CINXE.COM
Absolute Value | Brilliant Math & Science Wiki
<!DOCTYPE html> <html lang="en-us"> <head> <meta http-equiv="Content-type" content="text/html; charset=utf-8"> <meta name="google" content="notranslate" /> <meta http-equiv="Content-Language" content="en_US" /> <title>Absolute Value | Brilliant Math & Science Wiki</title> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=1.0"> <meta property="fb:app_id" content="326254770799145" /> <link rel="chrome-webstore-item" href="https://chrome.google.com/webstore/detail/eommhbliilafdkodaijeejngbjiiaccl"> <meta property="al:ios:url" content="com.brilliant.Brilliant://wiki/absolute-value/" /> <meta property="al:ios:app_store_id" content="913335252" /> <meta property="al:ios:app_name" content="Brilliant.org" /> <meta property="al:android:url" content="https://brilliant.org/wiki/absolute-value/"> <meta property="al:android:package" content="org.brilliant.android"> <meta property="al:android:app_name" content="Brilliant"> <link rel="canonical" href="https://brilliant.org/wiki/absolute-value/"> <link rel="alternate" href="android-app://org.brilliant.android/http/brilliant.org/wiki/absolute-value/"> <link rel="apple-touch-icon" href="/apple-touch-icon-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-72x72-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-76x76-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-114x114-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-120x120-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-144x144-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-152x152-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-180x180-precomposed.png"> <meta name="description" content="The absolute value of a real number is the distance of the number from ..." > <meta property="og:type" content="website"> <meta property="og:title" content="Absolute Value | Brilliant Math & Science Wiki"> <meta property="og:description" content="The absolute value of a real number is the distance of the number from ..."> <meta property="og:image" content="https://brilliant.org/site_media/version-1a4dfc4f1b/images/open-graph/default.png"> <meta property="og:image:alt" content="https://brilliant.org/site_media/version-1a4dfc4f1b/images/open-graph/default.png"> <meta property="og:url" content="https://brilliant.org/wiki/absolute-value/"> <meta name="twitter:site" content="@brilliantorg"> <meta name="twitter:card" content="summary_large_image"> <link href="/site_media/build/dist/brilliant_desktop.4d09dec2e3ad2fe59f5b.css" rel="stylesheet" media="all" type="text/css"> <link href="/site_media/build/dist/wiki.a78676d888a98f5e02f2.css" rel="stylesheet" media="all" type="text/css"> <link href="/site_media/build/dist/feed_page.8300c398605a063388bf.css" rel="stylesheet" media="all" type="text/css"> <!--[if lt IE 6]><script type="text/javascript">var ie_version = -1;</script><![endif]--> <!--[if IE 6]><script type="text/javascript">var ie_version = 6;</script><![endif]--> <!--[if IE 7]><script type="text/javascript">var ie_version = 7;</script><![endif]--> <!--[if IE 8]><script type="text/javascript">var ie_version = 8;</script><![endif]--> <!--[if IE 9]><script type="text/javascript">var ie_version = 9;</script><![endif]--> <script type="text/javascript"> (function (w, loc) { var u = /ds055uzetaobb\.cloudfront\.net|d18l82el6cdm1i\.cloudfront\.net/; if(u.test(loc.host)){ w.location=loc.protocol+'//brilliant.org'+loc.pathname;} })(window,window.location); </script> <noscript> <style>.cmp-deferred .no-js{display:block !important;}</style> </noscript> </head> <body class="no-js enable-remind-share-buttons wiki-page logged-out instant-try-it-yourself fonts hdr-big" data-is-mobile="false" data-app-version="0.0.0" data-user="None" data-media-host="https://ds055uzetaobb.cloudfront.net" data-third-party-cookies-enabled="true"> <!-- site_is_live --> <div id="header" class="site-header refreshed-navbar"> <div id="logged-out-header" class="container"> <div class="col"> <a href="/"> <img height="24" src="/site_media/version-0/images/brilliant-wordmark-black.svg" alt="Brilliant" /> </a> </div> <div class="hdr-links has-navbar-icon"> <span class="hdr-link"> <a href="/home/" > <svg class="navbar-icon" width="21" height="20" viewBox="0 0 21 20" fill="none" xmlns="http://www.w3.org/2000/svg"> <g clip-path="url(#clip0_91_1939)"> <path d="M20.2832 9.37336L10.9098 0L1.53638 9.37336L2.71904 10.556L10.9098 2.36534L19.1005 10.556L20.2832 9.37336Z" /> <path d="M4.1984 11.63L10.9096 4.93977L17.6208 11.63V20H13.4183L13.4183 13.3098L8.40061 13.3098L8.40061 20H4.1984V11.63Z" /> </g> <defs> <clipPath id="clip0_91_1939"> <rect width="20" height="20" fill="white" transform="translate(0.536377)" /> </clipPath> </defs> </svg> Home </a> </span> <span class="hdr-link"> <a href="/courses/" class=""> <svg class="navbar-icon" width="21" height="20" viewBox="0 0 21 20" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M4.73594 1.6H17.5359V16H19.1359V0H4.73594V1.6Z" /> <path d="M4.73594 15.2H10.3359V13.6H4.73594V15.2Z" /> <path d="M4.73594 6.39999H12.7359V11.2H4.73594V6.39999Z" /> <path fill-rule="evenodd" clip-rule="evenodd" d="M1.53613 20V3.2H15.9361V20H1.53613ZM3.13613 4.8H14.3361V18.4H3.13613V4.8Z" /> </svg> Courses </a> </span> </div> <div class="btns"> <a href="https://brilliant.org/account/signup/?next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" rel="nofollow" class="btn signup-btn col-2 ax-click rebrand" data-ax-id="clicked_signup_from_header" data-ax-type="button" data-controller="util/ui:genericSignupModal" data-next=""> Sign up </a> <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value/" rel="nofollow" class="btn login-link col-2 ax-click rebrand" data-ax-id="clicked_login_from_header" data-ax-type="link" data-controller="util/ui:genericSignupModal" data-show-login="true" data-next=""> Log