CINXE.COM
Search results for: volcanic soil
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: volcanic soil</title> <meta name="description" content="Search results for: volcanic soil"> <meta name="keywords" content="volcanic soil"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="volcanic soil" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="volcanic soil"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3083</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: volcanic soil</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3083</span> Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Twin%20Aji%20Kusumagiani">Twin Aji Kusumagiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Agustine"> Eleonora Agustine</a>, <a href="https://publications.waset.org/abstracts/search?q=Dini%20Fitriani"> Dini Fitriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EC" title="EC">EC</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=VWC" title=" VWC"> VWC</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20water%20content" title=" volume water content"> volume water content</a>, <a href="https://publications.waset.org/abstracts/search?q=NPK%20fertilizer" title=" NPK fertilizer"> NPK fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20soil" title=" volcanic soil"> volcanic soil</a> </p> <a href="https://publications.waset.org/abstracts/65179/delineation-of-soil-physical-properties-using-electrical-conductivity-case-study-volcanic-soil-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3082</span> The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levent%20Basayigit">Levent Basayigit</a>, <a href="https://publications.waset.org/abstracts/search?q=Mert%20Dedeoglu"> Mert Dedeoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadime%20Ozogul"> Fadime Ozogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Landsat%207" title="Landsat 7">Landsat 7</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20index" title=" soil moisture index"> soil moisture index</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20models" title=" temperature models"> temperature models</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20soils" title=" volcanic soils"> volcanic soils</a> </p> <a href="https://publications.waset.org/abstracts/68582/the-use-of-thermal-infrared-wavelengths-to-determine-the-volcanic-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3081</span> Volcanostratigraphy Reconaissance Study Using Ridge Continuity to Solve Complex Volcanic Deposit Problems, Case Study Old Sunda Volcano</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afy%20Syahidan%20ACHMAD">Afy Syahidan ACHMAD</a>, <a href="https://publications.waset.org/abstracts/search?q=Astin%20NURDIANA"> Astin NURDIANA</a>, <a href="https://publications.waset.org/abstracts/search?q=SURYANTINI"> SURYANTINI</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In volcanic arc environment we can find multiple volcanic deposits which overlapped with another volcanic deposit so it will complicates source and distribution determination. This problem getting more difficult when we can not trace any deposit border evidences in field especially in high vegetation volcanic area, or overlapped deposit with same characteristics. Main purpose of this study is to solve complex volcanostratigraphy mapping problems trough ridge, valley, and river continuity. This method application carried out in Old Sunda Volcanic, West Java, Indonesia. Using 1:100.000 and 1:50.000 topographic map, and regional geology map, old sunda volcanic deposit was differentiated in regional level and detail level. Final product of this method is volcanostratigraphy unit determination in reconnaissance stage to simplify mapping process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volcanostratigraphy" title="volcanostratigraphy">volcanostratigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=study" title=" study"> study</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20deposit" title=" volcanic deposit"> volcanic deposit</a> </p> <a href="https://publications.waset.org/abstracts/17134/volcanostratigraphy-reconaissance-study-using-ridge-continuity-to-solve-complex-volcanic-deposit-problems-case-study-old-sunda-volcano" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3080</span> Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alahmadi">Fahad Alahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhan%20Abd%20Rahman"> Norhan Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdulrazzak"> Mohammad Abdulrazzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulikifli%20Yusop"> Zulikifli Yusop </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20runoff%20modelling" title="urban runoff modelling">urban runoff modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20regions" title=" arid regions"> arid regions</a>, <a href="https://publications.waset.org/abstracts/search?q=ungauged%20catchments" title=" ungauged catchments"> ungauged catchments</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20rocks" title=" volcanic rocks"> volcanic rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Madinah" title=" Madinah"> Madinah</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/14362/urban-runoff-modeling-of-ungauged-volcanic-catchment-in-madinah-western-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3079</span> Effect of Volcanic Ash and Recycled Aggregates in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Letelier">Viviana Letelier</a>, <a href="https://publications.waset.org/abstracts/search?q=Ester%20Tarela"> Ester Tarela</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Moriconi"> Giacomo Moriconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residuals in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. This study analyses the variation in the mechanical properties of structural concretes with recycled aggregates and volcanic ash as cement replacement to test the effect of the simultaneous use of different residuals in the same material. Analyzed concretes are dosed for a compressive strength of 30MPa. The recycled aggregates are obtained from prefabricated pipe debris with a compressive strength of 20MPa. The volcanic ash was obtained from the Ensenada (Chile) area after the Calbuco eruption in April 2015. The percentages of natural course aggregates that are replaced by recycled aggregates are of 0% and 30% and the percentages of cement replaced by volcanic ash are of 0%, 5%, 10% and 15%. The combined effect of both residuals