CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 340 results for author: <span class="mathjax">Huang, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Huang%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Huang, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Huang%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Huang, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04830">arXiv:2411.04830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04830">pdf</a>, <a href="https://arxiv.org/format/2411.04830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Non-destructive imaging of bulk electrical &#39;hidden&#39; state switching in a 1T-TaS2 cryo-memory device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Burri%2C+C">Corinna Burri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+D+F">Dario Ferreira Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wenxiang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+H+G">Henry G. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venturini%2C+R">Rok Venturini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McConnell%2C+A+G">Aidan G. McConnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dizdarevic%2C+F">Faris Dizdarevic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mraz%2C+A">Anze Mraz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svetin%2C+D">Damjan Svetin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lipovsek%2C+B">Benjamin Lipovsek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Topic%2C+M">Marko Topic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kazazis%2C+D">Dimitrios Kazazis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aeppli%2C+G">Gabriel Aeppli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grolimund%2C+D">Daniel Grolimund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ekinci%2C+Y">Yasin Ekinci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihailovic%2C+D">Dragan Mihailovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">Simon Gerber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04830v1-abstract-short" style="display: inline;"> In transition metal dichalcogenides a plethora of emergent states arise from competing electron-electron and electron-phonon interactions. Among these, the non-volatile metallic &#39;hidden&#39; state of 1T-TaS2 can be induced from its insulating equilibrium charge-density wave ground state using either optical or electrical pulses. Here we report in-operando micro-beam X-ray diffraction, fluorescence, an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04830v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04830v1-abstract-full" style="display: none;"> In transition metal dichalcogenides a plethora of emergent states arise from competing electron-electron and electron-phonon interactions. Among these, the non-volatile metallic &#39;hidden&#39; state of 1T-TaS2 can be induced from its insulating equilibrium charge-density wave ground state using either optical or electrical pulses. Here we report in-operando micro-beam X-ray diffraction, fluorescence, and concurrent transport measurements, allowing us to spatially image the non-thermal hidden state induced by electrical switching of a 1T-TaS2 device. Our findings reveal that the electrically and optically switched hidden states are structurally equivalent. Additionally, we observe a bulk switching channel extending beyond the intergap space to partially underneath the electrodes, suggesting that the non-equilibrium phase is caused by a combination of charge flow and lattice response. Besides identifying strain propagation as an important factor for non-thermal switching of layered materials, our results illustrate the power of non-destructive, three-dimensional X-ray imaging for studying phase-change materials and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04830v1-abstract-full').style.display = 'none'; document.getElementById('2411.04830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01905">arXiv:2411.01905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01905">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adq2977">10.1126/science.adq2977 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bright dipolar excitons in twisted black phosphorus homostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shenyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B">Boyang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yixuan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+C">Chenghao Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Junwei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yaozhenghang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Ke Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Hua Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yuchen Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Q">Qiaoxia Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+L">Lei Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiasheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mou%2C+Y">Yanlin Mou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hugen Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01905v1-abstract-short" style="display: inline;"> Bright dipolar excitons, which contain electrical dipoles and have high oscillator strength, are an ideal platform for studying correlated quantum phenomena. They usually rely on carrier tunneling between two quantum wells or two layers to hybridize with nondipolar excitons to gain oscillator strength. In this work, we uncovered a new type of bright infrared dipolar exciton by stacking 90掳-twisted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01905v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01905v1-abstract-full" style="display: none;"> Bright dipolar excitons, which contain electrical dipoles and have high oscillator strength, are an ideal platform for studying correlated quantum phenomena. They usually rely on carrier tunneling between two quantum wells or two layers to hybridize with nondipolar excitons to gain oscillator strength. In this work, we uncovered a new type of bright infrared dipolar exciton by stacking 90掳-twisted black phosphorus (BP) structures. These excitons, inherent to the reconstructed band structure, exhibit high oscillator strength. Most importantly, they inherit the linear polarization from BP, which allows light polarization to be used to select the dipole direction. Moreover, the dipole moment and resonance energy can be widely tuned by the thickness of the BP. Our results demonstrate a useful platform for exploring tunable correlated dipolar excitons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01905v1-abstract-full').style.display = 'none'; document.getElementById('2411.01905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science386,526-531(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01747">arXiv:2410.01747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01747">pdf</a>, <a href="https://arxiv.org/format/2410.01747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Hysteresis design of non-stoichiometric Fe2P-type alloys with giant magnetocaloric Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ghorai%2C+S">Sagar Ghorai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clulow%2C+R">Rebecca Clulow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cedervall%2C+J">Johan Cedervall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shuo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ericsson%2C+T">Tore Ericsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4ggstr%C3%B6m%2C+L">Lennart H盲ggstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skini%2C+R">Ridha Skini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shtender%2C+V">Vitalii Shtender</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vitos%2C+L">Levente Vitos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eriksson%2C+O">Olle Eriksson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheibel%2C+F">Franziska Scheibel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutfleisch%2C+O">Oliver Gutfleisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahlberg%2C+M">Martin Sahlberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svedlindh%2C+P">Peter Svedlindh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01747v1-abstract-short" style="display: inline;"> The non-stoichiometric Fe$_2$P-type (FeMnP$_{0.5}$Si$_{0.5}$)$_{1-x}$(FeV)$_{x}$ alloys ( $x=0, 0.01$, $0.02$, and $0.03$) have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration, $x$, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01747v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01747v1-abstract-full" style="display: none;"> The non-stoichiometric Fe$_2$P-type (FeMnP$_{0.5}$Si$_{0.5}$)$_{1-x}$(FeV)$_{x}$ alloys ( $x=0, 0.01$, $0.02$, and $0.03$) have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration, $x$, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. The strong magnetoelastic coupling in these alloys results in large values of the isothermal entropy change ($螖S_M$); $15.7$ J/kgK, at $2$ T magnetic field for the $x = 0$ alloy. $螖S_M$ decreases with increasing $x$. Results from M{枚}ssbauer spectroscopy reveal that the average hyperfine field (in the ferromagnetic state) and average center shift (in the paramagnetic state) have the same decreasing trend as $螖S_M$. The thermal hysteresis ($螖T_{hyst}$) of the magnetic phase transition decreases with increasing $x$, while the mechanical stability of the alloys improves due to the reduced lattice volume change across the magnetoelastic phase transition. The adiabatic temperature change $螖T_{ad}$, which highly depends on $螖T_{hyst}$, is $1.7$ K at $1.9$ T applied field for the $x = 0.02$ alloy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01747v1-abstract-full').style.display = 'none'; document.getElementById('2410.01747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00119">arXiv:2410.00119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00119">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant and Tunable Bosonic Quantum Interference Induced by Two-Dimensional Metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kunyan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maniyara%2C+R+A">Rinu Abraham Maniyara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuanxi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jain%2C+A">Arpit Jain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wetherington%2C+M+T">Maxwell T. Wetherington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mai%2C+T+T">Thuc T. Mai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">Chengye Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+T">Timothy Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotkin%2C+S+V">Slava V. Rotkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+A+R+H">Angela R. Hight Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crespi%2C+V+H">Vincent H. Crespi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+J">Joshua Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shengxi Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00119v1-abstract-short" style="display: inline;"> Harnessing quantum interference among bosons provides significant opportunities as bosons often carry longer coherence time than fermions. As an example of quantum interference, Fano resonance involving phonons or photons describes the coupling between discrete and continuous states, signified by an asymmetric spectral lineshape. Utilizing photon-based Fano resonance, molecule sensing with ultra-h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00119v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00119v1-abstract-full" style="display: none;"> Harnessing quantum interference among bosons provides significant opportunities as bosons often carry longer coherence time than fermions. As an example of quantum interference, Fano resonance involving phonons or photons describes the coupling between discrete and continuous states, signified by an asymmetric spectral lineshape. Utilizing photon-based Fano resonance, molecule sensing with ultra-high sensitivity and ultrafast optical switching has been realized. However, phonon-based Fano resonance, which would expand the application space to a vaster regime, has been less exploited because of the weak coupling between discrete phonons with continuous states such as electronic continuum. In this work, we report the discovery of giant phonon-based Fano resonance in a graphene/2D Ag/SiC heterostructure. The Fano asymmetry, being proportional to the coupling strength, exceeds prior reports by two orders of magnitude. This Fano asymmetry arises from simultaneous frequency and lifetime matching between discrete and continuous phonons of SiC. The introduction of 2D Ag layers restructures SiC at the interface and facilitates resonant scattering to further enhance the Fano asymmetry, which is not achievable with conventional Ag thin films. With these unique properties, we demonstrated that the phonon-based Fano resonance can be used for ultrasensitive molecule detection at the single-molecule level. Our work highlights strong Fano resonance in the phononic system, opening avenues for engineering quantum interference based on bosons. Further, our findings provide opportunities for advancing phonon-related applications, including biochemical sensing, quantum transduction, and superconductor-based quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00119v1-abstract-full').style.display = 'none'; document.getElementById('2410.00119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10099">arXiv:2409.10099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10099">pdf</a>, <a href="https://arxiv.org/format/2409.10099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Dispersion of first sound in a weakly interacting ultracold Fermi liquid: an exact calculation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Repplinger%2C+T">Thomas Repplinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Navon%2C+N">Nir Navon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurkjian%2C+H">Hadrien Kurkjian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10099v2-abstract-short" style="display: inline;"> At low temperature, a normal gas of unpaired spin-1/2 fermions is one of the cleanest realizations of a Fermi liquid. It is described by Landau&#39;s theory, where no phenomenological parameters are needed as the quasiparticle interaction function can be computed perturbatively in powers of the scattering length $a$, the sole parameter of the short-range interparticle interactions. Obtaining an accura&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10099v2-abstract-full').style.display = 'inline'; document.getElementById('2409.10099v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10099v2-abstract-full" style="display: none;"> At low temperature, a normal gas of unpaired spin-1/2 fermions is one of the cleanest realizations of a Fermi liquid. It is described by Landau&#39;s theory, where no phenomenological parameters are needed as the quasiparticle interaction function can be computed perturbatively in powers of the scattering length $a$, the sole parameter of the short-range interparticle interactions. Obtaining an accurate solution of the transport equation nevertheless requires a careful treatment of the collision kernel, as the uncontrolled error made by the relaxation time approximations increases when the temperature $T$ drops below the Fermi temperature. Here, we study sound waves in the hydrodynamic regime up to second order in the Chapman-Enskog&#39;s expansion. We find that the frequency $蠅_q$ of the sound wave is shifted above its linear depart as $蠅_q=c_1 q(1+伪q^2蟿^2)$ where $c_1$ and $q$ are the speed and wavenumber of the wave and the typical collision time $蟿$ scales as $1/a^2T^2$. Besides the shear viscosity, the coefficient $伪$ is described by a single second-order collision time which we compute exactly from an analytical solution of the transport equation, resulting in a positive dispersion $伪&gt;0$. Our results suggest that ultracold atomic Fermi gases are an ideal experimental system for quantitative tests of second order hydrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10099v2-abstract-full').style.display = 'none'; document.getElementById('2409.10099v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08458">arXiv:2409.08458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08458">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Thickness-Dependent Polaron Crossover in Tellurene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kunyan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+C">Chuliang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kelly%2C+S">Shelly Kelly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+L">Liangbo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+S">Seoung-Hun Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jing Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruifang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yixiu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+G">Gang Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siriviboon%2C+P">Phum Siriviboon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+M">Mina Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+P">Peide Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenzhuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingda Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shengxi Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08458v1-abstract-short" style="display: inline;"> Polarons, quasiparticles arising from electron-phonon coupling, are crucial in understanding material properties such as high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have been performed to investigate the formation of polarons in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08458v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08458v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08458v1-abstract-full" style="display: none;"> Polarons, quasiparticles arising from electron-phonon coupling, are crucial in understanding material properties such as high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have been performed to investigate the formation of polarons in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene that are composed of chiral chains of tellurium atoms. The frequency and linewidth of the A1 phonon, which becomes increasingly polar for thinner tellurene, exhibit an abrupt change when the thickness of tellurene is below 10 nm. Meanwhile, the field effect mobility of tellurene drops rapidly as the thickness is smaller than 10 nm. These phonon and transport signatures, combined with the calculated phonon polarity and band structure, suggest a crossover from large polarons for bulk tellurium to small polarons for few-layer tellurene. Effective field theory considers the phonon renormalization in the strong coupling (small polaron) regime, and semi-quantitatively reproduces the observed phonon hardening and broadening effects in few-layer tellurene. This polaron crossover stems from the quasi-1D nature of tellurene where modulation of the interchain distance reduces the dielectric screening and promotes electron-phonon coupling. Our work provides valuable insights into the influence of polarons on phononic, electronic, and structural properties in low-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08458v1-abstract-full').style.display = 'none'; document.getElementById('2409.08458v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06686">arXiv:2409.06686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06686">pdf</a>, <a href="https://arxiv.org/format/2409.06686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Stabilization of a two-dimensional quantum electron solid in perpendicular magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Melnikov%2C+M+Y">M. Yu. Melnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D+G">D. G. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shashkin%2C+A+A">A. A. Shashkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+-">S. -H. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C+W">C. W. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kravchenko%2C+S+V">S. V. Kravchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06686v1-abstract-short" style="display: inline;"> We find that the double-threshold voltage-current characteristics in the insulating regime in the ultra-clean two-valley two-dimensional electron system in SiGe/Si/SiGe quantum wells are promoted by perpendicular magnetic fields, persisting to an order of magnitude lower voltages and considerably higher electron densities compared to the zero-field case. This observation indicates the perpendicula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06686v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06686v1-abstract-full" style="display: none;"> We find that the double-threshold voltage-current characteristics in the insulating regime in the ultra-clean two-valley two-dimensional electron system in SiGe/Si/SiGe quantum wells are promoted by perpendicular magnetic fields, persisting to an order of magnitude lower voltages and considerably higher electron densities compared to the zero-field case. This observation indicates the perpendicular-magnetic-field stabilization of the quantum electron solid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06686v1-abstract-full').style.display = 'none'; document.getElementById('2409.06686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04505">arXiv:2409.04505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04505">pdf</a>, <a href="https://arxiv.org/format/2409.04505">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Cavity-mediated superthermal phonon correlations in the ultrastrong coupling regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Dasom Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jin Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+G">Geon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrawal%2C+A">Ayush Agrawal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sunghwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+D">Di Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baydin%2C+A">Andrey Baydin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenjing Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tay%2C+F">Fuyang Tay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shengxi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chia%2C+E+E+M">Elbert E. M. Chia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Dai-Sik Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+M">Minah Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohite%2C+A+D">Aditya D. Mohite</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagenm%C3%BCller%2C+D">David Hagenm眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kono%2C+J">Junichiro Kono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04505v1-abstract-short" style="display: inline;"> Phonons, or vibrational quanta, are behind some of the most fundamental physical phenomena in solids, including superconductivity, Raman processes, and broken-symmetry phases. It is therefore of fundamental importance to find ways to harness phonons for controlling these phenomena and developing novel quantum technologies. However, the majority of current phonon control techniques rely on the use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04505v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04505v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04505v1-abstract-full" style="display: none;"> Phonons, or vibrational quanta, are behind some of the most fundamental physical phenomena in solids, including superconductivity, Raman processes, and broken-symmetry phases. It is therefore of fundamental importance to find ways to harness phonons for controlling these phenomena and developing novel quantum technologies. However, the majority of current phonon control techniques rely on the use of intense external driving fields or strong anharmonicities, which restricts their range of applications. Here, we present a scheme for controlling the intensity fluctuations in phonon emission at room temperature based on multimode ultrastrong light--matter coupling. The multimode ultrastrong coupling regime is achieved by coupling two optical phonon modes in lead halide perovskites to an array of nanoslots, which operates as a single-mode cavity. The extremely small mode volume of the nanoslots enables unprecedented coupling strengths in a cavity phonon-polariton system. In the far-detuned, low-cavity-frequency regime, we demonstrate that the nanoslot resonator mediates an effective coupling between the phonon modes, resulting in superthermal phonon bunching in thermal equilibrium, both within the same mode and between different modes. Experimental results are in good agreement with a multimode Hopfield model. Our work paves the way for the tailoring of phonons to modify charge and energy transport in perovskite materials, with potential applications in light-collecting or emitting devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04505v1-abstract-full').style.display = 'none'; document.getElementById('2409.04505v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10050">arXiv:2408.10050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10050">pdf</a>, <a href="https://arxiv.org/format/2408.10050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Imaging ultrafast electronic domain fluctuations with X-ray speckle visibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">N. Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+P">P. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">N. Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoychev%2C+B+K">B. K. Stoychev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamb%2C+E+S">E. S. Lamb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madhavi%2C+M">M. Madhavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botu%2C+S+T">S. T. Botu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeppson%2C+S">S. Jeppson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cl%C3%A9mence%2C+M">M. Cl茅mence</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McConnell%2C+A+G">A. G. McConnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+-">S. -W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zerdane%2C+S">S. Zerdane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankowsky%2C+R">R. Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemke%2C+H+T">H. T. Lemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sander%2C+M">M. Sander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+P">P. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">T. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">O. G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">R. Kukreja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10050v1-abstract-short" style="display: inline;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection du&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10050v1-abstract-full" style="display: none;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection due to experimental limitations, such as insufficient X-ray coherent flux. Here we demonstrate a nonequilibrium speckle visibility experiment using a split-and-delay setup at an X-ray free-electron laser. Photoinduced electronic domain fluctuations of the magnetic model material Fe$_{3}$O$_{4}$ reveal changes of the trimeron network configuration due to charge dynamics that exhibit liquid-like fluctuations, analogous to a supercooled liquid phase. This suggests that ultrafast dynamics of electronic heterogeneities under optical stimuli are fundamentally different from thermally-driven ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'none'; document.getElementById('2408.10050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09608">arXiv:2408.09608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09608">pdf</a>, <a href="https://arxiv.org/ps/2408.09608">ps</a>, <a href="https://arxiv.org/format/2408.09608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Imaging ferroelectric domains with soft X-ray ptychography at the oxygen K-edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butcher%2C+T+A">Tim A. Butcher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+N+W">Nicholas W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chia-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+S">Shih-Chao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beinik%2C+I">Igor Beinik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Th%C3%A5nell%2C+K">Karina Th氓nell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+J">J枚rg Raabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finizio%2C+S">Simone Finizio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09608v1-abstract-short" style="display: inline;"> The ferroelectric domain structure of a freestanding BiFeO$_3$ film was visualized by ptychographic dichroic imaging with linearly polarized X-rays at the O K-edge around 530 eV. The dichroic contrast is maximized at the energy of the hybridization of the O 2p state and the Fe 3d orbitals, which is split by the octahedral crystal field of the perovskite structure. The thus obtained microscopy imag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09608v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09608v1-abstract-full" style="display: none;"> The ferroelectric domain structure of a freestanding BiFeO$_3$ film was visualized by ptychographic dichroic imaging with linearly polarized X-rays at the O K-edge around 530 eV. The dichroic contrast is maximized at the energy of the hybridization of the O 2p state and the Fe 3d orbitals, which is split by the octahedral crystal field of the perovskite structure. The thus obtained microscopy images compliment the ptychographic imaging of the antiferromagnetic contribution at the Fe L$_3$-edge. The approach is extendible to the separation of different ferroic contributions in other multiferroic oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09608v1-abstract-full').style.display = 'none'; document.getElementById('2408.09608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07179">arXiv:2408.07179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07179">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0198953">10.1063/5.0198953 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinetomagnetism of chirality and its applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+C+F">Sang-Wook Cheongand Fei-Ting Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07179v1-abstract-short" style="display: inline;"> Chiral functionalities exhibited by systems lacking any mirror symmetry encompass natural optical activity, magnetochiral effect, diagonal current-induced magnetization, chirality-selective spin-polarized current of charged electrons or neutral neutrons, self-inductance, and chiral phonons. These phenomena are unified under the hypothesis of kinetomagnetism of chirality, which posits that any movi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07179v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07179v1-abstract-full" style="display: none;"> Chiral functionalities exhibited by systems lacking any mirror symmetry encompass natural optical activity, magnetochiral effect, diagonal current-induced magnetization, chirality-selective spin-polarized current of charged electrons or neutral neutrons, self-inductance, and chiral phonons. These phenomena are unified under the hypothesis of kinetomagnetism of chirality, which posits that any moving (charged or neutral) object in chiral systems induces magnetization in its direction of motion, consequently imparting chirality to the object due to this induced magnetization. We also found conjugate relationships among the kinetomagnetism of chirality, linear magnetoelectricity, and electric field induced directional nonreciprocity, highlighting their interconnections with magnetic, electric, and toroidal orders. The concept of the kinetomagnetism of chirality will be an essential basis for the theoretical understanding of known chiral phenomena such as natural optical activity or chiral phonons, and also the discovery of unexplored chiral functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07179v1-abstract-full').style.display = 'none'; document.getElementById('2408.07179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 060501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05946">arXiv:2408.05946</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05946">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Exciton diffusion in two-dimensional chiral perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Terres%2C+S">Sophia Terres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scalon%2C+L">Lucas Scalon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brunner%2C+J">Julius Brunner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horneber%2C+D">Dominik Horneber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dureth%2C+J">Johannes Dureth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shiyu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nogueira%2C+A+F">Ana Flavia Nogueira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoefling%2C+S">Sven Hoefling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klembt%2C+S">Sebastian Klembt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaynzof%2C+Y">Yana Vaynzof</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernikov%2C+A">Alexey Chernikov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05946v2-abstract-short" style="display: inline;"> Two-dimensional (2D) organic-inorganic hybrid perovskites emerged as a versatile platform for light-emitting and photovol-taic applications due to their unique structural design and chemical flexibility. Their properties depend heavily on both the choice of the inorganic lead halide framework and the surrounding organic layers. Recently, the introduction of chiral cations into 2D perovskites has a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05946v2-abstract-full').style.display = 'inline'; document.getElementById('2408.05946v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05946v2-abstract-full" style="display: none;"> Two-dimensional (2D) organic-inorganic hybrid perovskites emerged as a versatile platform for light-emitting and photovol-taic applications due to their unique structural design and chemical flexibility. Their properties depend heavily on both the choice of the inorganic lead halide framework and the surrounding organic layers. Recently, the introduction of chiral cations into 2D perovskites has attracted major interest due to their potential for introducing chirality and tuning the chiro-optical response. Importantly, the optical properties in these materials are dominated by tightly bound excitons that also serve as primary carriers for the energy transport. The mobility of photoinjected excitons is thus important from the perspectives of fundamental material properties and optoelectronic applications, yet remains an open question. Here, we demonstrate exciton propagation in a 2D chiral perovskite methylbenzylammonium lead iodide (MBA2PbI4) using transient photoluminescence microscopy and reveal density-dependent transport