CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–14 of 14 results for author: <span class="mathjax">Gani, M O</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Gani%2C+M+O">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gani, M O"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gani%2C+M+O&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gani, M O"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05638">arXiv:2410.05638</a> <span> [<a href="https://arxiv.org/pdf/2410.05638">pdf</a>, <a href="https://arxiv.org/format/2410.05638">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Time Series Classification of Supraglacial Lakes Evolution over Greenland Ice Sheet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hossain%2C+E">Emam Hossain</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Dunmire%2C+D">Devon Dunmire</a>, <a href="/search/cs?searchtype=author&query=Subramanian%2C+A">Aneesh Subramanian</a>, <a href="/search/cs?searchtype=author&query=Younas%2C+H">Hammad Younas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05638v1-abstract-short" style="display: inline;"> The Greenland Ice Sheet (GrIS) has emerged as a significant contributor to global sea level rise, primarily due to increased meltwater runoff. Supraglacial lakes, which form on the ice sheet surface during the summer months, can impact ice sheet dynamics and mass loss; thus, better understanding these lakes' seasonal evolution and dynamics is an important task. This study presents a computationall… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05638v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05638v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05638v1-abstract-full" style="display: none;"> The Greenland Ice Sheet (GrIS) has emerged as a significant contributor to global sea level rise, primarily due to increased meltwater runoff. Supraglacial lakes, which form on the ice sheet surface during the summer months, can impact ice sheet dynamics and mass loss; thus, better understanding these lakes' seasonal evolution and dynamics is an important task. This study presents a computationally efficient time series classification approach that uses Gaussian Mixture Models (GMMs) of the Reconstructed Phase Spaces (RPSs) to identify supraglacial lakes based on their seasonal evolution: 1) those that refreeze at the end of the melt season, 2) those that drain during the melt season, and 3) those that become buried, remaining liquid insulated a few meters beneath the surface. Our approach uses time series data from the Sentinel-1 and Sentinel-2 satellites, which utilize microwave and visible radiation, respectively. Evaluated on a GrIS-wide dataset, the RPS-GMM model, trained on a single representative sample per class, achieves 85.46% accuracy with Sentinel-1 data alone and 89.70% with combined Sentinel-1 and Sentinel-2 data. This performance significantly surpasses existing machine learning and deep learning models which require a large training data. The results demonstrate the robustness of the RPS-GMM model in capturing the complex temporal dynamics of supraglacial lakes with minimal training data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05638v1-abstract-full').style.display = 'none'; document.getElementById('2410.05638v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in 23rd International Conference on Machine Learning and Applications (ICMLA 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05746">arXiv:2404.05746</a> <span> [<a href="https://arxiv.org/pdf/2404.05746">pdf</a>, <a href="https://arxiv.org/format/2404.05746">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Causality for Earth Science -- A Review on Time-series and Spatiotemporal Causality Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ali%2C+S">Sahara Ali</a>, <a href="/search/cs?searchtype=author&query=Hasan%2C+U">Uzma Hasan</a>, <a href="/search/cs?searchtype=author&query=Li%2C+X">Xingyan Li</a>, <a href="/search/cs?searchtype=author&query=Faruque%2C+O">Omar Faruque</a>, <a href="/search/cs?searchtype=author&query=Sampath%2C+A">Akila Sampath</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+Y">Yiyi Huang</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+J">Jianwu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05746v2-abstract-short" style="display: inline;"> This survey paper covers the breadth and depth of time-series and spatiotemporal causality methods, and their applications in Earth Science. More specifically, the paper presents an overview of causal discovery and causal inference, explains the underlying causal assumptions, and enlists evaluation techniques and key terminologies of the domain area. The paper elicits the various state-of-the-art… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05746v2-abstract-full').style.display = 'inline'; document.getElementById('2404.05746v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05746v2-abstract-full" style="display: none;"> This survey paper covers the breadth and depth of time-series and spatiotemporal causality methods, and their applications in Earth Science. More specifically, the paper presents an overview of causal discovery and causal inference, explains the underlying causal assumptions, and enlists evaluation techniques and key terminologies of the domain area. The paper elicits the various state-of-the-art methods introduced for time-series and spatiotemporal causal analysis along with their strengths and limitations. The paper further describes the existing applications of several methods for answering specific Earth Science questions such as extreme weather events, sea level rise, teleconnections etc. This survey paper can serve as a primer for Data Science researchers interested in data-driven causal study as we share a list of resources, such as Earth Science datasets (synthetic, simulated and observational data) and open source tools for causal analysis. It will equally benefit the Earth Science community interested