in the mechanical properties of the concrete is evaluated through compressive strength tests after, 28 curing days, flexural strength tests after 28 days, and the elasticity modulus after 28 curing days. Results show that increasing the amount of volcanic ash used increases the losses in compressive strength. However, the use of up to a 5% of volcanic ash allows obtaining concretes with similar compressive strength to the control concrete, whether recycled aggregates are used or not. Furthermore, the pozzolanic reaction that occurs between the amorphous silica and the calcium hydroxide (Ca(OH)2) provokes an increase of a 10% in the compressive strength when a 5% of volcanic ash is combined with a 30% of recycled aggregates. Flexural strength does not show significant changes with neither of the residues. On the other hand, decreases between a 14% and a 25% in the elasticity modulus have been found. Concretes with up to a 30% of recycled aggregates and a 5% of volcanic ash as cement replacement can be produced without significant losses in their mechanical properties, reducing considerably the environmental impact of the final material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20of%20recycled%20concrete" title="compressive strength of recycled concrete">compressive strength of recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20recycled%20concrete" title=" mechanical properties of recycled concrete"> mechanical properties of recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregates" title=" recycled aggregates"> recycled aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20ash%20as%20cement%20replacement" title=" volcanic ash as cement replacement"> volcanic ash as cement replacement</a> </p> <a href="https://publications.waset.org/abstracts/56425/effect-of-volcanic-ash-and-recycled-aggregates-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3078</span> Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shetie%20Gatew">Shetie Gatew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=andosols" title="andosols">andosols</a>, <a href="https://publications.waset.org/abstracts/search?q=cambisols" title=" cambisols"> cambisols</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title=" digital elevation model"> digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=leptosols" title=" leptosols"> leptosols</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-landscaps%20relation" title=" soil-landscaps relation"> soil-landscaps relation</a> </p> <a href="https://publications.waset.org/abstracts/178285/mapping-soils-from-terrain-features-the-case-of-nech-sar-national-park-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3077</span> Zeolite Origin within the Pliocene Sedimentary-Pyroclastic Deposits in the Southwestern Part of Syria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulsalam%20Turkmani">Abdulsalam Turkmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khaled%20Yezbek"> Mohammed Khaled Yezbek</a>, <a href="https://publications.waset.org/abstracts/search?q=Farouk%20Al%20Imadi"> Farouk Al Imadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geological surveys in the southwestern part of Syria showed the presence of sedimentary-pyroclastic deposits, volcanic tuff, to the age of the Upper Pliocene and contain the following minerals according petrographical study and XRD, SEM, XRF analysis and surface properties. X-Ray diffraction results indicate the presence of analcime, phillipsite and chabazite in in all the studied localities. There are also amorphous materials and clay minerals such as illite and montmorillonite. The non-zeolite constituents include olivine, clinopyroxene orthopyroxene and spinel, and less of magnetite and feldspar. Some major oxides were determined through XRF geochemical analyses which include SiO₂, Al₂O₃, K₂O, Fe₂O₃, and CaO for volcanic tuff and zeolite. The formation of these depositions can be summarized in the following stages during the Pliocene: Volcanic activity at the edges of Al Rutba uplift and Jabal Al Arab depression was a rich by tuff bearing ultra basic and basic xenoliths plus second phase by scoria, during the early Pliocene. Volcanic calm with the activity of erosion and form lakes in which deposition of a set of wastes, including olivine resulting from the disintegration of xenoliths during the middle Pliocene. Zeolites minerals form later, which make up about 15-20% and increase and decrease in reverse relation with the olivine sand. Zeolite is formed from volcanic glass, and the results of SEM show that the zeolites minerals very well crystallized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minerals" title="minerals">minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=origin" title=" origin"> origin</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroclastic" title=" pyroclastic"> pyroclastic</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/111046/zeolite-origin-within-the-pliocene-sedimentary-pyroclastic-deposits-in-the-southwestern-part-of-syria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3076</span> Investigation on Natural Pollution Sources to Arsenic in around of Hashtrood City, East Azerbayjan Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azita%20Behbahaninia">Azita Behbahaninia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil and surface and ground waters pollution to arsenic (As) due to its high potential for food cycle entrance, has high risk for human safety. Also, this pollution can cause quality and quantity decreasing of agricultural products or some lesions in farm animals that due to low knowledge, its reason is unknown, but can relate to As pollution. This study was conducted to investigate level of soil and water pollution by As in Hashtrood city. Based on the region’s information, the surface and ground waters, soil, river sediments, and rock were sampled and analyzed for physico-chemical and As in lab. There are significant differences for mean contents between As in the samples and crust. The maximum levels of As were observed in fly ash sample. Consequently, As pollution was related to geogenic and volcanic eruptions in this region. These mechanisms are diagnosed as As pollution in the region: As release for the rock units, As sorption by oxide minerals in aerobic and acidic to neutral conditions, desorption from oxide surfaces with pH increasing, increasing of As concentration in solution, and consequently pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=flyash" title=" flyash"> flyash</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/53753/investigation-on-natural-pollution-sources-to-arsenic-in-around-of-hashtrood-city-east-azerbayjan-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3075</span> Geomorphology of Leyte, Philippines: Seismic Response and Remote Sensing Analysis and Its Implication to Landslide Hazard Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturo%20S.