over more than 100 nanometers at room temperature with diffusion coeffi-cients as high as 2 cm2/s. We observe two distinct regimes of initially rapid diffusive propagation and subsequent localiza-tion. Moreover, perovskites with enantiomer pure cations are found to exhibit faster exciton diffusion compared to the race-mic mixture, correlated with the impact of the material composition on disorder. Altogether, the observations of efficient exciton diffusion at room temperature highlight the potential of 2D chiral perovskites to merge chiro-optical properties with strong light-matter interaction and efficient energy transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05946v2-abstract-full').style.display = 'none'; document.getElementById('2408.05946v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05413">arXiv:2408.05413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05413">pdf</a>, <a href="https://arxiv.org/format/2408.05413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L121118">10.1103/PhysRevB.110.L121118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controllable Weyl Nodes and Fermi Arcs from Floquet Engineering Triple Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shengpu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Dong-Hui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05413v3-abstract-short" style="display: inline;"> Floquet engineering with periodic driving as a powerful tool for designing desirable topological states has been the subject of intense recent studies. Here, we present the application of Floquet engineering to investigate evolution of topological triple fermions under irradiation of circularly polarized light (CPL), a phenomenon that currently remains a mystery. By using first-principles calculat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05413v3-abstract-full').style.display = 'inline'; document.getElementById('2408.05413v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05413v3-abstract-full" style="display: none;"> Floquet engineering with periodic driving as a powerful tool for designing desirable topological states has been the subject of intense recent studies. Here, we present the application of Floquet engineering to investigate evolution of topological triple fermions under irradiation of circularly polarized light (CPL), a phenomenon that currently remains a mystery. By using first-principles calculations and Floquet theorem, we demonstrate that WC-type TiO and its analogues are promising candidates for Floquet engineering of triple fermions. The symmetry analysis reveals that the electric field of CPL can break the specific symmetries, such as the time-reversal symmetry and its combination of spatial symmetries, inducing a transition to a flexibly controllable Weyl semimetallic phase. The survived spatial symmetry, controlled by light, guarantees that the Weyl nodes are located along the high-symmetry line or in high-symmetry planes in momentum space. Our findings focusing on Floquet engineering in realistic materials featured by triple fermions would facilitate both theoretical and experimental interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05413v3-abstract-full').style.display = 'none'; document.getElementById('2408.05413v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, L121118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13769">arXiv:2407.13769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13769">pdf</a>, <a href="https://arxiv.org/format/2407.13769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Sound in a Tunable Fermi Fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Repplinger%2C+T">Thomas Repplinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurkjian%2C+H">Hadrien Kurkjian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13769v1-abstract-short" style="display: inline;"> Landau&#39;s Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau&#39;s theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13769v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13769v1-abstract-full" style="display: none;"> Landau&#39;s Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau&#39;s theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response to a periodic external perturbation. In an ideal Fermi gas, we measure for the first time the celebrated Lindhard function. As the system is brought from the collisionless to the hydrodynamic regime, we observe the emergence of sound, and find that the experimental observations are quantitatively understood with a first-principle transport equation for the FL. When the system is more strongly interacting, we find deviations from such predictions. Finally, we observe the shape of the quasiparticle excitations directly from momentum-space tomography and see how it evolves from the collisionless to the collisional regime. Our study establishes this system as a clean platform for studying Landau&#39;s theory of the FL and paves the way for extending the theory to more exotic conditions, such as nonlinear dynamics and FLs with strong correlations in versatile settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13769v1-abstract-full').style.display = 'none'; document.getElementById('2407.13769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18229">arXiv:2405.18229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18229">pdf</a>, <a href="https://arxiv.org/format/2405.18229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0233154">10.1063/5.0233154 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triple-top-gate technique for studying the strongly interacting 2D electron systems in heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Melnikov%2C+M+Y">M. Yu. Melnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shashkin%2C+A+A">A. A. Shashkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+-">S. -H. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C+W">C. W. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kravchenko%2C+S+V">S. V. Kravchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18229v2-abstract-short" style="display: inline;"> We have developed a technique that dramatically reduces the contact resistances and depletes a shunting channel between the contacts outside the Hall bar in ultra-high mobility SiGe/Si/SiGe heterostructures. It involves the creation of three overlapping independent gates deposited on top of the structure and allows transport measurements to be performed at millikelvin temperatures in the strongly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18229v2-abstract-full').style.display = 'inline'; document.getElementById('2405.18229v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18229v2-abstract-full" style="display: none;"> We have developed a technique that dramatically reduces the contact resistances and depletes a shunting channel between the contacts outside the Hall bar in ultra-high mobility SiGe/Si/SiGe heterostructures. It involves the creation of three overlapping independent gates deposited on top of the structure and allows transport measurements to be performed at millikelvin temperatures in the strongly interacting limit at low electron densities, where the energy of the electron-electron interactions dominates all other energy scales. This design allows one to observe the two-threshold voltage-current characteristics that are a signature for the collective depinning and sliding of the electron solid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18229v2-abstract-full').style.display = 'none'; document.getElementById('2405.18229v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 153102 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09611">arXiv:2405.09611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09611">pdf</a>, <a href="https://arxiv.org/format/2405.09611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Fermionic quantum criticality through the lens of topological holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Sheng-Jie Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09611v2-abstract-short" style="display: inline;"> We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09611v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09611v2-abstract-full" style="display: none;"> We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological field theory (SymTFT), in one higher dimension. In this work, we consider a generalization of the topological holographic picture for $(1+1)d$ fermionic quantum phases of matter. We discuss how spin structures are encoded in the SymTFT and establish the connection between the formal fermionization formula in quantum field theory and the choice of fermionic gapped boundary conditions of the SymTFT. We demonstrate the identification and the characterization of the fermionic gapped phases and phase transitions through detailed analysis of various examples, including the fermionic systems with $\mathbb{Z}_{2}^{F}$, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}^{F}$, $\mathbb{Z}_{4}^{F}$, and the fermionic version of the non-invertible $\text{Rep}(S_{3})$ symmetry. Our work uncovers many exotic fermionic quantum critical points and gapless phases, including two kinds of fermionic symmetry enriched quantum critical points, a fermionic gapless symmetry protected topological (SPT) phase, and a fermionic gapless spontaneous symmetry breaking (SSB) phase that breaks the fermionic non-invertible symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09611v2-abstract-full').style.display = 'none'; document.getElementById('2405.09611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 7 figures, 6 tables; v2: minor changes, references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04768">arXiv:2405.04768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.04768">pdf</a>, <a href="https://arxiv.org/format/2405.04768">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Circularly polarized light irradiated ferromagnetic MnBi$_2$Te$_4$: the long-sought ideal Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">Shuai Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shengpu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xian-Yong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04768v1-abstract-short" style="display: inline;"> The interaction between light and non-trivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) MnBi$_2$Te$_4$ upon irradiation with circularly polarized light (CPL). We revealed that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04768v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04768v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04768v1-abstract-full" style="display: none;"> The interaction between light and non-trivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) MnBi$_2$Te$_4$ upon irradiation with circularly polarized light (CPL). We revealed that the MnBi$_2$Te$_4$ can be driven from an FM insulator to a Weyl semimetal with a minimum number of Weyl points, i.e., two Weyl points in systems without time-reversal symmetry. More importantly, in FM MnBi$_2$Te$_4$ with out-of-plane easy magnetization axis, we found that the band dispersion of the WP evolves from Type-II to Type-III and finally to Type-I when the light intensity increases. Moreover, we show that the profile of the characteristic Fermi arc of Weyl semimetal phase is sensitive to changes in light intensity, which enables efficient manipulation of the Fermi arc length of FM MnBi$_2$Te$_4$ in experiments. In addition, for FM MnBi$_2$Te$_4$ with in-plane easy magnetization axis, the system becomes a type I Weyl semimetal under CPL irradiation. With controllable band dispersion, length of Fermi arc, and minimum number of WPs, our results indicate that CPL-irradiated FM MnBi$_2$Te$_4$ is an ideal platform to study novel transport phenomena in Weyl semimetals with distinct band dispersion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04768v1-abstract-full').style.display = 'none'; document.getElementById('2405.04768v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03771">arXiv:2405.03771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03771">pdf</a>, <a href="https://arxiv.org/format/2405.03771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.165122">10.1103/PhysRevB.110.165122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomically thin obstructed atomic insulators with robust edge modes and quantized spin Hall effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Verma%2C+R">Rahul Verma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03771v2-abstract-short" style="display: inline;"> Symmetry-protected edge states serve as direct evidence of nontrivial electronic topology in atomically thin materials. Finding these states in experimentally realizable single-phase materials presents a substantial challenge for their use in fundamental studies and developing functional nanoscale devices. Here, we show the presence of robust edge states in phosphorene and group-Va monolayers with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03771v2-abstract-full').style.display = 'inline'; document.getElementById('2405.03771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03771v2-abstract-full" style="display: none;"> Symmetry-protected edge states serve as direct evidence of nontrivial electronic topology in atomically thin materials. Finding these states in experimentally realizable single-phase materials presents a substantial challenge for their use in fundamental studies and developing functional nanoscale devices. Here, we show the presence of robust edge states in phosphorene and group-Va monolayers with puckered lattice structures. By carefully analyzing the symmetry of the atomic sites and edge mode properties, we demonstrate that these atomically thin monolayers realize recently introduced obstructed atomic insulator states with partially occupied edge modes. The obstructed edge modes attain a Rashba-type spin splitting with Rashba parameter ($伪$) of 1.52 eV 脜 for arsenene. Under strain or doping effects, these obstructed insulators transition to a phase with substantial spin-Berry curvature, yielding a double quantum spin Hall state with a spin Hall conductivity $\approx 4 \frac{e^2}{h}$. The experimental availability of phosphorene and other group-Va monolayers could enable verification of obstructed atomic states and enhanced spin-Berry curvature effects discussed in this study, offering the potential for applications in topological electronic and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03771v2-abstract-full').style.display = 'none'; document.getElementById('2405.03771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18491">arXiv:2404.18491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18491">pdf</a>, <a href="https://arxiv.org/format/2404.18491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Emergent Non-Abelian Thouless Pumping Induced by the Quasiperiodic Disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Sen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yan-Qing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18491v1-abstract-short" style="display: inline;"> We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb chain with degenerate flat bands. The results reveal that quasiperiodic disorder will cause a topological phase transition from the trivial (without non-Abelian Thouless pumping) to the non-trivial (with non-Abelian Thouless pumping) phase. The mechanism behind is that the monopole originally outside the topological region&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18491v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18491v1-abstract-full" style="display: none;"> We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb chain with degenerate flat bands. The results reveal that quasiperiodic disorder will cause a topological phase transition from the trivial (without non-Abelian Thouless pumping) to the non-trivial (with non-Abelian Thouless pumping) phase. The mechanism behind is that the monopole originally outside the topological region can be driven into the topological region due to the introduction of quasiperiodic disorder. Moreover, since the corresponding monopole will turn into a nodal line to spread beyond the boundaries of the topological region, the system with large disorder strength will result in the disappearance of non-Abelian Thouless pumping. Furthermore, we numerically simulate the Thouless pumping of non-Abelian systems, and the evolution results of center of mass&#39; displacement are consistent with the Chern number. Finally, we discuss the localization properties of the system and find that, similar to [PRL 130, 206401(2023)], the inverse Anderson transition does not occur in the system with the increase of quasiperiodic strength, while the system still maintains the coexistence of localized and extended states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18491v1-abstract-full').style.display = 'none'; document.getElementById('2404.18491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13086">arXiv:2404.13086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13086">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Band Structure Engineering in Highly Crystalline Organic Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shu-Jen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hutsch%2C+S">Sebastian Hutsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Talnack%2C+F">Felix Talnack</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deconinck%2C+M">Marielle Deconinck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shiyu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zongbao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kleemann%2C+H">Hans Kleemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaynzof%2C+Y">Yana Vaynzof</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mannsfeld%2C+S+C+B">Stefan C. B. Mannsfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortmann%2C+F">Frank Ortmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+K">Karl Leo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13086v1-abstract-short" style="display: inline;"> Blending of semiconductors for controlling the energy levels (band structure engineering) is an important technique, in particular, for optoelectronic applications. The underlying physics is the delocalized Bloch states, which average over the potential landscape of the blend. For organic semiconductors, it has been shown that two quite different effects, the dielectric constant and electrostatic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13086v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13086v1-abstract-full" style="display: none;"> Blending of semiconductors for controlling the energy levels (band structure engineering) is an important technique, in particular, for optoelectronic applications. The underlying physics is the delocalized Bloch states, which average over the potential landscape of the blend. For organic semiconductors, it has been shown that two quite different effects, the dielectric constant and electrostatic interaction between molecules, can be used to tune the energy gap and ionization energy of disordered and weakly crystalline organic semiconductor blends. It is so far not known whether the electronic delocalization in organic crystals with large bandwidths can contribute to the energy structure engineering of the blend in a way similar to that in inorganic semiconductors. Here, we investigate the growth of highly ordered organic thin-film blends with a similar chemical structure and show the effect of band structure engineering by spectroscopic methods. We rationalize the experimental results with comprehensive theoretical simulations, showing that the delocalization is a significant effect. Our work paves the way for engineering the band structure of highly ordered organic semiconductor thin films that can be tailored for the desired optoelectronic device application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13086v1-abstract-full').style.display = 'none'; document.getElementById('2404.13086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06823">arXiv:2404.06823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06823">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07435-8">10.1038/s41586-024-07435-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control of proton transport and hydrogenation in double-gated graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+J">J. Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Y. Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Domaretskiy%2C+D">D. Domaretskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Della+Pia%2C+F">F. Della Pia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagar%2C+P">P. Dagar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Powell%2C+L">L. Powell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bahamon%2C+D">D. Bahamon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">S. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+B">B. Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filho%2C+R+N+C">R. N. Costa Filho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vega%2C+L+F">L. F. Vega</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigorieva%2C+I+V">I. V. Grigorieva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+F+M">F. M. Peeters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michaelides%2C+A">A. Michaelides</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozada-Hidalgo%2C+M">M. Lozada-Hidalgo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06823v3-abstract-short" style="display: inline;"> The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor-insulator transition that has been explored intensively in graphene electronic devices. However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06823v3-abstract-full').style.display = 'inline'; document.getElementById('2404.06823v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06823v3-abstract-full" style="display: none;"> The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor-insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriers and various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metals or chemically functionalizing the lattice. However, these techniques can compromise other properties, such as ion selectivity or mechanical stability. Here we show that independent control of the electric field, E, at around 1 V nm-1, and charge-carrier density, n, at around 1 x 10^14 cm-2, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on-off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of E and n, which is a new technique for the study of 2D electrode-electrolyte interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06823v3-abstract-full').style.display = 'none'; document.getElementById('2404.06823v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 630, pages619--624 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03339">arXiv:2404.03339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Significantly Enhanced Vacancy Diffusion in Mn-containing Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+H">Huaqing Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+H">Hanwen Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+N">Ning Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Kuo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Siqi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+Y">Yanfei Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuanyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+F">Fuyang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhe Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+P">Pengfei Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C">Chenyang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qiu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vitos%2C+L">Levente Vitos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shaosong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03339v1-abstract-short" style="display: inline;"> Manipulating point defects for tailored macroscopic properties remains a formidable challenge in materials science. This study demonstrates a proof-of-principle for a universal law involving element Mn, significantly enhancing vacancy diffusion through an unprecedented anomalous Friedel Oscillations phenomenon, across most metals in the periodic table. The correlation between Mn-induced point-defe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03339v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03339v1-abstract-full" style="display: none;"> Manipulating point defects for tailored macroscopic properties remains a formidable challenge in materials science. This study demonstrates a proof-of-principle for a universal law involving element Mn, significantly enhancing vacancy diffusion through an unprecedented anomalous Friedel Oscillations phenomenon, across most metals in the periodic table. The correlation between Mn-induced point-defect dynamic changes and intrinsic macro-properties is robustly validated through the first-principles theory and well-designed experiments. The physical origin stems from Mn&#39;s exceptionally large effective intra-elemental 3d electron interactions, surpassing the Coulomb attraction induced by vacancy and disrupting the electron screening effect. Given the ubiquitous nature of vacancies and their recognition as the most crucial defects influencing nearly all physical and mechanical properties of crystalline materials, this outcome may drive advances in a broad domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03339v1-abstract-full').style.display = 'none'; document.getElementById('2404.03339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02963">arXiv:2404.02963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02963">pdf</a>, <a href="https://arxiv.org/format/2404.02963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unraveling the Mn $L_3$-edge RIXS spectrum of lightly manganese doped Sr$_{3}$Ru$_{2}$O$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wei-Yang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">Teguh Citra Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jenn-Min Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y">Yu-Cheng Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freelon%2C+B">Byron Freelon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Datta%2C+T">Trinanjan Datta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02963v1-abstract-short" style="display: inline;"> Resonant inelastic x-ray scattering (RIXS) experiment was performed at the Mn $L_3$ edge. A 10 $\%$ Mn-doped Sr$_{3}$Ru$_{2}$O$_{7}$ compound, where the Mn$^{3+}$ ions are in the 3$d^4$ state, were probed for $dd$ excitations. The dilute doping concentration allows one to treat the dopant Mn$^{3+}$ ions as effectively free in the host ruthenium compound. The local nature of $dd$ RIXS spectroscopy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02963v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02963v1-abstract-full" style="display: none;"> Resonant inelastic x-ray scattering (RIXS) experiment was performed at the Mn $L_3$ edge. A 10 $\%$ Mn-doped Sr$_{3}$Ru$_{2}$O$_{7}$ compound, where the Mn$^{3+}$ ions are in the 3$d^4$ state, were probed for $dd$ excitations. The dilute doping concentration allows one to treat the dopant Mn$^{3+}$ ions as effectively free in the host ruthenium compound. The local nature of $dd$ RIXS spectroscopy permits one to use a single-site model to simulate the experimental spectra. The simulated spectra reproduces the in-plane [100] experimental RIXS spectrum. We also predict the intensity for the in-plane [110] direction and the out-of-plane spin orientation configuration [001]. Based on our single-ion model we were able to fit the experimental data to obtain the crystal field parameters, the 10Dq value, and the intra-orbital spin-flip energy 2$\mathcal{J}$(or $3J_{H}$, where $J_{H}$ is the Hund&#39;s energy) of the Mn$^{3+}$ ion. Utilizing our computed RIXS quantum transition amplitudes between the various $d$ orbitals of the Mn$^{3+}$ ion, the expression for the Kramers-Heisenberg cross section, and a self-consistent fitting procedure we also identify the energy boundaries of the non-spin-flip and spin-flip $dd$ excitations present in the experimental data. From our fitting procedure we obtain $2\mathcal{J} (3J_{H})=2.06$ eV, a value which is in excellent agreement with that computed from the free ion Racah parameters. We also identified the charge transfer boundary. In addition to predicting the microscopic parameters, we find a quantum spin-flip transition in the non-cross ($蟽_{in}-蟽_{out}$, $蟺_{in}-蟺_{out}$) x-ray polarization channels of the $dd$ RIXS spectra. A similar transition, was previously predicted to occur in the $蟺-蟺$ channel of the magnon spectrum in the non-collinear non-coplanar Kagome compound composed of Cu$^{2+}$ 3d$^{9}$ ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02963v1-abstract-full').style.display = 'none'; document.getElementById('2404.02963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, see PDF text for full abstract info</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18577">arXiv:2403.18577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.18577">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Octahedral and polar phase transitions in freestanding films of SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Leroy%2C+L">Ludmila Leroy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+C">Chun-Chien Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ssegger%2C+J">Janine D枚ssegger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piamonteze%2C+C">Cinthia Piamonteze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abreu%2C+E">Elsa Abreu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">Alessandro Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18577v1-abstract-short" style="display: inline;"> From extreme strain to bending, the possibilities in the manipulation of freestanding films of oxide perovskites bring a novel landscape to their properties and brings them one step closer to their application. It is therefore of great importance to fully understand the inherent properties of such films, in which dimensionality and surface effects can play a major role in defining the properties o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18577v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18577v1-abstract-full" style="display: none;"> From extreme strain to bending, the possibilities in the manipulation of freestanding films of oxide perovskites bring a novel landscape to their properties and brings them one step closer to their application. It is therefore of great importance to fully understand the inherent properties of such films, in which dimensionality and surface effects can play a major role in defining the properties of the materials ground state. This paper reports the properties of freestanding (FS) films of the canonical oxide, SrTiO3 (STO) with thicknesses 20, 30, 40 and 80 nm. We show that the relaxed ultrathin STO FS films become polar at temperatures as high as 85 K, in contrast to the quantum paraelectric behavior of bulk. Our findings are based on the softening of the ferroelectric mode towards the ferroelectric transition temperature Tc and its consecutive hardening below Tc with further decreasing temperature, probed with THz time domain spectroscopy in transmission mode. We find almost no thickness dependence in Tc. Moreover, we characterize the antiferrodistortive (AFD) phase transition in STO FS by X-ray diffraction (XRD) probing superlattice reflections characteristic for the rotation of the TiO6 octahedra. Our results point to a higher phase transition temperature in comparison to bulk STO, as well as an unbalanced domain population favoring the rotation axis to be in plane. X-ray linear dichroism results further show a preferential Ti xz/yz orbital occupancy at the surface, but with a complete degeneracy in the t2g states in the inner part of the film indicating that the AFD distortion does not strongly affect the t2g splitting. These findings demonstrate that STO FS films have clearly different properties than bulk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18577v1-abstract-full').style.display = 'none'; document.getElementById('2403.18577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00910">arXiv:2403.00910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00910">pdf</a>, <a href="https://arxiv.org/format/2403.00910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Computational supremacy in quantum simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+A+D">Andrew D. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nocera%2C+A">Alberto Nocera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rams%2C+M+M">Marek M. Rams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dziarmaga%2C+J">Jacek Dziarmaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiersema%2C+R">Roeland Wiersema</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernoudy%2C+W">William Bernoudy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raymond%2C+J">Jack Raymond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaushal%2C+N">Nitin Kaushal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harris%2C+R">Richard Harris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothby%2C+K">Kelly Boothby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Altomare%2C+F">Fabio Altomare</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berkley%2C+A+J">Andrew J. Berkley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschnak%2C+M">Martin Boschnak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chern%2C+K">Kevin Chern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christiani%2C+H">Holly Christiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cibere%2C+S">Samantha Cibere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Connor%2C+J">Jake Connor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dehn%2C+M+H">Martin H. Dehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deshpande%2C+R">Rahul Deshpande</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ejtemaee%2C+S">Sara Ejtemaee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farr%C3%A9%2C+P">Pau Farr茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamer%2C+K">Kelsey Hamer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoskinson%2C+E">Emile Hoskinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shuiyuan Huang</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00910v1-abstract-short" style="display: inline;"> Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. One such problem is the simulation of nonequilibrium dynamics of a magnetic spin system quenched through a quantum phase transition. State-of-the-art classical simulations dem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00910v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00910v1-abstract-full" style="display: none;"> Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. One such problem is the simulation of nonequilibrium dynamics of a magnetic spin system quenched through a quantum phase transition. State-of-the-art classical simulations demand resources that grow exponentially with system size. Here we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schr枚dinger equation. We demonstrate area-law scaling of entanglement in the model quench in two-, three- and infinite-dimensional spin glasses, supporting the observed stretched-exponential scaling of effort for classical approaches. We assess approximate methods based on tensor networks and neural networks and conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe. Thus quantum annealers can answer questions of practical importance that classical computers cannot. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00910v1-abstract-full').style.display = 'none'; document.getElementById('2403.00910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18943">arXiv:2402.18943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18943">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional atomic interface between metal and oxide in Zr-ZrO2 nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zezhou Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+X">Xing Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhiheng Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Siwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue-E Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+H">Hai-Bo Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wei-Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jihan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18943v1-abstract-short" style="display: inline;"> Metal-oxide interfaces with poor coherency have unique properties comparing to the bulk materials and offer broad applications in the fields of heterogeneous catalysis, battery, and electronics. However, current understanding of the three-dimensional (3D) atomic metal-oxide interfaces remains limited because of their inherent structural complexity and limitations of conventional two-dimensional im&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18943v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18943v1-abstract-full" style="display: none;"> Metal-oxide interfaces with poor coherency have unique properties comparing to the bulk materials and offer broad applications in the fields of heterogeneous catalysis, battery, and electronics. However, current understanding of the three-dimensional (3D) atomic metal-oxide interfaces remains limited because of their inherent structural complexity and limitations of conventional two-dimensional imaging techniques. Here, we determine the 3D atomic structure of metal-oxide interfaces in zirconium-zirconia nanoparticles using atomic-resolution electron tomography. We quantitatively analyze the atomic concentration and the degree of oxidation, and find the coherency and translational symmetry of the interfaces are broken. Moreover, we observe porous structures such as Zr vacancies and nano-pores and investigate their distribution. Our findings provide a clear 3D atomic picture of metal-oxide interface with direct experimental evidence. We anticipate this work could encourage future studies on fundamental problems of oxides such as interfacial structures in semiconductor and atomic motion during oxidation process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18943v1-abstract-full').style.display = 'none'; document.getElementById('2402.18943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 4 main figures, 17 Supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12196">arXiv:2401.12196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12196">pdf</a>, <a href="https://arxiv.org/format/2401.12196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXLife.2.043010">10.1103/PRXLife.2.043010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Learning Dynamics from Multicellular Graphs with Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haiqian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+F">Florian Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shaoxun Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lungu%2C+C">Cristiana Lungu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olayioye%2C+M+A">Monilola A. Olayioye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buehler%2C+M+J">Markus J. Buehler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+M">Ming Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12196v3-abstract-short" style="display: inline;"> Multicellular self-assembly into functional structures is a dynamic process that is critical in the development and diseases, including embryo development, organ formation, tumor invasion, and others. Being able to infer collective cell migratory dynamics from their static configuration is valuable for both understanding and predicting these complex processes. However, the identification of struct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12196v3-abstract-full').style.display = 'inline'; document.getElementById('2401.12196v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12196v3-abstract-full" style="display: none;"> Multicellular self-assembly into functional structures is a dynamic process that is critical in the development and diseases, including embryo development, organ formation, tumor invasion, and others. Being able to infer collective cell migratory dynamics from their static configuration is valuable for both understanding and predicting these complex processes. However, the identification of structural features that can indicate multicellular motion has been difficult, and existing metrics largely rely on physical instincts. Here we show that using a graph neural network (GNN), the motion of multicellular collectives can be inferred from a static snapshot of cell positions, in both experimental and synthetic datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12196v3-abstract-full').style.display = 'none'; document.getElementById('2401.12196v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at PRX Life</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11091">arXiv:2401.11091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.11091">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> A family of rare-earth Quasi-One-Dimensional spin-chain compounds K2RENb5O15 (RE=Ce,Pr,Nd,Sm,Gd-Ho) with large interchain distance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Q">Qingyuan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+H">Han Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Maofeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+S">Shaoheng Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tiantian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaosheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jingxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+L">Langsheng Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+W">Wei Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shuai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+A">Andi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Z">Zhengcai Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+J">Jieming Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Z">Zhaoming Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11091v1-abstract-short" style="display: inline;"> One-dimensional spin chain systems have received special attention to discover the novel magnetic ground states and emergent phenomena, while the magnetic studies on rare-earth (RE)-based 1D spin chain materials are still rare. Here, we report the synthesis, structure and magnetic behaviors on a family of tetragonal tungsten-bronze structure K2RENb5O15 (RE = Ce, Pr, Nd, Sm, Gd-Ho) compounds, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11091v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11091v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11091v1-abstract-full" style="display: none;"> One-dimensional spin chain systems have received special attention to discover the novel magnetic ground states and emergent phenomena, while the magnetic studies on rare-earth (RE)-based 1D spin chain materials are still rare. Here, we report the synthesis, structure and magnetic behaviors on a family of tetragonal tungsten-bronze structure K2RENb5O15 (RE = Ce, Pr, Nd, Sm, Gd-Ho) compounds, which consist of 1D linear spin-chain structure built by RE3+ ions along the c-axis and well spatially separated by the nonmagnetic K/Nb-O polyhedrons with large interchain distances of ~ 8.80-8.88 脜 in the ab-plane. The low temperature magnetic measurements reveal the absence of long-range magnetic order down to 1.8 K for all serial K2RENb5O15 compounds and the dominant ferromagnetic interactions for RE=Ce,Dy and antiferromagnetic interactions for other members. Among them, K2GdNb5O15 with spin only magnetic moment S=7/2, exhibits a long-range magnetic order with TN~0.31 K and strong spin fluctuations at low temperatures due to its low-dimension characteristics. Moreover, a large magnetocaloric effect under low field change of 0-2 T is realized at temperatures below 1 K for K2GdNb5O15, letting it as an ideal candidate for adiabatic magnetic refrigeration applications at sub-kelvin temperatures. The K2RENb5O15 become a rare family of insulting RE-based magnets to explore the novel 1D spin chain physics beyond the 3d TM-based counterparts, in terms of its combination of low dimension, strong spin-orbital coupling and the rich diversity of RE ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11091v1-abstract-full').style.display = 'none'; document.getElementById('2401.11091v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04541">arXiv:2401.04541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04541">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Flexomagnetoelectric effect in Sr2IrO4 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Ting Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yujun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xueli Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+B">Biao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zongwei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+P">Peng Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuelin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jialu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jing Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+J">Jiawang Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z">Zhigao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chenglong Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kan%2C+E">Erjun Kan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+C">Ce-Wen Nan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinxing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04541v1-abstract-short" style="display: inline;"> Symmetry engineering is explicitly effective to manipulate and even create phases and orderings in strongly correlated materials. Flexural stress is universally practical to break the space-inversion or time-reversal symmetry. Here, by introducing strain gradient in a centrosymmetric antiferromagnet Sr2IrO4, the space-inversion symmetry is broken accompanying a non-equivalent O p-Ir d orbital hybr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04541v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04541v1-abstract-full" style="display: none;"> Symmetry engineering is explicitly effective to manipulate and even create phases and orderings in strongly correlated materials. Flexural stress is universally practical to break the space-inversion or time-reversal symmetry. Here, by introducing strain gradient in a centrosymmetric antiferromagnet Sr2IrO4, the space-inversion symmetry is broken accompanying a non-equivalent O p-Ir d orbital hybridization along z axis. Thus, emergent polar phase and out-of-plane magnetic moment have been simultaneously observed in these asymmetric Sr2IrO4 thin films, which both are absent in its ground state. Furthermore, upon the application of magnetic field, such polarization can be controlled by modifying the occupied d orbitals through spin-orbit interaction, giving rise to a flexomagnetoelectric effect. This work provides a general strategy to artificially design multiple symmetries and ferroic orderings in strongly correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04541v1-abstract-full').style.display = 'none'; document.getElementById('2401.04541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05810">arXiv:2312.05810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05810">pdf</a>, <a href="https://arxiv.org/format/2312.05810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Statistical-Physics-Informed Neural Networks (Stat-PINNs): A Machine Learning Strategy for Coarse-graining Dissipative Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shenglin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Zequn He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dirr%2C+N">Nicolas Dirr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmer%2C+J">Johannes Zimmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reina%2C+C">Celia Reina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05810v1-abstract-short" style="display: inline;"> Machine learning, with its remarkable ability for retrieving information and identifying patterns from data, has emerged as a powerful tool for discovering governing equations. It has been increasingly informed by physics, and more recently by thermodynamics, to further uncover the thermodynamic structure underlying the evolution equations, i.e., the thermodynamic potentials driving the system and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05810v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05810v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05810v1-abstract-full" style="display: none;"> Machine learning, with its remarkable ability for retrieving information and identifying patterns from data, has emerged as a powerful tool for discovering governing equations. It has been increasingly informed by physics, and more recently by thermodynamics, to further uncover the thermodynamic structure underlying the evolution equations, i.e., the thermodynamic potentials driving the system and the operators governing the kinetics. However, despite its great success, the inverse problem of thermodynamic model discovery from macroscopic data is in many cases non-unique, meaning that multiple pairs of potentials and operators can give rise to the same macroscopic dynamics, which significantly hinders the physical interpretability of the learned models. In this work, we propose a machine learning framework, named as Statistical-Physics-Informed Neural Networks (Stat-PINNs), which further encodes knowledge from statistical mechanics and resolves this non-uniqueness issue for the first time. The framework is here developed for purely dissipative isothermal systems. It only uses data from short-time particle simulations to learn the thermodynamic structure, which can be used to predict long-time macroscopic evolutions. We demonstrate the approach for particle systems with Arrhenius-type interactions, common to a wide range of phenomena, such as defect diffusion in solids, surface absorption and chemical reactions. Stat-PINNs can successfully recover the known analytic solution for the case with long-range interaction and discover the hitherto unknown potential and operator governing the short-range interaction cases. We compare our results with an analogous approach that solely excludes statistical mechanics, and observe that, in addition to recovering the unique thermodynamic structure, statistical mechanics relations can increase the robustness and predictability of the learning strategy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05810v1-abstract-full').style.display = 'none'; document.getElementById('2312.05810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16727">arXiv:2311.16727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16727">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Sluggish and Chemically-Biased Interstitial Diffusion in Concentrated Solid Solution Alloys: Mechanisms and Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Biao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+H">Haijun Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shasha Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+S">Shihua Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yaoxu Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+X">Xuepeng Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kai%2C+J">Ji-Jung Kai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+S">Shijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16727v1-abstract-short" style="display: inline;"> Interstitial diffusion is a pivotal process that governs the phase stability and irradiation response of materials in non-equilibrium conditions. In this work, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni concentrated solid solution alloys (CSAs) by combining machine learning (ML) and kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently predict the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16727v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16727v1-abstract-full" style="display: none;"> Interstitial diffusion is a pivotal process that governs the phase stability and irradiation response of materials in non-equilibrium conditions. In this work, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni concentrated solid solution alloys (CSAs) by combining machine learning (ML) and kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently predict the migration energy barriers on-the-fly. The ML-kMC reproduces the diffusivity that was reported by molecular dynamics results at high temperatures. With this powerful tool, we find that the observed sluggish diffusion and the &#34;Ni-Ni-Ni&#34;-biased diffusion in Fe-Ni alloys are ascribed to