealed from the lineshape trajectory. Our findings will contribute to a better understanding of the resonant tunneling in the presence of electrode SOC and may be confirmed experimentally in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11165v1-abstract-full').style.display = 'none'; document.getElementById('2406.11165v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10536">arXiv:2406.10536</a> <span> [<a href="https://arxiv.org/pdf/2406.10536">pdf</a>, <a href="https://arxiv.org/format/2406.10536">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2024.06.011">10.1016/j.scib.2024.06.011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal materials model of deep-learning density functional theory Hamiltonian </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+N">Nianlong Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+T">Ting Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+X">Xinghao Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zezhou Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shanghua Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Bian%2C+C">Ce Bian</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+C">Chen Si</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10536v1-abstract-short" style="display: inline;"> Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence, but how to achieve this fantastic and challenging objective remains elusive. Here, we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian (DeepH), enabling compu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10536v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10536v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10536v1-abstract-full" style="display: none;"> Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence, but how to achieve this fantastic and challenging objective remains elusive. Here, we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian (DeepH), enabling computational modeling of the complicated structure-property relationship of materials in general. By constructing a large materials database and substantially improving the DeepH method, we obtain a universal materials model of DeepH capable of handling diverse elemental compositions and material structures, achieving remarkable accuracy in predicting material properties. We further showcase a promising application of fine-tuning universal materials models for enhancing specific materials models. This work not only demonstrates the concept of DeepH's universal materials model but also lays the groundwork for developing large materials models, opening up significant opportunities for advancing artificial intelligence-driven materials discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10536v1-abstract-full').style.display = 'none'; document.getElementById('2406.10536v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05792">arXiv:2406.05792</a> <span> [<a href="https://arxiv.org/pdf/2406.05792">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0214167">10.1063/5.0214167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Above room-temperature two-dimensional ferromagnetic half-metals in Mn-based Janus magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+X">Xiang-Fan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Kang-Jie Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zequan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+S">Shi-Bo Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">Bing Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zu-Xin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y">Yusheng Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05792v1-abstract-short" style="display: inline;"> Two-dimensional (2D) ferromagnets and their heterostructures offer fertile grounds for designing fascinating functionalities in ultra-thin spintronic devices. Here, by first-principles calculations, we report the discovery of energetically and thermodynamically stable 2D ferromagnets with very strong inplane magnetic anisotropy in MnXY (X = S, and Se; Y = Cl, Br and I) monolayers. Remarkably, we f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05792v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05792v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05792v1-abstract-full" style="display: none;"> Two-dimensional (2D) ferromagnets and their heterostructures offer fertile grounds for designing fascinating functionalities in ultra-thin spintronic devices. Here, by first-principles calculations, we report the discovery of energetically and thermodynamically stable 2D ferromagnets with very strong inplane magnetic anisotropy in MnXY (X = S, and Se; Y = Cl, Br and I) monolayers. Remarkably, we find that the Curie temperatures of the ferromagnetic MnSBr, MnSI, MnSeCl, and MnSeI monolayers are as high as 271, 273, 231 and 418 K, respectively. In addition, we demonstrate that these ferromagnetic monolayers are intrinsic half-metals with large spin band gaps ranging from 2.5 eV to 3.2 eV. When spin-orbit coupling is considered in these ferromagnetic monolayers, the nature of their half-metal is almost unaffected. Finally, the strong inplane magnetic anisotropy of MnSY (Y = Br, I) and MnSeY (Y = Cl, I) monolayers originate mainly from halogen and chalcogen atoms, respectively. Our work shows 2D Janus Mn-based ferromagnetic half-metals may have appealing functionalities in high-performance spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05792v1-abstract-full').style.display = 'none'; document.getElementById('2406.05792v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, accepted by Applied Physics Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 124, 252402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05701">arXiv:2406.05701</a> <span> [<a href="https://arxiv.org/pdf/2406.05701">pdf</a>, <a href="https://arxiv.org/format/2406.05701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic second-order topological insulators in two-dimensional polymorphic graphyne with sublattice approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+J">Z. J. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S+G">S. G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z+J">Z. J. Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+H">H. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+H+M">H. M. Weng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05701v2-abstract-short" style="display: inline;"> In two dimensions, intrinsic second-order topological insulators (SOTIs) are characterized by topological corner states that emerge at the intersections of distinct edges with reversed mass signs, enforced by spatial symmetries. Here, we present a comprehensive investigation within the class BDI to clarify the symmetry conditions ensuring the presence of intrinsic SOTIs in two dimensions. We revea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05701v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05701v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05701v2-abstract-full" style="display: none;"> In two dimensions, intrinsic second-order topological insulators (SOTIs) are characterized by topological corner states that emerge at the intersections of distinct edges with reversed mass signs, enforced by spatial symmetries. Here, we present a comprehensive investigation within the class BDI to clarify the symmetry conditions ensuring the presence of intrinsic SOTIs in two dimensions. We reveal that the (anti-)commutation relationship between spatial symmetries and chiral symmetry is a reliable indicator of intrinsic corner states. Through first-principles calculations, we identify several ideal candidates within carbon-based polymorphic graphyne structures for realizing intrinsic SOTIs under sublattice approximation. Furthermore, we show that the corner states in these materials persist even in the absence of sublattice approximation. Our findings not only deepen the understanding of higher-order topological phases but also open new pathways for realizing topological corner states that are readily observable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05701v2-abstract-full').style.display = 'none'; document.getElementById('2406.05701v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04252">arXiv:2406.04252</a> <span> [<a href="https://arxiv.org/pdf/2406.04252">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Sub-nanometer depth resolution and single dopant visualization achieved by tilt-coupled multislice electron ptychography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dong%2C+Z">Zehao Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chiu%2C+C">Chun-Chien Chiu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+S">Sicheng Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jianbing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu-Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Suya Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhen Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04252v1-abstract-short" style="display: inline;"> Real-space imaging of three-dimensional atomic structures is a critical yet challenging task in materials science. Although scanning transmission electron microscopy has achieved sub-angstrom lateral resolution through techniques like electron ptychography1,2, depth resolution remains limited to only 2 to 3 nanometers with a single projection setup3,4. Attaining better depth resolution typically n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04252v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04252v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04252v1-abstract-full" style="display: none;"> Real-space imaging of three-dimensional atomic structures is a critical yet challenging task in materials science. Although scanning transmission electron microscopy has achieved sub-angstrom lateral resolution through techniques like electron ptychography1,2, depth resolution remains limited to only 2 to 3 nanometers with a single projection setup3,4. Attaining better depth resolution typically necessitates large sample tilt angles and many projections, as seen in atomic electron tomography5,6. Here, we develop a new algorithm based on multislice electron ptychography which couples only a few projections at small tilt angles, but is sufficient to improve the depth resolution by more than threefold to the sub-nanometer scale, and potentially to the atomic level. This technique maintains high resolving power for both light and heavy atoms, and significantly improves the visibility of single dopants. We are thus able to experimentally detect dilute substitutional praseodymium dopants in a brownmillerite oxide, Ca2Co2O5, in three dimensions and observe the accompanying lattice distortion. This technique requires only a moderate level of data acquisition or processing, and can be seamlessly integrated into electron microscopes equipped with conventional components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04252v1-abstract-full').style.display = 'none'; document.getElementById('2406.04252v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 5 figures, 10 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03811">arXiv:2406.03811</a> <span> [<a href="https://arxiv.org/pdf/2406.03811">pdf</a>, <a href="https://arxiv.org/format/2406.03811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Effects of Kitaev Interaction on Magnetic Orders and Anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Lianchuang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">Binhua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zefeng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+C">Changsong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03811v1-abstract-short" style="display: inline;"> We systematically investigate the effects of Kitaev interaction on magnetic orders and anisotropy in both triangular and honeycomb lattices. Our study highlights the critical role of the Kitaev interaction in modulating phase boundaries and predicting new phases, e.g., zigzag phase in triangular lattice and AABB phase in honeycomb lattice, which are absent with pure Heisenberg interactions. Moreov… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03811v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03811v1-abstract-full" style="display: none;"> We systematically investigate the effects of Kitaev interaction on magnetic orders and anisotropy in both triangular and honeycomb lattices. Our study highlights the critical role of the Kitaev interaction in modulating phase boundaries and predicting new phases, e.g., zigzag phase in triangular lattice and AABB phase in honeycomb lattice, which are absent with pure Heisenberg interactions. Moreover, we reveal the special state-dependent anisotropy of Kitaev interaction, and develop a general method that can determine the presence of Kitaev interaction in different magnets. It is found that the Kitaev interaction does not induce anisotropy in some magnetic orders such as ferromagnetic order, while can cause different anisotropy in other magnetic orders. Furthermore, we emphasize that the off-diagonal $螕$ interaction also contributes to anisotropy, competing with the Kitaev interaction to reorient spin arrangements. Our work establishes a framework for comprehensive understanding the impact of Kitaev interaction on ordered magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03811v1-abstract-full').style.display = 'none'; document.getElementById('2406.03811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03338">arXiv:2406.03338</a> <span> [<a href="https://arxiv.org/pdf/2406.03338">pdf</a>, <a href="https://arxiv.org/format/2406.03338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strength of Kitaev Interaction in Na$_3$Co$_2$SbO$_6$ and Na$_3$Ni$_2$BiO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zefeng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">Binhua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Weiqin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Lianchuang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+B">Boyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+J">Junsheng Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+C">Changsong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03338v2-abstract-short" style="display: inline;"> Kitaev spin liquid is proposed to be promisingly realized in low spin-orbit coupling $3d$ systems, represented by Na$_3$Co$_2$SbO$_6$ and Na$_3$Ni$_2$BiO$_6$. However, the existence of Kitaev interaction is still debatable among experiments, and obtaining the strength of Kitaev interaction from first-principles calculations is also challenging. Here, we report the state-dependent anisotropy of Kit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03338v2-abstract-full').style.display = 'inline'; document.getElementById('2406.03338v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03338v2-abstract-full" style="display: none;"> Kitaev spin liquid is proposed to be promisingly realized in low spin-orbit coupling $3d$ systems, represented by Na$_3$Co$_2$SbO$_6$ and Na$_3$Ni$_2$BiO$_6$. However, the existence of Kitaev interaction is still debatable among experiments, and obtaining the strength of Kitaev interaction from first-principles calculations is also challenging. Here, we report the state-dependent anisotropy of Kitaev interaction, based on which a convenient method is developed to rapidly determine the strength of Kitaev interaction. Applying such method and density functional theory calculations, it is found that Na$_3$Co$_2$SbO$_6$ with $3d^7$ configuration exhibits considerable ferromagnetic Kitaev interaction. Moreover, by further applying the symmetry-adapted cluster expansion method, a realistic spin model is determined for Na$_3$Ni$_2$BiO$_6$ with $3d^8$ configuration. Such model indicates negligible small Kitaev interaction, but it predicts many properties, such as ground states and field effects, which are well consistent with measurements. Furthermore, we demonstrate that the heavy elements, Sb or Bi, located at the hollow sites of honeycomb lattice, do not contribute to emergence of Kitaev interaction through proximity, contradictory to common belief. The presently developed anisotropy method will be beneficial not only for computations but also for measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03338v2-abstract-full').style.display = 'none'; document.getElementById('2406.03338v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17385">arXiv:2405.17385</a> <span> [<a href="https://arxiv.org/pdf/2405.17385">pdf</a>, <a href="https://arxiv.org/format/2405.17385">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermalization and Criticality on an Analog-Digital Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Motruk%2C+J">Johannes Motruk</a>, <a href="/search/cond-mat?searchtype=author&query=Szasz%2C+A">Aaron Szasz</a>, <a href="/search/cond-mat?searchtype=author&query=Gross%2C+J+A">Jonathan A. Gross</a>, <a href="/search/cond-mat?searchtype=author&query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yaxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Forati%2C+E">Ebrahim Forati</a>, <a href="/search/cond-mat?searchtype=author&query=Rossi%2C+D">Dario Rossi</a>, <a href="/search/cond-mat?searchtype=author&query=Kobrin%2C+B">Bryce Kobrin</a>, <a href="/search/cond-mat?searchtype=author&query=Di+Paolo%2C+A">Agustin Di Paolo</a>, <a href="/search/cond-mat?searchtype=author&query=Klots%2C+A+R">Andrey R. Klots</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Kurilovich%2C+V+D">Vladislav D. Kurilovich</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Ioffe%2C+L+B">Lev B. Ioffe</a>, <a href="/search/cond-mat?searchtype=author&query=Elben%2C+A">Andreas Elben</a>, <a href="/search/cond-mat?searchtype=author&query=Rath%2C+A">Aniket Rath</a>, <a href="/search/cond-mat?searchtype=author&query=Vitale%2C+V">Vittorio Vitale</a>, <a href="/search/cond-mat?searchtype=author&query=Vermersch%2C+B">Benoit Vermersch</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17385v2-abstract-short" style="display: inline;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17385v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17385v2-abstract-full" style="display: none;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'none'; document.getElementById('2405.17385v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16079">arXiv:2405.16079</a> <span> [<a href="https://arxiv.org/pdf/2405.16079">pdf</a>, <a href="https://arxiv.org/format/2405.16079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic localized excitons in MoSe$_2$/CrSBr heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+X">Xinyue Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zhigang Song</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yuchen Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+P">Pingfan Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shiqi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zuxin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+Y">Yu Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16079v1-abstract-short" style="display: inline;"> We present a comprehensive investigation of optical properties in MoSe$_2$/CrSBr heterostructures, unveiling the presence of localized excitons represented by a new emission feature, X$^*$. We demonstrate through temperature- and power-dependent photoluminescence spectroscopy that X$^*$ originates from excitons confined by intrinsic defects within the CrSBr layer. The valley polarization of X$^*$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16079v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16079v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16079v1-abstract-full" style="display: none;"> We present a comprehensive investigation of optical properties in MoSe$_2$/CrSBr heterostructures, unveiling the presence of localized excitons represented by a new emission feature, X$^*$. We demonstrate through temperature- and power-dependent photoluminescence spectroscopy that X$^*$ originates from excitons confined by intrinsic defects within the CrSBr layer. The valley polarization of X$^*$ and trion peaks displays opposite polarity under a magnetic field, which closely correlates with the magnetic order of CrSBr. This is attributed to spin-dependent charge transfer mechanisms across the heterointerface, supported by density functional theory calculations revealing a type-II band alignment and spin-polarized band structures. Furthermore, the strong in-plane anisotropy of CrSBr induces unique polarization-dependent responses in MoSe$_2$ emissions. Our study highlights the crucial role of defects in shaping excitonic properties. It offers valuable insights into spectral-resolved proximity effects in van der Waals heterostructures between semiconductor and magnet, contributing to advancing spintronic and valleytronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16079v1-abstract-full').style.display = 'none'; document.getElementById('2405.16079v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15836">arXiv:2405.15836</a> <span> [<a href="https://arxiv.org/pdf/2405.15836">pdf</a>, <a href="https://arxiv.org/format/2405.15836">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Graph Random Walk for Time-of-Flight Charge Mobilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhongquan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Hoorn%2C+P">Pim van der Hoorn</a>, <a href="/search/cond-mat?searchtype=author&query=Baumeier%2C+B">Bj枚rn Baumeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15836v1-abstract-short" style="display: inline;"> We present a graph random walk (GRW) method for the study of charge transport properties of complex molecular materials in the time-of-flight regime. The molecules forming the material are represented by the vertices of a directed weighted graph, and the charge carriers are random walkers. The edge weights are rates for elementary jumping processes for a charge carrier to move along the edge and a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15836v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15836v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15836v1-abstract-full" style="display: none;"> We present a graph random walk (GRW) method for the study of charge transport properties of complex molecular materials in the time-of-flight regime. The molecules forming the material are represented by the vertices of a directed weighted graph, and the charge carriers are random walkers. The edge weights are rates for elementary jumping processes for a charge carrier to move along the edge and are determined from a combination of the energies of the involved vertices and an interaction strength. Exclusions are built into the random walk to account for the Pauli exclusion principle. In time-of-flight experiments, charge carriers are injected into the material and the time until they reach a collecting electrode is recorded. In this setting, our GRW approach allows direct evaluation of the expected hitting time of the collecting nodes in the graph in terms of a typically sparse, linear system, thereby avoiding numerically cumbersome and potentially fluctuations-prone methods based on explicit time evolution from solutions of a high-dimensional system of coupled ordinary differential equations (the Master Equation) or from kinetic Monte Carlo (KMC). We validate the GRW approach by conducting numerical studies of charge dynamics of single and multiple carriers in diffusive and drift-diffusive regimes using a surrogate lattice model. The surrogate model allows varying types and strengths of energetic disorder from the reference baseline. Comparison with results from the Master Equation confirms the theoretical equivalence of both approaches also in numerical implementations. We further show that KMC results show substantial deviations due to inadequate sampling. All in all, we find that the GRW method provides a powerful alternative to the more commonly used methods without sampling issues and with the benefit of making use of sparse matrix methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15836v1-abstract-full').style.display = 'none'; document.getElementById('2405.15836v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05C81; 05C90; 60J22; 60J74 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15297">arXiv:2405.15297</a> <span> [<a href="https://arxiv.org/pdf/2405.15297">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.184112">10.1103/PhysRevB.109.184112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-field magnetoelectric coupling and successive magnetic transitions in Mn-doped polar antiferromagnet Ni3TeO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J+H">J. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+L">L. Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+C">C. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+Y+T">Y. T. Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J+F">J. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+C+L">C. L. Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+P+Z">P. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+W+J">W. J. Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+G+Z">G. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+L">L. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Y+S">Y. S. Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+S+H">S. H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M+F">M. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X+H">X. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z+B">Z. B. Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J+-">J. -M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15297v2-abstract-short" style="display: inline;"> Among the 3d transition metal ions doped polar Ni3TeO6, Mn-doped Ni3TeO6 has stimulated great interest due to its high magnetic ordering temperature and complex magnetic phases, but the mechanism of magnetoelectric (ME) coupling is far from understood. Herein we report our systematic investigation of the chemical control of magnetism, metamagnetic transition, and ME properties of Ni3-xMnxTeO6 sing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15297v2-abstract-full').style.display = 'inline'; document.getElementById('2405.15297v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15297v2-abstract-full" style="display: none;"> Among the 3d transition metal ions doped polar Ni3TeO6, Mn-doped Ni3TeO6 has stimulated great interest due to its high magnetic ordering temperature and complex magnetic phases, but the mechanism of magnetoelectric (ME) coupling is far from understood. Herein we report our systematic investigation of the chemical control of magnetism, metamagnetic transition, and ME properties of Ni3-xMnxTeO6 single crystals in high magnetic field (H) up to 52 T. We present a previously unreported weak ferromagnetic behavior appeared in the ab plane below 9.5 K in addition to the incommensurate helical and commensurate collinear antiferromagnetic states. In the low-field region, a spin-flop type metamagnetic transition without any hysteresis occurs at Hc1 for H // c, while another metamagnetic transition accompanied with a change in electric polarization is observed at Hc2 in the high-field region both for H // c and H // ab above 30 K, which can be attributed to the sudden rotation of magnetic moments at Ni2 sites. The ME measurements reveal that a first-order ME effect is observed in the low-T and low-H regions, while a second-order ME coupling term appears above 30 K in the magnetic field range of Hc1 < H < Hc2 for H // c and H < Hc2 for H // ab, both becoming significant with increasing temperature. Eventually, they are dominated by the second-order ME effect near the antiferromagnetic transition temperature. The present work demonstrates that Ni3-xMnxTeO6 is an exotic magnetoelectric material compared with Ni3TeO6 and its derivatives, thereby providing insights to better understand the magnetism and ME coupling in Ni3TeO6 and its derivatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15297v2-abstract-full').style.display = 'none'; document.getElementById('2405.15297v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages with 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 184112 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09139">arXiv:2405.09139</a> <span> [<a href="https://arxiv.org/pdf/2405.09139">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0202794">10.1063/5.0202794 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable magnetic anisotropy, Curie temperature and band alignment of two-dimensional ferromagnet VSiSnN4 via non-volatile ferroelectrical control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Kang-Jie Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ze-Quan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zu-Xin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y">Yusheng Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09139v1-abstract-short" style="display: inline;"> The emergence of multiferroic materials, which possess both ferromagnetic (FM) and ferroelectric (FE) properties, drive advancements in magnetoelectric applications and the next generation of spintronics. Based on first-principles calculations, we investigate an engineered two-dimensional multiferroic van der Waals heterostructures consisting of FM VSiSnN4 monolayer (ML) and fully hydrogenated FE… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09139v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09139v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09139v1-abstract-full" style="display: none;"> The emergence of multiferroic materials, which possess both ferromagnetic (FM) and ferroelectric (FE) properties, drive advancements in magnetoelectric applications and the next generation of spintronics. Based on first-principles calculations, we investigate an engineered two-dimensional multiferroic van der Waals heterostructures consisting of FM VSiSnN4 monolayer (ML) and fully hydrogenated FE AlN bilayer. We find that the magnetic anisotropy of VSiSnN4 ML is tunable between out-of-plane and in-plane and a phase transition between semiconductor and metal is induced in VSiSnN4/AlN bilayer when the FE polarization direction of AlN bilayer is reversed. Surprisingly, when the FE polarization of AlN bilayer is upward, the Curie temperature of VSiSnN4/AlN bilayer can be significantly increased from 204K to 284K. Such non-volatile and tunable magnetic anisotropy, Curie temperature and band alignment in VSiSnN4/AlN multiferroic heterostructure are highly promising for future low-current operation of data storage and logic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09139v1-abstract-full').style.display = 'none'; document.getElementById('2405.09139v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 Pages, 4 figures, 1 table, accepted by APL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 124, 212405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06362">arXiv:2405.06362</a> <span> [<a href="https://arxiv.org/pdf/2405.06362">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.actamat.2024.120110">10.1016/j.actamat.2024.120110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancing atomic ordering, magnetic and transport properties of Mn2VGa Heusler alloy thin films toward negatively spin-polarized charge injection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Suto%2C+H">H. Suto</a>, <a href="/search/cond-mat?searchtype=author&query=Barwal%2C+V">V. Barwal</a>, <a href="/search/cond-mat?searchtype=author&query=Masuda%2C+K">K. Masuda</a>, <a href="/search/cond-mat?searchtype=author&query=Sasaki%2C+T+T">T. T. Sasaki</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+X">Z. X. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Tajiri%2C+H">H. Tajiri</a>, <a href="/search/cond-mat?searchtype=author&query=Kumara%2C+L+S+R">L. S. R. Kumara</a>, <a href="/search/cond-mat?searchtype=author&query=Koganezawa%2C+T">T. Koganezawa</a>, <a href="/search/cond-mat?searchtype=author&query=Amemiya%2C+K">K. Amemiya</a>, <a href="/search/cond-mat?searchtype=author&query=Kokado%2C+S">S. Kokado</a>, <a href="/search/cond-mat?searchtype=author&query=Hono%2C+K">K. Hono</a>, <a href="/search/cond-mat?searchtype=author&query=Sakuraba%2C+Y">Y. Sakuraba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06362v1-abstract-short" style="display: inline;"> Magnetic materials with negative spin polarization have attracted attention for their potential to increase the design freedom of spintronic devices. This study investigated the effects of off-stoichiometry on the atomic ordering, microstructure, and magneto-transport properties in Mn2+xV1-xGa (x = -0.2, 0, +0.2, +0.4) Heusler alloy films, which