%20Daag">Arturo S. Daag</a>, <a href="https://publications.waset.org/abstracts/search?q=Ira%20Karrel%20D.%20L.%20San%20Jose"> Ira Karrel D. L. San Jose</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Gabriel%20G.%20Pedrosa"> Mike Gabriel G. Pedrosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Adrian%20C.%20Villarias"> Ken Adrian C. Villarias</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayfred%20P.%20Ingeniero"> Rayfred P. Ingeniero</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyrah%20Gale%20H.%20Rocamora"> Cyrah Gale H. Rocamora</a>, <a href="https://publications.waset.org/abstracts/search?q=Margarita%20P.%20Dizon"> Margarita P. Dizon</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Joseph%20B.%20De%20Leon"> Roland Joseph B. De Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresito%20C.%20Bacolcol"> Teresito C. Bacolcol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The province of Leyte consists of various geomorphological landforms: These are: a) landforms of tectonic origin transect large part of the volcanic centers in upper Ormoc area; b) landforms of volcanic origin, several inactive volcanic centers located in Upper Ormoc are transected by Philippine Fault; c) landforms of volcano-denudational and denudational slopes dominates the area where most of the earthquake-induced landslide occurred; and d) Colluvium and alluvial deposits dominate the foot slope of Ormoc and Jaro-Pastrana plain. Earthquake ground acceleration and geotechnical properties of various landforms are crucial for landslide studies. To generate the landslide critical acceleration model of sliding block, various data were considered, these are: geotechnical data (i.e., soil and rock strength parameters), slope, topographic wetness index (TWI), landslide inventory, soil map, geologic maps for the calculation of the factor of safety. Horizontal-to-vertical spectral ratio (HVSR) surveying methods, refraction microtremor (ReMi), and three-component microtremor (3CMT) were conducted to measure site period and surface wave velocity as well as to create a soil thickness model. Critical acceleration model of various geomorphological unit using Remote Sensing, field geotechnical, geophysical, and geospatial data collected from the areas affected by the 06 July 2017 M6.5 Leyte earthquake. Spatial analysis of earthquake-induced landslide from the 06 July 2017, were then performed to assess the relationship between the calculated critical acceleration and peak ground acceleration. The observed trends proved helpful in establishing the role of critical acceleration as a determining factor in the distribution of co-seismic landslides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake-induced%20landslide" title="earthquake-induced landslide">earthquake-induced landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=geomorphology" title=" geomorphology"> geomorphology</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a> </p> <a href="https://publications.waset.org/abstracts/174899/geomorphology-of-leyte-philippines-seismic-response-and-remote-sensing-analysis-and-its-implication-to-landslide-hazard-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3074</span> Stabilization of Clay Soil Using A-3 Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mustapha%20Alhaji">Mohammed Mustapha Alhaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiku%20Salawu"> Sadiku Salawu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A-3%20soil" title="A-3 soil">A-3 soil</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20action" title=" pozzolanic action"> pozzolanic action</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/33993/stabilization-of-clay-soil-using-a-3-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3073</span> The Relationship between Trace Elements in Groundwater Linked to a History of Volcanic Activity in La Pampa and Buenos Aires Provinces, Argentina</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maisarah%20Jaafar">Maisarah Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20I.%20Ward"> Neil I. Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volcanic and geothermal activity can result in the release of arsenic (As), manganese (Mn), iron, selenium (Se), molybdenum (Mo) and uranium (U) into natural waters. Several studies have reported high levels of these elements in surface and groundwater in Argentina. The main focus has been on As associated with volcanic ash deposits. This study reports the trace element levels of groundwater from an agricultural region of south-eastern La Pampa and southern Buenos Aires provinces, Argentina which have reported high levels of human health problems (bone/teeth disorders, depression, arthritis, etc). Fifty-eight groundwater samples were collected from wells adjacent to Ruta 35 and an Agilent 7700x inductively coupled plasma mass spectrometer (ICP-MS) were used for total elemental analysis. Physicochemical analysis confirmed pH range of 7.05-8.84 and variable conductivity (988-3880 µS/cm) with total dissolved solid content of 502-1989 mg/l. The majority water samples are in an oxidizing environment (Eh= 45-146 mV). Total As levels ranged from (µg/l): 13.08 – 319.4 for La Pampa (LP) and 39.6 – 189.4 for Buenos Aires (BA); all above the WHO Guideline for Drinking Water, 10 µg/l As. Interestingly, Mo (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;), Se (LP: 1.2 – 16.59 µg/l; BA: 0.3– 6.94 µg/l;) and U (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;) levels are lower than reported values for northern La Pampa. Inter-elemental correlation displayed positive statistically significant between As-Mo, A-Se, As-U while negative statistically significant between As-Mn and As-Fe. This confirms that the source of the trace element is similar to that reported for other region of Argentina, namely volcanic ash deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argentina" title="Argentina">Argentina</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20element" title=" trace element"> trace element</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20activity" title=" volcanic