in </a> </div> </div> </div> <div data-controller="app/vue:component" data-component="BannerWrapper" data-legacy-url="/wiki/absolute-value/" data-is-authenticated=false ></div> <div id="system-msgs" class="row clearfix"> </div> <div id="post-header"> </div> <div id="wrapper" class="container clearfix" data-controller=""> <div class="public-signup-modal-experiment modal hide rebrand" id="signup-modal-generic" data-controller="app/signup:signUpModal"> <div class="public-signup-left col col-last public-signup-left-experiment" id="public-signup-tour"> </div> <div class="public-signup-experiment show-signup" id="public-signup" > <span class="css-sprite-signup-modal signup-modal-image"></span> <div class="text row"> The best way to learn math and computer science. </div> <div class="public-buttons row" data-controller="app/solvables:preventSocialButtonDoubleClick" > <div class="login-buttons"> <a href="https://brilliant.org/account/google/login/?next=/wiki/absolute-value/" id="login-google" class="btn btn-google signup-social ax-click" data-ax-id="clicked_login_from_generic_modal_google" data-ax-type="button" data-is_modal="true" > <span class="google css-sprite-index"></span>Log in with Google </a> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value/" id="login-fb" class="btn btn-f-b signup-social ax-click" data-ax-id="clicked_login_from_generic_modal_facebook" data-ax-type="button" data-is_modal="true" > <svg class="fb-icon" fill="#fff" xmlns="http://www.w3.org/2000/svg"> <path d="M0 11.0662C0.00127985 16.5108 3.9361 21.1467 9.28038 22V14.2648H6.48977V11.0662H9.28368V8.6313C9.15878 7.47753 9.55044 6.32766 10.3524 5.49353C11.1544 4.6594 12.2837 4.22747 13.4338 4.31489C14.2594 4.32831 15.0829 4.40229 15.8977 4.53625V7.2578H14.5074C14.0287 7.19472 13.5475 7.35378 13.1993 7.69018C12.8511 8.02657 12.6735 8.5039 12.7167 8.98768V11.0662H15.7647L15.2774 14.2659H12.7167V22C18.4964 21.0809 22.5493 15.7697 21.9393 9.91413C21.3293 4.05853 16.2698 -0.291573 10.4263 0.0152787C4.58284 0.322131 0.000928892 5.17851 0 11.0662Z" /></svg> Log in with Facebook </a> <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value/" id="problem-login-link" class="btn btn-email ax-click" data-ax-id="clicked_login_from_generic_modal_email" data-ax-type="button" data-is_modal="true" data-next="/wiki/absolute-value/" > Log in with email </a> </div> <div class="signup-buttons"> <a href="https://brilliant.org/account/google/login/?next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" id="signup-google" class="btn btn-google signup-social ax-click" data-ax-id="clicked_signup_from_generic_modal_google" data-ax-type="button" > <span class="google css-sprite-index"></span>Join using Google </a> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" id="signup-fb" class="btn btn-f-b signup-social ax-click" data-ax-id="clicked_signup_from_generic_modal_facebook" data-ax-type="button" > <svg xmlns="http://www.w3.org/2000/svg"> <path d="M0 11.0662C0.00127985 16.5108 3.9361 21.1467 9.28038 22V14.2648H6.48977V11.0662H9.28368V8.6313C9.15878 7.47753 9.55044 6.32766 10.3524 5.49353C11.1544 4.6594 12.2837 4.22747 13.4338 4.31489C14.2594 4.32831 15.0829 4.40229 15.8977 4.53625V7.2578H14.5074C14.0287 7.19472 13.5475 7.35378 13.1993 7.69018C12.8511 8.02657 12.6735 8.5039 12.7167 8.98768V11.0662H15.7647L15.2774 14.2659H12.7167V22C18.4964 21.0809 22.5493 15.7697 21.9393 9.91413C21.3293 4.05853 16.2698 -0.291573 10.4263 0.0152787C4.58284 0.322131 0.000928892 5.17851 0 11.0662Z" /></svg> Join using Facebook </a> <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" id="signup-email" class="btn btn-email ax-click" data-ax-id="clicked_signup_from_generic_modal_email" data-ax-type="button" data-next="/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" > Join using email </a> </div> </div> <div class="signup-form-container" id="signup-form-container" data-url="/signup_form" data-page-key="wiki_canonical_page" ></div> <div class="login-form-container row" id="login-form-container" data-url="/login_form" data-page-key="wiki_canonical_page" ></div> <div class="alternative"> <div class="login-alternative"> <p> <a href="/account/password/reset/" class="btn-link forget">Reset password</a> New user? <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" id="problem-signup-link-alternative" class="btn-link ax-click" data-ax-id="clicked_signup_from_generic_modal" data-ax-type="button" data-next="/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" > Sign up </a> </p> </div> <div class="signup-alternative"> <p>Existing user? <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value/" id="problem-login-link-alternative" class="btn-link ax-click" data-ax-id="clicked_login_from_generic_modal" data-ax-type="button" data-is_modal="true" data-next="/wiki/absolute-value/" > Log in </a> </p> </div> </div> </div> </div> <div class="col col-12 col-last wiki-main-column"> <header id="wiki-header" class="wiki-header"> <div class="pull-right"> </div> <h1>Absolute Value</h1> </header> <div class="signup-modal hide"> <div class="modal-bg"></div> <div class="modal-content"> <div class="buttons"> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value/" class="btn signup-fb ax-click" data-ax-id="clicked_signup_modal_facebook" data-ax-type="button"> Sign up with Facebook</a> <span class="or">or</span> <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value/" class="btn signup-email ax-click" data-ax-id="clicked_signup_modal_email" data-ax-type="button"> Sign up manually</a> </div> <div class="alternative"> <p> Already have an account? <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value/" class="ax-click" data-ax-id="clicked_signup_modal_login" data-ax-type="link"> Log in here. </a> </p> </div> </div> </div> <div class="wiki-top-editors" id="cmp_wiki_top_editors_id"> <a