are predicted to have large negative spin polarizati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06362v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06362v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06362v1-abstract-full" style="display: none;"> Magnetic materials with negative spin polarization have attracted attention for their potential to increase the design freedom of spintronic devices. This study investigated the effects of off-stoichiometry on the atomic ordering, microstructure, and magneto-transport properties in Mn2+xV1-xGa (x = -0.2, 0, +0.2, +0.4) Heusler alloy films, which are predicted to have large negative spin polarization derived from a pseudo band gap in the majority spin channel. The Mn2+xV1-xGa films epitaxially grown on MgO(001) substrates exhibits variations of B2 and L21 order with the Mn concentration. A high-quality L21 ordered film was achieved in the Mn-rich composition (x = +0.2) with B2 and L21 order parameters of 0.97 and 0.86, respectively, and a saturation magnetization of 1.4 渭B/f.u, which agrees the Slater-Pauling rule. Scanning transmission electron microscopy observations showed that B2 and L21 phases coexist in Mn-poor and stoichiometric films, while the L21 phase is dominant in the Mn-rich film with small amounts of Mn-V and Mn-Ga disorders, as revealed by laboratory and anomalous X-ray diffraction. Combined first-principles calculations and anisotropic magnetoresistance analysis confirm that the addition of excess Mn preserves the high spin polarization by suppressing the formation of detrimental antisites of V atoms occupying Mn sites. Therefore, the Mn-rich composition is promising for negatively spin-polarized charge injection in Mn2VGa-based spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06362v1-abstract-full').style.display = 'none'; document.getElementById('2405.06362v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06250">arXiv:2405.06250</a> <span> [<a href="https://arxiv.org/pdf/2405.06250">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Robust field-free switching using large unconventional spin-orbit torque in an all-van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yiyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Ruizi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zehan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xuezhao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Pang%2C+J">Jie Pang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lan%2C+G">Guibin Lan</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+Q">Qiming Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06250v2-abstract-short" style="display: inline;"> The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06250v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06250v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06250v2-abstract-full" style="display: none;"> The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in all-vdW heterostructures, large unconventional SOT remains elusive and the robustness of the field-free switching against external magnetic field hasn't been examined, which hinder further applications. Here we demonstrate the field-free switching in an all-vdW heterostructure combining a type-II Weyl semimetal TaIrTe4 and above-room-temperature ferromagnet Fe3GaTe2. The fully field-free switching can be achieved at 2.56 x 10^10 A per m2 at 300K and a large SOT effective field efficiency of the out-of-plane polarized spin current generated by TaIrTe4 is determined to be 0.37. Moreover, we find that the switching polarity cannot be changed until the external in-plane magnetic field reaches 252mT, indicating a robust switching against the magnetic field. The numerical simulation suggests the large unconventional SOT reduces the switching current density and enhances the robustness of the switching. Our work shows that all-vdW heterostructures are promising candidates for future highly efficient and stable SOT-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06250v2-abstract-full').style.display = 'none'; document.getElementById('2405.06250v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, accepted by Advanced Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04967">arXiv:2405.04967</a> <span> [<a href="https://arxiv.org/pdf/2405.04967">pdf</a>, <a href="https://arxiv.org/format/2405.04967">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Han Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chenxi Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yichi Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xixian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yu Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jielan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Guanzhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zekun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shuizhou Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zeni%2C+C">Claudio Zeni</a>, <a href="/search/cond-mat?searchtype=author&query=Horton%2C+M">Matthew Horton</a>, <a href="/search/cond-mat?searchtype=author&query=Pinsler%2C+R">Robert Pinsler</a>, <a href="/search/cond-mat?searchtype=author&query=Fowler%2C+A">Andrew Fowler</a>, <a href="/search/cond-mat?searchtype=author&query=Z%C3%BCgner%2C+D">Daniel Z眉gner</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+T">Tian Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Smith%2C+J">Jake Smith</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+L">Lixin Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qian Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kong%2C+L">Lingyu Kong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+H">Hongxia Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Z">Ziheng Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04967v2-abstract-short" style="display: inline;"> Accurate and fast prediction of materials properties is central to the digital transformation of materials design. However, the vast design space and diverse operating conditions pose significant challenges for accurately modeling arbitrary material candidates and forecasting their properties. We present MatterSim, a deep learning model actively learned from large-scale first-principles computatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04967v2-abstract-full').style.display = 'inline'; document.getElementById('2405.04967v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04967v2-abstract-full" style="display: none;"> Accurate and fast prediction of materials properties is central to the digital