activity"> volcanic activity</a> </p> <a href="https://publications.waset.org/abstracts/40106/the-relationship-between-trace-elements-in-groundwater-linked-to-a-history-of-volcanic-activity-in-la-pampa-and-buenos-aires-provinces-argentina" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3072</span> Development, Testing, and Application of a Low-Cost Technology Sulphur Dioxide Monitor as a Tool for use in a Volcanic Emissions Monitoring Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viveka%20Jackson">Viveka Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Erouscilla%20Joseph"> Erouscilla Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Denise%20Beckles"> Denise Beckles</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Christopher"> Thomas Christopher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulphur Dioxide (SO2) has been defined as a non-flammable, non-explosive, colourless gas, having a pungent, irritating odour, and is one of the main gases emitted from volcanoes. Sulphur dioxide has been recorded in concentrations hazardous to humans (0.25 – 0.5 ppm (~650 – 1300 μg/m3), downwind of many volcanoes and hence warrants constant air-quality monitoring around these sites. It has been linked to an increase in chronic respiratory disease attributed to long-term exposures and alteration in lung and other physiological functions attributed to short-term exposures. Sulphur Springs in Saint Lucia is a highly active geothermal area, located within the Soufrière Volcanic Centre, and is a park widely visited by tourists and locals. It is also a current source of continuous volcanic emissions via its many fumaroles and bubbling pools, warranting concern by residents and visitors to the park regarding the effects of exposure to these gases. In this study, we introduce a novel SO2 measurement system for the monitoring and quantification of ambient levels of airborne volcanic SO2 using low-cost technology. This work involves the extensive production of low-cost SO2 monitors/samplers, as well as field examination in tandem with standard commercial samplers (SO2 diffusion tubes). It also incorporates community involvement in the volcanic monitoring process as non-professional users of the instrument. We intend to present the preliminary monitoring results obtained from the low-cost samplers, to identify the areas in the Park exposed to high concentrations of ambient SO2, and to assess the feasibility of the instrument for non-professional use and application in volcanic settings <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20SO2" title="ambient SO2">ambient SO2</a>, <a href="https://publications.waset.org/abstracts/search?q=community-based%20monitoring" title=" community-based monitoring"> community-based monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=risk-reduction" title=" risk-reduction"> risk-reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur%20springs" title=" sulphur springs"> sulphur springs</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost" title=" low-cost "> low-cost </a> </p> <a href="https://publications.waset.org/abstracts/26170/development-testing-and-application-of-a-low-cost-technology-sulphur-dioxide-monitor-as-a-tool-for-use-in-a-volcanic-emissions-monitoring-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3071</span> Effects of Organic Amendments on Primary Nutrients (N, P and K) in a Sandy Soil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nejib%20Turki">Nejib Turki</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Kouki%20Khalfallah"> Karima Kouki Khalfallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of six treatments of organic amendments were evaluated on a sandy soil in the region of Soukra in Tunisia. T1: cattle manure 55 t.ha-1, T2: commercial compost from Germany to 1 t.ha-1, T3: a mixture of 27.5 t.ha-1 of T1 with 0.5 t. ha-1 of T2, T4: commercial compost from France 2 t.ha-1, T5: a Tunisian commercial compost to 10 t.ha-1 and T0: control without treatment. The nitrogen in the soil increase to 0.029 g.kg-1 of soil treatment for the T1 and 0.021 g. kg-1 of soil treatment for the T3. The highest content of P2O5 has been registered by the T3 treatment that 0.44 g kg-1 soil with respect to the control (T0), which shows a content of 0.36 g.kg-1 soil. The soil was initially characterized by a potassium content of 0.8 g kg-1 soil, K2O exchangeable rate varied between 0.63 g.Kg-1 and 0.71 g.kg-1 soil respectively T2 and T1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20amendement" title=" organic amendement"> organic amendement</a>, <a href="https://publications.waset.org/abstracts/search?q=Ntot" title=" Ntot"> Ntot</a>, <a href="https://publications.waset.org/abstracts/search?q=P2O5" title=" P2O5"> P2O5</a>, <a href="https://publications.waset.org/abstracts/search?q=K2O" title=" K2O"> K2O</a> </p> <a href="https://publications.waset.org/abstracts/19419/effects-of-organic-amendments-on-primary-nutrients-n-p-and-k-in-a-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3070</span> A Review of Soil Stabilization Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Chegenizadeh">Amin Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Keramatikerman"> Mahdi Keramatikerman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=review" title="review">review</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=techniques" title=" techniques"> techniques</a> </p> <a href="https://publications.waset.org/abstracts/36500/a-review-of-soil-stabilization-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3069</span> The Effect of Soil Treatment on Micro Metal Contents in Soil at UB Forest in Malang District, East Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Wiryawan">Adam Wiryawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The levels of micro metal elements in the soil are influenced by soil management. In this research, the influence of soil management on the content of micro metal elements in the soil in the UB forest was studied. The metals studied include Zn, Mn, Cu, Fe, Cd, and Pb. Soil samples were taken from five sampling points on soil in the UB forest, both soils tilled and untilled. Before analysis, soil samples were digested with HNO₃ solution, and metal levels in soil samples were measured using atomic absorption spectrometry (AAS). The results of the analysis of metal content in the soil at the UB forest show that tilled land has consistently lower levels of metals like Zn, Mn, Cu, and Fe