href="/profile/mahindra-xyo4a9/about/" class="btn-profile mini-profile" data-id="NIeearXuZuutdTSaeLWd6bt6m5CSClHT" rel="nofollow"> Mahindra Jain</a>, <a href="/profile/nihar-pd4fyq/about/" class="btn-profile mini-profile" data-id="uO9wKZBtGTL8obzFGVdSPVpNHi2pa95n" rel="nofollow"> Nihar Mahajan</a>, <a href="/profile/-8ww1g0/about/" class="btn-profile mini-profile" data-id="oXyUiJbNtXpTD3nlgp25uhovXFGEPpHN" rel="nofollow"> 敬全 钟</a>, and <div class="dropdown tipsy"> <button class="btn-link dropdown-toggle" data-toggle="dropdown"> 8 others </button> <ul class="dropdown-menu"> <li> <a href="/profile/andrew-ujvet5/about/" class="mini-profile" data-id="pdZ6TJDfPXyuRpMq5OBCiZCK6f6aHNJ7" rel="nofollow"> Andrew Ellinor </a> </li> <li> <a href="/profile/ftter-e72frf/about/" class="mini-profile" data-id="RdAb3g4QipqGXNjsjZYolFd0cNbpH1Nz" rel="nofollow"> Fætter Guf </a> </li> <li> <a href="/profile/brian-do9xna/about/" class="mini-profile" data-id="bKLqBBjxiCck5myOBjk54ufWO7uEGf0L" rel="nofollow"> Brian Wang </a> </li> <li> <a href="/profile/rushi-t41jeq/about/" class="mini-profile" data-id="59ZOOXb7GCSD7zxqPd3mbm8zbCn3hEwY" rel="nofollow"> Rushi Jogdand </a> </li> <li> <a href="/profile/ritu-gcdmdy/about/" class="mini-profile" data-id="1HoYCYwo5VJvDX2XeFEbZXkG6zJZ3OS9" rel="nofollow"> Ritu Roy </a> </li> <li> <a href="/profile/jimin-hqyzve/about/" class="mini-profile" data-id="sFxPAbPDtKOIiquGfMHdp279pk40JIS5" rel="nofollow"> Jimin Khim </a> </li> <li> <a href="/profile/eli-oyeeys/about/" class="mini-profile" data-id="1Ogyx9vCZon1L1msTClMgybPmQFVMRl7" rel="nofollow"> Eli Ross </a> </li> <li> <a href="/profile/calvin-8u8hog/about/" class="mini-profile" data-id="ctypzo0ald07sbrx0ty8umfajtqhk3nc" rel="nofollow"> Calvin Lin </a> </li> </ul> </div> contributed </div> <div id="wiki-main" data-controller="app/newsfeed:feed"> <div class="summary-container" id="cmp_wiki_canonical_page_id"> <div class="summary wiki-content" data-controller="app/wiki:summary,app/zoomable:images" data-cmp-url="/wiki/absolute-value/" data-page-key="wiki_canonical_page" data-cmp-key="wiki_canonical_page"> <div class="section collapsed" id="section-pre-header-section"><div class="section-container"><p>The <strong>absolute value</strong> of a <a href="/wiki/real-numbers/" class="wiki_link" title="real number"target="_blank">real number</a> is the distance of the number from \(0\) on a <a href="/wiki/sat-number-line/" class="wiki_link" title="number line"target="_blank">number line</a>. The absolute value of \(x\) is written as \(\left|x\right|.\) For example, \(\left|5\right| = \left|-5\right| = 5.\)</p> <p>This is a special case of the <a href="/wiki/complex-numbers-absolute-values/" class="wiki_link" title="magnitude of a complex number"target="_blank">magnitude of a complex number</a>.</p> <p>Before reading this page, you should understand how to <a href="/wiki/evaluate-equations-at-specific-values/" class="wiki_link" title="evaluate expressions"target="_blank">evaluate expressions</a>. If you are looking to solve equations with absolute value, see <a href="/wiki/absolute-value-equations/" class="wiki_link" title="Absolute Value Equations"target="_blank">Absolute Value Equations</a>.</p> </div> </div> <div class="toc wiki-toc"> <h4>Contents</h4> <ul class="unstyled"> <li> <a href="#definition-of-absolute-value">Definition of Absolute Value</a> </li> <li> <a href="#properties-of-absolute-value">Properties of Absolute Value</a> </li> <li> <a href="#graphical-interpretation-of-absolute-value">Graphical Interpretation of Absolute Value</a> </li> <li> <a href="#evaluating-absolute-value-expressions">Evaluating Absolute Value Expressions</a> </li> <li> <a href="#absolute-value-problem-solving-easy">Absolute Value Problem Solving - Basic</a> </li> <li> <a href="#absolute-value-problem-solving-medium">Absolute Value Problem Solving - Intermediate</a> </li> </ul> </div> <div id="definition-of-absolute-value" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Definition of Absolute Value</h2> </header> </div> <div class="section collapsed" id="section-definition-of-absolute-value"><div class="section-container"> <p>Think of points \(a\) and \(b\) on a number line and assume that \(a=2\) and \(b=-3.\)</p> <p><span class="image-caption center"> <img src="https://i.imgur.com/PyUlhBP.jpg" srcset="https://i.imgur.com/PyUlhBP.jpg 1x" alt="" /> </span></p> <p>Comparing the two numbers, we can easily say \(a>b\) simply because \(a\) is positive and \(b\) is negative. What if we do not care about the sign but only the distance of each number from zero? Then we say \(\lvert b \rvert > \lvert a \rvert \) or \(3>2,\) where \(\lvert \cdot \rvert \) is the <strong>absolute value</strong> notation that gives the respective values of \(b\) and \(a\) without regard to their signs. Hence the following definition:</p> <blockquote class="definition"><p> For any real number \(x\) we define its <strong>absolute value</strong> \(\lvert x \rvert\) as follows:</p> <p>\[\lvert x \rvert = \begin{cases} -x && \mbox{if }x< 0\\ x && \mbox{if } x \geq 0. \end{cases}\] </p><!-- end-definition --></blockquote> <p>Then why absolute values? When do we consider only the deviation from zero? Suppose your house is located on an east-west road and your car parked in the driveway has been stolen. If the thief is close enough, you want to go out and catch him yourself. Otherwise, you will call the police. According to information gathered, the car thief is said to have driven away east for \(2\) miles and, for whatever reason, have turned around and driven west for \(3\) miles. </p> <p><span class="image-caption center"> <img src="https://i.imgur.com/RRi67xw.jpg" srcset="https://i.imgur.com/RRi67xw.jpg 1x" alt="wiki<em>AbsoluteValue</em>2" /> <span class="caption">wiki<em>AbsoluteValue</em>2</span></span></p> <p>Taking east as positive and west negative, the thief is currently \(2-3=-1\) mile away, i.e. his location is \(1\) mile west of your house. However, remember that the only factor that you take into consideration as to whether to go out yourself or call the police is the thief's distance from your house regardless of the direction. Then the calculation relevant to you right at this moment would be \(\lvert 2-3 \rvert=1\) as opposed to \(2-3=-1.