in taking an AI-driven approach to study the causality of different dynamic and thermodynamic processes as we present the open challenges and opportunities in performing causality-based Earth Science study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05746v2-abstract-full').style.display = 'none'; document.getElementById('2404.05746v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05493">arXiv:2304.05493</a> <span> [<a href="https://arxiv.org/pdf/2304.05493">pdf</a>, <a href="https://arxiv.org/format/2304.05493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Data-driven Causal Discovery Using Knowledge-guided Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hasan%2C+U">Uzma Hasan</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05493v2-abstract-short" style="display: inline;"> Learning causal relationships solely from observational data often fails to reveal the underlying causal mechanisms due to the vast search space of possible causal graphs, which can grow exponentially, especially for greedy algorithms using score-based approaches. Leveraging prior causal information, such as the presence or absence of causal edges, can help restrict and guide the score-based disco… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05493v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05493v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05493v2-abstract-full" style="display: none;"> Learning causal relationships solely from observational data often fails to reveal the underlying causal mechanisms due to the vast search space of possible causal graphs, which can grow exponentially, especially for greedy algorithms using score-based approaches. Leveraging prior causal information, such as the presence or absence of causal edges, can help restrict and guide the score-based discovery process, leading to a more accurate search. In the healthcare domain, prior knowledge is abundant from sources like medical journals, electronic health records (EHRs), and clinical intervention outcomes. This study introduces a knowledge-guided causal structure search (KGS) approach that utilizes observational data and structural priors (such as causal edges) as constraints to learn the causal graph. KGS leverages prior edge information between variables, including the presence of a directed edge, the absence of an edge, and the presence of an undirected edge. We extensively evaluate KGS in multiple settings using synthetic and benchmark real-world datasets, as well as in a real-life healthcare application related to oxygen therapy treatment. To obtain causal priors, we use GPT-4 to retrieve relevant literature information. Our results show that structural priors of any type and amount enhance the search process, improving performance and optimizing causal discovery. This guided strategy ensures that the discovered edges align with established causal knowledge, enhancing the trustworthiness of findings while expediting the search process. It also enables a more focused exploration of causal mechanisms, potentially leading to more effective and personalized healthcare solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05493v2-abstract-full').style.display = 'none'; document.getElementById('2304.05493v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15027">arXiv:2303.15027</a> <span> [<a href="https://arxiv.org/pdf/2303.15027">pdf</a>, <a href="https://arxiv.org/format/2303.15027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A Survey on Causal Discovery Methods for I.I.D. and Time Series Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hasan%2C+U">Uzma Hasan</a>, <a href="/search/cs?searchtype=author&query=Hossain%2C+E">Emam Hossain</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15027v4-abstract-short" style="display: inline;"> The ability to understand causality from data is one of the major milestones of human-level intelligence. Causal Discovery (CD) algorithms can identify the cause-effect relationships among the variables of a system from related observational data with certain assumptions. Over the years, several methods have been developed primarily based on the statistical properties of data to uncover the underl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15027v4-abstract-full').style.display = 'inline'; document.getElementById('2303.15027v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15027v4-abstract-full" style="display: none;"> The ability to understand causality from data is one of the major milestones of human-level intelligence. Causal Discovery (CD) algorithms can identify the cause-effect relationships among the variables of a system from related observational data with certain assumptions. Over the years, several methods have been developed primarily based on the statistical properties of data to uncover the underlying causal mechanism. In this study, we present an extensive discussion on the methods designed to perform causal discovery from both independent and identically distributed (I.I.D.) data and time series data. For this purpose, we first introduce the common terminologies used in causal discovery literature and then provide a comprehensive discussion of the algorithms designed to identify causal relations in different settings. We further discuss some of the benchmark datasets available for evaluating the algorithmic performance, off-the-shelf tools or software packages to perform causal discovery readily, and the common metrics used to evaluate these methods. We also evaluate some widely used causal discovery algorithms on multiple benchmark datasets and compare their performances. Finally, we conclude by discussing the research challenges and the applications of causal discovery algorithms in multiple areas of interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15027v4-abstract-full').style.display = 'none'; document.getElementById('2303.15027v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published (05 Sept 2023) in Transactions on Machine Learning Research (TMLR)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07122">arXiv:2303.07122</a> <span> [<a href="https://arxiv.org/pdf/2303.07122">pdf</a>, <a href="https://arxiv.org/format/2303.07122">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> Quantifying Causes of Arctic Amplification via Deep Learning based Time-series Causal Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ali%2C+S">Sahara Ali</a>, <a href="/search/cs?searchtype=author&query=Faruque%2C+O">Omar Faruque</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+Y">Yiyi Huang</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md. Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Subramanian%2C+A">Aneesh Subramanian</a>, <a href="/search/cs?searchtype=author&query=Shchlegel%2C+N">Nicole-Jienne Shchlegel</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+J">Jianwu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07122v5-abstract-short" style="display: inline;"> The warming of the Arctic, also known as Arctic amplification, is led by several atmospheric and oceanic drivers. However, the details of its underlying thermodynamic causes are still unknown. Inferring the causal effects of atmospheric processes on sea ice melt using fixed treatment effect strategies leads to unrealistic counterfactual estimations. Such models are also prone to bias due to time-v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07122v5-abstract-full').style.display = 'inline'; document.getElementById('2303.07122v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07122v5-abstract-full" style="display: none;"> The warming of the Arctic, also known as Arctic amplification, is led by several atmospheric and oceanic drivers. However, the details of its underlying thermodynamic causes are still unknown. Inferring the causal effects of atmospheric processes on sea ice melt using fixed treatment effect strategies leads to unrealistic counterfactual estimations. Such models are also prone to bias due to time-varying confoundedness. Further, the complex non-linearity in Earth science data makes it infeasible to perform causal inference using existing marginal structural techniques. In order to tackle these challenges, we propose TCINet - time-series causal inference model to infer causation under continuous treatment using recurrent neural networks and a novel probabilistic balancing technique. Through experiments on synthetic and observational data, we show how our research can substantially improve the ability to quantify leading causes of Arctic sea ice melt, further paving paths for causal inference in observational Earth science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07122v5-abstract-full').style.display = 'none'; document.getElementById('2303.07122v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ICMLA 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02833">arXiv:2303.02833</a> <span> [<a href="https://arxiv.org/pdf/2303.02833">pdf</a>, <a href="https://arxiv.org/format/2303.02833">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> eCDANs: Efficient Temporal Causal Discovery from Autocorrelated and Non-stationary Data (Student Abstract) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ferdous%2C+M+H">Muhammad Hasan Ferdous</a>, <a href="/search/cs?searchtype=author&query=Hasan%2C+U">Uzma Hasan</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02833v1-abstract-short" style="display: inline;"> Conventional temporal causal discovery (CD) methods suffer from high dimensionality, fail to identify lagged causal relationships, and often ignore dynamics in relations. In this study, we present a novel constraint-based CD approach for autocorrelated and non-stationary time series data (eCDANs) capable of detecting lagged and contemporaneous causal relationships along with temporal changes. eCDA… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02833v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02833v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02833v1-abstract-full" style="display: none;"> Conventional temporal causal discovery (CD) methods suffer from high dimensionality, fail to identify lagged causal relationships, and often ignore dynamics in relations. In this study, we present a novel constraint-based CD approach for autocorrelated and non-stationary time series data (eCDANs) capable of detecting lagged and contemporaneous causal relationships along with temporal changes. eCDANs addresses high dimensionality by optimizing the conditioning sets while conducting conditional independence (CI) tests and identifies the changes in causal relations by introducing a surrogate variable to represent time dependency. Experiments on synthetic and real-world data show that eCDANs can identify time influence and outperform the baselines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02833v1-abstract-full').style.display = 'none'; document.getElementById('2303.02833v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06134">arXiv:2302.06134</a> <span> [<a href="https://arxiv.org/pdf/2302.06134">pdf</a>, <a href="https://arxiv.org/format/2302.06134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> RFC-Net: Learning High Resolution Global Features for Medical Image Segmentation on a Computational Budget </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Saha%2C+S">Sourajit Saha</a>, <a href="/search/cs?searchtype=author&query=Saha%2C+S">Shaswati Saha</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Oates%2C+T">Tim Oates</a>, <a href="/search/cs?searchtype=author&query=Chapman%2C+D">David Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06134v1-abstract-short" style="display: inline;"> Learning High-Resolution representations is essential for semantic segmentation. Convolutional neural network (CNN)architectures with downstream and upstream propagation flow are popular for segmentation in medical diagnosis. However, due to performing spatial downsampling and upsampling in multiple