compared to untilled land. Meanwhile, Pb and Cd metals were not detected in all soil samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20treatment" title="soil treatment">soil treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20content" title=" metal content"> metal content</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title=" forest soil"> forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Malang%20District" title=" Malang District"> Malang District</a> </p> <a href="https://publications.waset.org/abstracts/194568/the-effect-of-soil-treatment-on-micro-metal-contents-in-soil-at-ub-forest-in-malang-district-east-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3068</span> Impact of Different Tillage Practices on Soil Health Status: Carbon Storage and Pools, Soil Aggregation, and Nutrient Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Constantin%20Topa">Denis Constantin Topa</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Gabriela%20Cara"> Irina Gabriela Cara</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Jitareanu"> Gerard Jitareanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tillage is a fundamental soil practice with different soil disturbance intensities and unique implications in soil organic carbon, soil structure, and nutrient dynamics. However, the implication of tillage practice on soil organic carbon and soil health is complex and specific to the context. it study evaluated soil health status based on soil carbon sequestration and pools, soil aggregation, and nutrient use under two different tillage practices: conventional and minimum tillage. The results of our study are consistent with the hypothesis that, over time, minimum tillage typically boosts soil health in the 0-10 cm soil layer. Compared to the conventional practice (19.36 t C ha-1) there was a significant accumulation of soil organic carbon (0-30 cm) in the minimum-tillage practice (23.21 t C ha-1). Below 10 cm depth, the soil organic carbon stocks are close to that of the conventional layer (0-30 cm). Soil aggregate stability was improved under conservative tillage, due to soil carbon improvement which facilitated a greater volume of mesopores and micropores. Total nitrogen (TN), available potassium (AK) and phosphorus (AP) content in 0-10 cm depth under minimum-tillage practice were 26%, 6% and 32%, greater respectively, compared to the conventional treatment. Overall, the TN, AP and AK values decreased with depth within the soil profiles as a consequence of soil practice and minimum disturbance. The data show that minimum tillage is a sustainable and effective management practice that maintain soil health with soil carbon increase and efficient nutrient use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimum%20tillage" title="minimum tillage">minimum tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20tillage" title=" conventional tillage"> conventional tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20aggregation" title=" soil aggregation"> soil aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a> </p> <a href="https://publications.waset.org/abstracts/194602/impact-of-different-tillage-practices-on-soil-health-status-carbon-storage-and-pools-soil-aggregation-and-nutrient-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3067</span> Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moez%20Selmi">Moez Selmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariem%20Kacem"> Mariem Kacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20Jamei"> Mehrez Jamei</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Dubujet"> Philippe Dubujet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPB" title="EPB">EPB</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soils" title=" clay soils"> clay soils</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20agent" title=" foam agent"> foam agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro-mechanical%20properties" title=" hydro-mechanical properties"> hydro-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/50150/effects-of-an-added-foaming-agent-on-hydro-mechanical-properties-of-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3066</span> The Geochemical Characteristic and Tectonic Setting of Mezoic-Cenozoic Volcanic and Granitic Rocks in Southern Sumatra, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syahrir%20Andi%20Mangga">Syahrir Andi Mangga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During 1989–1993, the Geological Research and Development Center (recent Geological Survey Institute) Geological Agency, Ministry of Energy and Mineral Resources Republic of Indonesia was the collaboration with British Geological Survey, the United Kingdom to do technical assistance in order to collect data of geology in Sumatra Island. The overall corporation of technical programs was larger concern in stratigraphy, geochemical and age-dating studies. Availability of new data has been stimulated to reassessment of tectonic evolution of Sumatra Island. The study area located in Southern Sumatra within at latitudes 0°-6° S and 99°40’-106’00 E longitudes. The study tectonic is situated within along South Western margin of Sunda land, The Southeast Asia Continental extension arc of the Eurasian Plate and formed as part of Sunda Arc. The oceanic crust of Indian-Australian plate recently is being oblique subduction along the Sunda Trench off the West coast Sumatra. The Mesozoic-Cenozoic of the volcanic and granitic rocks can be divided into northern and southern plutons, defining a series subparallel, controlled by fault, northwest-southeast trending belts, some of the plutons are deformed and under-formed. They are widely exposed along the south-eastern side of the Barisan mountain. Based on the characteristic of minerals and crystallography, rocks found in this study area were granite, granitic, monzogranite and andesitic-Basaltic Volcanic Rock. It belongs to calc Alkaline was predominantly metalumina, I-Type Granite, Volcanic arc granites, Syncollisonal Granites (Syn_COLG) and tholeiitic basalt. It was formed since 169±5 to 20±1 Ma. The origin of magmas in interpreted to be derived from partial melting of igneous rock. The occurrence of the gratoid and volcanic rocks supposed to be closely related to the subduction of the Australian-Hindia oceanic crust beneath the Eurasia/Sunda land Continental Crust as Volcanic arc or continental margin granitic and shown youngest to the southwest. The subduction process having probably been different