a unique &#34;Barrier Lock&#34; mechanism, whereas the &#34;Fe-Fe-Fe&#34;-biased diffusion is influenced by a &#34;Component Dominance&#34; mechanism. Inspired by the mentioned mechanisms, a practical AvgS-kMC method is proposed for conveniently and swiftly determining interstitial-mediated diffusivity by only relying on the mean energy barriers of migration patterns. Combining the AvgS-kMC with the differential evolutionary algorithm, an inverse design strategy for optimizing sluggish diffusion properties is applied to emphasize the crucial role of favorable migration patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16727v1-abstract-full').style.display = 'none'; document.getElementById('2311.16727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages,9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14559">arXiv:2311.14559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14559">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Layer-dependent superconductivity in iron-based superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+K">Ke Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B">Boqin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Baizhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+X">Xiangming Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Sicheng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaofan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaobo Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yiyuan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J">Jiaying Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14559v1-abstract-short" style="display: inline;"> The Hohenberg-Mermin-Wagner theorem states that a two-dimensional system cannot spontaneously break a continuous symmetry at finite temperature. This is supported by the observation of layer-dependent superconductivity in the quasi-two-dimensional superconductor NbSe2, in which the superconducting transition temperature (Tc) is reduced by about 60% in the monolayer limit. However, for the extremel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14559v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14559v1-abstract-full" style="display: none;"> The Hohenberg-Mermin-Wagner theorem states that a two-dimensional system cannot spontaneously break a continuous symmetry at finite temperature. This is supported by the observation of layer-dependent superconductivity in the quasi-two-dimensional superconductor NbSe2, in which the superconducting transition temperature (Tc) is reduced by about 60% in the monolayer limit. However, for the extremely anisotropic copper-based high-Tc superconductor Bi2Sr2CaCu2O8+未 (Bi-2212), the Tc of the monolayer is almost identical to that of its bulk counterpart. To clarify the effect of dimensionality on superconductivity, here we successfully fabricate ultrathin flakes of CsCa2Fe4As4F2, a highly anisotropic iron-based high-Tc superconductor, down to monolayer. The monolayer flake exhibits the highest Tc of 24 K (after tuning to the optimal doping by ionic liquid gating), which is about 20% lower than that of the bulk crystal. We also fabricate ultrathin flakes of CaKFe4As4, another iron-based superconductor with much smaller anisotropy. The Tc of the 3-layer flake decreases by 46%, showing a more pronounced dimensional effect than that of CsCa2Fe4As4F2. By carefully examining their anisotropy and the c-axis coherence length, we reveal the general trend and empirical law of the layer-dependent superconductivity in these quasi-two-dimensional superconductors. From this, the Tc of a new monolayer superconductor can be extrapolated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14559v1-abstract-full').style.display = 'none'; document.getElementById('2311.14559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10286">arXiv:2311.10286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.10286">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Dephasing of Strong-Field-Driven Floquet States Revealed by Time- and Spectrum-Resolved Quantum-Path Interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yaxin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bingbing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Shicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shenyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+M">Mingyan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hugen Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuanbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+R">Ruifeng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+Z">Zhensheng Tao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10286v2-abstract-short" style="display: inline;"> Floquet engineering, while a powerful tool for ultrafast quantum-state manipulation, faces challenges under strong-field conditions, as recent high harmonic generation studies unveil exceptionally short dephasing times. In this study, using time- and spectrum-resolved quantum-path interferometry, we investigate the dephasing mechanisms of terahertz-driven excitons. Our results reveal a dramatic in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10286v2-abstract-full').style.display = 'inline'; document.getElementById('2311.10286v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10286v2-abstract-full" style="display: none;"> Floquet engineering, while a powerful tool for ultrafast quantum-state manipulation, faces challenges under strong-field conditions, as recent high harmonic generation studies unveil exceptionally short dephasing times. In this study, using time- and spectrum-resolved quantum-path interferometry, we investigate the dephasing mechanisms of terahertz-driven excitons. Our results reveal a dramatic increase in exciton dephasing rate beyond a threshold field strength, indicating exciton dissociation as the primary dephasing mechanism. Importantly, we demonstrate long dephasing times of strong-field-dressed excitons, supporting coherent strong-field manipulation of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10286v2-abstract-full').style.display = 'none'; document.getElementById('2311.10286v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06072">arXiv:2311.06072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.06072">pdf</a>, <a href="https://arxiv.org/format/2311.06072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Provoking topology by octahedral tilting in strained SrNbO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chikina%2C+A">Alla Chikina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosendal%2C+V">Victor Rosendal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guedes%2C+E+B">Eduardo B. Guedes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caputo%2C+M">Marco Caputo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicholas Clark Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petersen%2C+D+H">Dirch Hjorth Petersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brandbyge%2C+M">Mads Brandbyge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brito%2C+W+H">Walber Hugo Brito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scagnoli%2C+V">Valerio Scagnoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+J">Jike Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">Marisa Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skoropata%2C+E">Elizabeth Skoropata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">Felix Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pryds%2C+N">Nini Pryds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">Milan Radovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06072v1-abstract-short" style="display: inline;"> Transition metal oxides with a wide variety of electronic and magnetic properties offer an extraordinary possibility to be a platform for developing future electronics based on unconventional quantum phenomena, for instance, the topology. The formation of topologically non-trivial states is related to crystalline symmetry, spin-orbit coupling, and magnetic ordering. Here, we demonstrate how lattic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06072v1-abstract-full').style.display = 'inline'; document.getElementById('2311.06072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06072v1-abstract-full" style="display: none;"> Transition metal oxides with a wide variety of electronic and magnetic properties offer an extraordinary possibility to be a platform for developing future electronics based on unconventional quantum phenomena, for instance, the topology. The formation of topologically non-trivial states is related to crystalline symmetry, spin-orbit coupling, and magnetic ordering. Here, we demonstrate how lattice distortions and octahedral rotation in SrNbO$_3$ films induce the band topology. By employing angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations, we verify the presence of in-phase $a^0a^0c^+$ octahedral rotation in ultra-thin SrNbO$_3$ films, which causes the formation of topologically-protected Dirac band crossings. Our study illustrates that octahedral engineering can be effectively exploited for implanting and controlling quantum topological phases in transition metal oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06072v1-abstract-full').style.display = 'none'; document.getElementById('2311.06072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18644">arXiv:2310.18644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18644">pdf</a>, <a href="https://arxiv.org/format/2310.18644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural and magnetic properties of $尾$-Li$_2$IrO$_3$ after grazing-angle focused ion beam thinning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breitner%2C+F">Franziska Breitner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesche%2C+A">Anton Jesche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Christian R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">Philipp Gegenwart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18644v1-abstract-short" style="display: inline;"> Manipulating the size and orientation of quantum materials is often used to tune emergent phenomena, but precise control of these parameters is also necessary from an experimental point of view. Various synthesis techniques already exist, such as epitaxial thin film growth and chemical etching, that are capable of producing specific sample dimensions with high precision. However, certain materials&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18644v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18644v1-abstract-full" style="display: none;"> Manipulating the size and orientation of quantum materials is often used to tune emergent phenomena, but precise control of these parameters is also necessary from an experimental point of view. Various synthesis techniques already exist, such as epitaxial thin film growth and chemical etching, that are capable of producing specific sample dimensions with high precision. However, certain materials exist as single crystals that are often difficult to manipulate, thereby limiting their studies to a certain subset of experimental techniques. One particular class of these materials are the lithium and sodium iridates that are promising candidates for hosting a Kitaev quantum spin liquid state. Here we present a controlled method of using a focused ion beam at grazing incidence to reduce the size of a $尾$-Li$_2$IrO$_3$ single crystal to a thickness of 1 $渭m$. Subsequent x-ray diffraction measurements show the lattice remains intact, albeit with a larger mosaic spread. The integrity of the magnetic order is also preserved as the temperature dependent magnetic diffraction peak follows the same trend as its bulk counterpart with a transition temperature at TN = 37.5 K. Our study demonstrates a technique that opens up the possibility of nonequilibrium experiments where submicron thin samples are often essential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18644v1-abstract-full').style.display = 'none'; document.getElementById('2310.18644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18218">arXiv:2310.18218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18218">pdf</a>, <a href="https://arxiv.org/format/2310.18218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Random Fields from Quenched Disorder in an Archetype for Correlated Electrons: the Parallel Spin Stripe Phase of La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ at the 1/8 Anomaly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+H+-">S. H. -Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Q. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+E+M">E. M. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharron%2C+H">H. Sharron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18218v1-abstract-short" style="display: inline;"> The parallel stripe phase is remarkable both in its own right, and in relation to the other phases it co-exists with. Its inhomogeneous nature makes such states susceptible to random fields from quenched magnetic vacancies. We argue this is the case by introducing low concentrations of nonmagnetic Zn impurities (0-10%) into La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) with $x$ = 0.125 in single c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18218v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18218v1-abstract-full" style="display: none;"> The parallel stripe phase is remarkable both in its own right, and in relation to the other phases it co-exists with. Its inhomogeneous nature makes such states susceptible to random fields from quenched magnetic vacancies. We argue this is the case by introducing low concentrations of nonmagnetic Zn impurities (0-10%) into La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) with $x$ = 0.125 in single crystal form, well below the percolation threshold of $\sim$ 41% for two-dimensional (2D) square lattice. Elastic neutron scattering measurements on these crystals show clear magnetic quasi-Bragg peaks at all Zn dopings. While all the Zn-doped crystals display order parameters that merge into each other and the background at $\sim$ 68 K, the temperature dependence of the order parameter as a function of Zn concentration is drastically different. This result is consistent with meandering charge stripes within the parallel stripe phase, which are pinned in the presence of quenched magnetic vacancies. In turn it implies vacancies that preferentially occupy sites within the charge stripes, and hence that can be very effective at disrupting superconductivity in Nd-LSCO ($x$ = 0.125), and, by extension, in all systems exhibiting parallel stripes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18218v1-abstract-full').style.display = 'none'; document.getElementById('2310.18218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16878">arXiv:2310.16878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16878">pdf</a>, <a href="https://arxiv.org/format/2310.16878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological holography, quantum criticality, and boundary states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Sheng-Jie Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M">Meng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16878v2-abstract-short" style="display: inline;"> Topological holography is a holographic principle that describes the generalized global symmetry of a local quantum system in terms of a topological order in one higher dimension. This framework separates the topological data from the local dynamics of a theory and provides a unified description of the symmetry and duality in gapped and gapless phases of matter. In this work, we develop the topolo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16878v2-abstract-full').style.display = 'inline'; document.getElementById('2310.16878v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16878v2-abstract-full" style="display: none;"> Topological holography is a holographic principle that describes the generalized global symmetry of a local quantum system in terms of a topological order in one higher dimension. This framework separates the topological data from the local dynamics of a theory and provides a unified description of the symmetry and duality in gapped and gapless phases of matter. In this work, we develop the topological holographic picture for (1+1)d quantum phases, including both gapped phases as well as a wide range of quantum critical points, including phase transitions between symmetry protected topological (SPT) phases, symmetry enriched quantum critical points, deconfined quantum critical points and intrinsically gapless SPT phases. Topological holography puts a strong constraint on the emergent symmetry and the anomaly for these critical theories. We show how the partition functions of these critical points can be obtained from dualizing (orbifolding) more familiar critical theories. The topological responses of the defect operators are also discussed in this framework. We further develop a topological holographic picture for conformal boundary states of (1+1)d rational conformal field theories. This framework provides a simple physical picture to understand conformal boundary states and also uncovers the nature of the gapped phases corresponding to the boundary states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16878v2-abstract-full').style.display = 'none'; document.getElementById('2310.16878v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 10 figures, 3 tables. v2: references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10945">arXiv:2310.10945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10945">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Defects