CINXE.COM
Absolute Value Equations | Brilliant Math & Science Wiki
<!DOCTYPE html> <html lang="en-us"> <head> <meta http-equiv="Content-type" content="text/html; charset=utf-8"> <meta name="google" content="notranslate" /> <meta http-equiv="Content-Language" content="en_US" /> <title>Absolute Value Equations | Brilliant Math & Science Wiki</title> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=1.0"> <meta property="fb:app_id" content="326254770799145" /> <link rel="chrome-webstore-item" href="https://chrome.google.com/webstore/detail/eommhbliilafdkodaijeejngbjiiaccl"> <meta property="al:ios:url" content="com.brilliant.Brilliant://wiki/absolute-value-equations/" /> <meta property="al:ios:app_store_id" content="913335252" /> <meta property="al:ios:app_name" content="Brilliant.org" /> <meta property="al:android:url" content="https://brilliant.org/wiki/absolute-value-equations/"> <meta property="al:android:package" content="org.brilliant.android"> <meta property="al:android:app_name" content="Brilliant"> <link rel="canonical" href="https://brilliant.org/wiki/absolute-value-equations/"> <link rel="alternate" href="android-app://org.brilliant.android/http/brilliant.org/wiki/absolute-value-equations/"> <link rel="apple-touch-icon" href="/apple-touch-icon-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-72x72-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-76x76-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-114x114-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-120x120-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-144x144-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-152x152-precomposed.png"> <link rel="apple-touch-icon" href="/apple-touch-icon-180x180-precomposed.png"> <meta name="description" content="Absolute value equations are equations involving expressions with the absolute value functions. This wiki intends to demonstrate and discuss problem solving techniques that let us solve such equations. A very basic example would be as follows: Usually, the basic approach is to analyze the behavior of the function before and after the point where they reach 0. For example, for ..." > <meta property="og:type" content="website"> <meta property="og:title" content="Absolute Value Equations | Brilliant Math & Science Wiki"> <meta property="og:description" content="Absolute value equations are equations involving expressions with the absolute value functions. This wiki intends to demonstrate and discuss problem solving techniques that let us solve such equations. A very basic example would be as follows: Usually, the basic approach is to analyze the behavior of the function before and after the point where they reach 0. For example, for ..."> <meta property="og:image" content="https://brilliant.org/site_media/version-1a4dfc4f1b/images/open-graph/default.png"> <meta property="og:image:alt" content="https://brilliant.org/site_media/version-1a4dfc4f1b/images/open-graph/default.png"> <meta property="og:url" content="https://brilliant.org/wiki/absolute-value-equations/"> <meta name="twitter:site" content="@brilliantorg"> <meta name="twitter:card" content="summary_large_image"> <link href="/site_media/build/dist/brilliant_desktop.fabc7e930dc66edf97d1.css" rel="stylesheet" media="all" type="text/css"> <link href="/site_media/build/dist/wiki.3afa76c75f07fa7af020.css" rel="stylesheet" media="all" type="text/css"> <link href="/site_media/build/dist/feed_page.dedd68e4f0e55bff1692.css" rel="stylesheet" media="all" type="text/css"> <!--[if lt IE 6]><script type="text/javascript">var ie_version = -1;</script><![endif]--> <!--[if IE 6]><script type="text/javascript">var ie_version = 6;</script><![endif]--> <!--[if IE 7]><script type="text/javascript">var ie_version = 7;</script><![endif]--> <!--[if IE 8]><script type="text/javascript">var ie_version = 8;</script><![endif]--> <!--[if IE 9]><script type="text/javascript">var ie_version = 9;</script><![endif]--> <script type="text/javascript"> (function (w, loc) { var u = /ds055uzetaobb\.cloudfront\.net|d18l82el6cdm1i\.cloudfront\.net/; if(u.test(loc.host)){ w.location=loc.protocol+'//brilliant.org'+loc.pathname;} })(window,window.location); </script> <noscript> <style>.cmp-deferred .no-js{display:block !important;}</style> </noscript> </head> <body class="no-js enable-remind-share-buttons wiki-page logged-out instant-try-it-yourself fonts hdr-big" data-is-mobile="false" data-app-version="0.0.0" data-user="None" data-media-host="https://ds055uzetaobb.cloudfront.net" data-third-party-cookies-enabled="true"> <!-- site_is_live --> <div id="header" class="site-header refreshed-navbar"> <div id="logged-out-header" class="container"> <div class="col"> <a href="/"> <img height="24" src="/site_media/version-0/images/brilliant-wordmark-black.svg" alt="Brilliant" /> </a> </div> <div class="hdr-links has-navbar-icon"> <span class="hdr-link"> <a href="/home/" > <svg class="navbar-icon" width="21" height="20" viewBox="0 0 21 20" fill="none" xmlns="http://www.w3.org/2000/svg"> <g clip-path="url(#clip0_91_1939)"> <path d="M20.2832 9.37336L10.9098 0L1.53638 9.37336L2.71904 10.556L10.9098 2.36534L19.1005 10.556L20.2832 9.37336Z" /> <path d="M4.1984 11.63L10.9096 4.93977L17.6208 11.63V20H13.4183L13.4183 13.3098L8.40061 13.3098L8.40061 20H4.1984V11.63Z" /> </g> <defs> <clipPath id="clip0_91_1939"> <rect width="20" height="20" fill="white" transform="translate(0.536377)" /> </clipPath> </defs> </svg> Home </a> </span> <span class="hdr-link"> <a href="/courses/" class=""> <svg class="navbar-icon" width="21" height="20" viewBox="0 0 21 20" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M4.73594 1.6H17.5359V16H19.1359V0H4.73594V1.6Z" /> <path d="M4.73594 15.2H10.3359V13.6H4.73594V15.2Z" /> <path d="M4.73594 6.39999H12.7359V11.2H4.73594V6.39999Z" /> <path fill-rule="evenodd" clip-rule="evenodd" d="M1.53613 20V3.2H15.9361V20H1.53613ZM3.13613 4.8H14.3361V18.4H3.13613V4.8Z" /> </svg> Courses </a> </span> </div> <div class="btns"> <a href="https://brilliant.org/account/signup/?next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" rel="nofollow" class="btn signup-btn col-2 ax-click rebrand" data-ax-id="clicked_signup_from_header" data-ax-type="button" data-controller="util/ui:genericSignupModal" data-next=""> Sign up </a> <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value-equations/" rel="nofollow" class="btn