in position between one terrane to others led to the occurrence of segmentation subduction system. The positional discontinuities of the subduction are probably caused by the difference in time of emplacement and mechanism of volcanic and granitic rock between segments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tectonic%20setting" title="tectonic setting">tectonic setting</a>, <a href="https://publications.waset.org/abstracts/search?q=I-type%20granitic" title=" I-type granitic"> I-type granitic</a>, <a href="https://publications.waset.org/abstracts/search?q=subduction" title=" subduction"> subduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Southern%20Sumatra" title=" Southern Sumatra"> Southern Sumatra</a> </p> <a href="https://publications.waset.org/abstracts/60668/the-geochemical-characteristic-and-tectonic-setting-of-mezoic-cenozoic-volcanic-and-granitic-rocks-in-southern-sumatra-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3065</span> Influence of Antecedent Soil Moisture on Soil Erosion: A Two-Year Field Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Da%20Chen">Yu-Da Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chun%20Wu"> Chia-Chun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between antecedent soil moisture content and soil erosion is a complicated phenomenon. Some studies confirm the effect of antecedent soil moisture content on soil erosion, but some deny it. Therefore, the objective of this study is to clarify such contradictions through field experiments. This study conducted two-year field observations of soil losses from natural rainfall events on runoff plots with a length of 10 meters, width of 3 meters, and uniform slope of 9%. Volumetric soil moisture sensors were used to log the soil moisture changes for each rainfall event. A total of 49 effective events were monitored. Results of this study show that antecedent soil moisture content promotes the generation of surface runoff, especially for rainfall events with short duration or lower magnitudes. A positive correlation was found between antecedent soil moisture content and soil loss per unit Rainfall-Runoff Erosivity Index, which indicated that soil with high moisture content is more susceptible to detachment. Once the rainfall duration exceeds 10 hours, the impact from the rainfall duration to soil erosion overwrites, and the effect of antecedent soil moisture is almost negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antecedent%20soil%20moisture%20content" title="antecedent soil moisture content">antecedent soil moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20loss" title=" soil loss"> soil loss</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20coefficient" title=" runoff coefficient"> runoff coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20erosivity" title=" rainfall-runoff erosivity"> rainfall-runoff erosivity</a> </p> <a href="https://publications.waset.org/abstracts/181070/influence-of-antecedent-soil-moisture-on-soil-erosion-a-two-year-field-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3064</span> Mechanical Properties of a Soil Stabilized With a Portland Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Emad%20Ahmed">Ahmed Emad Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20El%20Abd"> Mostafa El Abd</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Wakeb"> Ahmed Wakeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Moahmmed%20Eissa"> Moahmmed Eissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil modification and reinforcing aims to increase soil shear strength and stiffness. In this report, different amounts of cement were added to the soil to explore its effect on shear strength and penetration using 3 tests. The first test is proctor compaction test which was conducted to determine the optimal moisture content and maximum dry density. The second test was direct shear test which was conducted to measure shear strength of soil. The third experiment was California bearing ratio test which was done to measure the penetration in soil. Each test was done different amount of times using different amounts of cement. The results from every test show that cement improve soil shear strength properties and stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilized" title="soil stabilized">soil stabilized</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20soil" title=" mechanical properties of soil"> mechanical properties of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilized%20with%20a%20portland%20cement" title=" soil stabilized with a portland cement"> soil stabilized with a portland cement</a> </p> <a href="https://publications.waset.org/abstracts/156917/mechanical-properties-of-a-soil-stabilized-with-a-portland-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3063</span> Evaluation of Arsenic Removal in Soils Contaminated by the Phytoremediation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Ibujes">V. Ibujes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guevara"> A. Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Barreto"> P. Barreto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentration of arsenic represents a serious threat to human health. It is a bioaccumulable toxic element and is transferred through the food chain. In Ecuador, values of 0.0423 mg/kg As are registered in potatoes of the skirts of the Tungurahua volcano. The increase of arsenic contamination in Ecuador is mainly due to mining activity, since the process of gold extraction generates toxic tailings with mercury. In the Province of Azuay, due to the mining activity, the soil reaches concentrations of 2,500 to 6,420 mg/kg As whereas in the province of Tungurahua it can be found arsenic concentrations of 6.9 to 198.7 mg/kg due to volcanic eruptions. Since the contamination by arsenic, the present investigation is directed to the remediation of the soils in the provinces of Azuay and Tungurahua by phytoremediation technique and the definition of a methodology of extraction by means of analysis of arsenic in the system soil-plant. The methodology consists in selection of two types of plants that have the best arsenic removal capacity in synthetic solutions 60 μM As, a lower percentage of mortality and hydroponics resistance. The arsenic concentrations in each plant were obtained from taking 10 ml aliquots and the subsequent analysis of the ICP-OES (inductively coupled plasma-optical emission spectrometry) equipment. Soils were contaminated with synthetic