\) This is, for example, where absolute value plays a role. Make sense?</p> </div> </div> <div id="properties-of-absolute-value" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Properties of Absolute Value</h2> </header> </div> <div class="section collapsed" id="section-properties-of-absolute-value"><div class="section-container"> <p>Now, let us think about something more interesting. Could the stolen car's distance from your house \(\left(d_1\right)\) ever be greater than the distance the car traveled \(\left( d_2\right)\) to get there? We know from above that the distance of the car from your house is \(d_1=\lvert 2-3 \rvert=1\) mile. Since the distance traveled by the car is \(d_2=\lvert 2 \rvert + \lvert -3 \rvert =5>1=d_1,\) the answer to the question \(“\,d_1>d_2?\,”\) is no.</p> <p>What if the thief traveled farther east, instead of turning back and heading west, for \(3\) miles? Would your answer still be no? Let us see. In this case, the distance of the car from your house in miles is \(d_1=\lvert 2+3 \rvert=5,\) whereas the distance traveled by the car in miles is \(d_2=\lvert 2 \rvert + \lvert 3 \rvert = 5.\) </p> <p><span class="image-caption center"> <img src="https://i.imgur.com/8x3HJXc.jpg" srcset="https://i.imgur.com/8x3HJXc.jpg 1x" alt="wiki<em>AbsoluteValue</em>3" /> <span class="caption">wiki<em>AbsoluteValue</em>3</span></span></p> <p>Since these two numbers are equal, the answer to the above question is still no. That is, your stolen car's distance from your house can never be greater than the distance the car traveled to get there. In general, for any real numbers \(x\) and \(y\) \[\lvert x+y \rvert \le \lvert x \rvert + \lvert y \rvert,\] which is part of the following:</p> <blockquote class="note"><p> Properties of absolute value:</p> <ol> <li>\(|x|=|-x|\)</li> <li>\(-|x|\leq x \leq |x|\)</li> <li>\(|x|=|y|\) if and only if \(x = y\) or \(x = -y\)</li> <li>\(|x^n|=|x|^n\) for any positive integer \(n\)</li> <li>\(|xy|=|x| \cdot |y|\)</li> <li>\(\left|\frac{x}{y}\right|=\frac{|x|}{|y|}\) if \(y \neq 0\)</li> <li>\(|x\pm y|\leq |x|+|y|\) <!-- end-note --></blockquote></li> </ol> <p>Here are some examples of how to calculate absolute values using the above properties:</p> <blockquote class="example"><p> Calculate \(|3.5|-|-2.5|.\)</p> <hr /> <p>We have </p> <p>\[|3.5|-|-2.5|=3.5-2.5=1. \ _\square\] </p><!-- end-example --></blockquote> <blockquote class="example"><p> Calculate \(|\pi - 2| + |\pi - 3| + |2\pi - 7|.\)</p> <hr /> <p>The quantities \(\pi - 2\) and \(\pi - 3\) are positive, so they remain unchanged when the absolute bars are dropped. However, because \(2\pi - 7\) is negative, we have</p> <p>\[|\pi - 2| + |\pi - 3| + |2\pi - 7|= (\pi - 2) + (\pi - 3) + {\color{red}{ (7 - 2\pi)}} = 2. \ _\square\] </p><!-- end-example --></blockquote> <blockquote class="example"><p> Evaluate \(|5\times 6|.\)</p> <hr /> <p>We have</p> <p>\[|5\times 6|=|30|=30. \ _\square\] </p><!-- end-example --></blockquote> <blockquote class="example"><p> Find the value of \(\left\lvert 2\times \left(\frac{2}{3}-0.5\right) \right\rvert.\) Express your answer as a fraction in its lowest term.</p> <hr /> <p>We have</p> <p>\[\begin{align} \left| 2\times\left(\frac{2}{3}-0.5\right)\right| &=\left\lvert 2\left(\frac{1}{6}\right)\right\rvert\\ &=\left\lvert \frac{1}{3}\right\rvert\\ &=\frac{1}{3}. \ _\square \end{align}\] </p><!-- end-example --></blockquote> </div> </div> <div id="graphical-interpretation-of-absolute-value" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Graphical Interpretation of Absolute Value</h2> </header> </div> <div class="section collapsed" id="section-graphical-interpretation-of-absolute-value"><div class="section-container"> <p>Now, it is time for a graphical interpretation of absolute value. Take a look at the following graph of \(y=\lvert x \rvert.\) </p> <p><span class="image-caption center"> <img src="https://i.imgur.com/tr4uMGa.jpg" srcset="https://i.imgur.com/tr4uMGa.jpg 1x" alt="wiki<em>AbsoluteValue</em>4" /> <span class="caption">wiki<em>AbsoluteValue</em>4</span></span></p> <p>Do you see that it is drawn exactly by the definition of absolute value and the value of \(y\) is always non-negative? Do you see that the dotted red line, which is \(y=x\) for \(x<0,\) is flipped over against the \(x\)-axis so that the negative values of \(y\) become positive?</p> <p>As regards to the car thief example, let us say that the car owner wants to go out and catch the thief himself if the bad guy is within \(4\) miles from his house. Then in the first scenario where the thief ends up \(1\) mile west of his house \((\text{i.e. }x=-1)\) and thus the thief is \(y=\lvert x \rvert=-(-x)=-(-1)=1\) mile away from his house, he will not call the police but go out himself. On the contrary, in the second scenario where the thief ends up \(5\) miles east of his house \((\text{i.e. }x=5)\) and thus the thief is \(y=\lvert x \rvert=x=5\) miles away from his house, he will call the police. </p> <p>Now, what if the car owner's house was located at \(x=3\) instead of \(x=0\) in the first place and the car thief behaved in the same manner? How different will the graph look? The answer is right below:</p> <p><span class="image-caption center"> <img src="https://i.imgur.com/d3SoKpS.jpg" srcset="https://i.imgur.com/d3SoKpS.jpg 1x" alt="wiki<em>AbsoluteValue</em>5" /> <span class="caption">wiki<em>AbsoluteValue</em>5</span></span></p> <p>Since the house is located at \(x=3\) under this new circumstance, the thief in the first scenario does not end up \(x=-1\) but \(x=3+(-1)=2\) miles east of \(x=0\) and thus his distance from the owner's house is \(y=\lvert x-3 \rvert=-(x-3)=-(2-3)=1\) mile. \((\)This would make sense to you if you noticed that \(y=\lvert x \rvert\) in the above example can be considered as \(y=\lvert x-0\rvert.)