CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 108 results for author: <span class="mathjax">Lin, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Lin%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lin, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lin%2C+W&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lin, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lin%2C+W&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lin%2C+W&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lin%2C+W&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lin%2C+W&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03448">arXiv:2502.03448</a> <span> [<a href="https://arxiv.org/pdf/2502.03448">pdf</a>, <a href="https://arxiv.org/format/2502.03448">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> High temperature surface state in Kondo insulator U$_3$Bi$_4$Ni$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Broyles%2C+C">Christopher Broyles</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+X">Xiaohan Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+W">Wenting Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+D">Dingsong Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Q">Qiaozhi Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Gould%2C+S+L">Shannon L. Gould</a>, <a href="/search/cond-mat?searchtype=author&query=Siddiquee%2C+H">Hasan Siddiquee</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+L">Leyan Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Ryan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wanyue Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yuchen Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Regmi%2C+P">Prakash Regmi</a>, <a href="/search/cond-mat?searchtype=author&query=Eo%2C+Y+S">Yun Suk Eo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jieyi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ran%2C+S">Sheng Ran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03448v1-abstract-short" style="display: inline;"> The resurgence of interest in Kondo insulators has been driven by two major mysteries: the presence of metallic surface states and the observation of quantum oscillations. To further explore these mysteries, it is crucial to investigate another similar system beyond the two existing ones, SmB$_6$ and YbB$_{12}$. Here, we address this by reporting on a Kondo insulator, U$_3$Bi$_4$Ni$_3$. Our transp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03448v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03448v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03448v1-abstract-full" style="display: none;"> The resurgence of interest in Kondo insulators has been driven by two major mysteries: the presence of metallic surface states and the observation of quantum oscillations. To further explore these mysteries, it is crucial to investigate another similar system beyond the two existing ones, SmB$_6$ and YbB$_{12}$. Here, we address this by reporting on a Kondo insulator, U$_3$Bi$_4$Ni$_3$. Our transport measurements reveal that a surface state emerges below 250 K and dominates transport properties below 150 K, which is well above the temperature scale of SmB$_6$ and YbB$_{12}$. At low temperatures, the surface conductivity is about one order of magnitude higher than the bulk. The robustness of the surface state indicates that it is inherently protected. The similarities and differences between U$_3$Bi$_4$Ni$_3$ and the other two Kondo insulators will provide valuable insights into the nature of metallic surface states in Kondo insulators and their interplay with strong electron correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03448v1-abstract-full').style.display = 'none'; document.getElementById('2502.03448v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Science Advances</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11242">arXiv:2501.11242</a> <span> [<a href="https://arxiv.org/pdf/2501.11242">pdf</a>, <a href="https://arxiv.org/format/2501.11242">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-throughput calculations of two-dimensional auxetic $M_4X_8$ with magnetism, electrocatalysis, and alkali metal battery applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haidi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Weiduo Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhongjun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11242v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials with multifunctional properties, such as negative Poisson's ratio (NPR), magnetism, catalysis, and energy storage capabilities, are of significant interest for advanced applications in flexible electronics, spintronics, catalysis, and lithium-ion batteries. However, the discovery of such materials, particularly in low-dimensional forms, remains a challenge. In this s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11242v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11242v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11242v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials with multifunctional properties, such as negative Poisson's ratio (NPR), magnetism, catalysis, and energy storage capabilities, are of significant interest for advanced applications in flexible electronics, spintronics, catalysis, and lithium-ion batteries. However, the discovery of such materials, particularly in low-dimensional forms, remains a challenge. In this study, we perform high-throughput density-functional theory (DFT) calculations to explore a new class of 2D V-shaped monolayers with remarkable physicochemical properties. Among 18 stable $M_4X_8$ (M = transition metal; X = halogen) compounds, we identify 9 auxetic monolayers, with \ce{Pd4I8} standing out for its exceptionally high NPR of -0.798. Notably, 4 of these materials exhibit half semiconductor properties, while 5 others are bipolar magnetic semiconductors, offering a unique combination of electronic and magnetic behavior. Additionally, these materials demonstrate promising catalytic activity for hydrogen and oxygen evolution reactions (HER/OER) and show potential as anodes for rechargeable metal-ion batteries, particularly in alkali-ion systems. This work not only expands the family of 2D NPR materials but also introduces new candidates with multifunctional capabilities for a wide range of applications in nanoelectronics, catalysis, and energy storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11242v1-abstract-full').style.display = 'none'; document.getElementById('2501.11242v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06852">arXiv:2501.06852</a> <span> [<a href="https://arxiv.org/pdf/2501.06852">pdf</a>, <a href="https://arxiv.org/ps/2501.06852">ps</a>, <a href="https://arxiv.org/format/2501.06852">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Flat Band and Many-body Gap in Chirally Twisted Triple Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+S">Shimin Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+M">Miao Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jinhua Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xiaobo Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06852v1-abstract-short" style="display: inline;"> We experimentally investigate the band structures of chirally twisted triple bilayer graphene. The new kind of moir茅 structure, formed by three pieces of helically stacked Bernal bilayer graphene, has flat bands at charge neutral point based on the continuum approximation. We experimentally confirm the existence of flat bands and directly acquire the gap in-between flat bands as well as between th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06852v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06852v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06852v1-abstract-full" style="display: none;"> We experimentally investigate the band structures of chirally twisted triple bilayer graphene. The new kind of moir茅 structure, formed by three pieces of helically stacked Bernal bilayer graphene, has flat bands at charge neutral point based on the continuum approximation. We experimentally confirm the existence of flat bands and directly acquire the gap in-between flat bands as well as between the flat bands and dispersive bands from the capacitance measurements. We discover a finite gap even at zero perpendicular electric field, possibly induced by the Coulomb interaction and ferromagnetism. Our quantitative study not only provides solid evidence for the flat-band and interesting physics, but also introduces a quantitative approach to explore phenomena of similar moir茅 systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06852v1-abstract-full').style.display = 'none'; document.getElementById('2501.06852v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09713">arXiv:2411.09713</a> <span> [<a href="https://arxiv.org/pdf/2411.09713">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Semiconductor Grafting: Enabling High-Performance, Lattice-Mismatched Heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qiming Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Abbasi%2C+H">Haris Abbasi</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+H">Haining Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jisoo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/cond-mat?searchtype=author&query=Jang%2C+H">Hokyung Jang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+D">Dong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haiyan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09713v1-abstract-short" style="display: inline;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. Howeve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09713v1-abstract-full" style="display: none;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. However, its scalability and uniformity at the wafer level have yet to be demonstrated. This work demonstrates the achievement of highly uniform, reproducible results across silicon, sapphire, and gallium nitride (GaN) substrates using wafer-scale semiconductor grafting. To illustrate this scalability, we conducted an in-depth study of a grafted Si/GaN heterojunction, examining band alignment through X-ray photoelectron spectroscopy and confirming crystallinity and interfacial integrity with scanning transmission electron microscopy. The resulting p-n diodes exhibit significantly enhanced electrical performance and wafer-scale uniformity compared to conventional approaches. This work establishes wafer-scale semiconductor grafting as a versatile and scalable technology, bridging the gap between laboratory-scale research and industrial manufacturing for heterogeneous semiconductor integration, and paving the way for novel, high-performance electronic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'none'; document.getElementById('2411.09713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09212">arXiv:2411.09212</a> <span> [<a href="https://arxiv.org/pdf/2411.09212">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear Terahertz Resonances from Ballistic Electron Funnelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Do%2C+H+T+B">Hue T. B. Do</a>, <a href="/search/cond-mat?searchtype=author&query=Ngirmang%2C+G+K">Gregory K. Ngirmang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Bosman%2C+M">Michel Bosman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09212v1-abstract-short" style="display: inline;"> We introduce a new mechanism for second-harmonic generation through geometrically rectifying-funneling-ballistic electrons in THz optical resonators. Our resonant rectifiers inherently act as second-order harmonic generators, rectifying currents without the presence of a potential barrier. Particle-in-cell simulations reveal that femtosecond electron-surface scattering plays a critical role in thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09212v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09212v1-abstract-full" style="display: none;"> We introduce a new mechanism for second-harmonic generation through geometrically rectifying-funneling-ballistic electrons in THz optical resonators. Our resonant rectifiers inherently act as second-order harmonic generators, rectifying currents without the presence of a potential barrier. Particle-in-cell simulations reveal that femtosecond electron-surface scattering plays a critical role in this process. We differentiate electron funneling from nonlocal plasmonic drag and bulk Dirac anharmonicity, showing that funneling can reduce the required field intensity for second-harmonic generation by 3-4 orders of magnitude. We provide design guidelines for generating funneling-induced second-harmonic generation, including resonance mode matching and materials selection. This approach offers a practical pathway for low-field, geometrically tunable THz upconversion and rectification, operating from sub-10 THz to multiple tens of THz in graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09212v1-abstract-full').style.display = 'none'; document.getElementById('2411.09212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The PDF file includes Main Text and Supplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04481">arXiv:2411.04481</a> <span> [<a href="https://arxiv.org/pdf/2411.04481">pdf</a>, <a href="https://arxiv.org/format/2411.04481">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-throughput Screening of Ferrimagnetic Semiconductors With Ultrahigh N$\acute{e}$el Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haidi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Q">Qingqing Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Weiduo Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhongjun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaofeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xingxing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04481v1-abstract-short" style="display: inline;"> Ferrimagnetic semiconductors, integrated with net magnetization, antiferromagnetic coupling and semi-conductivity, have constructed an ideal platform for spintronics. For practical applications, achieving high N$\acute{e}$el temperatures ($T_{\mathrm{N}}$) is very desirable, but remains a significant challenge. Here, via high-throughput density-functional-theory calculations, we identify 19 intrin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04481v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04481v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04481v1-abstract-full" style="display: none;"> Ferrimagnetic semiconductors, integrated with net magnetization, antiferromagnetic coupling and semi-conductivity, have constructed an ideal platform for spintronics. For practical applications, achieving high N$\acute{e}$el temperatures ($T_{\mathrm{N}}$) is very desirable, but remains a significant challenge. Here, via high-throughput density-functional-theory calculations, we identify 19 intrinsic ferrimagnetic semiconductor candidates from nearly 44,000 structures in the Materials Project database, including 10 ferrimagnetic bipolar magnetic semiconductors (BMS) and 9 ferrimagnetic half semiconductors (HSC). Notably, the BMS \ce{NaFe5O8} possesses a high $T_{\mathrm{N}}$ of 768 K. By element substitutions, we obtain an HSC \ce{NaFe5S8} with a $T_{\mathrm{N}}$ of 957 K and a BMS \ce{LiFe5O8} with a $T_{\mathrm{N}}$ reaching 1059 K. Our results pave a promising avenue toward the development of ferrimagnetic spintronics at ambient temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04481v1-abstract-full').style.display = 'none'; document.getElementById('2411.04481v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06690">arXiv:2410.06690</a> <span> [<a href="https://arxiv.org/pdf/2410.06690">pdf</a>, <a href="https://arxiv.org/format/2410.06690">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin Quenching and Transport by Hidden Dzyaloshinskii-Moriya Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ye%2C+X">Xiyin Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiwei Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+T">Tao Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06690v2-abstract-short" style="display: inline;"> Explicit interactions, \textit{e.g.}, dipolar and exchange couplings, usually govern magnetization dynamics. Some interactions may be hidden from the global crystal symmetry. We report that in a large class of \textit{uniaxial} antiferromagnets, a \textit{hidden} Dzyaloshinskii-Moriya interaction with retaining global inversion symmetry quenches the spin of magnon along the N茅el vector ${\bf n}$,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06690v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06690v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06690v2-abstract-full" style="display: none;"> Explicit interactions, \textit{e.g.