transformation of materials design. However, the vast design space and diverse operating conditions pose significant challenges for accurately modeling arbitrary material candidates and forecasting their properties. We present MatterSim, a deep learning model actively learned from large-scale first-principles computations, for efficient atomistic simulations at first-principles level and accurate prediction of broad material properties across the periodic table, spanning temperatures from 0 to 5000 K and pressures up to 1000 GPa. Out-of-the-box, the model serves as a machine learning force field, and shows remarkable capabilities not only in predicting ground-state material structures and energetics, but also in simulating their behavior under realistic temperatures and pressures, signifying an up to ten-fold enhancement in precision compared to the prior best-in-class. This enables MatterSim to compute materials' lattice dynamics, mechanical and thermodynamic properties, and beyond, to an accuracy comparable with first-principles methods. Specifically, MatterSim predicts Gibbs free energies for a wide range of inorganic solids with near-first-principles accuracy and achieves a 15 meV/atom resolution for temperatures up to 1000K compared with experiments. This opens an opportunity to predict experimental phase diagrams of materials at minimal computational cost. Moreover, MatterSim also serves as a platform for continuous learning and customization by integrating domain-specific data. The model can be fine-tuned for atomistic simulations at a desired level of theory or for direct structure-to-property predictions, achieving high data efficiency with a reduction in data requirements by up to 97%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04967v2-abstract-full').style.display = 'none'; document.getElementById('2405.04967v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04768">arXiv:2405.04768</a> <span> [<a href="https://arxiv.org/pdf/2405.04768">pdf</a>, <a href="https://arxiv.org/format/2405.04768">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Circularly polarized light irradiated ferromagnetic MnBi$_2$Te$_4$: the long-sought ideal Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+S">Shuai Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengpu Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhuo Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+X">Xian-Yong Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04768v1-abstract-short" style="display: inline;"> The interaction between light and non-trivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) MnBi$_2$Te$_4$ upon irradiation with circularly polarized light (CPL). We revealed that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04768v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04768v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04768v1-abstract-full" style="display: none;"> The interaction between light and non-trivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) MnBi$_2$Te$_4$ upon irradiation with circularly polarized light (CPL). We revealed that the MnBi$_2$Te$_4$ can be driven from an FM insulator to a Weyl semimetal with a minimum number of Weyl points, i.e., two Weyl points in systems without time-reversal symmetry. More importantly, in FM MnBi$_2$Te$_4$ with out-of-plane easy magnetization axis, we found that the band dispersion of the WP evolves from Type-II to Type-III and finally to Type-I when the light intensity increases. Moreover, we show that the profile of the characteristic Fermi arc of Weyl semimetal phase is sensitive to changes in light intensity, which enables efficient manipulation of the Fermi arc length of FM MnBi$_2$Te$_4$ in experiments. In addition, for FM MnBi$_2$Te$_4$ with in-plane easy magnetization axis, the system becomes a type I Weyl semimetal under CPL irradiation. With controllable band dispersion, length of Fermi arc, and minimum number of WPs, our results indicate that CPL-irradiated FM MnBi$_2$Te$_4$ is an ideal platform to study novel transport phenomena in Weyl semimetals with distinct band dispersion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04768v1-abstract-full').style.display = 'none'; document.getElementById('2405.04768v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03400">arXiv:2405.03400</a> <span> [<a href="https://arxiv.org/pdf/2405.03400">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Modulating trap properties by Cr3+-doping in Zn2SiO4: Mn2+ nano phosphor for optical information storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yi%2C+X">Xin Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yihuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Junjie Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhanglin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuzhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+X">Xuanyi Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+K">Kaiming Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03400v1-abstract-short" style="display: inline;"> Photo stimulated luminescent materials are one of the most attractive alternatives for next generation optical information storage technologies. However, there are still some challenges in regulating appropriate energy levels in luminescent materials for optical information storage. Herein, a green emission nanophosphor Zn2SiO4: Cr3+, Mn2+ with the trap depth of 1.05 eV, fulfilling the requirement… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03400v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03400v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03400v1-abstract-full" style="display: none;"> Photo stimulated luminescent materials are one of the most attractive alternatives for next generation optical information storage technologies. However, there are still some challenges in regulating appropriate energy levels in luminescent materials for optical information storage. Herein, a green emission nanophosphor Zn2SiO4: Cr3+, Mn2+ with the trap depth of 1.05 eV, fulfilling the requirements for optical information storage, was fabricated for the first time through the solution combustion method and subsequent heat treatment at 1000 degree centigrade for 2h. The crystal structure, micromorphology, photoluminescence (PL), photoluminescence excitation (PLE), and afterglow properties of Zn2SiO4: xCr3+, yMn2+ were studied systematically. By applying the strategy of trap depth engineering, high trap density with proper trap depth was observed when Cr3+ ions were introduced into Zn2SiO4: Mn2+. Thermoluminescence (TL) glow curve analysis through the initial rise (IR) method was conducted to gain some insight into the information of traps. As proof of application, information storage was experimentally achieved by choosing 275 nm illumination for information writing and 980 nm NIR excitation for information reading. The results indicate that Zn2SiO4: Cr3+, Mn2+ phosphor holds promise for potential applications in the field of optical information storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03400v1-abstract-full').style.display = 'none'; document.getElementById('2405.03400v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15237">arXiv:2404.15237</a> <span> [<a href="https://arxiv.org/pdf/2404.15237">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Insights into the defect-driven heterogeneous structural evolution of Ni-rich layered cathode in lithium-ion batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zhongyuan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Ziwei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">Maolin Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+M">Mihai Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zenan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+S">Sihao Deng</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+L">Lei Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Dunin-Borkowski%2C+R+E">Rafal E. Dunin-Borkowski</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T">Tingting Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y">Yinguo Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15237v1-abstract-short" style="display: inline;"> Recently, considerable efforts have been made on research and improvement for Ni-rich lithium-ion batteries to meet the demand from vehicles and grid-level large-scale energy storage. Development of next-generation high-performance lithium-ion batteries requires a comprehensive understanding on the underlying electrochemical mechanisms associated with its structural evolution. In this work, advanc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15237v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15237v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15237v1-abstract-full" style="display: none;"> Recently, considerable efforts have been made on research and improvement for Ni-rich lithium-ion batteries to meet the demand from vehicles and grid-level large-scale energy storage. Development of next-generation high-performance lithium-ion batteries requires a comprehensive understanding on the underlying electrochemical mechanisms associated with its structural evolution. In this work, advanced operando neutron diffraction and four-dimensional scanning transmission electron microscopy techniques are applied to clarify the structural evolution of electrodes in two distinct full cells with identical LiNi0.8Co0.1Mn0.1O2 cathode but different anode counterparts. It is found that both of cathodes in two cells exhibit non-intrinsic two-phase-like behavior at the early charge stage, indicating selective Li+ extraction from cathodes. But the heterogeneous evolution of cathode is less serious with graphite-silicon blended anode than that with graphite anode due to the different delithiation rate. Moreover, it is revealed that the formation of heterogeneous structure is led by the distribution of defects including Li/Ni disordering and microcracks, which should be inhibited by assembling appropriate anode to avoid potential threaten on cell performance. The present work unveils the origin of inhomogeneity in Ni-rich lithium-ion batteries and highlights the significance of kinetics control in electrodes for batteries with higher capacity and longer life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15237v1-abstract-full').style.display = 'none'; document.getElementById('2404.15237v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages and 5 figures for manuscript; 30 pages, 14 figures and 4 tables for supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07820">arXiv:2404.07820</a> <span> [<a href="https://arxiv.org/pdf/2404.07820">pdf</a>, <a href="https://arxiv.org/format/2404.07820">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topology-engineered orbital Hall effect in two-dimensional ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhiqi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R">Runhan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+Y">Yingxi Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+N">Ning Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Zeer%2C+M">Mahmoud Zeer</a>, <a href="/search/cond-mat?searchtype=author&query=Go%2C+D">Dongwook Go</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+Y">Ying Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+B">Baibiao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Mokrousov%2C+Y">Yuriy Mokrousov</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+C">Chengwang Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07820v1-abstract-short" style="display: inline;"> Recent advances in manipulation of orbital angular momentum (OAM) within the paradigm of orbitronics present a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a special place. Here, focusing on both the second-order topological and quantum anomalous Hall insulators in two-dimensional ferromagnets, we demonstrat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07820v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07820v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07820v1-abstract-full" style="display: none;"> Recent advances in manipulation of orbital angular momentum (OAM) within the paradigm of orbitronics present a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a special place. Here, focusing on both the second-order topological and quantum anomalous Hall insulators in two-dimensional ferromagnets, we demonstrate that topological phase transitions present an efficient and straightforward way to engineer the OHE, where the OAM distribution can be controlled by the nature of the band inversion. Using first-principles calculations, we identify Janus RuBrCl and three septuple layers of MnBi$_2$Te$_4$ as experimentally feasible examples of the proposed mechanism of OHE engineering by topology. With our work we open up new possibilities for innovative applications in topological spintronics and orbitronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07820v1-abstract-full').style.display = 'none'; document.getElementById('2404.07820v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>