solutions of arsenic with the capillarity method to achieve arsenic concentration of 13 and 15 mg/kg. Subsequently, two types of plants were evaluated to reduce the concentration of arsenic in soils for 7 weeks. The global variance for soil types was obtained with the InfoStat program. To measure the changes in arsenic concentration in the soil-plant system, the Rhizo and Wenzel arsenic extraction methodology was used and subsequently analyzed with the ICP-OES (optima 8000 Pekin Elmer). As a result, the selected plants were bluegrass and llanten, due to the high percentages of arsenic removal of 55% and 67% and low mortality rates of 9% and 8% respectively. In conclusion, Azuay soil with an initial concentration of 13 mg/kg As reached the concentrations of 11.49 and 11.04 mg/kg As for bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.79 and 11.10 mg/kg As for blue grass and llanten after 7 weeks. For the Tungurahua soil with an initial concentration of 13 mg/kg As it reached the concentrations of 11.56 and 12.16 mg/kg As for the bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.97 and 12.27 mg/kg Ace for bluegrass and llanten after 7 weeks. The best arsenic extraction methodology of soil-plant system is Wenzel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20grass" title="blue grass">blue grass</a>, <a href="https://publications.waset.org/abstracts/search?q=llanten" title=" llanten"> llanten</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20of%20Azuay" title=" soil of Azuay"> soil of Azuay</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20of%20Tungurahua" title=" soil of Tungurahua"> soil of Tungurahua</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20arsenic%20solution" title=" synthetic arsenic solution"> synthetic arsenic solution</a> </p> <a href="https://publications.waset.org/abstracts/101022/evaluation-of-arsenic-removal-in-soils-contaminated-by-the-phytoremediation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3062</span> Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title="forest soil">forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization%20rate" title=" mineralization rate"> mineralization rate</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotroph" title=" heterotroph"> heterotroph</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20respiration%20rate" title=" soil respiration rate"> soil respiration rate</a> </p> <a href="https://publications.waset.org/abstracts/10278/soil-respiration-rate-of-laurel-leaved-and-cryptomeria-japonica-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3061</span> Sedimentological Study of Bivalve Fossils Site Locality in Hong Hoi Formation in Lampang, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritsada%20Moonpa">Kritsada Moonpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannipa%20Motanated"> Kannipa Motanated</a>, <a href="https://publications.waset.org/abstracts/search?q=Weerapan%20Srichan"> Weerapan Srichan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hong Hoi Formation is a Middle Triassic deep marine succession presented in outcrops throughout the Lampang Basin of northern Thailand. The primary goal of this research is to diagnose the paleoenvironment, petrographic compositions, and sedimentary sources of the Hong Hoi Formation in Ban Huat, Ngao District. The Triassic Hong Hoi Formation is chosen because the outcrops are continuous and fossils are greatly exposed and abundant. Depositional environment is reconstructed through sedimentological studies along with facies analysis. The Hong Hoi Formation is petrographically divided into two major facies, they are: sandstones with mudstone interbeds, and mudstones or shale with sandstone interbeds. Sandstone beds are lithic arenite and lithic greywacke, volcanic lithic fragments are dominated. Sedimentary structures, paleocurrent data and lithofacies arrangement indicate that the formation deposited in a part of deep marine abyssal plain environment. The sedimentological and petrographic features suggest that during the deposition the Hong Hoi Formation received sediment supply from nearby volcanic arc. This suggested that the intensive volcanic activity within the Sukhothai Arc during the Middle Triassic is the main sediment source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhothai%20zone" title="Sukhothai zone">Sukhothai zone</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Hoi%20formation" title=" Hong Hoi formation"> Hong Hoi formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lampang" title=" Lampang"> Lampang</a>, <a href="https://publications.waset.org/abstracts/search?q=Triassic" title=" Triassic"> Triassic</a> </p> <a href="https://publications.waset.org/abstracts/111476/sedimentological-study-of-bivalve-fossils-site-locality-in-hong-hoi-formation-in-lampang-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3060</span> An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Cannavo">Flavio Cannavo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/abstracts/search?q=mount%20Etna" title=" mount Etna"> mount Etna</a>, <a href="https://publications.waset.org/abstracts/search?q=volcano%20monitoring" title=" volcano monitoring"> volcano monitoring</a> </p> <a href="https://publications.waset.org/abstracts/67701/an-ensemble-system-of-classifiers-for-computer-aided-volcano-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3059</span> Response of Six Organic Soil Media on the Germination, Seedling Vigor Performance of Jack Fruit Seeds in Chitwan Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birendra%20Kumar%20Bhattachan">Birendra Kumar Bhattachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic soil media plays an important role for seed germination, growing, and producing organic jack fruits as the source of food such as vitamin A, C, and others for human health. An experiment was conducted to find out the appropriate organic soil medias to induce germination and seedling vigor of jack fruit seeds at the farm of Agriculture and Forestry University (AFU) Chitwan Nepal during June 2022 to October 2022. The organic soil medias used as treatments were as 1. soil collected under the Molingia tree; 2. soil, FYM and RH (2:1;1); 3. soil, FYM (1:1); 4. sand, FYM and RH (2:1:1), 5, sand, soil, FYM and RH (1:1:1:1) and 6. sand, soil and RH (1:2:1) under Completely Randomized Design (CRD) with four replications. Significantly highest germination of 88% was induced by soil media, followed by media of soil and FYM (!:1) i.e. 63% and the