}, dipolar and exchange couplings, usually govern magnetization dynamics. Some interactions may be hidden from the global crystal symmetry. We report that in a large class of \textit{uniaxial} antiferromagnets, a \textit{hidden} Dzyaloshinskii-Moriya interaction with retaining global inversion symmetry quenches the spin of magnon along the N茅el vector ${\bf n}$, thus forbidding its angular-momentum flow. Some magnon spins, termed ``nodal" and ``corner" spins, survive when they distribute \textit{singularly} at the hot spots, i.e., high-symmetric degeneracy points in the Brillouin zone, and are protected by crystal symmetries. The biased magnetic field along ${\bf n}$ broadens such distributions, allowing bulk spin transport with unique signatures in the magnetic field and temperature dependencies. This explains recent experiments and highlights the role of hidden interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06690v2-abstract-full').style.display = 'none'; document.getElementById('2410.06690v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15783">arXiv:2407.15783</a> <span> [<a href="https://arxiv.org/pdf/2407.15783">pdf</a>, <a href="https://arxiv.org/format/2407.15783">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> 24 days-stable CNOT-gate on fluxonium qubits with over 99.9% fidelity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei-Ju Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+H">Hyunheung Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yinqi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Vavilov%2C+M+G">Maxim G. Vavilov</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Manucharyan%2C+V+E">Vladimir E. Manucharyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15783v2-abstract-short" style="display: inline;"> Fluxonium qubit is a promising building block for quantum information processing due to its long coherence time and strong anharmonicity. In this paper, we realize a 60 ns direct CNOT-gate on two inductively-coupled fluxonium qubits using selective darkening approach, resulting in a gate fidelity as high as 99.94%. The fidelity remains above 99.9% for 24 days without any recalibration between rand… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15783v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15783v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15783v2-abstract-full" style="display: none;"> Fluxonium qubit is a promising building block for quantum information processing due to its long coherence time and strong anharmonicity. In this paper, we realize a 60 ns direct CNOT-gate on two inductively-coupled fluxonium qubits using selective darkening approach, resulting in a gate fidelity as high as 99.94%. The fidelity remains above 99.9% for 24 days without any recalibration between randomized benchmarking measurements. Compared with the 99.96% fidelity of a 60 ns identity gate, our data brings the investigation of the non-decoherence-related errors during gate operations down to $2 \times 10^{-4}$. The present result adds a simple and robust two-qubit gate into the still relatively small family of "the beyond three nines" demonstrations on superconducting qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15783v2-abstract-full').style.display = 'none'; document.getElementById('2407.15783v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15450">arXiv:2407.15450</a> <span> [<a href="https://arxiv.org/pdf/2407.15450">pdf</a>, <a href="https://arxiv.org/format/2407.15450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Verifying the analogy between transversely coupled spin-1/2 systems and inductively-coupled fluxoniums </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei-Ju Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+H">Hyunheung Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yinqi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Vavilov%2C+M+G">Maxim G. Vavilov</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Manucharyan%2C+V+E">Vladimir E. Manucharyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15450v1-abstract-short" style="display: inline;"> We report a detailed characterization of two inductively coupled superconducting fluxonium qubits for implementing high-fidelity cross-resonance gates. Our circuit stands out because it behaves very closely to the case of two transversely coupled spin-1/2 systems. In particular, the generally unwanted static ZZ-term due to the non-computational transitions is nearly absent despite a strong qubit-q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15450v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15450v1-abstract-full" style="display: none;"> We report a detailed characterization of two inductively coupled superconducting fluxonium qubits for implementing high-fidelity cross-resonance gates. Our circuit stands out because it behaves very closely to the case of two transversely coupled spin-1/2 systems. In particular, the generally unwanted static ZZ-term due to the non-computational transitions is nearly absent despite a strong qubit-qubit hybridization. Spectroscopy of the non-computational transitions reveals a spurious LC-mode arising from the combination of the coupling inductance and the capacitive links between the terminals of the two qubit circuits. Such a mode has a minor effect on our specific device, but it must be carefully considered for optimizing future designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15450v1-abstract-full').style.display = 'none'; document.getElementById('2407.15450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00771">arXiv:2407.00771</a> <span> [<a href="https://arxiv.org/pdf/2407.00771">pdf</a>, <a href="https://arxiv.org/format/2407.00771">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Steady-state properties of multi-orbital systems using quantum Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Erpenbeck%2C+A">Andre Erpenbeck</a>, <a href="/search/cond-mat?searchtype=author&query=Blommel%2C+T">Thomas Blommel</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei-Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Cohen%2C+G">Guy Cohen</a>, <a href="/search/cond-mat?searchtype=author&query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00771v1-abstract-short" style="display: inline;"> A precise dynamical characterization of quantum impurity models with multiple interacting orbitals is challenging. In quantum Monte Carlo methods, this is embodied by sign problems. A dynamical sign problem makes it exponentially difficult to simulate long times. A multi-orbital sign problem generally results in a prohibitive computational cost for systems with multiple impurity degrees of freedom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00771v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00771v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00771v1-abstract-full" style="display: none;"> A precise dynamical characterization of quantum impurity models with multiple interacting orbitals is challenging. In quantum Monte Carlo methods, this is embodied by sign problems. A dynamical sign problem makes it exponentially difficult to simulate long times. A multi-orbital sign problem generally results in a prohibitive computational cost for systems with multiple impurity degrees of freedom even in static equilibrium calculations. Here, we present a numerically exact inchworm method that simultaneously alleviates both sign problems, enabling simulation of multi-orbital systems directly in the equilibrium or nonequilibrium steady-state. The method combines ideas from the recently developed steady-state inchworm Monte Carlo framework [Phys. Rev. Lett. 130, 186301 (2023)] with other ideas from the equilibrium multi-orbital inchworm algorithm [Phys. Rev. Lett. 124, 206405 (2020)]. We verify our method by comparison with analytical limits and numerical results from previous methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00771v1-abstract-full').style.display = 'none'; document.getElementById('2407.00771v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08826">arXiv:2406.08826</a> <span> [<a href="https://arxiv.org/pdf/2406.08826">pdf</a>, <a href="https://arxiv.org/format/2406.08826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Corner States in Bilayer and Trilayer Systems with Vertically Stacked Topologically Distinct Layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ishida%2C+N">Natsuko Ishida</a>, <a href="/search/cond-mat?searchtype=author&query=Ezawa%2C+M">Motohiko Ezawa</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+G">Guangtai Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenbo Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Ota%2C+Y">Yasutomo Ota</a>, <a href="/search/cond-mat?searchtype=author&query=Arakawa%2C+Y">Yasuhiko Arakawa</a>, <a href="/search/cond-mat?searchtype=author&query=Iwamoto%2C+S">Satoshi Iwamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08826v1-abstract-short" style="display: inline;"> We investigate bilayer and trilayer systems composed of topologically distinct, vertically stacked layers based on the Benalcazar-Bernevig-Hughes model. We have identified a topological phase transition that significantly alters the number of the topological corner states in these systems. Additionally, we find that traditional nested Wilson loop analysis inaccurately classifies certain phases, le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08826v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08826v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08826v1-abstract-full" style="display: none;"> We investigate bilayer and trilayer systems composed of topologically distinct, vertically stacked layers based on the Benalcazar-Bernevig-Hughes model. We have identified a topological phase transition that significantly alters the number of the topological corner states in these systems. Additionally, we find that traditional nested Wilson loop analysis inaccurately classifies certain phases, leading us to evaluate multipole chiral numbers (MCNs) as a more appropriate topological invariant. This approach accurately identifies topological phases and the number of MCNs coincides with the number of corner modes, enhancing our understanding of topological insulators and opening avenues for further applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08826v1-abstract-full').style.display = 'none'; document.getElementById('2406.08826v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15742">arXiv:2405.15742</a> <span> [<a href="https://arxiv.org/pdf/2405.15742">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Correlated Charge Density Wave Insulators in Chirally Twisted Triple Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+G">Gengdong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Z">Zuo Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yijie Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+M">Miao Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zaizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+M">Min Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jinhua Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zhida Song</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xiaobo Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15742v1-abstract-short" style="display: inline;"> Electrons residing in flat-band system can play a vital role in triggering spectacular phenomenology due to relatively large interactions and spontaneous breaking of different degeneracies. In this work we demonstrate chirally twisted triple bilayer graphene, a new moir茅 structure formed by three pieces of helically stacked Bernal bilayer graphene, as a highly tunable flat-band system. In addition… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15742v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15742v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15742v1-abstract-full" style="display: none;"> Electrons residing in flat-band system can play a vital role in triggering spectacular phenomenology due to relatively large interactions and spontaneous breaking of different degeneracies. In this work we demonstrate chirally twisted triple bilayer graphene, a new moir茅 structure formed by three pieces of helically stacked Bernal bilayer graphene, as a highly tunable flat-band system. In addition to the correlated insulators showing at integer moir茅 fillings, commonly attributed to interaction induced symmetry broken isospin flavors in graphene, we observe abundant insulating states at half-integer moir茅 fillings, suggesting a longer-range interaction and the formation of charge density wave insulators which spontaneously break the moir茅 translation symmetry. With weak out-of-plane magnetic field applied, as observed half-integer filling states are enhanced and more quarter-integer filling states appear, pointing towards further quadrupling moir茅 unit cells. The insulating states at fractional fillings combined with Hartree-Fock calculations demonstrate the observation of a new type of correlated charge density wave insulators in graphene and points to a new accessible twist manner engineering correlated moir茅 electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15742v1-abstract-full').style.display = 'none'; document.getElementById('2405.15742v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12905">arXiv:2405.12905</a> <span> [<a href="https://arxiv.org/pdf/2405.12905">pdf</a>, <a href="https://arxiv.org/ps/2405.12905">ps</a>, <a href="https://arxiv.org/format/2405.12905">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A single crystal study of Kagome metals U$_2$Mn$_3$Ge and U$_2$Fe$_3$Ge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wanyue Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yuchen Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Broyles%2C+C">Christopher Broyles</a>, <a href="/search/cond-mat?searchtype=author&query=Kong%2C+T">Tai Kong</a>, <a href="/search/cond-mat?searchtype=author&query=Ran%2C+S">Sheng Ran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12905v1-abstract-short" style="display: inline;"> Single crystals of U$_2$Mn$_3$Ge and and U$_2$Fe$_3$Ge with a Kagome lattice structure were synthesized using a high-temperature self-flux crystal growth method. The physical properties of these crystals were characterized through measurements of resistivity, magnetism, and specific heat. U$_2$Fe$_3$Ge exhibits ferromagnetic ground state and Anomalous Hall Effect, and U$_2$Mn$_3$Ge demonstrates a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12905v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12905v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12905v1-abstract-full" style="display: none;"> Single crystals of U$_2$Mn$_3$Ge and and U$_2$Fe$_3$Ge with a Kagome lattice structure were synthesized using a high-temperature self-flux crystal growth method. The physical properties of these crystals were characterized through measurements of resistivity, magnetism, and specific heat. U$_2$Fe$_3$Ge exhibits ferromagnetic ground state and Anomalous Hall Effect, and U$_2$Mn$_3$Ge demonstrates a complex magnetic structure. Both compounds exhibit large Sommerfeld coefficient, indicating coexistence of heavy Fermion behavior with magnetism. Our results suggest that this U$_2$TM$_3$Ge (TM = Mn, Fe, Co) family is a promising platform to investigate the interplay of magnetism, Kondo physics and the Kagome lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12905v1-abstract-full').style.display = 'none'; document.getElementById('2405.12905v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Journal of Physics: Condensed Matter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03966">arXiv:2405.03966</a> <span> [<a href="https://arxiv.org/pdf/2405.03966">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2024.05.010">10.1016/j.scib.2024.05.010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Memristive switching in the surface of a charge-density-wave topological semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+J">Jianwen Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+X">Xianghao Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">Binhua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Mou%2C+Y">Yicheng Mou</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenting Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+Y">Yannan Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Luqiu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haonan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Haoqi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+J">Jiaming Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiayu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yuhan