\)</p> <p>In the second scenario, the thief does not end up \(x=5\) but \(x=3+5=8\) miles east of \(x=0\) and thus his distance from the owner's house is \(y=\lvert x-3 \rvert=x-3=8-3=5\) miles. Hence the equation of the above graph is \(y=\lvert x-3 \rvert,\) where the dotted red line, which is the graph of \(y=x-3\) for \(x<3,\) is flipped over against the \(x\)-axis at \(x=3\) because the benchmark point is now \(x=3\) instead of \(x=0.\)</p> <p>Now that we know how to get the graph of \(y=\lvert x-3 \rvert,\) which is \(V\)-shaped, let us try to get a \(W\)-shaped graph. To do that, we first translate the graph of \(y=\lvert x-3 \rvert\) by \(2\) in the negative direction of the \(y\)-axis, as shown below, and the equation of the translated graph is \(y=\lvert x-3 \rvert-2.\)</p> <p><span class="image-caption center"> <img src="https://i.imgur.com/vE5HQPk.jpg" srcset="https://i.imgur.com/vE5HQPk.jpg 1x" alt="wiki<em>AbsoluteValue</em>6" /> <span class="caption">wiki<em>AbsoluteValue</em>6</span></span></p> <p>Then we ask, "What will the graph of \(y=\big\lvert \lvert x-3 \rvert -2 \big\rvert\) look like?" Since all the values of \(y\) for \(1<x<5\) in the graph of \(y=\lvert x-3 \rvert-2\) are negative, we flip over that part of the graph to obtain the following, just as we did above:</p> <p><span class="image-caption center"> <img src="https://i.imgur.com/MFF1vhL.jpg" srcset="https://i.imgur.com/MFF1vhL.jpg 1x" alt="wiki<em>AbsoluteValue</em>7" /> <span class="caption">wiki<em>AbsoluteValue</em>7</span></span></p> <p>Do you really see a \(W\)-shaped graph now? One question that naturally arises in your mind would be how to draw the graph of \(y=\big\lvert \lvert x-3 \rvert -2 \big\rvert\) from scratch without referring to the thief example. We can use <a href="/wiki/linear-inequalities/" class="wiki_link" title="linear inequalities"target="_blank">linear inequalities</a> to accomplish this. </p> <p>Observe from the equation \(y=\big\lvert \lvert x-3 \rvert -2 \big\rvert\) that if \(\lvert x-3 \rvert \ge 2,\) then \(y=\lvert x-3 \rvert - 2.\) This can be rewritten in more detail as the following two cases: \[\begin{align} x-3\ge 2 \Leftrightarrow x\ge 5 \Rightarrow y&=(x-3)-2\\ &=x-5 &\qquad (1) \\ x-3\le -2 \Leftrightarrow x\le 1 \Rightarrow y&=-(x-3)-2\\ &=-x+1. &\qquad (2) \end{align}\] Can you confirm that \((1)\) corresponds to the above graph for \(x\ge 5\) and \((2)\) corresponds to the above graph for \(x\le 1?\) I think you already did.</p> <p>Similarly, observe from the equation \(y=\big\lvert \lvert x-3 \rvert -2 \big\rvert\) that if \(\lvert x-3 \rvert < 2,\) then \(y=-(\lvert x-3 \rvert - 2)=-\lvert x-3 \rvert + 2,\) which is equivalent to \[-2<x-3<2 \Leftrightarrow 1<x<5 \Rightarrow y=-\lvert x-3 \rvert + 2.\] This can be rewritten in more detail as the following two cases: \[\begin{align} 1<x<3 \Rightarrow y&=-(-( x-3)+ 2)\\ &=x-1 &\qquad (3)\\ 3\le x<5 \Rightarrow y&=-(( x-3)+ 2)\\ &=-x+5. &\qquad (4)\\ \end{align}\] Again, can you confirm that \((3)\) corresponds to the above graph for \(1<x<3\) and \((4)\) corresponds to the above graph for \(3\le x<5?\) I am sure you already did. </p> <p>Now, it's time for you to try some examples.</p> <blockquote class="example"><p> Which of the following is the graph of \( y=\frac{x}{\lvert x \rvert}\) for \(x\ne 0?\)</p> <p><span class="image-caption center"> <img src="https://i.imgur.com/leoatpF.jpg" srcset="https://i.imgur.com/leoatpF.jpg 1x" alt="wiki<em>AbsoluteValue</em>8" /> <span class="caption">wiki<em>AbsoluteValue</em>8</span></span></p> <hr /> <p>If \(x>0,\) then \(\lvert x \rvert=x,\) which implies \[y=\frac{x}{\lvert x \rvert}=\frac{x}{x}=1.\] If \(x<0,\) then \(\lvert x \rvert=-x,\) which implies \[y=\frac{x}{\lvert x \rvert}=\frac{x}{-x}=-1.\] Therefore, the correct answer is \((c). \ _\square\) <!-- end-example --></blockquote> </p> <blockquote class="example"><p> Which of the following conditions does NOT always satisfy \(x=\lvert x \rvert?\)</p> <p>(a) \(x\) is a non-negative real number. <br /> (b) \(x\) is a positive real number. <br /> (c) \(x\) is a positive integer. <br /> (d) \(x\) is a non-zero real number.</p> <hr /> <p>If \(x\ge 0,\) then \(\lvert x \rvert=x,\) which implies \(x=\lvert x \rvert\) holds for all non-negative real numbers. Hence, \((a), (b)\) and \((c)\) always satisfy \(x=\lvert x \rvert.\)</p> <p>If \(x<0,\) then \(\lvert x \rvert=-x,\) which implies \(x=\lvert x \rvert\) never holds for \(x<0.\)</p> <p>Therefore, the correct answer is \((d). \ _\square\) </p><!-- end-example --></blockquote> </div> </div> <div id="evaluating-absolute-value-expressions" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Evaluating Absolute Value Expressions</h2> </header> </div> <div class="section collapsed" id="section-evaluating-absolute-value-expressions"><div class="section-container"> <blockquote class="example"> <h3>Given that \(a,b,c\) are non-zero real numbers , find all possible values of the expression \(\dfrac{a}{|a|}+\dfrac{b}{|b|}+\dfrac{c}{|c|}\).</h3> <hr /> <p>Since \(\dfrac{x}{|x|}=1\) for any \(x>0\) and \(\dfrac{x}{|x|}=-1\) for any \(x<0\) ,</p> <p>\(\dfrac{a}{|a|}+\dfrac{b}{|b|}+\dfrac{c}{|c|}= -3 \) if \(a,b,c\) are all negative;</p> <p>\(\dfrac{a}{|a|}+\dfrac{b}{|b|}+\dfrac{c}{|c|} = -1\) if exactly two of \(a,b,c\) are negative;</p> <p>\(\dfrac{a}{|a|}+\dfrac{b}{|b|}+\dfrac{c}{|c|} = 1\) if exactly one of \(a,b,c\) is negative;</p> <p>\(\dfrac{a}{|a|}+\dfrac{b}{|b|}+\dfrac{c}{|c|}= 3 \) if \(a,b,c\) are all positive.