login-link col-2 ax-click rebrand" data-ax-id="clicked_login_from_header" data-ax-type="link" data-controller="util/ui:genericSignupModal" data-show-login="true" data-next=""> Log in </a> </div> </div> </div> <div data-controller="app/vue:component" data-component="BannerWrapper" data-legacy-url="/wiki/absolute-value-equations/" data-is-authenticated=false ></div> <div id="system-msgs" class="row clearfix"> </div> <div id="post-header"> </div> <div id="wrapper" class="container clearfix" data-controller=""> <div class="public-signup-modal-experiment modal hide rebrand" id="signup-modal-generic" data-controller="app/signup:signUpModal"> <div class="public-signup-left col col-last public-signup-left-experiment" id="public-signup-tour"> </div> <div class="public-signup-experiment show-signup" id="public-signup" > <span class="css-sprite-signup-modal signup-modal-image"></span> <div class="text row"> The best way to learn math and computer science. </div> <div class="public-buttons row" data-controller="app/solvables:preventSocialButtonDoubleClick" > <div class="login-buttons"> <a href="https://brilliant.org/account/google/login/?next=/wiki/absolute-value-equations/" id="login-google" class="btn btn-google signup-social ax-click" data-ax-id="clicked_login_from_generic_modal_google" data-ax-type="button" data-is_modal="true" > <span class="google css-sprite-index"></span>Log in with Google </a> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value-equations/" id="login-fb" class="btn btn-f-b signup-social ax-click" data-ax-id="clicked_login_from_generic_modal_facebook" data-ax-type="button" data-is_modal="true" > <svg class="fb-icon" fill="#fff" xmlns="http://www.w3.org/2000/svg"> <path d="M0 11.0662C0.00127985 16.5108 3.9361 21.1467 9.28038 22V14.2648H6.48977V11.0662H9.28368V8.6313C9.15878 7.47753 9.55044 6.32766 10.3524 5.49353C11.1544 4.6594 12.2837 4.22747 13.4338 4.31489C14.2594 4.32831 15.0829 4.40229 15.8977 4.53625V7.2578H14.5074C14.0287 7.19472 13.5475 7.35378 13.1993 7.69018C12.8511 8.02657 12.6735 8.5039 12.7167 8.98768V11.0662H15.7647L15.2774 14.2659H12.7167V22C18.4964 21.0809 22.5493 15.7697 21.9393 9.91413C21.3293 4.05853 16.2698 -0.291573 10.4263 0.0152787C4.58284 0.322131 0.000928892 5.17851 0 11.0662Z" /></svg> Log in with Facebook </a> <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value-equations/" id="problem-login-link" class="btn btn-email ax-click" data-ax-id="clicked_login_from_generic_modal_email" data-ax-type="button" data-is_modal="true" data-next="/wiki/absolute-value-equations/" > Log in with email </a> </div> <div class="signup-buttons"> <a href="https://brilliant.org/account/google/login/?next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" id="signup-google" class="btn btn-google signup-social ax-click" data-ax-id="clicked_signup_from_generic_modal_google" data-ax-type="button" > <span class="google css-sprite-index"></span>Join using Google </a> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" id="signup-fb" class="btn btn-f-b signup-social ax-click" data-ax-id="clicked_signup_from_generic_modal_facebook" data-ax-type="button" > <svg xmlns="http://www.w3.org/2000/svg"> <path d="M0 11.0662C0.00127985 16.5108 3.9361 21.1467 9.28038 22V14.2648H6.48977V11.0662H9.28368V8.6313C9.15878 7.47753 9.55044 6.32766 10.3524 5.49353C11.1544 4.6594 12.2837 4.22747 13.4338 4.31489C14.2594 4.32831 15.0829 4.40229 15.8977 4.53625V7.2578H14.5074C14.0287 7.19472 13.5475 7.35378 13.1993 7.69018C12.8511 8.02657 12.6735 8.5039 12.7167 8.98768V11.0662H15.7647L15.2774 14.2659H12.7167V22C18.4964 21.0809 22.5493 15.7697 21.9393 9.91413C21.3293 4.05853 16.2698 -0.291573 10.4263 0.0152787C4.58284 0.322131 0.000928892 5.17851 0 11.0662Z" /></svg> Join using Facebook </a> <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" id="signup-email" class="btn btn-email ax-click" data-ax-id="clicked_signup_from_generic_modal_email" data-ax-type="button" data-next="/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" > Join using email </a> </div> </div> <div class="signup-form-container" id="signup-form-container" data-url="/signup_form" data-page-key="wiki_canonical_page" ></div> <div class="login-form-container row" id="login-form-container" data-url="/login_form" data-page-key="wiki_canonical_page" ></div> <div class="alternative"> <div class="login-alternative"> <p> <a href="/account/password/reset/" class="btn-link forget">Reset password</a> New user? <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" id="problem-signup-link-alternative" class="btn-link ax-click" data-ax-id="clicked_signup_from_generic_modal" data-ax-type="button" data-next="/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" > Sign up </a> </p> </div> <div class="signup-alternative"> <p>Existing user? <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value-equations/" id="problem-login-link-alternative" class="btn-link ax-click" data-ax-id="clicked_login_from_generic_modal" data-ax-type="button" data-is_modal="true" data-next="/wiki/absolute-value-equations/" > Log in </a> </p> </div> </div> </div> </div> <div class="col col-12 col-last wiki-main-column"> <header id="wiki-header" class="wiki-header"> <div class="pull-right"> </div> <h1>Absolute Value Equations</h1> </header> <div class="signup-modal hide"> <div class="modal-bg"></div> <div class="modal-content"> <div class="buttons"> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value-equations/" class="btn signup-fb ax-click" data-ax-id="clicked_signup_modal_facebook" data-ax-type="button"> Sign up with Facebook</a> <span class="or">or</span> <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value-equations/" class="btn signup-email ax-click" data-ax-id="clicked_signup_modal_email" data-ax-type="button"> Sign up manually</a> </div> <div class="alternative"> <p> Already have an account? <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value-equations/" class="ax-click" data-ax-id="clicked_signup_modal_login" data-ax-type="link"> Log in here. </a> </p> </div> </div> </div> <div class="wiki-top-editors" id="cmp_wiki_top_editors_id"> <a href="/profile/hobart-y5e55w/about/" class="btn-profile mini-profile" data-id="pinb1XkVw7T84me0YiE1t42bjVrhIKOp" rel="nofollow"> Hobart Pao</a>, <a href="/profile/sandeep-125d73/about/" class="btn-profile