Du</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chunsen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+W">Wu Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zhenzhong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+B">Bobo Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+L">Lin Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+P">Peng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+C">Chun-Gang Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+C">Changsong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+X">Xiang Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03966v1-abstract-short" style="display: inline;"> Owing to the outstanding properties provided by nontrivial band topology, topological phases of matter are considered as a promising platform towards low-dissipation electronics, efficient spin-charge conversion, and topological quantum computation. Achieving ferroelectricity in topological materials enables the non-volatile control of the quantum states, which could greatly facilitate topological… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03966v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03966v1-abstract-full" style="display: none;"> Owing to the outstanding properties provided by nontrivial band topology, topological phases of matter are considered as a promising platform towards low-dissipation electronics, efficient spin-charge conversion, and topological quantum computation. Achieving ferroelectricity in topological materials enables the non-volatile control of the quantum states, which could greatly facilitate topological electronic research. However, ferroelectricity is generally incompatible with systems featuring metallicity due to the screening effect of free carriers. In this study, we report the observation of memristive switching based on the ferroelectric surface state of a topological semimetal (TaSe4)2I. We find that the surface state of (TaSe4)2I presents out-of-plane ferroelectric polarization due to surface reconstruction. With the combination of ferroelectric surface and charge-density-wave-gapped bulk states, an electric switchable barrier height can be achieved in (TaSe4)2I-metal contact. By employing a multi-terminal grounding design, we manage to construct a prototype ferroelectric memristor based on (TaSe4)2I with on/off ratio up to 10^3, endurance over 10^3 cycles, and good retention characteristics. The origin of the ferroelectric surface state is further investigated by first-principles calculations, which reveals an interplay between ferroelectricity and band topology. The emergence of ferroelectricity in (TaSe4)2I not only demonstrates it as a rare but essential case of ferroelectric topological materials, but also opens new routes towards the implementation of topological materials in functional electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03966v1-abstract-full').style.display = 'none'; document.getElementById('2405.03966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin 69(13), 2042-2049 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15147">arXiv:2404.15147</a> <span> [<a href="https://arxiv.org/pdf/2404.15147">pdf</a>, <a href="https://arxiv.org/ps/2404.15147">ps</a>, <a href="https://arxiv.org/format/2404.15147">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> A general multi-wave quasi-resonance theory for lattice energy diffusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+W">Weicheng Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+H">Hong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15147v1-abstract-short" style="display: inline;"> In this letter, a multi-wave quasi-resonance framework is established to analyze energy diffusion in classical lattices, uncovering that it is fundamentally determined by the characteristics of eigenmodes. Namely, based on the presence and the absence of extended modes, lattices fall into two universality classes with qualitatively different thermalization behavior. In particular, we find that whi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15147v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15147v1-abstract-full" style="display: none;"> In this letter, a multi-wave quasi-resonance framework is established to analyze energy diffusion in classical lattices, uncovering that it is fundamentally determined by the characteristics of eigenmodes. Namely, based on the presence and the absence of extended modes, lattices fall into two universality classes with qualitatively different thermalization behavior. In particular, we find that while the one with extended modes can be thermalized under arbitrarily weak perturbations in the thermodynamic limit, the other class can be thermalized only when perturbations exceed a certain threshold, revealing for the first time the possibility that a lattice cannot be thermalized, violating the hypothesis of statistical mechanics. Our study addresses conclusively the renowned Fermi-Pasta-Ulam-Tsingou problem for large systems under weak perturbations, underscoring the pivotal roles of both extended and localized modes in facilitating energy diffusion and thermalization processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15147v1-abstract-full').style.display = 'none'; document.getElementById('2404.15147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05234">arXiv:2404.05234</a> <span> [<a href="https://arxiv.org/pdf/2404.05234">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Bioinspired polymer-incorporating self-lubricating and antifouling hydrogels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weifeng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Kluzek%2C+M">Monika Kluzek</a>, <a href="/search/cond-mat?searchtype=author&query=kampf%2C+N">Nir kampf</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifeng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Klein%2C+J">Jacob Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05234v1-abstract-short" style="display: inline;"> Healthy articular cartilage has excellent lubricating properties, with friction coefficients reaching extremely low values at physiological pressures. Such high-performing lubricating layer in joints is attributed to the surface hydration arising from the interplay between multiple hydrophilic biopolymers (such as hyaluronic acid, proteoglycans, and lubricin) and phospholipids in the cartilage mat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05234v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05234v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05234v1-abstract-full" style="display: none;"> Healthy articular cartilage has excellent lubricating properties, with friction coefficients reaching extremely low values at physiological pressures. Such high-performing lubricating layer in joints is attributed to the surface hydration arising from the interplay between multiple hydrophilic biopolymers (such as hyaluronic acid, proteoglycans, and lubricin) and phospholipids in the cartilage matrix. Mimicking such molecular structure, hydrogels, composed of a hydrophilic polymer network, have the potential to replicate the lubricating feature and possibly replace natural cartilages. In this study, we have synthesized a poly(2-methacryloyloxyethyl phosphorylcholine-co-N-isopropylacrylamide) (PMPC-co-PNIPAM, PMN)random copolymer with highly-hydrated lubricious 2-methacryloyloxyethyl phosphorylcholine moieties and less hydrated N-isopropylacrylamide moieties. Incorporation of PMN copolymers within various hydrogels significantly reduces the gels sliding surface friction, resulting in low friction coefficients against different counter surfaces, including stainless steel (hard metal surface), polyethylene (hydrophobic surface), and polyHEMA (soft hydrogel surface). Additionally, hydrogels containing PMN are shown to be biocompatible and have excellent antifouling properties, making them an ideal coating for commercially available stents. With these qualities, hydrogels containing PMN stand out as a promising new material with numerous possible applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05234v1-abstract-full').style.display = 'none'; document.getElementById('2404.05234v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05115">arXiv:2403.05115</a> <span> [<a href="https://arxiv.org/pdf/2403.05115">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity of the New Medium-Entropy Alloy V4Ti2W with a Body-Centered Cubic Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weijie Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+R">Ruixin Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+S">Shu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05115v1-abstract-short" style="display: inline;"> Medium- and high-entropy alloy (MEA and HEA) superconductors have attracted considerable interest since their discovery. This paper reports the superconducting properties of ternary tungsten-containing MEA V4Ti2W for the first time. V4Ti2W is a type II superconductor with a body-centered cubic (BCC) structure. Experimental results of resistivity, magnetization, and heat capacity indicate that the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05115v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05115v1-abstract-full" style="display: none;"> Medium- and high-entropy alloy (MEA and HEA) superconductors have attracted considerable interest since their discovery. This paper reports the superconducting properties of ternary tungsten-containing MEA V4Ti2W for the first time. V4Ti2W is a type II superconductor with a body-centered cubic (BCC) structure. Experimental results of resistivity, magnetization, and heat capacity indicate that the superconducting transition temperature of the MEA V4Ti2W is roughly 5.0 K. The critical magnetic fields at the upper and lower ends are 9.93(2) T and 40.7(3) mT, respectively. Interestingly, few BCC MEA superconductors with VEC greater than 4.8 have been found. The addition of tungsten leads to a VEC of 4.83 e/a for V4Ti2W, which is rarely higher than the 4.8 value. Adding tungsten element expands the variety of MEA alloys, which may improve the microstructure and mechanical properties of materials and even superconducting properties. This material could potentially offer a new platform for the investigation of innovative MEA and HEA superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05115v1-abstract-full').style.display = 'none'; document.getElementById('2403.05115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Communications, 2024, 38, 108444 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15183">arXiv:2311.15183</a> <span> [<a href="https://arxiv.org/pdf/2311.15183">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electric Field Switching of Magnon Spin Current in a Compensated Ferrimagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Kaili Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yuanjun Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+S">Shuping Lv</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yuewei He</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiwei Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Min%2C+T">Tai Min</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+S">Shaojie Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Sen Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+D">Dezhen Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+A">Aqun Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shuming Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+X">Xiangdong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15183v1-abstract-short" style="display: inline;"> Manipulation of directional magnon propagation, known as magnon spin current, is essential for developing magnonic memory and logic devices featuring nonvolatile functionalities and ultralow power consumption. Magnon spin current can usually be modulated by magnetic field or current-induced spin torques. However, these approaches may lead to energy dissipation caused by Joule heating. Electric-fie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15183v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15183v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15183v1-abstract-full" style="display: none;"> Manipulation of directional magnon propagation, known as magnon spin current, is essential for developing magnonic memory and logic devices featuring nonvolatile functionalities and ultralow power consumption. Magnon spin current can usually be modulated by magnetic field or current-induced spin torques. However, these approaches may lead to energy dissipation caused by Joule heating. Electric-field switching of magnon spin current without charge current is highly desired but very challenging to realize. By integrating magnonic and piezoelectric materials, we demonstrate manipulation of the magnon spin current generated by the spin Seebeck effect in the ferrimagnetic insulator Gd3Fe5O12 (GdIG) film on a piezoelectric substrate. We observe reversible electric-field switching of magnon polarization without applied charge current. Through strain-mediated magnetoelectric coupling, the electric field induces the magnetic compensation transition between two magnetic states of the GdIG, resulting in its magnetization reversal and the simultaneous switching of magnon spin current. Our work establishes a prototype material platform that pave the way for developing magnon logic devices characterized by all electric field reading and writing and reveals the underlying physics principles of their functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15183v1-abstract-full').style.display = 'none'; document.getElementById('2311.15183v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02681">arXiv:2311.02681</a> <span> [<a href="https://arxiv.org/pdf/2311.02681">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Recent progress in cartilage lubrication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weifeng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Klein%2C+J">Jacob Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02681v1-abstract-short" style="display: inline;"> Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02681v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02681v1-abstract-full" style="display: none;"> Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the most common joint disease, and, by reducing shear stress on the mechanotransductive, cartilage-embedded chondrocytes (the only cell type in the cartilage), it regulates their function to maintain homeostasis. Understanding the origins of such low friction of the articular cartilage, therefore, is of major importance in order to alleviate disease symptoms, and slow or even reverse its breakdown. This progress report considers the relation between frictional behavior and the cellular mechanical environment in the cartilage, then reviews the mechanism of lubrication in the joints, in particular focusing on boundary lubrication. Following recent advances based on hydration lubrication, a proposed synergy between different molecular components of the synovial joints, acting together in enabling the low friction, has been proposed. Additionally, recent development of natural and of bio-inspired lubricants is reviewed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02681v1-abstract-full').style.display = 'none'; document.getElementById('2311.02681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04166">arXiv:2309.04166</a> <span> [<a href="https://arxiv.org/pdf/2309.04166">pdf</a>, <a href="https://arxiv.org/ps/2309.04166">ps</a>, <a href="https://arxiv.org/format/2309.04166">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Metastable Charge Distribution Between Degenerate Landau Levels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+X">Xing Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chung%2C+Y+J">Yoon Jang Chung</a>, <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+A">Adbhut Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=Baldwin%2C+K+W">Kirk W. Baldwin</a>, <a href="/search/cond-mat?searchtype=author&query=Pfeiffer%2C+L">Loren Pfeiffer</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hong Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04166v2-abstract-short" style="display: inline;"> We study two dimensional electron systems confined in wide quantum wells whose subband separation is comparable with the Zeeman energy. Two N = 0 Landau levels from