</p> <p>Thus , the possible values of the given expression are \(-3,-1,1\) and \(3. \ _\square\) </p><!-- end-example --></blockquote> </div> </div> <div id="absolute-value-problem-solving-easy" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Absolute Value Problem Solving - Basic</h2> </header> </div> <div class="section collapsed" id="section-absolute-value-problem-solving-easy"><div class="section-container"> <blockquote class="example"> <h3>Solve the equation \(|x-2| + |x-3| = 1.\)</h3> <hr /> <p>We need to discuss three cases:\(\begin{cases} x \leq 2 \\ 2<x\leq 3 \\ 3<x. \end{cases}\)</p> <ul> <li><p>When \(x \leq 2\), <br /> \(|x-2|+|x-3|=1 \Rightarrow (2-x)+(3-x)=1 \Rightarrow x=2.\)</p></li> <li><p>When \(2<x\leq 3\), <br /> \(|x-2|+|x-3|=1 \Rightarrow (x-2)+(3-x)=1 \Rightarrow\) any \(x \in (2,3]\) is a solution.</p></li> <li><p>When \(x>3 \), <br /> \(|x-2|+|x-3|=1 \Rightarrow (x-2)+(x-3)=1 \Rightarrow x=3. \) <br /> But since we assumed \(x>3\), there is no solution for the case \(x>3\).</p></li> </ul> <p>In conclusion, the solutions to the equation \(|x-2|+|x-3|=1\) are \( 2 \leq x \leq 3 \). \(_\square\)</p> <!-- end-example --></blockquote> </div> </div> <div id="absolute-value-problem-solving-medium" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Absolute Value Problem Solving - Intermediate</h2> </header> </div> <div class="section collapsed" id="section-absolute-value-problem-solving-medium"><div class="section-container"> <blockquote class="example"> <h3>Find the minimum value of \(|x+1|+|x-2|+|x-3|\).</h3> <hr /> <p><strong>Case 1 :</strong> When \(x \leq -1\) ,</p> <p>\[ |x+1|+|x-2|+|x-3| = -(x+1)-(x-2)-(x-3)=4-3x \geq 7.\]</p> <p><strong>Case 2:</strong> When \(-1<x \leq 2\) , </p> <p>\[|x+1|+|x-2|+|x-3| = (x+1)-(x-2)-(x-3)=6-x \geq 4.\]</p> <p><strong>Case 3:</strong> When \(2\leq x <3\),</p> <p>\[|x+1|+|x-2|+|x-3|= (x+1)+(x-2)-(x-3)=x+2 \geq 4.\]</p> <p><strong>Case 4:</strong> When \(3 \leq x\),</p> <p>\[|x+1|+|x-2|+|x-3| = (x+1)+(x-2)+(x-3)=3x-4 \geq 5.\]</p> <p>Thus the <a href="/wiki/global-extrema/" class="wiki_link" title="global minimum"target="_blank">global minimum</a> of the given expression is <strong>4</strong>. \(_\square\)</p> <!-- end-example --></blockquote> </div> </div> </div> </div> </div> <div class="wiki-self-citation" data-controller="app/wiki:getCitationTime"> <strong>Cite as:</strong> Absolute Value. <em>Brilliant.org</em>. Retrieved<span class="retrieval-time"> </span>from <a href="https://brilliant.org/wiki/absolute-value/">https://brilliant.org/wiki/absolute-value/</a> </div> <script type="text/template" id="retrieval-time-content"> <%- hour %>:<%- minute %>, <%- month %> <%- day %>, <%- year %>, </script> <div class="wiki-rating-feedback-wrapper row" data-controller="app/wiki:feedback"> </div> </div> <div class="wiki-overlay"></div> <div class="wiki-footer" id="loggedout-wiki-footer" data-controller="app/wiki:showSignUpModal,app/wiki:wikiFooter"> <a href="https://brilliant.org/account/signup/?next=/wiki/absolute-value/" rel="nofollow" class="signup-btn content ax-click" data-ax-id="clicked_signup_from_wiki_footer" data-ax-type="button"> <span class="cta-text-wrap"> <span class="cta-text-block"> <span class="cta-text-title">Join Brilliant</span> <span class="cta-text-subtitle">The best way to learn math and computer science.</span> </span> <span class="btn btn-accent">Sign up</span> </span> </a> </div> <div class="public-signup-modal-experiment modal hide rebrand" id="signup-modal-wiki" data-controller="app/signup:signUpModal"> <div class="public-signup-left col col-last public-signup-left-experiment" id="public-signup-tour"> </div> <div class="public-signup-experiment show-signup" id="public-signup" > <span class="css-sprite-signup-modal signup-modal-image"></span> <div class="text row"> Sign up to read all wikis and quizzes in math, science, and engineering topics. </div> <div class="public-buttons row" data-controller="app/solvables:preventSocialButtonDoubleClick" > <div class="login-buttons"> <a href="https://brilliant.org/account/google/login/?next=/wiki/absolute-value/" id="login-google" class="btn btn-google signup-social ax-click" data-ax-id="clicked_login_from_problem_modal_google" data-ax-type="button" data-is_modal="true" > <span class="google css-sprite-index"></span>Log in with Google </a> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value/" id="login-fb" class="btn btn-f-b signup-social ax-click" data-ax-id="clicked_login_from_problem_modal_facebook" data-ax-type="button" data-is_modal="true" > <svg class="fb-icon" fill="#fff" xmlns="http://www.w3.org/2000/svg"> <path d="M0 11.0662C0.00127985 16.5108 3.9361 21.1467 9.28038 22V14.2648H6.48977V11.0662H9.28368V8.6313C9.15878 7.47753 9.55044 6.32766 10.3524 5.49353C11.1544 4.6594 12.2837 4.22747 13.4338 4.31489C14.2594 4.32831 15.0829 4.40229 15.8977 4.53625V7.2578H14.5074C14.0287 7.19472 13.5475 7.35378 13.1993 7.69018C12.8511 8.02657 12.6735 8.5039 12.7167 8.98768V11.0662H15.7647L15.2774 14.2659H12.7167V22C18.4964 21.0809 22.5493 15.7697 21.9393 9.91413C21.3293 4.05853 16.2698 -0.291573 10.4263 0.0152787C4.58284 0.322131 0.000928892 5.17851 0 11.0662Z" /></svg> Log in with Facebook </a> <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value/" id="problem-login-link" class="btn btn-email ax-click" data-ax-id="clicked_login_from_problem_modal_email" data-ax-type="button" data-is_modal="true" data-next="/wiki/absolute-value/" > Log in with email </a> </div> <div class="signup-buttons"> <a href="https://brilliant.org/account/google/login/?next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" id="signup-google" class="btn btn-google signup-social