mini-profile" data-id="Ddm02jHUl5BAsZXKheOzFCHRBRce9C9f" rel="nofollow"> Sandeep Bhardwaj</a>, <a href="/profile/mahindra-xyo4a9/about/" class="btn-profile mini-profile" data-id="NIeearXuZuutdTSaeLWd6bt6m5CSClHT" rel="nofollow"> Mahindra Jain</a>, and <div class="dropdown tipsy"> <button class="btn-link dropdown-toggle" data-toggle="dropdown"> 11 others </button> <ul class="dropdown-menu"> <li> <a href="/profile/pranshu-soc1hq/about/" class="mini-profile" data-id="MuiRRM3cU6uWDq38Z4cEWLyxIi901CcB" rel="nofollow"> Pranshu Gaba </a> </li> <li> <a href="/profile/alan-enrique-41j571/about/" class="mini-profile" data-id="iTUmV7VZxf2l5eeo7rOkiHOOsIHAfm28" rel="nofollow"> Alan Enrique Ontiveros Salazar </a> </li> <li> <a href="/profile/kai-hsien-7xnr34/about/" class="mini-profile" data-id="h2aEqWHJ2jXWE8rnq5I0zvE0ezxJyFhS" rel="nofollow"> Kai Hsien Boo </a> </li> <li> <a href="/profile/agnishom-l2k4is/about/" class="mini-profile" data-id="FMScB4oOzh7TD1uiT3W5aaePYScQ8do6" rel="nofollow"> Agnishom Chattopadhyay </a> </li> <li> <a href="/profile/mei-p3a2wx/about/" class="mini-profile" data-id="8CONqYD7SAOPvsEUoqhDWgAlLN8PFxWf" rel="nofollow"> Mei Li </a> </li> <li> <a href="/profile/aditya-g31xu2/about/" class="mini-profile" data-id="h4WmZcF67UIETLqKiuOed5XLSxSZmhrL" rel="nofollow"> Aditya Virani </a> </li> <li> <a href="/profile/prince-jiu31i/about/" class="mini-profile" data-id="2CSb19814e7PWoGfCNRlLRIINTtPPLCu" rel="nofollow"> Prince Loomba </a> </li> <li> <a href="/profile/keshav-luyhp8/about/" class="mini-profile" data-id="mKn4d57TtdKwMsqh0sjfgyjZo4WzDDZt" rel="nofollow"> Keshav Ramesh </a> </li> <li> <a href="/profile/calvin-8u8hog/about/" class="mini-profile" data-id="ctypzo0ald07sbrx0ty8umfajtqhk3nc" rel="nofollow"> Calvin Lin </a> </li> <li> <a href="/profile/jimin-hqyzve/about/" class="mini-profile" data-id="sFxPAbPDtKOIiquGfMHdp279pk40JIS5" rel="nofollow"> Jimin Khim </a> </li> <li> <a href="/profile/arron-udsft3/about/" class="mini-profile" data-id="ooiokyDuFwpOeiDLLy5TBQO7ON25K2pr" rel="nofollow"> Arron Kau </a> </li> </ul> </div> contributed </div> <div id="wiki-main" data-controller="app/newsfeed:feed"> <div class="summary-container" id="cmp_wiki_canonical_page_id"> <div class="summary wiki-content" data-controller="app/wiki:summary,app/zoomable:images" data-cmp-url="/wiki/absolute-value-equations/" data-page-key="wiki_canonical_page" data-cmp-key="wiki_canonical_page"> <div class="section collapsed" id="section-pre-header-section"><div class="section-container"><p><strong>Absolute value equations</strong> are equations involving expressions with the <a href="/wiki/absolute-value/" class="wiki_link" title="absolute value functions"target="_blank">absolute value functions</a>. This wiki intends to demonstrate and discuss problem solving techniques that let us solve such equations.</p> <p>A very basic example would be as follows:</p> <blockquote class="example"><p> Find all values of \(x\) satisfying \(|x-2| + |x-4| = 4.\) </p><!-- end-example --></blockquote> <p>Usually, the basic approach is to analyze the behavior of the function before and after the point where they reach 0. For example, for \(|x-a|\) one could analyze the cases where \(x > a\) or \(x < a\), or even \(x = a\) if required. However, these problems are often simplified with a more sophisticated approach like being able to eliminate some of the cases, or graphing the functions. In this wiki, we intend to discuss this techniques along with strategies on when to use which.</p> </div> </div> <div class="toc wiki-toc"> <h4>Contents</h4> <ul class="unstyled"> <li> <a href="#methodology">Methodology</a> </li> <li> <a href="#technique-squaring-both-sides">Technique - Squaring Both Sides</a> </li> <li> <a href="#technique-casework">Technique - Casework</a> </li> <li> <a href="#technique-sketching-graph">Technique - Sketching Graph</a> </li> <li> <a href="#problem-solving-miscellaneous">Problem Solving - Miscellaneous</a> </li> </ul> </div> <div id="methodology" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Methodology</h2> </header> </div> <div class="section collapsed" id="section-methodology"><div class="section-container"> <ul> <li><p>Introduction to absolute value equations </p></li> <li><p>Methodology to solve absolute value equations: the techniques used to solve absolute value equations and when to use which one</p></li> </ul> <p>Take an example to describe the following methodology:</p> <p>1) Understanding absolute value--positive, negative case (or graph approach) <br /> 2) Determining possible solutions <br /> 3) Verifying solutions</p> </div> </div> <div id="technique-squaring-both-sides" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Technique - Squaring Both Sides</h2> </header> </div> <div class="section collapsed" id="section-technique-squaring-both-sides"><div class="section-container"> <p>Explain - How do we use this technique to solve absolute value equations?</p> <ul> <li><p>Remember to verify the possible solutions - why and how?</p></li> <li><p>2-3 examples in increasing order of difficulty - explaining how we squared both sides to solve more difficult problems</p></li> <li><p>Followed by 1-2 TIY problems - relevant to be solved by case work technique </p></li> </ul> <p>Suppose we have an equation of the form \(\lvert a \rvert = \lvert b \rvert\). Since both sides are positive, we can square them without adding extraneous solutions: \[a^2=b^2.\] Then solve it as an ordinary equation: \[\begin{align} a^2-b^2&=0 \\ (a+b)(a-b)&=0. \end{align}\] So we see that \(a=-b\) or \(a=b\). </p> <blockquote class="example"><p> Solve the equation \(\lvert 3x+4 \rvert = \lvert 2x-7 \rvert\) for real \(x\).</p> <hr /> <p>We square both sides to obtain \[(3x+4)^2=(2x-7)^2.\] Here we don't need to expand both sides; just apply the difference of two squares to find the factors: \[\begin{align} (3x+4+2x-7)(3x+4-2x+7)&=0 \\ (5x-3)(x+11)&=0. \end{align} \] The solutions are \(\left\{\frac{3}{5}, -11\right\}. \ _ \square\) </p><!