different subbands and with opposite spins are pinned in energy when they cross each other and electrons can freely transfer between them. When the disorder is strong, we observe clear hysteresis in our data corresponding to instabilit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04166v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04166v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04166v2-abstract-full" style="display: none;"> We study two dimensional electron systems confined in wide quantum wells whose subband separation is comparable with the Zeeman energy. Two N = 0 Landau levels from different subbands and with opposite spins are pinned in energy when they cross each other and electrons can freely transfer between them. When the disorder is strong, we observe clear hysteresis in our data corresponding to instability of the electron distribution in the two crossing levels. When the intra-layer interaction dominates, multiple minima appear when a Landau level is 1/3 or 2/3 filled and fractional quantum hall effect can be stabilized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04166v2-abstract-full').style.display = 'none'; document.getElementById('2309.04166v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03382">arXiv:2309.03382</a> <span> [<a href="https://arxiv.org/pdf/2309.03382">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0156379">10.1063/5.0156379 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vector spin Seebeck effect and spin swapping effect in antiferromagnetic insulators with non-collinear spin structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+J">Jinsong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiwei Lin</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Jiaming He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+D">Danru Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Ssu-Yen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chien%2C+C+L">C. L. Chien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03382v1-abstract-short" style="display: inline;"> Antiferromagnets (AFs) are prospective for next-generation high-density and high-speed spintronic applications due to their negligible stray field and ultrafast spin dynamics, notwithstanding the challenges in detecting and manipulating AF order with no magnetization (M = 0). Among the AFs, non-collinear AFs are of particular interest because of their unique properties arising from the non-colline… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03382v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03382v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03382v1-abstract-full" style="display: none;"> Antiferromagnets (AFs) are prospective for next-generation high-density and high-speed spintronic applications due to their negligible stray field and ultrafast spin dynamics, notwithstanding the challenges in detecting and manipulating AF order with no magnetization (M = 0). Among the AFs, non-collinear AFs are of particular interest because of their unique properties arising from the non-collinear spin structure and the small magnetization M. In this work, we describe the recently observed vector spin Seebeck effect in non-collinear LuFeO$_3$, where the magneto-thermovoltage under an in-plane temperature gradient, not previously observed, is consistent with the predicted spin swapping effect. Our results shed light on the importance of the non-collinear spin structure in the emerging spin phenomena in non-collinear AFs and offer a new class of materials for AF spintronics and spin caloritronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03382v1-abstract-full').style.display = 'none'; document.getElementById('2309.03382v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Mater. 11, 091102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10150">arXiv:2307.10150</a> <span> [<a href="https://arxiv.org/pdf/2307.10150">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-025-56326-7">10.1038/s41467-025-56326-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of chiral edge current at zero magnetic field in odd-layer MnBi$_2$Te$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jinjiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yang Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yongchao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+Z">Zichen Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiyan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Q">Qiushi He</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y">Yishi Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Youfang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+H">Hongxu Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yihua Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10150v1-abstract-short" style="display: inline;"> The chiral edge current is the boundary manifestation of the Chern number of a quantum anomalous Hall (QAH) insulator. Its direct observation is assumed to require well-quantized Hall conductance, and is so far lacking. The recently discovered van der Waals antiferromagnet MnBi$_2$Te$_4$ is theorized as a QAH in odd-layers but has shown Hall resistivity below the quantization value at zero magneti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10150v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10150v1-abstract-full" style="display: none;"> The chiral edge current is the boundary manifestation of the Chern number of a quantum anomalous Hall (QAH) insulator. Its direct observation is assumed to require well-quantized Hall conductance, and is so far lacking. The recently discovered van der Waals antiferromagnet MnBi$_2$Te$_4$ is theorized as a QAH in odd-layers but has shown Hall resistivity below the quantization value at zero magnetic field. Here, we perform scanning superconducting quantum interference device (sSQUID) microscopy on these seemingly failed QAH insulators to image their current distribution. When gated to the charge neutral point, our device exhibits edge current, which flows unidirectionally on the odd-layer boundary both with vacuum and with the even-layer. The chirality of such edge current reverses with the magnetization of the bulk. Surprisingly, we find the edge channels coexist with finite bulk conduction even though the bulk chemical potential is in the band gap, suggesting their robustness under significant edge-bulk scattering. Our result establishes the existence of chiral edge currents in a topological antiferromagnet and offers an alternative for identifying QAH states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10150v1-abstract-full').style.display = 'none'; document.getElementById('2307.10150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 16:963 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00180">arXiv:2307.00180</a> <span> [<a href="https://arxiv.org/pdf/2307.00180">pdf</a>, <a href="https://arxiv.org/format/2307.00180">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Tuning a magnetic energy scale with pressure in UTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+H">Hyunsoo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+I">I-Lin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wen-Chen Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Eo%2C+Y+S">Yun Suk Eo</a>, <a href="/search/cond-mat?searchtype=author&query=Ran%2C+S">Sheng Ran</a>, <a href="/search/cond-mat?searchtype=author&query=Butch%2C+N+P">Nicholas P. Butch</a>, <a href="/search/cond-mat?searchtype=author&query=Paglione%2C+J">Johnpierre Paglione</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00180v2-abstract-short" style="display: inline;"> A fragile ordered state can be easily tuned by various external parameters. When the ordered state is suppressed to zero temperature, a quantum phase transition occurs, which is often marked by the appearance of unconventional superconductivity. While the quantum critical point can be hidden, the influence of the quantum criticality extends to fairly high temperatures, manifesting the non-Fermi li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00180v2-abstract-full').style.display = 'inline'; document.getElementById('2307.00180v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00180v2-abstract-full" style="display: none;"> A fragile ordered state can be easily tuned by various external parameters. When the ordered state is suppressed to zero temperature, a quantum phase transition occurs, which is often marked by the appearance of unconventional superconductivity. While the quantum critical point can be hidden, the influence of the quantum criticality extends to fairly high temperatures, manifesting the non-Fermi liquid behavior in the wide range of the $p$-$H$-$T$ phase space. Here, we report the tuning of a magnetic energy scale in the heavy-fermion superconductor UTe$_2$, previously identified as a peak in the $c$-axis electrical transport, with applied hydrostatic pressure and magnetic field along the $a$-axis as complementary (and opposing) tuning parameters. Upon increasing pressure, the characteristic $c$-axis peak moves to a lower temperature before vanishing near the critical pressure of about 15 kbar. The application of a magnetic field broadens the peak under all studied pressure values. The observed Fermi-liquid behavior at ambient pressure is violated near the critical pressure, exhibiting nearly linear resistivity in temperature and an enhanced pre-factor. Our results provide a clear picture of energy scale evolution relevant to magnetic quantum criticality in UTe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00180v2-abstract-full').style.display = 'none'; document.getElementById('2307.00180v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11199">arXiv:2303.11199</a> <span> [<a href="https://arxiv.org/pdf/2303.11199">pdf</a>, <a href="https://arxiv.org/format/2303.11199">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.245135">10.1103/PhysRevB.107.245135 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Tensor Train Continuous Time Solver for Quantum Impurity Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Erpenbeck%2C+A">A. Erpenbeck</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W+-">W. -T. Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Blommel%2C+T">T. Blommel</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Iskakov%2C+S">S. Iskakov</a>, <a href="/search/cond-mat?searchtype=author&query=Bernheimer%2C+L">L. Bernheimer</a>, <a href="/search/cond-mat?searchtype=author&query=N%C3%BA%C3%B1ez-Fern%C3%A1ndez%2C+Y">Y. N煤帽ez-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&query=Cohen%2C+G">G. Cohen</a>, <a href="/search/cond-mat?searchtype=author&query=Parcollet%2C+O">O. Parcollet</a>, <a href="/search/cond-mat?searchtype=author&query=Waintal%2C+X">X. Waintal</a>, <a href="/search/cond-mat?searchtype=author&query=Gull%2C+E">E. Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11199v1-abstract-short" style="display: inline;"> The simulation of strongly correlated quantum impurity models is a significant challenge in modern condensed matter physics that has multiple important applications. Thus far, the most successful methods for approaching this challenge involve Monte Carlo techniques that accurately and reliably sample perturbative expansions to any order. However, the cost of obtaining high precision through these… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11199v1-abstract-full').style.display = 'inline'; document.getElementById('2303.11199v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11199v1-abstract-full" style="display: none;"> The simulation of strongly correlated quantum impurity models is a significant challenge in modern condensed matter physics that has multiple important applications. Thus far, the most successful methods for approaching this challenge involve Monte Carlo techniques that accurately and reliably sample perturbative expansions to any order. However, the cost of obtaining high precision through these methods is high. Recently, tensor train decomposition techniques have been developed as an alternative to Monte Carlo integration. In this study, we apply these techniques to the single-impurity Anderson model at equilibrium by calculating the systematic expansion in power of the hybridization of the impurity with the bath. We demonstrate the performance of the method in a paradigmatic application, examining the first-order phase transition on the infinite dimensional Bethe lattice, which can be mapped to an impurity model through dynamical mean field theory. Our results indicate that using tensor train decomposition schemes allows the calculation of finite-temperature Green's functions and thermodynamic observables with unprecedented accuracy. The methodology holds promise for future applications to frustrated multi-orbital systems, using a combination of partially summed series with other techniques pioneered in diagrammatic and continuous-time quantum Monte Carlo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11199v1-abstract-full').style.display = 'none'; document.getElementById('2303.11199v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 245135 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07639">arXiv:2302.07639</a> <span> [<a href="https://arxiv.org/pdf/2302.07639">pdf</a>, <a href="https://arxiv.org/format/2302.07639">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0146658">10.1063/5.0146658 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compact atom source using fiber-based pulsed laser ablation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Osada%2C+A">Alto Osada</a>, <a href="/search/cond-mat?searchtype=author&query=Tamaki%2C+R">Ryuta Tamaki</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenbo Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Nakamura%2C+I">Ippei Nakamura</a>, <a href="/search/cond-mat?searchtype=author&query=Noguchi%2C+A">Atsushi Noguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07639v1-abstract-short" style="display: inline;"> We designed, demonstrated, and characterized an atom source based on fiber-based pulsed laser ablation. By using commercially available miniature lens system for focusing nanosecond pulsed laser of up to 225~$渭$J delivered through a multimode fiber of 105~$渭$m core, we successfully ablate a SrTiO$_3$ target and generate a jet of neutral strontium atoms, though our method can be applied to other tr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07639v1-abstract-full').style.display = 'inline'; document.getElementById('2302.07639v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07639v1-abstract-full" style="display: none;"> We designed, demonstrated, and characterized an atom source based on fiber-based pulsed laser ablation. By using commercially available miniature lens system for focusing nanosecond pulsed laser of up to 225~$渭$J delivered through a multimode fiber of 105~$渭$m core, we successfully ablate a SrTiO$_3$ target and generate a jet of neutral strontium atoms, though our method can be applied to other transparent ablation targets containing materials under concern. Our device endures 6\,000 cycles of pulse delivery and irradiation without noticeable damage on the fiber facets and lenses. The generated strontium beam is characterized with spectroscopic method and is revealed to exhibit the transverse temperature of 800~K and longitudinal velocity of 2\,300~m/s, which are typical of pulsed-laser-ablation-based atom source. The number of atoms generated by a single ablation pulse is estimated to be $2\times 10^5$. Our device provides a compact, cryo-compatible fiber-pigtailed atom source with minimized device footprints and reduced complexity of vacuum systems to further promote the developments of cold-atom experiments. It may also find interesting applications in atomic and molecular sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07639v1-abstract-full').style.display = 'none'; document.getElementById('2302.07639v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01475">arXiv:2301.01475</a> <span> [<a href="https://arxiv.org/pdf/2301.01475">pdf</a>, <a href="https://arxiv.org/format/2301.01475">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.246401">10.1103/PhysRevLett.130.246401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic Response of Wigner Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Chung%2C+Y+J">Yoon Jang Chung</a>, <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+A">Adbhut Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=Baldwin%2C+K+W">Kirk W. Baldwin</a>, <a href="/search/cond-mat?searchtype=author&query=Pfeiffer%2C+L+N">Loren