Vibrations Engineering for Enhancing Interfacial Thermal Transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yijie Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciarla%2C+R">Robert Ciarla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boonkird%2C+A">Artittaya Boonkird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+T">Thanh Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiawei Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+X">Xiaobing Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ranasinghe%2C+J">Jeewan Ranasinghe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Weiguo Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scott%2C+B">Brendan Scott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shengxi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingda Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yanfei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10945v2-abstract-short" style="display: inline;"> To push upper boundaries of effective thermal conductivity in polymer composites, a fundamental understanding of thermal transport mechanisms is crucial. Although there is intensive simulation research, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (gra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10945v2-abstract-full').style.display = 'inline'; document.getElementById('2310.10945v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10945v2-abstract-full" style="display: none;"> To push upper boundaries of effective thermal conductivity in polymer composites, a fundamental understanding of thermal transport mechanisms is crucial. Although there is intensive simulation research, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide); we choose polar polyvinyl alcohol (PVA) as a matrix model; and we identify how thermal transport occurs across heterogeneous interfaces. Measured thermal conductivities of in PVA/defective filler composites is higher than those of PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. An effective quantum mechanical model is developed, showing that the vibrational state of the defective level plays a critical role in enhancing the thermal conductivity with increased defect concentration. Our experimental and model results have suggested that defects in polymer composites may enhance thermal transport in polymer composites by promoting vibrational resonant couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10945v2-abstract-full').style.display = 'none'; document.getElementById('2310.10945v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Enclosed: (i) Main Manuscript, including 5 main figures. (ii) Supplementary Information, including 16 Supplementary Figures and one self-contained theoretical section</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08462">arXiv:2310.08462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08462">pdf</a>, <a href="https://arxiv.org/format/2310.08462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Multigap nodeless superconductivity in the topological semimetal PdTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chengcheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinjin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chunqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Baomin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zhenhai Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaobo Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+D">Dongzhe Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+C">Chengpeng Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J">Jiaying Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanru Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y">Yihan Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duong%2C+D">Daniel Duong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Silu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">Rongying Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhu&#39;an Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08462v1-abstract-short" style="display: inline;"> Recently PdTe was identified as a spin-orbit coupled topological Dirac semimetal and was claimed to exhibit both bulk-nodal and surface-nodeless superconducting gaps. Here we report the ultralow-temperature thermal conductivity measurements on PdTe single crystals with $T_c$ = 4.5 K to investigate its superconducting gap structure. It is found that the residual linear term $魏_0/T$ is negligible in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08462v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08462v1-abstract-full" style="display: none;"> Recently PdTe was identified as a spin-orbit coupled topological Dirac semimetal and was claimed to exhibit both bulk-nodal and surface-nodeless superconducting gaps. Here we report the ultralow-temperature thermal conductivity measurements on PdTe single crystals with $T_c$ = 4.5 K to investigate its superconducting gap structure. It is found that the residual linear term $魏_0/T$ is negligible in zero magnetic field. Furthermore, the field dependence of $魏_0(H)/T$ exhibits an $\sf S$-shaped curve. These results suggest that PdTe has multiple nodeless superconducting gaps, which is at odds with the claimed bulk-nodal gap. The reason for the discrepancy is likely that previous angle-resolved photoemission spectroscopy measurements were only performed down to 2 K and cannot observe the smaller nodeless gap. The fully gapped superconducting state in PdTe is compatible with it being a topological superconductor candidate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08462v1-abstract-full').style.display = 'none'; document.getElementById('2310.08462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08105">arXiv:2310.08105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08105">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42617-4">10.1038/s41467-023-42617-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate-controlled suppression of light-driven proton transport through graphene electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">S. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griffin%2C+E">E. Griffin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J">J. Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+B">B. Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+J">J. Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Y. Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kravets%2C+V">V. Kravets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+F+M">F. M. Peeters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozada-Hidalgo%2C+M">M. Lozada-Hidalgo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08105v1-abstract-short" style="display: inline;"> Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infrared spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08105v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08105v1-abstract-full" style="display: none;"> Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infrared spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tuning the Fermi energy of electrons in graphene with a bias, a phenomenon controlled by Pauli blocking of photo-excited electrons. These findings demonstrate a dependence between graphene&#39;s electronic and proton transport properties and provide fundamental insights into molecularly thin electrode-electrolyte interfaces and their interaction with light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08105v1-abstract-full').style.display = 'none'; document.getElementById('2310.08105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 6932 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03145">arXiv:2310.03145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03145">pdf</a>, <a href="https://arxiv.org/format/2310.03145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L041114">10.1103/PhysRevB.109.L041114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective depinning and sliding of a quantum Wigner solid in a 2D electron system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Melnikov%2C+M+Y">M. Yu. Melnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shashkin%2C+A+A">A. A. Shashkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+-">S. -H. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C+W">C. W. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kravchenko%2C+S+V">S. V. Kravchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03145v3-abstract-short" style="display: inline;"> We report the observation of two-threshold voltage-current characteristics accompanied by a peak of broadband current noise between the two threshold voltages in the insulating state at low densities in the 2D electron system in ultra-high mobility SiGe/Si/SiGe heterostructures. The observed results can be described by a phenomenological theory of the collective depinning of elastic structures, wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03145v3-abstract-full').style.display = 'inline'; document.getElementById('2310.03145v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03145v3-abstract-full" style="display: none;"> We report the observation of two-threshold voltage-current characteristics accompanied by a peak of broadband current noise between the two threshold voltages in the insulating state at low densities in the 2D electron system in ultra-high mobility SiGe/Si/SiGe heterostructures. The observed results can be described by a phenomenological theory of the collective depinning of elastic structures, which naturally generates a peak of a broadband current noise between the dynamic and static thresholds and changes to sliding of the solid over a pinning barrier above the static threshold. This gives compelling evidence for the electron solid formation in this electron system and shows the generality of the effect for different classes of electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03145v3-abstract-full').style.display = 'none'; document.getElementById('2310.03145v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">As published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, L041114 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10327">arXiv:2309.10327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10327">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41126-8">10.1038/s41467-023-41126-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer-dependent exciton polarizability and the brightening of dark excitons in few-layer black phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yuchen Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Junwei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jiaming Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shenyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B">Boyang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chaoyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Q">Qiaoxia Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Fanjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yuangang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiasheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+L">Lei Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yixuan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hugen Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10327v1-abstract-short" style="display: inline;"> The evolution of excitons from 2D to 3D is of great importance in photo-physics, yet the layer-dependent exciton polarizability has not been investigated in 2D semiconductors. Here, we determine the exciton polarizabilities for 3- to 11-layer black phosphorus-a direct bandgap semiconductor regardless of the thickness-through frequency-resolved photocurrent measurements on dual-gate devices and unv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10327v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10327v1-abstract-full" style="display: none;"> The evolution of excitons from 2D to 3D is of great importance in photo-physics, yet the layer-dependent exciton polarizability has not been investigated in 2D semiconductors. Here, we determine the exciton polarizabilities for 3- to 11-layer black phosphorus-a direct bandgap semiconductor regardless of the thickness-through frequency-resolved photocurrent measurements on dual-gate devices and unveil the carrier screening effect in relatively thicker samples. By taking advantage of the broadband photocurrent spectra, we are also able to reveal the exciton response for higher-index subbands under the gate electrical field. Surprisingly, dark excitons are brightened with intensity even stronger than the allowed transitions above certain electrical field. Our study not only sheds light on the exciton evolution with sample thickness, but also paves a way for optoelectronic applications of few-layer BP in modulators, tunable photodetectors, emitters and lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10327v1-abstract-full').style.display = 'none'; document.getElementById('2309.10327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06404">arXiv:2309.06404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.06404">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00780">10.1021/acs.nanolett.3c00780 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Circular Photogalvanic and Photovoltaic Effect in 2D Tellurium with Different Chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+C">Chang Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shouyuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+N">Neil Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+P">Pukun Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mingyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenzhuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xianfan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+P+D">Peide D. Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06404v1-abstract-short" style="display: inline;"> Chirality arises from the asymmetry of matters, where two counterparts are the mirror image of each other. The interaction between circular-polarization light and quantum materials is enhanced in chiral space groups due to the structural chirality. Tellurium (Te) possesses the simplest chiral crystal structure, with Te atoms covalently bonded into a spiral atomic chain (left- or right-handed) with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06404v1-abstract-full').style.display = 'inline'; document.getElementById('2309.06404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06404v1-abstract-full" style="display: none;"> Chirality arises from the asymmetry of matters, where two counterparts are the mirror image of each other. The interaction between circular-polarization light and quantum materials is enhanced in chiral space groups due to the structural chirality. Tellurium (Te) possesses the simplest chiral crystal structure, with Te atoms covalently bonded into a spiral atomic chain (left- or right-handed) with a periodicity of three. Here, we investigate the tunable circular photo-electric responses in 2D Te field-effect transistor with different chirality, including the longitudinal circular photogalvanic effect induced by the radial spin texture (electron-spin polarization parallel to the electron momentum direction) and the circular photovoltaic induced by the chiral crystal structure (helical Te atomic chains). Our work demonstrates the controllable manipulation of the chirality degree of freedom in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06404v1-abstract-full').style.display = 'none'; document.getElementById('2309.06404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 23, no. 8 (2023): 3599-3606 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03382">arXiv:2309.03382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03382">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0156379">10.1063/5.0156379 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vector spin Seebeck effect and spin swapping effect in antiferromagnetic insulators with non-collinear spin structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jinsong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Weiwei Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiaming He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+D">Danru Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Ssu-Yen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+C+L">C. L. Chien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03382v1-abstract-short" style="display: inline;"> Antiferromagnets (AFs) are prospective for next-generation high-density and high-speed spintronic applications due to their negligible stray field and ultrafast spin dynamics, notwithstanding the challenges in detecting and manipulating AF order with no magnetization (M = 0). Among the AFs, non-collinear AFs are of particular interest because of their unique properties arising from the non-colline&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03382v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03382v1-abstract-full" style="display: none;"> Antiferromagnets (AFs) are prospective for next-generation high-density and high-speed spintronic applications due to their negligible stray field and ultrafast spin dynamics, notwithstanding the challenges in detecting and manipulating AF order with no magnetization (M = 0). Among the AFs, non-collinear AFs are of particular interest because of their unique properties arising from the non-collinear spin structure and the small magnetization M. In this work, we describe the recently observed vector spin Seebeck effect in non-collinear LuFeO$_3$, where the magneto-thermovoltage under an in-plane temperature gradient, not previously observed, is consistent with the predicted spin swapping effect. Our results shed light on the importance of the non-collinear spin structure in the emerging spin phenomena in non-collinear AFs and offer a new class of materials for AF spintronics and spin caloritronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03382v1-abstract-full').style.display = 'none'; document.getElementById('2309.03382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Mater. 