-- end-example --></blockquote> </div> </div> <div id="technique-casework" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Technique - Casework</h2> </header> </div> <div class="section collapsed" id="section-technique-casework"><div class="section-container"> <p>Because absolute value can be defined as piecewise functions, depending on where the value of \(x \) is with respect to the number line, you have to work with a different "piece" of the piecewise function. </p> <p>General steps:</p> <ol> <li><p>Using the definition of absolute value as a piecewise function, "undo" the absolute value sign(s) and write cases. For example, we know that the expression in the absolute value sign can either be positive or negative.</p></li> <li><p>Solve each case for \( x\).</p></li> <li><p>Verify the solutions. </p></li> </ol> <blockquote class="example"><p> Find all real values of \(x\) such that \( | 3x – 4 | – 2 = 3.\)</p> <hr /> <p>We first isolate the absolute value onto one side:</p> <p>\[\begin{align} | 3x – 4 | – 2 & = 3\\ | 3x – 4 | &= 5. \end{align}\]</p> <p>Now, we "undo" the absolute value signs and split the equation into its two cases, the positive case and the negative case:</p> <p>\[\begin{array}{rlcccrl} (3x – 4) &= 5 &&\text{ or } && –(3x – 4) &= 5\\ 3x – 4 &= 5 &&\text{ or } && –3x + 4 &= 5\\ 3x &= 9 &&\text{ or } && –3x &= 1\\ x &= 3 &&\text{ or } && x &= –\frac{1}{3}. \ _\square \end{array}\] <!-- end-example --></blockquote> </p> <blockquote class="example"><p> Find all real values of \(x \) such that \( |x+1| + |2x+3| = 5 \). </p> <hr /> <p>There are four possible cases, but one will be eliminated due to impossibility:</p> <p><strong>Case 1.</strong> If \(x+1 \) and \( 2x+3 \) are both positive, then <br /> \[\begin{align} x+1 + 2x+3 &= 5 \\ 3x + 4 &= 5 \\ 3x &= 1 \\ x &= \dfrac{1}{3}. \end{align} \]</p> <p><strong>Case 2.</strong> If \( x+1 \) is negative and \( 2x + 3 \) is positive, then \[\begin{align} - x - 1 + 2x + 3 &= 5 \\ x + 2 &= 5 \\ x &= 3. \end{align} \] However, when \( x = 3 \), \( x+1 \) and \( 2x+3 \) are both positive, so this is not a valid solution to the equation. </p> <p><strong>Case 3.</strong> If \( x+1 \) and \( 2x+3 \) are both negative, then \[\begin{align} -x - 1 - 2x - 3 &= 5 \\ -3x - 4 &= 5 \\ -3x &= 9 \\ x &= -3. \end{align} \]</p> <p><strong>Case 4.</strong> If \( x +1 \) is positive and \( 2x + 3 \) is negative, it is an impossible case. Graph the two lines if you are not convinced.</p> <p>Therefore, the solution set is \(\left \{ -3, \frac{1}{3} \right \}.\ _\square\) </p><!-- end-example --></blockquote> <blockquote class="example"><p> Find all real values of \(x\) such that</p> <p>\[|x+2|+|2x+6|+|3x-3|=12.\]</p> <hr /> <p>In this problem we are dealing with 3 terms of absolute values. Their turning points (the values of \(x\) such that they change sign) of the three terms are \(x=-2, x=-3, x=1,\) respectively. Hence, we need to check the cases \(-\infty < x \leq -3\), \(-3<x\leq -2\), \(-2 < x \leq 1\), \(1<x<\infty\).</p> <p><strong>Case 1.</strong> \(\, -\infty < x \leq -3\) <br /> In this case, the three terms will always be negative. Hence, \[\begin{aligned} -(x+2)-(2x+6)-(3x-3)&=12 \\ x &= -\frac{17}{6}. \end{aligned}\] However, \(x=-\frac{17}{6} >-3\) is not within the domain \(-\infty < x \leq -3\). Thus this solution is not valid.</p> <p><strong>Case 2.</strong> \(\, -3<x\leq -2\) <br /> In this case, the three terms will be negative, positive, and negative, respectively. Hence, \[\begin{aligned} -(x+2)+(2x+6)-(3x-3)&=12 \\ x &= -\frac{5}{2}. \end{aligned}\] \(x=-\frac{5}{2}\) lies between \(-3\) and \(-2\). Thus \(\boxed{x=-\frac{5}{2}}\) is one of the solutions.</p> <p><strong>Case 3.</strong> \(\, -2 < x \leq 1\) <br /> In this case, the three terms will be positive, positive, and negative, respectively. However, \[\begin{aligned} (x+2)+(2x+6)-(3x-3)=11 \neq 12. \end{aligned}\] Thus there is no solution within this domain.</p> <p><strong>Case 4.</strong> \(\, 1<x<\infty\) <br /> In this case, the three terms are always positive. Hence, \[\begin{aligned} (x+2)+(2x+6)+(3x-3)&=12 \\ x &= \frac{7}{6}, \end{aligned}\] which lies between \(1\) and \(\infty\). Thus \(\boxed{x=\frac{7}{6}}\) is another solution.</p> <p>In conclusion, \(x=-\frac{5}{2}\) and \(x=\frac{7}{6}\) are the solutions for the given equation. \(_\square\) </p><!-- end-example --></blockquote> <blockquote class="example"><p> Find all real values of \( x \) such that \( |x||x+1| = 2 \). </p> <hr /> <p><strong>Case 1.</strong> \(\, x, x+1 \) both positive <br /> \[\begin{align} x(x+1)-2 &= 0 \\ x^2 +x - 2 &= 0 \\ x &= 1, x = -2. \end{align} \] Reject \( x = -2 \) because it does not make both \(x \) and \( x +1 \) positive. </p> <p><strong>Case 2.</strong> \(\, x\) negative, \( x + 1 \) positive <br /> \[\begin{align} -x(x+1)-2 &= 0 \\ -x^2 - x - 2 &= 0 \\ x^2 + x + 2 &= 0 \\ x &= \dfrac{-1 \pm \sqrt{1 - 4 \cdot 1 \cdot 2 }}{2}. \end{align} \] We only asked for real solutions, so at this point we ignore this case because we're going to get imaginary results. </p> <p><strong>Case 3.</strong> \(\, x\) positive, \( x +1 \) negative <br /> This is an impossible case (graph the lines and you'll see why), so we can ignore it.</p> <p><strong>Case 4.</strong> \(\, x, x+1 \) both negative <br /> Because they're both negative, the negatives end up "canceling" and become positive, which was what we had in Case 1. However, the restriction is different from Case 1 (here, both \( x \) and \( x +1 \) have to be negative, not positive ), so instead of rejecting \( x = -2 \), we reject \( x = 1 \) from this case. Basically, in this specific case 4, \( x = 1 \) is not a possible solution, but it does not mean it's not a possible solution for Case 1 because we're simply going piece by piece in this piecewise function--in the end we will take the union of all possible solutions.</p> <p>Thus, the solutions are \( \left \{ -2, 1 \right \} \). \(_\square\) </p><!-- end-example --></blockquote> </div> </div> <div id="technique-sketching-graph" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Technique - Sketching Graph</h2> </header> </div> <div class="section collapsed" id="section-technique-sketching-graph"><div class="section-container"> <p>Sometimes absolute value equations have a ridiculous number of cases and it would take too long to go through every single case. Therefore, we can instead graph the absolute value equations using the definition of absolute value as a piecewise function. To get each piece, you must figure out the domain of each piece. This method is highly beneficial when the question writer asks for the number of solutions instead of the actual solutions. Let's work through some examples to see how this is done.