N. Pfeiffer</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01475v1-abstract-short" style="display: inline;"> The Wigner crystal, an ordered array of electrons, is one of the very first proposed many-body phases stabilized by the electron-electron interaction. This electron solid phase has been reported in ultra-clean two-dimensional electron systems at extremely low temperatures, where the Coulomb interaction dominants over the kinetic energy, disorder potential and thermal fluctuation. We closely examin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01475v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01475v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01475v1-abstract-full" style="display: none;"> The Wigner crystal, an ordered array of electrons, is one of the very first proposed many-body phases stabilized by the electron-electron interaction. This electron solid phase has been reported in ultra-clean two-dimensional electron systems at extremely low temperatures, where the Coulomb interaction dominants over the kinetic energy, disorder potential and thermal fluctuation. We closely examine this quantum phase with capacitance measurements where the device length-scale is comparable with the crystal's correlation length. The extraordinarily high performance of our technique makes it possible to quantitatively study the dynamic response of the Wigner crystal within the single crystal regime. Our result will greatly boost the study of this inscrutable electron solid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01475v1-abstract-full').style.display = 'none'; document.getElementById('2301.01475v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02226">arXiv:2211.02226</a> <span> [<a href="https://arxiv.org/pdf/2211.02226">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-34377-4">10.1038/s41467-022-34377-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronically phase separated nano-network in antiferromagnetic insulating LaMnO3/PrMnO3/CaMnO3 tricolor superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+T">Tian Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Huimin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiyan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+W">Wenhao He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+Y">Yang Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Lifen Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+L">Lina Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+B">Biying Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Q">Qian Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yinyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+C">Changlin Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+L">Lifeng Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02226v1-abstract-short" style="display: inline;"> Strongly correlated materials often exhibit an electronic phase separation (EPS) phenomena whose domain pattern is random in nature. The ability to control the spatial arrangement of the electronic phases at microscopic scales is highly desirable for tailoring their macroscopic properties and/or designing novel electronic devices. Here we report the formation of EPS nanoscale network in a mono-ato… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02226v1-abstract-full').style.display = 'inline'; document.getElementById('2211.02226v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02226v1-abstract-full" style="display: none;"> Strongly correlated materials often exhibit an electronic phase separation (EPS) phenomena whose domain pattern is random in nature. The ability to control the spatial arrangement of the electronic phases at microscopic scales is highly desirable for tailoring their macroscopic properties and/or designing novel electronic devices. Here we report the formation of EPS nanoscale network in a mono-atomically stacked LaMnO3/CaMnO3/PrMnO3 superlattice grown on SrTiO3 (STO) (001) substrate, which is known to have an antiferromagnetic (AFM) insulating ground state. The EPS nano-network is a consequence of an internal strain relaxation triggered by the structural domain formation of the underlying STO substrate at low temperatures. The same nanoscale network pattern can be reproduced upon temperature cycling allowing us to employ different local imaging techniques to directly compare the magnetic and transport state of a single EPS domain. Our results confirm the one-to-one correspondence between ferromagnetic (AFM) to metallic (insulating) state in manganite. It also represents a significant step in a paradigm shift from passively characterizing EPS in strongly correlated systems to actively engaging in its manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02226v1-abstract-full').style.display = 'none'; document.getElementById('2211.02226v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 13, 6593 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09470">arXiv:2210.09470</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Biomass transfer on autocatalytic reaction network: a delay differential equation formulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei-Hsiang Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09470v2-abstract-short" style="display: inline;"> For a biological system to grow, the biomass must be incorporated, transferred, and accumulated into the underlying reaction network. There are two perspectives for studying growth dynamics of reaction networks: one way is to focus on each node in the networks and study its associated influxes and effluxes. The other way is to focus on a fraction of biomass and study its trajectory along the react… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09470v2-abstract-full').style.display = 'inline'; document.getElementById('2210.09470v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09470v2-abstract-full" style="display: none;"> For a biological system to grow, the biomass must be incorporated, transferred, and accumulated into the underlying reaction network. There are two perspectives for studying growth dynamics of reaction networks: one way is to focus on each node in the networks and study its associated influxes and effluxes. The other way is to focus on a fraction of biomass and study its trajectory along the reaction pathways. The former perspective (analogous to the "Eulerian representation" in fluid mechanics) has been studied extensively, while the latter perspective (analogous to the "Lagrangian representation" in fluid mechanics) has not been systematically explored. In this work, I characterized the biomass transfer process for autocatalytic, growing systems with scalable reaction fluxes. Under balanced growth, the long-term growth dynamics of the systems are described by delay differential equations (DDEs). The kernel function of the DDE serves as a unique pattern for the catalytic delay for a reaction network, and in frequency domain the delay spectrum provides a geometric interpretation for long-term growth rate. The DDE formulation provides a clear intuition on how autocatalytic reaction pathways lead to system growth, it also enables us to classify and compare reaction networks with different network structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09470v2-abstract-full').style.display = 'none'; document.getElementById('2210.09470v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Error in the text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08556">arXiv:2210.08556</a> <span> [<a href="https://arxiv.org/pdf/2210.08556">pdf</a>, <a href="https://arxiv.org/format/2210.08556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficiently Extracting Multi-Point Correlations of a Floquet Thermalized System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Y">Ying-Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+A">An Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hao-Ran Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Han-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Thanasilp%2C+S">Supanut Thanasilp</a>, <a href="/search/cond-mat?searchtype=author&query=Angelakis%2C+D+G">Dimitris G. Angelakis</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08556v1-abstract-short" style="display: inline;"> Nonequilibrium dynamics of many-body systems is challenging for classical computing, providing opportunities for demonstrating practical quantum computational advantage with analogue quantum simulators. It is proposed to be classically intractable to sample driven thermalized many-body states of Bose-Hubbard systems, and further extract multi-point correlations for characterizing quantum phases. H… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08556v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08556v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08556v1-abstract-full" style="display: none;"> Nonequilibrium dynamics of many-body systems is challenging for classical computing, providing opportunities for demonstrating practical quantum computational advantage with analogue quantum simulators. It is proposed to be classically intractable to sample driven thermalized many-body states of Bose-Hubbard systems, and further extract multi-point correlations for characterizing quantum phases. Here, leveraging dedicated precise manipulations and number-resolved detection through a quantum gas microscope, we implement and sample a 32-site driven Hubbard chain in the thermalized phase. Multi-point correlations of up to 14th-order extracted from experimental samples offer clear distinctions between the thermalized and many-body-localized phases. In terms of estimated computational powers, the quantum simulator is comparable to the fastest supercomputer with currently known best algorithms. Our work paves the way towards practical quantum advantage in simulating Floquet dynamics of many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08556v1-abstract-full').style.display = 'none'; document.getElementById('2210.08556v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02936">arXiv:2210.02936</a> <span> [<a href="https://arxiv.org/pdf/2210.02936">pdf</a>, <a href="https://arxiv.org/format/2210.02936">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.073401">10.1103/PhysRevLett.131.073401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Functional building blocks for scalable multipartite entanglement in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+H">Hui Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+A">An Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Han-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+P">Pei-Yue Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Y">Ying-Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xuan-Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+S">Song-Tao Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+B">Bin-Chen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+B">Bo Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Meng-Da Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yu-Meng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+H">Han-Ning Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">You Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiongfeng Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02936v1-abstract-short" style="display: inline;"> Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02936v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02936v1-abstract-full" style="display: none;"> Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-reflected bichromatic superlattices. Here we developed a new architecture based on a cross-angle spin-dependent superlattice for implementing layers of quantum gates over moderately-separated atoms incorporated with a quantum gas microscope for single-atom manipulation. We created and verified functional building blocks for scalable multipartite entanglement by connecting Bell pairs to one-dimensional 10-atom chains and two-dimensional plaquettes of $2\times4$ atoms. This offers a new platform towards scalable quantum computation and simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02936v1-abstract-full').style.display = 'none'; document.getElementById('2210.02936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 073401 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09405">arXiv:2209.09405</a> <span> [<a href="https://arxiv.org/pdf/2209.09405">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c02701">10.1021/acs.nanolett.2c02701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Helical Luttinger liquid on the edge of a 2-dimensional topological antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yang Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jinjiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiyan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+Z">Zichen Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yongchao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+H">Hongxu Yao</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Q">Qiushi He</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Y">Yinping Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yihua Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09405v1-abstract-short" style="display: inline;"> Boundary helical Luttinger liquid (HLL) with broken bulk time-reversal symmetry belongs to a unique topological class which may occur in antiferromagnets (AFM). Here, we search for signatures of HLL on the edge of a recently discovered topological AFM, MnBi2Te4 even-layer. Using scanning superconducting quantum interference device, we directly image helical edge current in the AFM ground state app… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09405v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09405v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09405v1-abstract-full" style="display: none;"> Boundary helical Luttinger liquid (HLL) with broken bulk time-reversal symmetry belongs to a unique topological class which may occur in antiferromagnets (AFM). Here, we search for signatures of HLL on the edge of a recently discovered topological AFM, MnBi2Te4 even-layer. Using scanning superconducting quantum interference device, we directly image helical edge current in the AFM ground state appearing at its charge neutral point. Such helical edge state accompanies an insulating bulk which is topologically distinct from the ferromagnetic Chern insulator phase as revealed in a magnetic field driven quantum phase transition. The edge conductance of the AFM order follows a power-law as a function of temperature and source-drain bias which serves as strong evidence for HLL. Such HLL scaling is robust at finite fields below the quantum critical point. The observed HLL in a layered AFM semiconductor represents a highly tunable topological matter compatible with future spintronics and quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09405v1-abstract-full').style.display = 'none'; document.getElementById('2209.09405v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13171">arXiv:2208.13171</a> <span> [<a href="https://arxiv.org/pdf/2208.13171">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetic detection under high pressures using designed silicon vacancy centers in silicon carbide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jun-Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiao-Di Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+D">Di-Fan Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Ji-Yang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Y">Yu Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+H">Hai-An Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+W">Wan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wu-Xi Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+J">Jin-Wei Yan</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Z">Zhen-Xuan He</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zheng-Hao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+Z">Zhi-He Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hai-Ou Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">Wen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Gregoryanz%2C+E">Eugene Gregoryanz</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13171v2-abstract-short" style="display: inline;"> Pressure-induced magnetic phase transition is attracting interest due to its ability to detect superconducting behaviour at high pressures in diamond anvil cells. However, detection of the local sample magnetic properties is a great challenge due to the small sample chamber volume. Recently, optically detected magnetic resonance (ODMR) of nitrogen vacancy (NV) centers in diamond have been used