media of soil, FYM and RH (2:1;1) and the least media was sand, soil, FYM and RH (1:1:1:) to induce germination of 28%. Significantly highest seedling length of 73 cm was produced by soil media followed by the media soil, sand, and RH (1:2:1), i.e. 72 cm and the media soil, sand, FYM, and RH (1:1:1:1) and the least media was soil, FYM and RH (2:1:1) to produce 62 cm seedling length, Similarly, significantly highest seedling vigor of 6257 was produced by soil media followed by the media soil and FYM (1:1) i.e. 4253 and the least was the media sand, soil, FYM and RH (1:1:1:1) to produce seedling vigor of1916. Based on this experiment, it was concluded that soil media collected under the Moringia tree could induce the highest germinating capacity of jack fruit seeds and then seedling vigor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jack%20fruit%20seed" title="jack fruit seed">jack fruit seed</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20media" title=" soil media"> soil media</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20yard%20manure" title=" farm yard manure"> farm yard manure</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20media" title=" sand media"> sand media</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/144173/response-of-six-organic-soil-media-on-the-germination-seedling-vigor-performance-of-jack-fruit-seeds-in-chitwan-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3058</span> The Effect of Raindrop Kinetic Energy on Soil Erodibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Moussouni">A. Moussouni</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mouzai"> L. Mouzai</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=raindrop%20kinetic%20energy" title=" raindrop kinetic energy"> raindrop kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erodibility" title=" soil erodibility"> soil erodibility</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20intensity" title=" rainfall intensity"> rainfall intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=raindrop%20fall%20velocity" title=" raindrop fall velocity"> raindrop fall velocity</a> </p> <a href="https://publications.waset.org/abstracts/19685/the-effect-of-raindrop-kinetic-energy-on-soil-erodibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3057</span> Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramli%20Nazir">Ramli Nazir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Moayedi"> Hossein Moayedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion%20control" title="erosion control">erosion control</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20confinement" title=" soil confinement"> soil confinement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/6822/soil-mass-loss-reduction-during-rainfalls-by-reinforcing-the-slopes-with-the-surficial-confinement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">842</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3056</span> An Engineering Review of Grouting in Soil Improvement Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Kazem%20Zamani">Mohamad Kazem Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Meldi%20Suhatril"> Meldi Suhatril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil improvement is one of the main concerns of each civil engineer who is working at soil mechanics and geotechnics. Grouting has been used as a powerful treatment for soil improving. In this paper, we have tried to review the grouting application base on grouts which is used and also we have tried to give a general view of grout applications and where and when can be used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementious%20grouting" title="cementious grouting">cementious grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20grouting" title=" chemical grouting"> chemical grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title=" soil improvement"> soil improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/11900/an-engineering-review-of-grouting-in-soil-improvement-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3055</span> Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patel%20Darshan%20Shaileshkumar">Patel Darshan Shaileshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Vanza"> M. G. Vanza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20shell%20ash" title="palm kernel shell ash">palm kernel shell ash</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cotton%20soil" title=" black cotton soil"> black cotton soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20limit" title=" liquid limit"> liquid limit</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20index" title=" group index"> group index</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20limit" title=" plastic limit"> plastic limit</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a> </p> <a href="https://publications.waset.org/abstracts/167203/improvement-in-plasticity-index-and-group-index-of-black-cotton-soil-using-palm-kernel-shell-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3054</span> Soil Salinity Mapping using Electromagnetic Induction Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bouksila">Fethi Bouksila</a>, <a href="https://publications.waset.org/abstracts/search?q=Nessrine%20Zemni"> Nessrine Zemni</a>, <a href="https://publications.waset.org/abstracts/search?q=Fairouz%20Slama"> Fairouz Slama</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnus%20Persson"> Magnus Persson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20%20Berndasson"> Ronny Berndasson</a>, <a href="https://publications.waset.org/abstracts/search?q=Akissa%20Bahri"> Akissa Bahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity%20map" title="soil salinity map">soil salinity map</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20induction" title="electromagnetic induction">electromagnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=EM38" title=" EM38"> EM38</a>, <a href="https://publications.waset.org/abstracts/search?q=oasis" title=" oasis"> oasis</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20watertable" title=" shallow watertable"> shallow watertable</a> </p> <a href="https://publications.waset.org/abstracts/146153/soil-salinity-mapping-using-electromagnetic-induction-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=102">102</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=103">103</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20soil&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>