</p> <blockquote class="example"><p> Find all real solutions to \( |3x-4| = 5 \). </p> <hr /> <p>To graph this, there are two possible cases: when \( 3x - 4\) is positive, and when \( 3x-4 \) is negative. </p> <p>When is \( 3x-4 \) positive? \[\begin{align} 3x - 4 &> 0 \\ 3x &> 4 \\ x &> \dfrac{4}{3}. \end{align} \] (Also, when \( x < \frac{4}{3} \), \( 3x- 4 \) will be negative.) </p> <p>We know that there will be a "turning point" at \( x = \frac{4}{3} \) for the graph of \( y = |3x-4| \). </p> <p>Finally, using the definition of absolute value, we know that when \( x > \frac{4}{3} \), \( y = 3x - 4 \), and when \( x \leqslant \frac{4}{3} \), \( y = -3x + 4 \). We now just need to graph \( y = 5 \) and look for the intersections.</p> <p><span class="image-caption center"> <img src="https://ds055uzetaobb.cloudfront.net/brioche/uploads/1BRYzWHSNm-screen-shot-2016-08-05-at-142453.png?width=1200" srcset="https://ds055uzetaobb.cloudfront.net/brioche/uploads/1BRYzWHSNm-screen-shot-2016-08-05-at-142453.png?width=1200 1x,https://ds055uzetaobb.cloudfront.net/brioche/uploads/1BRYzWHSNm-screen-shot-2016-08-05-at-142453.png?width=2400 2x,https://ds055uzetaobb.cloudfront.net/brioche/uploads/1BRYzWHSNm-screen-shot-2016-08-05-at-142453.png?width=3600 3x" alt="" /> </span></p> <p>You can see that the solutions are \(\left \{ -\frac{1}{3} , 3 \right \}.\ _\square\).</p> <p>Another benefit of this graphing technique is that you do not need to verify any of the solutions--since we are only graphing the pieces that are actually mathematically possible, we get all the solutions we are looking for, no less and no more. If you could not discern the solutions from the picture, you can simply solve the equation for each case. </p><!-- end-example --></blockquote> <blockquote class="example"><p> Find all real solutions to \( |x+1| + |2x+3| = 5 \). </p> <hr /> <p>The possible cases are that <br /> \(\hspace{0.5cm}\)<strong>1.</strong> \( \, x+1, 2x+3 \) are both positive; <br /> \(\hspace{0.5cm}\)<strong>2.</strong> \( \, x+1 \) is negative and \( 2x+3 \) is positive; <br /> \(\hspace{0.5cm}\)<strong>3.</strong> \( \, x+1 , 2x + 3 \) are both negative. <br /> We need to figure out the domains for which each of these holds. </p> <p><strong>Case 1</strong> holds when \( x > -1 \). <br /> <strong>Case 2</strong> holds when \( -\frac{3}{2} < x< -1 \). <br /> <strong>Case 3</strong> holds when \( x < -\frac{3}{2} \). </p> <p>Now, let's write our piecewise function.</p> <p>When \( x > -1 \), we have \( y = x+1 + 2x + 3 = 3x + 4 \). <br /> When \( -\dfrac{3}{2} < x< -1 \), we have\( y = -x -1 + 2x + 3 = x + 2 \). <br /> When \( x < - \dfrac{3}{2} \), we have \( y = -x - 1 -2x - 3 = -3x -4 \). </p> <p><span class="image-caption center"> <img src="https://ds055uzetaobb.cloudfront.net/brioche/uploads/83ChOwoutx-screen-shot-2016-08-05-at-143442.png?width=1200" srcset="https://ds055uzetaobb.cloudfront.net/brioche/uploads/83ChOwoutx-screen-shot-2016-08-05-at-143442.png?width=1200 1x,https://ds055uzetaobb.cloudfront.net/brioche/uploads/83ChOwoutx-screen-shot-2016-08-05-at-143442.png?width=2400 2x,https://ds055uzetaobb.cloudfront.net/brioche/uploads/83ChOwoutx-screen-shot-2016-08-05-at-143442.png?width=3600 3x" alt="" /> </span></p> <p>As you can see in the graph, the solutions for the given equation are \(\left \{ -3, \frac{1}{3} \right \}.\ _\square\) . <!-- end-example --></blockquote> </p> <blockquote class="example"><p> Find all real solutions to \( |x||x+1| = 2 \). </p> <hr /> <p>To graph this, we again only look at the possible cases and when they would occur: <br /> \(\hspace{0.5cm}\)<strong>1.</strong> \(\, x, x+1 \) both positive <br /> \(\hspace{0.5cm}\)<strong>2.</strong> \(\, x \) negative, \( x+1 \) positive <br /> \(\hspace{0.5cm}\)<strong>3.</strong> \(\, x, x+1 \) both negative.</p> <p><strong>Case 1</strong> is true when \( x>0 \). <br /> <strong>Case 2</strong> is true when \( -1 < x < 0 \). <br /> <strong>Case 3</strong> is true when \( x<-1 \).</p> <p>When \( x>0 \) and when \( x< -1 \), we have \( y = x(x+1) = x^2 + x \). <br /> When \( -1 < x < 0 \), we have \( y = -x(x+1) = -x^2 - x \).</p> <p><span class="image-caption center"> <img src="https://ds055uzetaobb.cloudfront.net/brioche/uploads/TaWgmZe4jt-screen-shot-2016-08-05-at-144117.png?width=1200" srcset="https://ds055uzetaobb.cloudfront.net/brioche/uploads/TaWgmZe4jt-screen-shot-2016-08-05-at-144117.png?width=1200 1x,https://ds055uzetaobb.cloudfront.net/brioche/uploads/TaWgmZe4jt-screen-shot-2016-08-05-at-144117.png?width=2400 2x,https://ds055uzetaobb.cloudfront.net/brioche/uploads/TaWgmZe4jt-screen-shot-2016-08-05-at-144117.png?width=3600 3x" alt="" /> </span></p> <p>It is evident that the solutions are \(\{-2, 1\}.\ _\square\) </p><!-- end-example --></blockquote> </div> </div> <div id="problem-solving-miscellaneous" class="anchor skill-heading collapsed" data-controller="app/wiki:expandOrCollapse"> <header class="section-header"> <span class="css-sprite-chevrons chevron"></span> <h2>Problem Solving - Miscellaneous</h2> </header> </div> <div class="section collapsed" id="section-problem-solving-miscellaneous"><div class="section-container"> <ul> <li><p>Any other technique (fact, definition) you can use to solve the problems? Otherwise move on to the followings.</p></li> <li><p>3-4 examples solved by using a mix of more than one of above techniques </p></li> <li><p>Add guiding text in between. Guiding text means phrasing the section in a way that it keeps on telling the reader what's going on in this section. </p></li> <li><p>3-4 TIY problems - using multiple techniques to solve</p></li> </ul> <blockquote class="example"><p> What is the sum of all real numbers \(x\) satisfying \[ x^2-\sqrt{x^2} = \lvert x-1 \rvert +5?\]</p> <hr /> <p>Observe that \(\sqrt{x^2}=\lvert x \rvert.\) Then the given equation becomes \[ x^2-\lvert x \rvert= \lvert x-1 \rvert +5.\]</p> <ul> <li><p>If \(x<0,\) then we rewrite the equation to obtain \[\begin{align} x^2-(-x)&=-(x-1)+5\\ x^2+2x-6&=0\\ x&=-1\pm \sqrt{7}\\ x&=-1-\sqrt{7}. \qquad (\text{since } x<0) \end{align}\]</p></li> <li><p>If \(0\le x<1,\) then we rewrite the equation to obtain \[\begin{align} x^2-x&=-(x-1)+5\\ x^2&=6\\ x&=\pm \sqrt{6}, \end{align}\] which do not satisfy the assumption \(0\leq x<1.