for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13171v2-abstract-full').style.display = 'inline'; document.getElementById('2208.13171v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13171v2-abstract-full" style="display: none;"> Pressure-induced magnetic phase transition is attracting interest due to its ability to detect superconducting behaviour at high pressures in diamond anvil cells. However, detection of the local sample magnetic properties is a great challenge due to the small sample chamber volume. Recently, optically detected magnetic resonance (ODMR) of nitrogen vacancy (NV) centers in diamond have been used for in-situ pressure-induced phase transition detection. However, owing to their four orientation axes and temperature-dependent zero-field-splitting, interpreting the observed ODMR spectra of NV centers remain challenging. Here, we study the optical and spin properties of implanted silicon vacancy defects in 4H-SiC, which is single-axis and temperature-independent zero-field-splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in-situ magnetic detection at high pressures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13171v2-abstract-full').style.display = 'none'; document.getElementById('2208.13171v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09339">arXiv:2205.09339</a> <span> [<a href="https://arxiv.org/pdf/2205.09339">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Neutral polyphosphocholine-modified liposomes as boundary superlubricants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weifeng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Kampf%2C+N">Nir Kampf</a>, <a href="/search/cond-mat?searchtype=author&query=Klein%2C+J">Jacob Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09339v1-abstract-short" style="display: inline;"> Boundary lubrication is associated with two sliding molecularly thin lubricated film-coated surfaces, where the energy dissipation occurs at the slip-plane between lubricated films. The hydration lubrication paradigm, which accounts for ultralow friction in aqueous media, has been extended to various systems, with phosphatidylcholine (PC) lipids recognized as extremely efficient lubrication elemen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09339v1-abstract-full').style.display = 'inline'; document.getElementById('2205.09339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09339v1-abstract-full" style="display: none;"> Boundary lubrication is associated with two sliding molecularly thin lubricated film-coated surfaces, where the energy dissipation occurs at the slip-plane between lubricated films. The hydration lubrication paradigm, which accounts for ultralow friction in aqueous media, has been extended to various systems, with phosphatidylcholine (PC) lipids recognized as extremely efficient lubrication elements due to their high hydration level. In this work, we extend a previous study (Lin et al., Langmuir 35 (2019) 6048-6054), where a charged lipid-poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) conjugate was prepared, to the very different case of a neutral lipid-PMPC) conjugate. This neutral molecule stabilizes the liposomes by attaching highly water-soluble PMPC to the surface of liposomes with its lipid moieties incorporated in the lipid bilayers. Such neutral polyphosphocholinated liposomes provide a surface lubricity which is well within the superlubrication regime (coefficient of friction = ca. 10-3 or even lower). In contrast, negatively charged lipid/polyphosphocholine conjugates modified liposomes were unable to adsorb on negatively-charged (mica) surfaces. Our method provides stable liposomes that can adsorb on negatively charged surfaces and provide superlubricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09339v1-abstract-full').style.display = 'none'; document.getElementById('2205.09339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://authors.elsevier.com/sd/article/S0927-7757(22)00973-6</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.12428">arXiv:2204.12428</a> <span> [<a href="https://arxiv.org/pdf/2204.12428">pdf</a>, <a href="https://arxiv.org/format/2204.12428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.1c23276">10.1021/acsami.1c23276 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chirality-Induced Noncollinear Magnetization and Asymmetric Domain-Wall Propagation in Hydrogenated CoPd Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wei-Hsiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+C">Ching-Yang Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chak-Ming Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wen-Chin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+P">Pei-hsun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.12428v1-abstract-short" style="display: inline;"> Array-patterned CoPd-based heterostructures are created through e-beam lithography and plasma pretreatment that induces oxidation with depth gradient in the CoPd alloy films, breaking the central symmetry of the structure. Effects on the magnetic properties of the follow-up hydrogenation of the thin film are observed via magneto-optic Kerr effect microscopy. The system exhibits strong vertical and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12428v1-abstract-full').style.display = 'inline'; document.getElementById('2204.12428v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.12428v1-abstract-full" style="display: none;"> Array-patterned CoPd-based heterostructures are created through e-beam lithography and plasma pretreatment that induces oxidation with depth gradient in the CoPd alloy films, breaking the central symmetry of the structure. Effects on the magnetic properties of the follow-up hydrogenation of the thin film are observed via magneto-optic Kerr effect microscopy. The system exhibits strong vertical and lateral antiferromagnetic coupling in the perpendicular component between the areas with and without plasma pretreatment, and asymmetric domain-wall propagation in the plasma-pretreated areas during magnetization reversal. These phenomenon exhibit evident magnetic chirality and can be interpreted with the Ruderman-Kittel-Kasuya-Yosida coupling and the Dzyaloshinskii-Moriya interaction (DMI). The sample processing demonstrated in this study allows easy incorporation of lithography techniques that can define areas with or without DMI to create intricate magnetic patterns on the sample, which provides an avenue towards more sophisticate control of canted spin textures in future spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12428v1-abstract-full').style.display = 'none'; document.getElementById('2204.12428v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary materials available at https://pubs.acs.org/doi/10.1021/acsami.1c23276#notes-1</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16858">arXiv:2203.16858</a> <span> [<a href="https://arxiv.org/pdf/2203.16858">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-022-1932-9">10.1007/s11433-022-1932-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct visualization of percolating metal-insulator transition in V2O3 using scanning microwave impedance microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiyan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Huanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kalcheim%2C+Y">Yoav Kalcheim</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xinchen Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fubao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yang Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yang Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yihua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiping Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Schuller%2C+I+K">Ivan K. Schuller</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16858v1-abstract-short" style="display: inline;"> Using the extensively studied V2O3 as a prototype system, we investigate the role of percolation in metal-insulator transition (MIT). We apply scanning microwave impedance microscopy to directly determine the metallic phase fraction p and relate it to the macroscopic conductance G, which shows a sudden jump when p reaches the percolation threshold. Interestingly, the conductance G exhibits a hyste… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16858v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16858v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16858v1-abstract-full" style="display: none;"> Using the extensively studied V2O3 as a prototype system, we investigate the role of percolation in metal-insulator transition (MIT). We apply scanning microwave impedance microscopy to directly determine the metallic phase fraction p and relate it to the macroscopic conductance G, which shows a sudden jump when p reaches the percolation threshold. Interestingly, the conductance G exhibits a hysteretic behavior against p, suggesting two different percolating processes upon cooling and warming. Based on our image analysis and model simulation, we ascribe such hysteretic behavior to different domain nucleation and growth processes between cooling and warming, which is likely caused by the decoupled structural and electronic transitions in V2O3 during MIT. Our work provides a microscopic view of how the interplay of structural and electronic degrees of freedom affects MIT in strongly correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16858v1-abstract-full').style.display = 'none'; document.getElementById('2203.16858v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics & Astronomy, 65(9), 297411 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04442">arXiv:2202.04442</a> <span> [<a href="https://arxiv.org/pdf/2202.04442">pdf</a>, <a href="https://arxiv.org/format/2202.04442">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0087772">10.1063/5.0087772 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Precision, Low Excitation Capactiance Measurement Methods from 10 mK- to Room-Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+X">Xing Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Y">Yuanjun Song</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hong Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04442v1-abstract-short" style="display: inline;"> Capacitance measurement is a useful technique in studying quantum devices, as it directly probes the local particle charging properties, i.e. the system compressibility. Here we report one approach which can measure capacitance from mK to room temperature with excellent accuracy. Our experiments show that such a high-precision technique is able to reveal delicate and essential properties of high-m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04442v1-abstract-full').style.display = 'inline'; document.getElementById('2202.04442v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04442v1-abstract-full" style="display: none;"> Capacitance measurement is a useful technique in studying quantum devices, as it directly probes the local particle charging properties, i.e. the system compressibility. Here we report one approach which can measure capacitance from mK to room temperature with excellent accuracy. Our experiments show that such a high-precision technique is able to reveal delicate and essential properties of high-mobility two-dimensional electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04442v1-abstract-full').style.display = 'none'; document.getElementById('2202.04442v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10420">arXiv:2201.10420</a> <span> [<a href="https://arxiv.org/pdf/2201.10420">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.165411">10.1103/PhysRevB.105.165411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influences of the dissipative topological edge state on quantized transport in MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiyan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yang Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yongchao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+Z">Zichen Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yihua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10420v1-abstract-short" style="display: inline;"> The beauty of quantum Hall (QH) effect is the metrological precision of Hall resistance quantization that originates from the topological edge states. Understanding the factors that lead to quantization breakdown not only provides important insights on the nature of the topological protection of these edge states, but is beneficial for device applications involving such quantized transport. In thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10420v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10420v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10420v1-abstract-full" style="display: none;"> The beauty of quantum Hall (QH) effect is the metrological precision of Hall resistance quantization that originates from the topological edge states. Understanding the factors that lead to quantization breakdown not only provides important insights on the nature of the topological protection of these edge states, but is beneficial for device applications involving such quantized transport. In this work, we combine conventional transport and real space conductivity mapping to investigate whether the quantization breakdown is tied to the disappearance of edge state in the hotly studied MnBi2Te4 system. Our experimental results unambiguously show that topological edge state does exist when quantization breakdown occurs. Such edge state is dissipative in nature and could lead to a quantization breakdown due to its diffusive character causing overlapping with bulk and other edge states in real devices. Our findings bring attentions to issues that are generally inaccessible in the transport study of QH, but can play important roles in practical measurements and device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10420v1-abstract-full').style.display = 'none'; document.getElementById('2201.10420v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 165411 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06203">arXiv:2201.06203</a> <span> [<a href="https://arxiv.org/pdf/2201.06203">pdf</a>, <a href="https://arxiv.org/format/2201.06203">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/39/9/097301">10.1088/0256-307X/39/9/097301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capacitive Response of Wigner Crystals at the Quantum Hall Plateau </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Chung%2C+Y+J">Y. J. Chung</a>, <a href="/search/cond-mat?searchtype=author&query=Baldwin%2C+K+W">K. W. Baldwin</a>, <a href="/search/cond-mat?searchtype=author&query=Pfeiffer%2C+L+N">L. N. Pfeiffer</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06203v1-abstract-short" style="display: inline;"> In this report, we study ultra-high-mobility two-dimensional (2D) electron/hole systems with high precision capacitance measurement. We find that the capacitance charge appears only at the fringe of the gate at high magnetic field when the 2D conductivity decreases significantly. At integer quantum Hall effects, the capacitance vanishes and forms a plateau at high temperatures $T\gtrsim 300$ mK, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06203v1-abstract-full').style.display = 'inline'; document.getElementById('2201.06203v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06203v1-abstract-full" style="display: none;"> In this report, we study ultra-high-mobility two-dimensional (2D) electron/hole systems with high precision capacitance measurement. We find that the capacitance charge appears only at the fringe of the gate at high magnetic field when the 2D conductivity decreases significantly. At integer quantum Hall effects, the capacitance vanishes and forms a plateau at high temperatures $T\gtrsim 300$ mK, which surprisingly, disappears at $T\lesssim 100$ mK. This anomalous behavior is likely a manifestation that the dilute particles/vacancies in the top-most Landau level form Wigner crystal, which has finite compressibility and can host polarization current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06203v1-abstract-full').style.display = 'none'; document.getElementById('2201.06203v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05079">arXiv:2112.05079</a> <span> [<a href="https://arxiv.org/pdf/2112.05079">pdf</a>, <a href="https://arxiv.org/format/2112.05079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.224420">10.1103/PhysRevB.104.224420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exchange-bias dependent diffusion rate of hydrogen discovered from evolution