stages, information loss is inexorable. On the contrary, connecting layers densely on high spatial… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06134v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06134v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06134v1-abstract-full" style="display: none;"> Learning High-Resolution representations is essential for semantic segmentation. Convolutional neural network (CNN)architectures with downstream and upstream propagation flow are popular for segmentation in medical diagnosis. However, due to performing spatial downsampling and upsampling in multiple stages, information loss is inexorable. On the contrary, connecting layers densely on high spatial resolution is computationally expensive. In this work, we devise a Loose Dense Connection Strategy to connect neurons in subsequent layers with reduced parameters. On top of that, using a m-way Tree structure for feature propagation we propose Receptive Field Chain Network (RFC-Net) that learns high resolution global features on a compressed computational space. Our experiments demonstrates that RFC-Net achieves state-of-the-art performance on Kvasir and CVC-ClinicDB benchmarks for Polyp segmentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06134v1-abstract-full').style.display = 'none'; document.getElementById('2302.06134v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In Proceedings of AAAI Conference on Artificial Intelligence 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03246">arXiv:2302.03246</a> <span> [<a href="https://arxiv.org/pdf/2302.03246">pdf</a>, <a href="https://arxiv.org/format/2302.03246">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ferdous%2C+M+H">Muhammad Hasan Ferdous</a>, <a href="/search/cs?searchtype=author&query=Hasan%2C+U">Uzma Hasan</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03246v2-abstract-short" style="display: inline;"> Time series data are found in many areas of healthcare such as medical time series, electronic health records (EHR), measurements of vitals, and wearable devices. Causal discovery, which involves estimating causal relationships from observational data, holds the potential to play a significant role in extracting actionable insights about human health. In this study, we present a novel constraint-b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03246v2-abstract-full').style.display = 'inline'; document.getElementById('2302.03246v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03246v2-abstract-full" style="display: none;"> Time series data are found in many areas of healthcare such as medical time series, electronic health records (EHR), measurements of vitals, and wearable devices. Causal discovery, which involves estimating causal relationships from observational data, holds the potential to play a significant role in extracting actionable insights about human health. In this study, we present a novel constraint-based causal discovery approach for autocorrelated and non-stationary time series data (CDANs). Our proposed method addresses several limitations of existing causal discovery methods for autocorrelated and non-stationary time series data, such as high dimensionality, the inability to identify lagged causal relationships, and overlooking changing modules. Our approach identifies lagged and instantaneous/contemporaneous causal relationships along with changing modules that vary over time. The method optimizes the conditioning sets in a constraint-based search by considering lagged parents instead of conditioning on the entire past that addresses high dimensionality. The changing modules are detected by considering both contemporaneous and lagged parents. The approach first detects the lagged adjacencies, then identifies the changing modules and contemporaneous adjacencies, and finally determines the causal direction. We extensively evaluated our proposed method on synthetic and real-world clinical datasets, and compared its performance with several baseline approaches. The experimental results demonstrate the effectiveness of the proposed method in detecting causal relationships and changing modules for autocorrelated and non-stationary time series data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03246v2-abstract-full').style.display = 'none'; document.getElementById('2302.03246v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01057">arXiv:2205.01057</a> <span> [<a href="https://arxiv.org/pdf/2205.01057">pdf</a>, <a href="https://arxiv.org/format/2205.01057">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Causal Discovery on the Effect of Antipsychotic Drugs on Delirium Patients in the ICU using Large EHR Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Adib%2C+R">Riddhiman Adib</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Ahamed%2C+S+I">Sheikh Iqbal Ahamed</a>, <a href="/search/cs?searchtype=author&query=Adibuzzaman%2C+M">Mohammad Adibuzzaman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01057v1-abstract-short" style="display: inline;"> Delirium occurs in about 80% cases in the Intensive Care Unit (ICU) and is associated with a longer hospital stay, increased mortality and other related issues. Delirium does not have any biomarker-based diagnosis and is commonly treated with antipsychotic drugs (APD). However, multiple studies have shown controversy over the efficacy or safety of APD in treating delirium. Since randomized control… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01057v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01057v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01057v1-abstract-full" style="display: none;"> Delirium occurs in about 80% cases in the Intensive Care Unit (ICU) and is associated with a longer hospital stay, increased mortality and other related issues. Delirium does not have any biomarker-based diagnosis and is commonly treated with antipsychotic drugs (APD). However, multiple studies have shown controversy over the efficacy or safety