\) Thus there are no solutions in this interval.</p></li> <li><p>If \(x\ge 1,\) then we rewrite the equation to obtain \[\begin{align} x^2-x&=x-1+5\\ x^2-2x-4&=0\\ x&=1\pm \sqrt{5}\\ x&=1+\sqrt{5}. \qquad (\text{since } x\ge 1) \end{align}\]</p></li> </ul> <p>Therefore, the above three cases give two solutions \(x=-1-\sqrt{7}\) and \(x=1+\sqrt{5},\) the sum of which is \(\sqrt{5}-\sqrt{7}.\) \(_\square\) <!-- end-example --></blockquote> </p> <blockquote class="example"><p> [IMO 1959/2] Solve the equation \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=A\) for real \(x\) (where the square roots are only defined for non-negative values), when</p> <ul> <li>\(A=\sqrt{2}\);</li> <li>\(A=1\);</li> <li>\(A=2\).</li> </ul> <hr /> <p>Here we don't see any absolute value involved with the equation. Before doing anything, note that our first restriction for \(x\) is \(x \geq \frac{1}{2}\) and for \(A\) is \(A>0\). Intuitively, we could square both sides to get rid of some square roots: \[\begin{align} x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-(2x-1)}&=A^2 \\ 2x+2\sqrt{(x-1)^2}&=A^2. \end{align}\] Great! We find a perfect square inside the square root, so an absolute value will appear: \[2x+2|x-1|=A^2.\] Now we are going to find the possible cases for \(A\):</p> <ul> <li><p>When \(x-1 > 0\), we have \[\begin{align} 2x+2(x-1)&=A^2 \\ x&=\dfrac{A^2+2}{4}. \end{align}\] Then, by our assumption of \(x-1 > 0\), we get that this solution only works when \(A^2 > 2\).</p></li> <li><p>When \(x-1 \leq 0\), something interesting happens: \[\begin{align} 2x-2(x-1)&=A^2 \\ 2&=A^2. \end{align}\]</p></li> </ul> <p>So, when \(A^2=2 (\text{or }A=\sqrt{2})\), the equation becomes independent of \(x\), implying that any value of the interval \(x \in \left[\frac{1}{2},1\right]\) will be a solution for the first point.</p> <p>When \(A=1\), there are no solutions by our restriction of \(A^2 \geq 2\). </p> <p>Finally, when \(A=2\) we have \[x=\dfrac{2^2+2}{4}=\frac{3}{2}.\ _\square\]</p> <p>What happens if we allow the square roots to admit negative values? </p><!-- end-example --></blockquote> <p>Sometimes, in minimization problems, it often helps us to see that the value of an expression inside the absolute value is at least 0.</p> <p> <div class="problem-modal-container anchor" id="problem-absolute-warm-up" data-controller="app/solvables:wikiModalProblem"> <div class="load-modal wiki-problem" data-full-url="/problems/absolute-warm-up/" data-public-url="/problems/absolute-warm-up/" data-modal-url="/problems/modal/absolute-warm-up/" data-is-solvable="true"> <div class="problem-container"> <a target="_blank" href="/problems/absolute-warm-up/" class="modal-link link-overlay ax-click" data-ax-type="button" data-ax-id="clicked_embedded_problem"></a> <div class="answer-container solv-details"> <div class="solv-mcq-wrapper row"> <span class="btn btn-mcq " > <span class="bg"></span> <span> -5 </span> </span> <span class="btn btn-mcq " > <span class="bg"></span> <span> 0 </span> </span> <span class="btn btn-mcq " > <span class="bg"></span> <span> 5 </span> </span> <span class="btn btn-mcq " > <span class="bg"></span> <span> 10 </span> </span> </div> </div> <div class="question-container"> <p>\[ y = \Big| \big| \small| x - 5 \small| + 5 \big| - 5 \Big| + 5 \]</p> <p>What is the smallest possible value of \(y\)? </p> <p>\[\] <strong>Notation</strong>: \( | \cdot | \) denotes the absolute value function.</p> </div> </div> </div> </div> </p> </div> </div> </div> </div> </div> <div class="wiki-self-citation" data-controller="app/wiki:getCitationTime"> <strong>Cite as:</strong> Absolute Value Equations. <em>Brilliant.org</em>. Retrieved<span class="retrieval-time"> </span>from <a href="https://brilliant.org/wiki/absolute-value-equations/">https://brilliant.org/wiki/absolute-value-equations/</a> </div> <script type="text/template" id="retrieval-time-content"> <%- hour %>:<%- minute %>, <%- month %> <%- day %>, <%- year %>, </script> <div class="wiki-rating-feedback-wrapper row" data-controller="app/wiki:feedback"> </div> </div> <div class="wiki-overlay"></div> <div class="wiki-footer" id="loggedout-wiki-footer" data-controller="app/wiki:showSignUpModal,app/wiki:wikiFooter"> <a href="https://brilliant.org/account/signup/?next=/wiki/absolute-value-equations/" rel="nofollow" class="signup-btn content ax-click" data-ax-id="clicked_signup_from_wiki_footer" data-ax-type="button"> <span class="cta-text-wrap"> <span class="cta-text-block"> <span class="cta-text-title">Join Brilliant</span> <span class="cta-text-subtitle">The best way to learn math and computer science.</span> </span> <span class="btn btn-accent">Sign up</span> </span> </a> </div> <div class="public-signup-modal-experiment modal hide rebrand" id="signup-modal-wiki" data-controller="app/signup:signUpModal"> <div class="public-signup-left col col-last public-signup-left-experiment" id="public-signup-tour"> </div> <div class="public-signup-experiment show-signup" id="public-signup" > <span class="css-sprite-signup-modal signup-modal-image"></span> <div class="text row"> Sign up to read all wikis and quizzes in math, science, and engineering topics. </div> <div class="public-buttons row" data-controller="app/solvables:preventSocialButtonDoubleClick" > <div class="login-buttons"> <a href="https://brilliant.org/account/google/login/?next=/wiki/absolute-value-equations/" id="login-google" class="btn btn-google signup-social ax-click" data-ax-id="clicked_login_from_problem_modal_google" data-ax-type="button" data-is_modal="true" > <span class="google css-sprite-index"></span>Log in with Google </a> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value-equations/" id="login-fb" class="btn btn-f-b signup-social ax-click" data-ax-id="clicked_login_from_problem_modal_facebook" data-ax-type="button" data-is_modal="true" > <svg class="fb-icon" fill="#fff" xmlns="http://www.w3.org/2000/svg"> <path d="M0 11.0662C0.00127985 16.5108 3.9361 21.1467 9.28038 22V14.2648H6.48977V11.0662H9.28368V8.6313C9.15878 7.47753 9.55044 6.32766 10.3524 5.49353C11.1544 4.6594 12.2837 4.22747 13.4338 4.31489C14.2594 4.32831 15.0829 4.40229 15.8977 4.53625V7.2578H14.5074C14.0287 7.19472 13.5475 7.35378 13.1993 7.69018C12.8511 8.02657 12.6735 8.5039 12.7167 8.98768V11.0662H15.7647L15.2774 14.2659H12.7167V22C18.4964 21.0809 22.5493 15.7697 21.9393 9.91413C21.3293 