11, 091102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13465">arXiv:2308.13465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202311157">10.1002/adma.202311157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ptychographic nanoscale imaging of the magnetoelectric coupling in freestanding BiFeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butcher%2C+T+A">Tim A. Butcher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+N+W">Nicholas W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+C">Chun-Chien Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chia-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi-Chun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fr%C3%B6jdh%2C+E">Erik Fr枚jdh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baruffaldi%2C+F">Filippo Baruffaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carulla%2C+M">Maria Carulla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiaguo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergamaschi%2C+A">Anna Bergamaschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaz%2C+C+A+F">Carlos A. F. Vaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kleibert%2C+A">Armin Kleibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finizio%2C+S">Simone Finizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+J">J枚rg Raabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13465v2-abstract-short" style="display: inline;"> Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO$_3$ (BFO). The antiferrom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13465v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13465v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13465v2-abstract-full" style="display: none;"> Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO$_3$ (BFO). The antiferromagnetic spin cycloid of period 64 nm is resolved by reconstructing the corresponding resonant elastic X-ray scattering in real space and visualized together with mosaic-like ferroelectric domains in a linear dichroic contrast image at the Fe L$_3$ edge. The measurements reveal a near perfect coupling between the antiferromagnetic and ferroelectric ordering by which the propagation direction of the spin cycloid is locked orthogonally to the ferroelectric polarization. In addition, the study evinces both a preference for in-plane propagation of the spin cycloid and changes of the ferroelectric polarization by 71掳 between multiferroic domains in the epitaxial strain-free, freestanding BFO film. The results provide a direct visualization of the strong magnetoelectric coupling in BFO and of its fine multiferroic domain structure, emphasizing the potential of ptychographic imaging for the study of multiferroics and non-collinear magnetic materials with soft X-rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13465v2-abstract-full').style.display = 'none'; document.getElementById('2308.13465v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supporting information available with published version: https://doi.org/10.1002/adma.202311157</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 2024, 36, 2311157 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06408">arXiv:2308.06408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06408">pdf</a>, <a href="https://arxiv.org/format/2308.06408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Transcending the MAX phases concept of nanolaminated early transition metal carbides/nitrides -- the ZIA phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tunes%2C+M+A">M. A. Tunes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drewry%2C+S+M">S. M. Drewry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+F">F. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valdez%2C+J+A">J. A. Valdez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+M">M. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohnert%2C+C+A">C. A. Kohnert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saleh%2C+T+A">T. A. Saleh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%B6n%2C+C+G">C. G. Sch枚n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fensin%2C+S">S. Fensin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=El-Atwani%2C+O">O. El-Atwani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goossens%2C+N">N. Goossens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">S. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vleugls%2C+J">J. Vleugls</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maloy%2C+S+A">S. A. Maloy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lambrinou%2C+K">K. Lambrinou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06408v1-abstract-short" style="display: inline;"> A new potential class of nanolaminated and structurally complex materials, herein conceived as the Zigzag IntermetAllic (ZIA) phases, is proposed. A study of the constituent phases of a specific Nb--Si--Ni intermetallic alloy revealed that its ternary H-phase, \textit{i.e.}, the Nb$_3$SiNi$_2$ intermetallic compound (IMC), is a crystalline solid with the close-packed \textit{fcc} Bravais lattice,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06408v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06408v1-abstract-full" style="display: none;"> A new potential class of nanolaminated and structurally complex materials, herein conceived as the Zigzag IntermetAllic (ZIA) phases, is proposed. A study of the constituent phases of a specific Nb--Si--Ni intermetallic alloy revealed that its ternary H-phase, \textit{i.e.}, the Nb$_3$SiNi$_2$ intermetallic compound (IMC), is a crystalline solid with the close-packed \textit{fcc} Bravais lattice, the 312 MAX phase stoichiometry and a layered atomic arrangement that may define an entire class of nanolaminated IMCs analogous to the nanolaminated ceramic compounds known today as the MAX phases. The electron microscopy investigation of the Nb$_{3}$SiNi$_{2}$ compound -- the first candidate ZIA phase -- revealed a remarkable structural complexity, as its ordered unit cell is made of 96 atoms. The ZIA phases extend the concept of nanolaminated crystalline solids well beyond the MAX phases family of early transition metal carbides/nitrides, most likely broadening the spectrum of achievable material properties into domains typically not covered by the MAX phases. Furthermore, this work uncovers that both families of nanolaminated crystalline solids, \textit{i.e.}, the herein introduced \textit{fcc} ZIA phases and all known variants of the \textit{hcp} MAX phases, obey the same overarching stoichiometric rule $P_{x+y}A_xN_y$, where $x$ and $y$ are integers ranging from 1 to 6. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06408v1-abstract-full').style.display = 'none'; document.getElementById('2308.06408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05746">arXiv:2308.05746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05746">pdf</a>, <a href="https://arxiv.org/format/2308.05746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The strongly driven Fermi polaron </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knap%2C+M">Michael Knap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05746v1-abstract-short" style="display: inline;"> Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems. Therefore, the prospect of manipulating their properties with external fields -- or even destroying them -- has both fundamental and practical implications. However, in solid-state materials it is often challenging to understand how quasiparticles are modified by external fields&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05746v1-abstract-full').style.display = 'inline'; document.getElementById('2308.05746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05746v1-abstract-full" style="display: none;"> Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems. Therefore, the prospect of manipulating their properties with external fields -- or even destroying them -- has both fundamental and practical implications. However, in solid-state materials it is often challenging to understand how quasiparticles are modified by external fields owing to their complex interplay with other collective excitations, such as phonons. Here, we take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons -- quasiparticles formed by impurities interacting with a non-interacting Fermi gas -- from weak to ultrastrong drives. Exploiting two internal states of the impurity species, we develop a steady-state spectroscopy, from which we extract the energy of the driven polaron. We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states. At large drive strengths, the so-extracted quasiparticle residue exceeds unity, raising intriguing questions on the relationship between the Rabi oscillations and the impurity&#39;s spectral functions. Our experiment establishes the driven Fermi polaron as a promising platform for studying controllable quasiparticles in strongly driven quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05746v1-abstract-full').style.display = 'none'; document.getElementById('2308.05746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14586">arXiv:2307.14586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14586">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01472">10.1021/acs.nanolett.3c01472 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twist-angle and thickness-ratio tuning of plasmon polaritons in twisted bilayer van der Waals films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yuangang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Junwei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+G">Guangwei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Q">Qiaoxia Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shenyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chaoyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Fanjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yuchen Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiasheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+L">Lei Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hugen Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14586v1-abstract-short" style="display: inline;"> Stacking bilayer structures is an efficient way to tune the topology of polaritons in in-plane anisotropic films, e.g., by leveraging the twist angle (TA). However, the effect of another geometric parameter, film thickness ratio (TR), on manipulating the plasmon topology in bilayers is elusive. Here, we fabricate bilayer structures of WTe2 films, which naturally host in-plane hyperbolic plasmons i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14586v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14586v1-abstract-full" style="display: none;"> Stacking bilayer structures is an efficient way to tune the topology of polaritons in in-plane anisotropic films, e.g., by leveraging the twist angle (TA). However, the effect of another geometric parameter, film thickness ratio (TR), on manipulating the plasmon topology in bilayers is elusive. Here, we fabricate bilayer structures of WTe2 films, which naturally host in-plane hyperbolic plasmons in the terahertz range. Plasmon topology is successfully modified by changing the TR and TA synergistically, manifested by the extinction spectra of unpatterned films and the polarization dependence of the plasmon intensity measured in skew ribbon arrays. Such TR- and TA-tunable topological transitions can be well explained based on the effective sheet optical conductivity by adding up those of the two films. Our study demonstrates TR as another degree of freedom for the manipulation of plasmonic topology in nanophotonics, exhibiting promising applications in bio-sensing, heat transfer and the enhancement of spontaneous emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14586v1-abstract-full').style.display = 'none'; document.getElementById('2307.14586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02989">arXiv:2307.02989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02989">pdf</a>, <a href="https://arxiv.org/format/2307.02989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced superconductivity in the van der Waals semiconductor violet phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y+Y">Y. Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+L">L. Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+D+Z">D. Z. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+L">L. Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+X+M">X. M. Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+Y">S. Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+K">K. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+F">X. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+C+P">C. P. Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+J+M">J. M. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H+G">H. G. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+Y">S. Y. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02989v1-abstract-short" style="display: inline;"> The van der Waals (vdW) semiconductor black phosphorus has been widely studied, especially after the discovery of phosphorene. On the contrary, its sister compound violet phosphorus, also a vdW semiconductor, has been rarely studied. Here we report the pressure-induced superconductivity in violet phosphorus up to $\sim$40 GPa. The superconductivity emerges at 2.75 GPa, which is well below the stru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02989v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02989v1-abstract-full" style="display: none;"> The van der Waals (vdW) semiconductor black phosphorus has been widely studied, especially after the discovery of phosphorene. On the contrary, its sister compound violet phosphorus, also a vdW semiconductor, has been rarely studied. Here we report the pressure-induced superconductivity in violet phosphorus up to $\sim$40 GPa. The superconductivity emerges at 2.75 GPa, which is well below the structural transition from monoclinic ($M$) to rhombohedral ($R$) structure at 8.5 GPa. The superconducting transition temperature ($T$$\rm_c$) shows a plateau of $\sim$7 K from 3.6 to 15 GPa, across the $M$ to $R$ structural transition, then jumps to another plateau of $\sim$10 K in the simple cubic ($C$) structure above 15 GPa. The temperature-pressure superconducting phase diagram of violet phosphorus is established, which is different from that of black phosphorus at low pressure. For black phosphorus, the superconductivity emerges until the structural transition from orthorhombic ($O$) to $R$ structure at $\sim$5 GPa, with a lower $T$$\rm_c$ than violet phosphorus. The pressure-induced superconductivity in violet phosphorus demonstrates its tunable electronic properties, and more electronics and optoelectronic applications are expected from this stable vdW semiconductor at ambient conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02989v1-abstract-full').style.display = 'none'; document.getElementById('2307.02989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16320">arXiv:2305.16320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16320">pdf</a>, <a href="https://arxiv.org/format/2305.16320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.153402">10.1103/PhysRevLett.132.153402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the Fermionic Joule-Thomson Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16320v1-abstract-short" style="display: inline;"> We report the observation of the quantum Joule-Thomson (JT) effect in ideal and unitary Fermi gases. We study the temperature dynamics of these systems while they undergo an energy-per-particle conserving rarefaction. For scale-invariant systems, whose equations of state satisfy the relation $U\propto PV$, this rarefaction conserves the specific enthalpy, which makes it thermodynamically equivalen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16320v1-abstract-full').style.display = 'inline'; document.getElementById('2305.16320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16320v1-abstract-full" style="display: none;"> We report the observation of the quantum Joule-Thomson (JT) effect in ideal and unitary Fermi gases. We study the temperature dynamics of these systems while they undergo an energy-per-particle conserving rarefaction. For scale-invariant systems, whose equations of state satisfy the relation $U\propto PV$, this rarefaction conserves the specific enthalpy, which makes it thermodynamically equivalent to a JT throttling process. We observe JT heating in an ideal Fermi gas, stronger at higher quantum degeneracy, a result of the repulsive quantum-statistical `force&#39; arising from Pauli blocking. In a unitary Fermi gas, we observe that the JT heating is marginal in the temperature range $0.2 \lesssim T/T_{\mathrm{F}} \lesssim 0.8 $ as the repulsive quantum-statistical effect is lessened by the attractive interparticle interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16320v1-abstract-full').style.display = 'none'; document.getElementById('2305.16320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132 (2024) 153402 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+S&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10