ax-click" data-ax-id="clicked_signup_from_problem_modal_google" data-ax-type="button" > <span class="google css-sprite-index"></span>Join using Google </a> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" id="signup-fb" class="btn btn-f-b signup-social ax-click" data-ax-id="clicked_signup_from_problem_modal_facebook" data-ax-type="button" > <svg xmlns="http://www.w3.org/2000/svg"> <path d="M0 11.0662C0.00127985 16.5108 3.9361 21.1467 9.28038 22V14.2648H6.48977V11.0662H9.28368V8.6313C9.15878 7.47753 9.55044 6.32766 10.3524 5.49353C11.1544 4.6594 12.2837 4.22747 13.4338 4.31489C14.2594 4.32831 15.0829 4.40229 15.8977 4.53625V7.2578H14.5074C14.0287 7.19472 13.5475 7.35378 13.1993 7.69018C12.8511 8.02657 12.6735 8.5039 12.7167 8.98768V11.0662H15.7647L15.2774 14.2659H12.7167V22C18.4964 21.0809 22.5493 15.7697 21.9393 9.91413C21.3293 4.05853 16.2698 -0.291573 10.4263 0.0152787C4.58284 0.322131 0.000928892 5.17851 0 11.0662Z" /></svg> Join using Facebook </a> <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" id="signup-email" class="btn btn-email ax-click" data-ax-id="clicked_signup_from_problem_modal_email" data-ax-type="button" data-next="/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" > Join using email </a> </div> </div> <div class="signup-form-container" id="signup-form-container" data-url="/signup_form" data-page-key="wiki_canonical_page" ></div> <div class="login-form-container row" id="login-form-container" data-url="/login_form" data-page-key="wiki_canonical_page" ></div> <div class="alternative"> <div class="login-alternative"> <p> <a href="/account/password/reset/" class="btn-link forget">Reset password</a> New user? <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" id="problem-signup-link-alternative" class="btn-link ax-click" data-ax-id="clicked_signup_from_problem_modal" data-ax-type="button" data-next="/wiki/absolute-value/%3Fquiz%3Ddefinition-of-absolute-value" > Sign up </a> </p> </div> <div class="signup-alternative"> <p>Existing user? <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value/" id="problem-login-link-alternative" class="btn-link ax-click" data-ax-id="clicked_login_from_problem_modal" data-ax-type="button" data-is_modal="true" data-next="/wiki/absolute-value/" > Log in </a> </p> </div> </div> </div> </div> <div data-controller="util/latex_loader:controller"></div> <div data-controller="util/analytics:init" data-analytics-live="true" data-segment-key="ttlCaHQqOWtslnGGJ9W4bBeRpfYGksuD" data-segment-url="https://in.brilliant.org" data-amplitude-key="2d768258f0a7507203c7998a3e2678f0" data-analytics-identity="KYkBFIxyq4fiwMTBIaSIbC8mFQgx6HXy" data-analytics-super-properties='{"locale": "en", "account_type": "anonymous", "debug": false, "client": "desktop-browser", "sessionid": null, "user_agent": "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727; .NET CLR 3.0.04506; .NET CLR 3.5.21022; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "identity": "KYkBFIxyq4fiwMTBIaSIbC8mFQgx6HXy", "anon_ident_latest": "KYkBFIxyq4fiwMTBIaSIbC8mFQgx6HXy", "ab_test__send_startalk_welcome_email_04_2018": false, "ab_test__reduce_nux_email_volumes_2018_08": true}' data-analytics-user-properties='{"exp__checkout_hosting_mature_monthly_1_2024": "control", "exp__ios_endstate_notifications_optins_09_2023_v2": "control", "exp__launch_leagues_2022_07": "experiment", "exp__ios_trial_paywall_refresh_04_2023": "experiment", "exp__ios_trial_paywall_04_2022": "experiment", "exp__um_course_catalog_new_packaging_05_2024": "experiment", "exp__gw_lohp_redesign_09_2024": "control", "exp__gw_lohp_redesign_09_2024_v2": "experiment", "exp__embedded_checkout_2023_12": "control", "exp__content_impact_programming2_lp_7_22": "experiment", "exp__gw_lohp_subhead_copy_09_2024": "experiment", "exp__cutgeofundmathlearning2_202210": "experiment", "exp__explanations_in_solvables_experiment": "control", "exp__data_analysis_nux_2023_02": "control", "exp__rm_offline_mode_ref_mobile_09_2022": "experiment", "exp__ios_notifications_optins_09_2022": "control", "exp__envelope_keyboard_layout_2023_09": "control", "exp__new_mobile_runtime_wrapper_02_2022": "experiment", "exp__full_screen_interactive_text_2023_01": "experiment1", "exp__test_your_understanding_03_2023": "control", "exp__gw_nux_engaging_animations_08_2024_v3": "control", "exp__explanations_in_solvables_experiment_v2": "experiment", "exp__cutgeofundmathlearning3_202210": "control", "exp__mobile_continue_button_flow_2023_02": "control", "exp__ios_endstate_notifications_optins_09_2023": "control", "exp__android_trial_paywall_refresh_04_2023": "experiment", "exp__three_month_plan_2024_01": "control", "exp__gw_smarter_copy_11_2024_v1": "control", "exp__ios_nux_notifications_optins_02_2023": "control", "exp__ios_alter_signup_nux_flow_0323": "both_combined", "exp__envelope_keyboard_layout_2023_09_v2": "control", "exp__demo_loco_experiment_20230731": "control", "exp__programming_learning_path_start_03_2023": "experiment", "exp__pro_pricing_2023_09_v2": "control", "exp__gw_7_day_trial_eligibility_09_2024": "experiment", "exp__extend_streak_on_content_completion": "control", "exp__ios_nux_notifications_optins_05_2023": "experiment", "exp__location_v2": "experiment", "exp__returning_ux_mobile_improvements_02_2023": "experiment_no_home", "exp__mobile_to_desktop_experiment": "control", "exp__android_alter_signup_nux_flow_0323": "both_combined", "exp__llp_in_product_2023_06": "experiment", "exp__mobile_continue_button_flow_2023_03": "experiment", "exp__ios_prenux_green_button_05_2023": "control", "exp__lightweight_lesson_practice_09_2023": "control", "exp__practice_node_2023_08": "experiment", "exp__trial_embedded_checkout_1_2024": "experiment", "exp__android_mature_paywall_redesign_1223": "control", "exp__rewrite_trial_paywall_v4_01_2024": "control", "exp__android_mature_paywall_redesign_0124": "experiment", "exp__embedded_checkout_mobile_two_step_12_2023": "experiment", "exp__remove_skip_button_nov_23": "control", "exp__rewrite_trial_paywall_v6_02_2024": "light_rewrite", "exp__um_endstate_gamefeel_2023_dec": "experiment", "exp__lohp_header_subhead_03_2024": "control", "exp__android_multiple_page_paywall_0324": "control", "exp__lohp_topic_icons_03_2024": "new_icons", "exp__phase2_course_deletion_v1_03_2024": "experiment", "exp__um_endstate_gamefeel_2024_may": "experiment", "exp__gw_lohp_rewrite_04_24_v5": "experiment", "exp__gw_lohp_rewrite_04_24_v3": "control", "exp__gw_lohp_rewrite_04_24_v4": "control", "exp__gw_nux_engaging_animations_07_2024": "control", "exp__um_on_demand_practice_06_2024": "control", "exp__gw_nux_rewrite": "control", "exp__gw_native_global_trial_discount_08_2024": "control", "exp__um_lihp_rewrite_06_2024": "experiment", "exp__no_lesson_hints_2024_07": "experiment", "exp__um_learn_check_reward_08_2024": "control", "exp__gw_nux_rewrite_test": "control", "exp__math_foundations_removal_2024_06": "control", "exp__gw_soft_nux_trial_paywall_v2_08_2024": "control", "exp__lifecycle_streak_loss_iam_06_2024": "control", "exp__um_llp_page_removal_v2_08_2024": "experiment", "exp__lifecycle_rux_iam_fixed_07_2024": "experiment", "exp__um_llp_page_removal_06_2024": "control", "exp__lc_practice_launch_iam_course_image_06_2024": "control", "exp__gw_nux_koji_reactions_07_2024": "experiment", "exp__gw_create_profile_copy_11_2024": "control", "exp__um_learn_check_reward_06_2024": "control", "exp__lifecycle_rux_iam_07_2024": "control", "exp__signup_koji_asset": "control", "exp__gw_nux_level_experiment_08_2024": "experiment", "exp__gw_nux_rewrite_v3": "experiment", "exp__um_nux_recs_llps_07_2024": "experiment", "exp__gw_endstate_upsell_08_2024": "experiment", "exp__gw_nux_engaging_animations_07_2024_v2": "control", "exp__gw_offer_trial_to_rux_10_2024": "experiment", "exp__order_logic_feedback_experiment_2024": "experiment", "exp__us_geo_pricing_2024_10": "experiment", "exp__signup_nux_rewrite_2024_08": "control", "exp__lightweight_lesson_practice_09_2023_v2": "experiment", "exp__cs_llp_l2_swap_11_2024": "experiment", "exp__gw_mature_paywall_checkout_redesign_11_2024": "experiment", "exp__um_new_nux_recs_llp_09_2024": "experiment", "exp__gw_nux_paywall_after_recs_09_2024": "control", "exp__us_monthly_geo_pricing_2024_11": "experiment", "exp__gw_gift_paywall_rewrite_11_2024": "experiment", "exp__gw_lohp_sponsor_redesign_11_2024_v1": "experiment", "exp__gw_rux_rewrite_11_2024": "experiment", "exp__codex_facelift_2024": "experiment", "exp__gw_soft_nux_trial_paywall_v3_08_2024": "control", "exp__order_logic_refresh_2024": "control", "exp__visual_algebra_11_2024": "control"}' data-facebook-ad-pixel-id="712046235504105" data-google-tag-manager-id="GTM-5RMLTZ4" data-google-ad-pixel-id="1007657493" data-ltv-event-id="0" data-ltv-event-ltv="" data-ltv-event-currency="" data-ltv-event-interval="" data-ltv-event-confirm-url="" data-send-ga-trial-subscription-event="" data-is-tracked-user="true" > <div class="ax-event" data-ax-name="sign_of_life" data-ax-properties='{"path": "/wiki/absolute-value/", "full_path": "/wiki/absolute-value/", "method": "GET", "ajax": false, "from_request": true, "is_android": false}'></div> </div> <div id="footer-notifs"> </div> </div> <div id="default-ajax-error" class="hide" data-error-title="Error" data-error-content="We encountered an error while talking to our servers. Refresh the page and try again in a few seconds. If the problem persists, please <a href='mailto:support@brilliant.org'>email us</a>." data-timeout-content="That action is taking longer than expected. This is likely due to network issues. Please try again in a few seconds, and if the problem persists, <a href='mailto:support@brilliant.org'>send us an email</a>."> </div> <script type="text/javascript"> window.VERSIONS = { } ; </script> <script src="https://browser.sentry-cdn.com/7.46.0/bundle.min.js" integrity="sha384-AfN9/2RSX7pLS3X2yieiMJYVrZpmuiiy+X2VmHvghWptYJJhkBmN1sqvjpwkxHCu" crossorigin="anonymous" ></script> <script type="text/javascript"> var oldonload = window.onload || function () {}; window.onload = function () { window.isLoaded = true; oldonload.apply(this); }; Sentry.init({ dsn: 'https://621cfa37a828468ab6b77f0cc3bff7dd@o1307044.ingest.sentry.io/6551268', allowUrls: [ /brilliant\.org/, /ds055uzetaobb\.cloudfront\.net/, /d18l82el6cdm1i\.cloudfront\.net/, ], }); Sentry.setTags({ anonymous: true, b2: false, client: 'desktop-browser' }) </script> <script src="/site_media/build/dist/brilliant_vendors.d1beebc48993ca7a072c.js" type="text/javascript"></script> <script src="/site_media/build/dist/brilliant_entry.54e2393a61272c1d351c.js" type="text/javascript"></script> <div id="fb-root"></div> <script> window.fbAsyncInit = function() { FB.init({ appId: '326254770799145', version: 'v16.0', status: true, xfbml: true, frictionlessRequests: true }); window.fb_auth_status=function(c){ c=c||function(){}; FB.getLoginStatus(function(r){ if(r.status==='connected'){c(true,r);} else{c(false,r);} }); }; window._fb_status=window._fb_status||[]; var i=0,l=_fb_status.length; for(i;i<l;i++){fb_auth_status(_fb_status[i]);} _fb_status=[]; }; (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); </script> <div class="nf-feeditem-modal hide" id="nf-feeditem-modal"> <div class="nf-modal-close close" id="nf-modal-close">×</div> <div class="nf-modal-loading"> <div class="logo"></div> <div class="stripe"></div> <p class="solvable-text">Problem Loading...</p> <p class="note-text">Note Loading...</p> <p class="set-text">Set Loading...</p> </div> <div class="nf-feeditem-modal-wrapper"> <div class="nf-solvable-modal-content nf-modal-content solv-modal clearfix" id="cmp_assessment_modal_public_solvable_component_id"></div> </div> </div> </body> </html>