4.05853 16.2698 -0.291573 10.4263 0.0152787C4.58284 0.322131 0.000928892 5.17851 0 11.0662Z" /></svg> Log in with Facebook </a> <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value-equations/" id="problem-login-link" class="btn btn-email ax-click" data-ax-id="clicked_login_from_problem_modal_email" data-ax-type="button" data-is_modal="true" data-next="/wiki/absolute-value-equations/" > Log in with email </a> </div> <div class="signup-buttons"> <a href="https://brilliant.org/account/google/login/?next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" id="signup-google" class="btn btn-google signup-social ax-click" data-ax-id="clicked_signup_from_problem_modal_google" data-ax-type="button" > <span class="google css-sprite-index"></span>Join using Google </a> <a href="https://brilliant.org/account/facebook/login/?next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" id="signup-fb" class="btn btn-f-b signup-social ax-click" data-ax-id="clicked_signup_from_problem_modal_facebook" data-ax-type="button" > <svg xmlns="http://www.w3.org/2000/svg"> <path d="M0 11.0662C0.00127985 16.5108 3.9361 21.1467 9.28038 22V14.2648H6.48977V11.0662H9.28368V8.6313C9.15878 7.47753 9.55044 6.32766 10.3524 5.49353C11.1544 4.6594 12.2837 4.22747 13.4338 4.31489C14.2594 4.32831 15.0829 4.40229 15.8977 4.53625V7.2578H14.5074C14.0287 7.19472 13.5475 7.35378 13.1993 7.69018C12.8511 8.02657 12.6735 8.5039 12.7167 8.98768V11.0662H15.7647L15.2774 14.2659H12.7167V22C18.4964 21.0809 22.5493 15.7697 21.9393 9.91413C21.3293 4.05853 16.2698 -0.291573 10.4263 0.0152787C4.58284 0.322131 0.000928892 5.17851 0 11.0662Z" /></svg> Join using Facebook </a> <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" id="signup-email" class="btn btn-email ax-click" data-ax-id="clicked_signup_from_problem_modal_email" data-ax-type="button" data-next="/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" > Join using email </a> </div> </div> <div class="signup-form-container" id="signup-form-container" data-url="/signup_form" data-page-key="wiki_canonical_page" ></div> <div class="login-form-container row" id="login-form-container" data-url="/login_form" data-page-key="wiki_canonical_page" ></div> <div class="alternative"> <div class="login-alternative"> <p> <a href="/account/password/reset/" class="btn-link forget">Reset password</a> New user? <a href="https://brilliant.org/account/signup/?signup=true&next=/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" id="problem-signup-link-alternative" class="btn-link ax-click" data-ax-id="clicked_signup_from_problem_modal" data-ax-type="button" data-next="/wiki/absolute-value-equations/%3Fquiz%3Dsolving-absolute-value-equations-easy" > Sign up </a> </p> </div> <div class="signup-alternative"> <p>Existing user? <a href="https://brilliant.org/account/login/?next=/wiki/absolute-value-equations/" id="problem-login-link-alternative" class="btn-link ax-click" data-ax-id="clicked_login_from_problem_modal" data-ax-type="button" data-is_modal="true" data-next="/wiki/absolute-value-equations/" > Log in </a> </p> </div> </div> </div> </div> <div data-controller="util/latex_loader:controller"></div> <div data-controller="util/analytics:init" data-analytics-live="true" data-segment-key="ttlCaHQqOWtslnGGJ9W4bBeRpfYGksuD" data-segment-url="https://in.brilliant.org" data-amplitude-key="2d768258f0a7507203c7998a3e2678f0" data-analytics-identity="ZnRWr0bQZs4FqxaVVVHuh63C0NbBttUX" data-analytics-super-properties='{"locale": "en", "account_type": "anonymous", "debug": false, "client": "desktop-browser", "sessionid": null, "user_agent": "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727; .NET CLR 3.0.04506; .NET CLR 3.5.21022; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "identity": "ZnRWr0bQZs4FqxaVVVHuh63C0NbBttUX", "anon_ident_latest": "ZnRWr0bQZs4FqxaVVVHuh63C0NbBttUX", "ab_test__send_startalk_welcome_email_04_2018": false, "ab_test__reduce_nux_email_volumes_2018_08": true}' data-analytics-user-properties='{"exp__checkout_hosting_mature_monthly_1_2024": "control", "exp__ios_endstate_notifications_optins_09_2023_v2": "control", "exp__launch_leagues_2022_07": "experiment", "exp__ios_trial_paywall_refresh_04_2023": "experiment", "exp__ios_trial_paywall_04_2022": "experiment", "exp__um_course_catalog_new_packaging_05_2024": "experiment", "exp__gw_lohp_redesign_09_2024": "control", "exp__gw_lohp_redesign_09_2024_v2": "experiment", "exp__embedded_checkout_2023_12": "control", "exp__content_impact_programming2_lp_7_22": "experiment", "exp__gw_lohp_subhead_copy_09_2024": "experiment", "exp__cutgeofundmathlearning2_202210": "experiment", "exp__explanations_in_solvables_experiment": "control", "exp__data_analysis_nux_2023_02": "control", "exp__rm_offline_mode_ref_mobile_09_2022": "experiment", "exp__ios_notifications_optins_09_2022": "control", "exp__envelope_keyboard_layout_2023_09": "control", "exp__new_mobile_runtime_wrapper_02_2022": "experiment", "exp__full_screen_interactive_text_2023_01": "experiment1", "exp__test_your_understanding_03_2023": "control", "exp__gw_nux_engaging_animations_08_2024_v3": "control", "exp__explanations_in_solvables_experiment_v2": "experiment", "exp__cutgeofundmathlearning3_202210": "control", "exp__mobile_continue_button_flow_2023_02": "control", "exp__ios_endstate_notifications_optins_09_2023": "control", "exp__android_trial_paywall_refresh_04_2023": "experiment", "exp__three_month_plan_2024_01": "control", "exp__gw_smarter_copy_11_2024_v1": "control", "exp__ios_nux_notifications_optins_02_2023": "control", "exp__ios_alter_signup_nux_flow_0323": "both_combined", "exp__envelope_keyboard_layout_2023_09_v2": "control", "exp__demo_loco_experiment_20230731": "control", "exp__programming_learning_path_start_03_2023": "experiment", "exp__pro_pricing_2023_09_v2": "control", "exp__gw_7_day_trial_eligibility_09_2024": "experiment", "exp__extend_streak_on_content_completion": "control", "exp__ios_nux_notifications_optins_05_2023": "experiment", "exp__location_v2": "experiment", "exp__returning_ux_mobile_improvements_02_2023": "experiment_no_home", "exp__mobile_to_desktop_experiment": "control", "exp__android_alter_signup_nux_flow_0323": "both_combined", "exp__llp_in_product_2023_06": "experiment", "exp__mobile_continue_button_flow_2023_03": "experiment", "exp__ios_prenux_green_button_05_2023": "control", "exp__lightweight