of hydrogen-induced noncollinear magnetic anisotropy in FePd thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wei-Hsiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Y">Yu-Song Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Sheu%2C+H">Hwo-Shuenn Sheu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wen-Chin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+P">Pei-hsun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05079v1-abstract-short" style="display: inline;"> Hydrogenation-induced noncollinear magnetic anisotropy is observed from the evolution of the magnetic domains in FePd alloy thin films using magneto-optic Kerr effect (MOKE) microscopy. MOKE images reveal complicated competitions between different magnetic anisotropies during hydrogen diffusion into the film. An intriguing enhancement of the hydrogen diffusion rate due to the presence of an initia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05079v1-abstract-full').style.display = 'inline'; document.getElementById('2112.05079v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05079v1-abstract-full" style="display: none;"> Hydrogenation-induced noncollinear magnetic anisotropy is observed from the evolution of the magnetic domains in FePd alloy thin films using magneto-optic Kerr effect (MOKE) microscopy. MOKE images reveal complicated competitions between different magnetic anisotropies during hydrogen diffusion into the film. An intriguing enhancement of the hydrogen diffusion rate due to the presence of an initial exchange bias induced by a high magnet field is thereby discovered, pointing to an additional scope of controllability of magnetic metal hydrides as potential future hydrogen sensing and storage materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05079v1-abstract-full').style.display = 'none'; document.getElementById('2112.05079v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05767">arXiv:2111.05767</a> <span> [<a href="https://arxiv.org/pdf/2111.05767">pdf</a>, <a href="https://arxiv.org/format/2111.05767">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.surfin.2021.101582">10.1016/j.surfin.2021.101582 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dependence of magnetic domain patterns on plasma-induced differential oxidation of CoPd thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wei-Hsiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chak-Ming Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chuang%2C+T">Tzu-Hung Chuang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+D">Der-Hsin Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wen-Chin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+P">Pei-hsun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05767v1-abstract-short" style="display: inline;"> We demonstrate the evolution of the micro-patterned magnetic domains in CoPd thin films pretreated with e-beam lithography and O2 plasma. During the days-long oxidation, significantly different behaviors of the patterned magnetic domains under magnetization reversal are observed via magneto-optic Kerr effect microscopy on different days. The evolution of the magnetic behaviors indicate critical ch… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05767v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05767v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05767v1-abstract-full" style="display: none;"> We demonstrate the evolution of the micro-patterned magnetic domains in CoPd thin films pretreated with e-beam lithography and O2 plasma. During the days-long oxidation, significantly different behaviors of the patterned magnetic domains under magnetization reversal are observed via magneto-optic Kerr effect microscopy on different days. The evolution of the magnetic behaviors indicate critical changes in the local magnetic anisotropy energies due to the Co oxides that evolve into different oxide forms, which are characterized by micro-area X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. The coercive field of the area pre-exposed to plasma can decrease to a value 10 Oe smaller than that unexposed to plasma, whereas after a longer duration of oxidation the coercive field can instead become larger in the area pre-exposed to plasma than that unexposed, leading to an opposite magnetic pattern. Various forms of oxidation can therefore provide an additional dimension for magnetic-domain engineering to the current conventional lithographies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05767v1-abstract-full').style.display = 'none'; document.getElementById('2111.05767v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary materials available at https://www.sciencedirect.com/science/article/pii/S2468023021006544#ec-research-data</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14073">arXiv:2110.14073</a> <span> [<a href="https://arxiv.org/pdf/2110.14073">pdf</a>, <a href="https://arxiv.org/format/2110.14073">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pair Fluctuation Effects on Quasiparticle Transport in Fermi Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei-Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Sauls%2C+J+A">J. A. Sauls</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14073v1-abstract-short" style="display: inline;"> The leading corrections to Fermi liquid theory for non-equilibrium quasiparticle transport near a Cooper instability arise from the virtual emission and absorption of incipient Cooper pairs. We formulate the corrections to the Landau-Boltzmann transport equation starting from Keldysh's field theory for non-equilibrium, strongly interacting Fermions. The theory is applicable to quasiparticle transp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14073v1-abstract-full').style.display = 'inline'; document.getElementById('2110.14073v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14073v1-abstract-full" style="display: none;"> The leading corrections to Fermi liquid theory for non-equilibrium quasiparticle transport near a Cooper instability arise from the virtual emission and absorption of incipient Cooper pairs. We formulate the corrections to the Landau-Boltzmann transport equation starting from Keldysh's field theory for non-equilibrium, strongly interacting Fermions. The theory is applicable to quasiparticle transport in conventional and unconventional superconductors, dense nuclear matter and the low temperature phases of liquid $^3$He. Validation of the theory is provided by our analysis, and quantitative agreement between theory and experiment, of the excess attenuation of zero sound in liquid $^3$He near the superfluid transition. We propose an additional experimental test of the theory based on the effects of a Zeeman field on the spectrum of pairing fluctuations for the Cooper instability in spin-triplet superfluids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14073v1-abstract-full').style.display = 'none'; document.getElementById('2110.14073v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages plus Supplamental Material; 3 figures. arXiv admin note: text overlap with arXiv:2110.10339</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12445">arXiv:2110.12445</a> <span> [<a href="https://arxiv.org/pdf/2110.12445">pdf</a>, <a href="https://arxiv.org/format/2110.12445">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-021-02659-8">10.1007/s10909-021-02659-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pairing Fluctuation Corrections to the Kinetic Theory of Liquid $^3\mathrm{He}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei-Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Sauls%2C+J+A">J. A. Sauls</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12445v2-abstract-short" style="display: inline;"> Liquid $^3\mathrm{He}$ is a Fermi liquid that undergoes a BCS-type phase transition to a spin-triplet superfluid, making it valuable for understanding interacting fermions. When the temperature approaches the transition temperature $T_{\mathrm{c}}$ from above, physical properties can be modified by Cooper pair fluctuations, leading to deviations from the predictions of Fermi liquid theory. We use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12445v2-abstract-full').style.display = 'inline'; document.getElementById('2110.12445v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12445v2-abstract-full" style="display: none;"> Liquid $^3\mathrm{He}$ is a Fermi liquid that undergoes a BCS-type phase transition to a spin-triplet superfluid, making it valuable for understanding interacting fermions. When the temperature approaches the transition temperature $T_{\mathrm{c}}$ from above, physical properties can be modified by Cooper pair fluctuations, leading to deviations from the predictions of Fermi liquid theory. We use nonequilibrium Green's function theory to study the role of pair fluctuations on quasiparticle transport. The Boltzmann-Landau kinetic equation, which describes the transport properties of Fermi liquids, acquires corrections from the interaction of quasiparticles with pair fluctuations. As an application, we study the effects of pair fluctuations on the propagation of zero sound in liquid $^3\mathrm{He}$. We calculate the temperature-dependent correction to the zero sound velocity due to pair fluctuations, and compare the result with existing experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12445v2-abstract-full').style.display = 'none'; document.getElementById('2110.12445v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures with appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10339">arXiv:2110.10339</a> <span> [<a href="https://arxiv.org/pdf/2110.10339">pdf</a>, <a href="https://arxiv.org/format/2110.10339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac027">10.1093/ptep/ptac027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of Incipient Pairing on Non-equilibrium Quasiparticle Transport in Fermi Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei-Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Sauls%2C+J+A">J. A. Sauls</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10339v1-abstract-short" style="display: inline;"> The low temperature properties of a wide range of many-fermion systems are well understood within the framework of Landau's theory of Fermi liquids. The low-energy physics of these systems is governed by interacting fermionic quasiparticles with momenta and energies near a Fermi surface in momentum space. Nonequilibrium properties are described by a kinetic equation for the distribution function f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2110.10339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10339v1-abstract-full" style="display: none;"> The low temperature properties of a wide range of many-fermion systems are well understood within the framework of Landau's theory of Fermi liquids. The low-energy physics of these systems is governed by interacting fermionic quasiparticles with momenta and energies near a Fermi surface in momentum space. Nonequilibrium properties are described by a kinetic equation for the distribution function for quasiparticles proposed by Landau. Quasiparticle interactions with other quasiparticles, phonons or impurities lead to internal forces acting on a distribution of nonequilibrium quasiparticles, as well as collision processes that ultimately limit the transport of mass, heat, charge and magnetization, as well as limit the coherence times of quasiparticles. For Fermi liquids that are close to a second order phase transition, e.g. Fermi liquids that undergo a superfluid transition, \emph{incipient} Cooper pairs - long-lived fluctuations of the ordered phase - provide a new channel for scattering quasiparticles, as well as corrections to internal forces acting on the distribution of nonequilibrium quasiparticles. We develop the theory of quasiparticle transport for Fermi liquids in the vicinity of a BCS-type superfluid transition starting from Keldysh's field theory for non-equilibrium, strongly interacting fermions. The leading corrections to Fermi liquid theory for non-equilibrium quasiparticle transport near a Cooper instability arise from the virtual emission and absorption of incipient Cooper pairs. Our theory is applicable to quasiparticle transport in superconductors, nuclear matter and the low temperature phases of liquid $^3$He. As an implementation of the theory we calculate the pairing fluctuation corrections to the attenuation of zero sound in liquid $^3$He near the superfluid transition and demonstrate quantitative agreement with experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10339v1-abstract-full').style.display = 'none'; document.getElementById('2110.10339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog Theor Exp Phys (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02461">arXiv:2110.02461</a> <span> [<a href="https://arxiv.org/pdf/2110.02461">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.1c09592">10.1021/acsnano.1c09592 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial Growth of Ultraflat Bismuthene with Large Topological Band Inversion Enabled by Substrate-Orbital-Filtering Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+J">Jing-Yang You</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+S">Sisheng Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Gou%2C+J">Jian Gou</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+Y">Yongzheng Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weinan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+X">Xu Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+T">Tengyu Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jiawei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuli Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yihe Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wee%2C+A+T+S">Andrew T. S. Wee</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y+P">Yuan Ping Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+L">Lei Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J+L">Jia Lin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Wei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02461v2-abstract-short" style="display: inline;"> Quantum spin Hall (QSH) systems hold promises of low-power-consuming spintronic devices, yet their practical applications are extremely impeded by the small energy gaps. Fabricating QSH materials with large gaps, especially under the guidance of design principles, is essential for both scientific research and practical applications. Here, we demonstrate that large on-site atomic spin-orbit couplin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02461v2-abstract-full').style.display = 'inline'; document.getElementById('2110.02461v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02461v2-abstract-full" style="display: none;"> Quantum spin Hall (QSH) systems hold promises of low-power-consuming spintronic devices, yet their practical applications are extremely impeded by the small energy gaps. Fabricating QSH materials with large gaps, especially under the guidance of design principles, is essential for both scientific research and practical applications. Here, we demonstrate that large on-site atomic spin-orbit coupling can be directly exploited via the intriguing substrate-orbital-filtering effect to generate large-gap QSH systems and experimentally realized on the epitaxially synthesized ultraflat bismuthene on Ag(111). Theoretical calculations reveal that the underlying substrate selectively filters Bi pz orbitals away from the Fermi level, leading pxy orbitals with nonzero magnetic quantum numbers, resulting in large topological gap of ~1 eV at the K point. The corresponding topological edge states are identified through scanning tunneling spectroscopy combined with density functional theory calculations. Our findings provide general strategies to design large-gap QSH systems and further explore their topology-related physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02461v2-abstract-full').style.display = 'none'; document.getElementById('2110.02461v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04955">arXiv:2107.04955</a> <span> [<a href="https://arxiv.org/pdf/2107.04955">pdf</a>, <a href="https://arxiv.org/format/2107.04955">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Exploring low lattice thermal conductivity materials using chemical bonding principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Jiangang He</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+Y">Yi Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenwen Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Pal%2C+K">Koushik