_lesson_practice_09_2023": "control", "exp__practice_node_2023_08": "experiment", "exp__trial_embedded_checkout_1_2024": "experiment", "exp__android_mature_paywall_redesign_1223": "control", "exp__rewrite_trial_paywall_v4_01_2024": "control", "exp__android_mature_paywall_redesign_0124": "experiment", "exp__embedded_checkout_mobile_two_step_12_2023": "experiment", "exp__gw_course_catalog_cleanup_12_2024": "experiment", "exp__remove_skip_button_nov_23": "control", "exp__rewrite_trial_paywall_v6_02_2024": "light_rewrite", "exp__um_endstate_gamefeel_2023_dec": "experiment", "exp__lohp_header_subhead_03_2024": "control", "exp__android_multiple_page_paywall_0324": "control", "exp__lohp_topic_icons_03_2024": "new_icons", "exp__phase2_course_deletion_v1_03_2024": "experiment", "exp__um_endstate_gamefeel_2024_may": "experiment", "exp__gw_lohp_rewrite_04_24_v5": "experiment", "exp__gw_lohp_rewrite_04_24_v3": "control", "exp__gw_lohp_rewrite_04_24_v4": "control", "exp__gw_nux_engaging_animations_07_2024": "control", "exp__um_on_demand_practice_06_2024": "control", "exp__gw_nux_rewrite": "control", "exp__gw_native_global_trial_discount_08_2024": "control", "exp__um_lihp_rewrite_06_2024": "experiment", "exp__no_lesson_hints_2024_07": "experiment", "exp__um_learn_check_reward_08_2024": "control", "exp__gw_nux_rewrite_test": "control", "exp__math_foundations_removal_2024_06": "control", "exp__order_logic_refresh_2024_2": "experiment", "exp__gw_soft_nux_trial_paywall_v2_08_2024": "control", "exp__lifecycle_streak_loss_iam_06_2024": "control", "exp__um_llp_page_removal_v2_08_2024": "experiment", "exp__lifecycle_rux_iam_fixed_07_2024": "experiment", "exp__um_llp_page_removal_06_2024": "control", "exp__lc_practice_launch_iam_course_image_06_2024": "control", "exp__gw_nux_koji_reactions_07_2024": "experiment", "exp__gw_create_profile_copy_11_2024": "control", "exp__um_learn_check_reward_06_2024": "control", "exp__lifecycle_rux_iam_07_2024": "control", "exp__logic_passcodes_12_2024": "experiment", "exp__signup_koji_asset": "control", "exp__gw_nux_level_experiment_08_2024": "experiment", "exp__gw_nux_rewrite_v3": "experiment", "exp__um_nux_recs_llps_07_2024": "experiment", "exp__gw_endstate_upsell_08_2024": "experiment", "exp__gw_nux_engaging_animations_07_2024_v2": "control", "exp__gw_offer_trial_to_rux_10_2024": "experiment", "exp__us_geo_pricing_2024_10": "experiment", "exp__signup_nux_rewrite_2024_08": "control", "exp__lightweight_lesson_practice_09_2023_v2": "experiment", "exp__order_logic_feedback_experiment_2024": "experiment", "exp__cs_llp_l2_swap_11_2024": "experiment", "exp__um_new_nux_recs_llp_09_2024": "experiment", "exp__gw_nux_paywall_after_recs_09_2024": "control", "exp__gw_remove_fb_auth_from_signup_11_2024": "control", "exp__us_monthly_geo_pricing_2024_11": "experiment", "exp__gw_gift_paywall_rewrite_11_2024": "experiment", "exp__gw_lohp_sponsor_redesign_11_2024_v1": "experiment", "exp__gw_rux_rewrite_11_2024": "experiment", "exp__codex_facelift_2024": "experiment", "exp__gw_soft_nux_trial_paywall_v3_08_2024": "control", "exp__order_logic_refresh_2024": "control", "exp__gw_remove_fb_auth_from_signup_11_2024_v2": "control", "exp__gw_holiday_season_gift_banner_12_2024": "control"}' data-facebook-ad-pixel-id="712046235504105" data-google-tag-manager-id="GTM-5RMLTZ4" data-google-ad-pixel-id="1007657493" data-ltv-event-id="0" data-ltv-event-ltv="" data-ltv-event-currency="" data-ltv-event-interval="" data-ltv-event-confirm-url="" data-send-ga-trial-subscription-event="" data-is-tracked-user="true" > <div class="ax-event" data-ax-name="sign_of_life" data-ax-properties='{"path": "/wiki/absolute-value-equations/", "full_path": "/wiki/absolute-value-equations/", "method": "GET", "ajax": false, "from_request": true, "is_android": false}'></div> </div> <div id="footer-notifs"> </div> </div> <div id="default-ajax-error" class="hide" data-error-title="Error" data-error-content="We encountered an error while talking to our servers. Refresh the page and try again in a few seconds. If the problem persists, please <a href='mailto:support@brilliant.org'>email us</a>." data-timeout-content="That action is taking longer than expected. This is likely due to network issues. Please try again in a few seconds, and if the problem persists, <a href='mailto:support@brilliant.org'>send us an email</a>."> </div> <script type="text/javascript"> window.VERSIONS = { } ; </script> <script src="https://browser.sentry-cdn.com/7.46.0/bundle.min.js" integrity="sha384-AfN9/2RSX7pLS3X2yieiMJYVrZpmuiiy+X2VmHvghWptYJJhkBmN1sqvjpwkxHCu" crossorigin="anonymous" ></script> <script type="text/javascript"> var oldonload = window.onload || function () {}; window.onload = function () { window.isLoaded = true; oldonload.apply(this); }; Sentry.init({ dsn: 'https://621cfa37a828468ab6b77f0cc3bff7dd@o1307044.ingest.sentry.io/6551268', allowUrls: [ /brilliant\.org/, /ds055uzetaobb\.cloudfront\.net/, /d18l82el6cdm1i\.cloudfront\.net/, ], }); Sentry.setTags({ anonymous: true, b2: false, client: 'desktop-browser' }) </script> <script src="/site_media/build/dist/brilliant_vendors.e3672e79c144c1ae72ed.js" type="text/javascript"></script> <script src="/site_media/build/dist/brilliant_entry.b0e3e897e1e3a3ef52ef.js" type="text/javascript"></script> <div id="fb-root"></div> <script> window.fbAsyncInit = function() { FB.init({ appId: '326254770799145', version: 'v16.0', status: true, xfbml: true, frictionlessRequests: true }); window.fb_auth_status=function(c){ c=c||function(){}; FB.getLoginStatus(function(r){ if(r.status==='connected'){c(true,r);} else{c(false,r);} }); }; window._fb_status=window._fb_status||[]; var i=0,l=_fb_status.length; for(i;i<l;i++){fb_auth_status(_fb_status[i]);} _fb_status=[]; }; (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); </script> <div class="nf-feeditem-modal hide" id="nf-feeditem-modal"> <div class="nf-modal-close close" id="nf-modal-close">×</div> <div class="nf-modal-loading"> <div class="logo"></div> <div class="stripe"></div> <p class="solvable-text">Problem Loading...</p> <p class="note-text">Note Loading...</p> <p class="set-text">Set Loading...</p> </div> <div class="nf-feeditem-modal-wrapper"> <div class="nf-solvable-modal-content nf-modal-content solv-modal clearfix" id="cmp_assessment_modal_public_solvable_component_id"></div> </div> </div> </body> </html>