Pal</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yizhou Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Kanatzidis%2C+M+G">Mercouri G. Kanatzidis</a>, <a href="/search/cond-mat?searchtype=author&query=Wolverton%2C+C">Chris Wolverton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04955v1-abstract-short" style="display: inline;"> Semiconductors with very low lattice thermal conductivities are highly desired for applications relevant to thermal energy conversion and management, such as thermoelectrics and thermal barrier coatings. Although the crystal structure and chemical bonding are known to play vital roles in shaping heat transfer behavior, material design approaches of lowering lattice thermal conductivity using chemi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04955v1-abstract-full').style.display = 'inline'; document.getElementById('2107.04955v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04955v1-abstract-full" style="display: none;"> Semiconductors with very low lattice thermal conductivities are highly desired for applications relevant to thermal energy conversion and management, such as thermoelectrics and thermal barrier coatings. Although the crystal structure and chemical bonding are known to play vital roles in shaping heat transfer behavior, material design approaches of lowering lattice thermal conductivity using chemical bonding principles are uncommon. In this work, we present an effective strategy of weakening interatomic interactions and therefore suppressing lattice thermal conductivity based on chemical bonding principles and develop a high-efficiency approach of discovering low $魏_{\rm L}$ materials by screening the local coordination environments of crystalline compounds. The followed first-principles calculations uncover 30 hitherto unexplored compounds with (ultra)low lattice thermal conductivities from thirteen prototype crystal structures contained in the inorganic crystal structure database. Furthermore, we demonstrate an approach of rationally designing high-performance thermoelectrics by additionally incorporating cations with stereochemically active lone-pair electrons. Our results not only provide fundamental insights into the physical origin of the low lattice thermal conductivity in a large family of copper-based compounds but also offer an efficient approach to discovery and design materials with targeted thermal transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04955v1-abstract-full').style.display = 'none'; document.getElementById('2107.04955v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.16212">arXiv:2106.16212</a> <span> [<a href="https://arxiv.org/pdf/2106.16212">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain-induced topological phase transition in two-dimensional platinum ditelluride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiesen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wanxing Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D+X">D. X. Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.16212v1-abstract-short" style="display: inline;"> Topological phase transition is a hot topic in condensed matter physics and computational material science. Here, we investigate the electronic structure and phonon dispersion of the two-dimensional (2D) platinum ditelluride ($PtTe_2$) using the density functional theory. It is found that the $PtTe_2$ monolayer is a trivial insulator with an indirect band gap of 0.347eV. Based on parity analysis,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.16212v1-abstract-full').style.display = 'inline'; document.getElementById('2106.16212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.16212v1-abstract-full" style="display: none;"> Topological phase transition is a hot topic in condensed matter physics and computational material science. Here, we investigate the electronic structure and phonon dispersion of the two-dimensional (2D) platinum ditelluride ($PtTe_2$) using the density functional theory. It is found that the $PtTe_2$ monolayer is a trivial insulator with an indirect band gap of 0.347eV. Based on parity analysis, the biaxial tensile strain can drive the topological phase transition. As the strain reaches 19.3%, $PtTe_2$ undergoes a topological phase transition, which changes from a trivial band insulator to a topological insulator with $Z_2=1$. Unlike conventional honeycomb 2D materials with topological phase transition, which gap closes at K points, the strained $PtTe_2$ monolayer becomes gapless at M points under critical biaxial strain. The band inversion leads the switch of the parities near the Fermi level, which gives rise to the topological phase transition. The novel monolayer $PtTe_2$ has a potential application in the field of micro-electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.16212v1-abstract-full').style.display = 'none'; document.getElementById('2106.16212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.10234">arXiv:2105.10234</a> <span> [<a href="https://arxiv.org/pdf/2105.10234">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-35482-0">10.1038/s41467-022-35482-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct visualization of edge state in even-layer MnBi2Te4 at zero magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weiyan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yang Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yongchao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jinjiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+Z">Zichen Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Huanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yihua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chui-Zhen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.10234v3-abstract-short" style="display: inline;"> Being the first intrinsic antiferromagnetic(AFM) topological insulator(TI), MnBi2Te4 is argued to be a topological axion state in its even-layer form due to the antiparallel magnetization between the top and bottom layers. Here we combine both transport and scanning microwave impedance microscopy(sMIM) to investigate such axion state in atomically thin MnBi2Te4 with even-layer thickness at zero ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10234v3-abstract-full').style.display = 'inline'; document.getElementById('2105.10234v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.10234v3-abstract-full" style="display: none;"> Being the first intrinsic antiferromagnetic(AFM) topological insulator(TI), MnBi2Te4 is argued to be a topological axion state in its even-layer form due to the antiparallel magnetization between the top and bottom layers. Here we combine both transport and scanning microwave impedance microscopy(sMIM) to investigate such axion state in atomically thin MnBi2Te4 with even-layer thickness at zero magnetic field. While transport measurements show a zero Hall plateau signaturing the axion state, sMIM uncovers an unexpected edge state raising questions regarding the nature of the 'axion state'. Based on our model calculation, we propose that the edge state of even-layer MnBi2Te4 at zero field is derived from gapped helical edge states of the quantum spin Hall effect with time-reversal-symmetry breaking, when a crossover from a three-dimensional TI MnBi2Te4 to a two-dimensional TI occurs. Our finding thus signifies the richness of topological phases in MnB2Te4 that has yet to be fully explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10234v3-abstract-full').style.display = 'none'; document.getElementById('2105.10234v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 13, 7714 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.10625">arXiv:2102.10625</a> <span> [<a href="https://arxiv.org/pdf/2102.10625">pdf</a>, <a href="https://arxiv.org/ps/2102.10625">ps</a>, <a href="https://arxiv.org/format/2102.10625">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.174513">10.1103/PhysRevB.103.174513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin excitations in the heavily overdoped monolayer graphene superconductor: an analog to the cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wei-Jie Lin</a>, <a href="/search/cond-mat?searchtype=author&query=LiMing%2C+W">W. LiMing</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.10625v2-abstract-short" style="display: inline;"> Recently it was reported experimentally that the monolayer graphene can be doped to beyond the Van Hove singularity. We study theoretically the possible superconductivity and the corresponding spin excitations of the monolayer graphene in this doping region. A static spin-density-wave state is favorable due to the nested Fermi surface as the Fermi level is doped to the Van Hove singularity point.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10625v2-abstract-full').style.display = 'inline'; document.getElementById('2102.10625v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.10625v2-abstract-full" style="display: none;"> Recently it was reported experimentally that the monolayer graphene can be doped to beyond the Van Hove singularity. We study theoretically the possible superconductivity and the corresponding spin excitations of the monolayer graphene in this doping region. A static spin-density-wave state is favorable due to the nested Fermi surface as the Fermi level is doped to the Van Hove singularity point. Superconductivity may be realized upon further doping. The spin excitations in the superconducting state are studied theoretically based on the random phase approximation. The overall features are qualitatively the same with those in cuprate superconductors. Thus we have proposed an exciting possibility, namely, the heavily overdoped monolayer graphene can become a novel platform to study the unconventional superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10625v2-abstract-full').style.display = 'none'; document.getElementById('2102.10625v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 174513 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09878">arXiv:2011.09878</a> <span> [<a href="https://arxiv.org/pdf/2011.09878">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Photo-Excitation Dynamics in Electrochemically Charged CdSe Quantum Dots: from Hot Carrier Cooling to Auger Recombination of Negative Trions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Honarfar%2C+A">Alireza Honarfar</a>, <a href="/search/cond-mat?searchtype=author&query=Mourad%2C+H">Hassan Mourad</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weihua Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Polukeev%2C+A">Alexey Polukeev</a>, <a href="/search/cond-mat?searchtype=author&query=Rahaman%2C+A">Ahibur Rahaman</a>, <a href="/search/cond-mat?searchtype=author&query=Abdellah%2C+M">Mohamed Abdellah</a>, <a href="/search/cond-mat?searchtype=author&query=Ch%C3%A1bera%2C+P">Pavel Ch谩bera</a>, <a href="/search/cond-mat?searchtype=author&query=Pankratova%2C+G">Galina Pankratova</a>, <a href="/search/cond-mat?searchtype=author&query=Gorton%2C+L">Lo Gorton</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+K">Kaibo Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Pullerits%2C+T">T枚nu Pullerits</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09878v1-abstract-short" style="display: inline;"> Fulfilling the potential of the colloidal semiconductor quantum dots (QDs) in electrically driven applications remains a challenge largely since operation of such devices involves charged QDs with drastically different photo-physical properties compared to their well-studied neutral counterparts. In this work, the full picture of excited state dynamics in charged CdSe QDs at various time-scales ha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09878v1-abstract-full').style.display = 'inline'; document.getElementById('2011.09878v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09878v1-abstract-full" style="display: none;"> Fulfilling the potential of the colloidal semiconductor quantum dots (QDs) in electrically driven applications remains a challenge largely since operation of such devices involves charged QDs with drastically different photo-physical properties compared to their well-studied neutral counterparts. In this work, the full picture of excited state dynamics in charged CdSe QDs at various time-scales has been revealed via transient absorption spectroscopy combined with electrochemistry as direct manipulation tool to control the negative charging of CdSe QDs. In trions, excited states of single charged QDs, the additional electron in the conduction band speeds up the hot electron cooling by enhanced electron-electron scattering followed by charge redistribution and polaron formation in picoseconds timescale. The trions are finally decayed by Auger process in 500 ps timescale. Double charging in QDs, on the other hand, decelerates the polaron formation process while accelerates the following Auger decay. Our work demonstrates the potential of photo-electrochemistry as a platform for ultrafast spectroscopy of charged species and paves a way for further studies to develop comprehensive knowledge of the photophysical processes in charged QDs more than the well-known Auger decay preparing their use in future optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09878v1-abstract-full').style.display = 'none'; document.getElementById('2011.09878v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.13641">arXiv:2008.13641</a> <span> [<a href="https://arxiv.org/pdf/2008.13641">pdf</a>, <a href="https://arxiv.org/format/2008.13641">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac0a19">10.1088/1361-648X/ac0a19 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-ion anisotropy effects on the critical behaviors of quantum entanglement and correlation in the spin-1 Heisenberg chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wanxing Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yu-Liang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhong-Qiang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chun-Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kong%2C+X">Xiang-Mu Kong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.13641v3-abstract-short" style="display: inline;"> Quantum entanglement and correlations in the spin-1 Heisenberg chain with single-ion anisotropy are investigated using the quantum renormalization group method. Negativity and quantum discord (QD) are calculated with various anisotropy parameters $\bigtriangleup$ and single-ion anisotropy parameters $D$. We focus on the relations between two abovementioned physical quantities and on transitions be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13641v3-abstract-full').style.display = 'inline'; document.getElementById('2008.13641v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.13641v3-abstract-full" style="display: none;"> Quantum entanglement and correlations in the spin-1 Heisenberg chain with single-ion anisotropy are investigated using the quantum renormalization group method. Negativity and quantum discord (QD) are calculated with various anisotropy parameters $\bigtriangleup$ and single-ion anisotropy parameters $D$. We focus on the relations between two abovementioned physical quantities and on transitions between the N茅el, Haldane, and Large-D phases. It is found that both negativity and QD exhibit step-like patterns in different phases as the size of the system increases. Interestingly, the single-ion anisotropy parameter $D$, which can be modulated using nuclear electric resonance (2020 \textit{Nature} \textbf{579} 205), plays an important role in tuning the quantum phase transition (QPT) of the system. Both the first partial derivative of the negativity and quantum discord with respect to $D$ or $\bigtriangleup$ exhibit nonanalytic behavior at the phase transition points, which corresponds directly to the divergence of the correlation length. The quantum correlation critical exponents derived from negativity and QD are equal, and are the reciprocal of the correlation length exponent at each critical point. This work extends the application of quantum entanglement and correlations as tools for depicting QPTs in spin-1 systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13641v3-abstract-full').style.display = 'none'; document.getElementById('2008.13641v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 J. Phys.: Condens. Matter 33 345802 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lin%2C+W&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lin%2C+W&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lin%2C+W&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lin%2C+W&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>