of APD in treating delirium. Since randomized controlled trials (RCT) are costly and time-expensive, we aim to approach the research question of the efficacy of APD in the treatment of delirium using retrospective cohort analysis. We plan to use the Causal inference framework to look for the underlying causal structure model, leveraging the availability of large observational data on ICU patients. To explore safety outcomes associated with APD, we aim to build a causal model for delirium in the ICU using large observational data sets connecting various covariates correlated with delirium. We utilized the MIMIC III database, an extensive electronic health records (EHR) dataset with 53,423 distinct hospital admissions. Our null hypothesis is: there is no significant difference in outcomes for delirium patients under different drug-group in the ICU. Through our exploratory, machine learning based and causal analysis, we had findings such as: mean length-of-stay and max length-of-stay is higher for patients in Haloperidol drug group, and haloperidol group has a higher rate of death in a year compared to other two-groups. Our generated causal model explicitly shows the functional relationships between different covariates. For future work, we plan to do time-varying analysis on the dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01057v1-abstract-full').style.display = 'none'; document.getElementById('2205.01057v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13775">arXiv:2204.13775</a> <span> [<a href="https://arxiv.org/pdf/2204.13775">pdf</a>, <a href="https://arxiv.org/format/2204.13775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> CKH: Causal Knowledge Hierarchy for Estimating Structural Causal Models from Data and Priors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Adib%2C+R">Riddhiman Adib</a>, <a href="/search/cs?searchtype=author&query=Naved%2C+M+M+A">Md Mobasshir Arshed Naved</a>, <a href="/search/cs?searchtype=author&query=Fang%2C+C">Chih-Hao Fang</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Grama%2C+A">Ananth Grama</a>, <a href="/search/cs?searchtype=author&query=Griffin%2C+P">Paul Griffin</a>, <a href="/search/cs?searchtype=author&query=Ahamed%2C+S+I">Sheikh Iqbal Ahamed</a>, <a href="/search/cs?searchtype=author&query=Adibuzzaman%2C+M">Mohammad Adibuzzaman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13775v2-abstract-short" style="display: inline;"> Structural causal models (SCMs) provide a principled approach to identifying causation from observational and experimental data in disciplines ranging from economics to medicine. However, SCMs, which is typically represented as graphical models, cannot rely only on data, rather require support of domain knowledge. A key challenge in this context is the absence of a methodological framework for enc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13775v2-abstract-full').style.display = 'inline'; document.getElementById('2204.13775v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13775v2-abstract-full" style="display: none;"> Structural causal models (SCMs) provide a principled approach to identifying causation from observational and experimental data in disciplines ranging from economics to medicine. However, SCMs, which is typically represented as graphical models, cannot rely only on data, rather require support of domain knowledge. A key challenge in this context is the absence of a methodological framework for encoding priors (background knowledge) into causal models in a systematic manner. We propose an abstraction called causal knowledge hierarchy (CKH) for encoding priors into causal models. Our approach is based on the foundation of "levels of evidence" in medicine, with a focus on confidence in causal information. Using CKH, we present a methodological framework for encoding causal priors from various information sources and combining them to derive an SCM. We evaluate our approach on a simulated dataset and demonstrate overall performance compared to the ground truth causal model with sensitivity analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13775v2-abstract-full').style.display = 'none'; document.getElementById('2204.13775v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03115">arXiv:2102.03115</a> <span> [<a href="https://arxiv.org/pdf/2102.03115">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Multispectral Object Detection with Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Kuiry%2C+S">Somenath Kuiry</a>, <a href="/search/cs?searchtype=author&query=Das%2C+A">Alaka Das</a>, <a href="/search/cs?searchtype=author&query=Nasipuri%2C+M">Mita Nasipuri</a>, <a href="/search/cs?searchtype=author&query=Das%2C+N">Nibaran Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03115v1-abstract-short" style="display: inline;"> Object detection in natural scenes can be a challenging task. In many real-life situations, the visible spectrum is not suitable for traditional computer vision tasks. Moving outside the visible spectrum range, such as the thermal spectrum or the near-infrared (NIR) images, is much more beneficial in low visibility conditions, NIR images are very helpful for understanding the object's material qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03115v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03115v1-abstract-full" style="display: none;"> Object detection in natural scenes can be a challenging task. In many real-life situations, the visible spectrum is not suitable for traditional computer vision tasks. Moving outside the visible spectrum range, such as the thermal spectrum or the near-infrared (NIR) images, is much more beneficial in low visibility conditions, NIR images are very helpful for understanding the object's material quality. In this work, we have taken images with both the Thermal and NIR spectrum for the object detection task. As multi-spectral data with both Thermal and NIR is not available for the detection task, we needed to collect data ourselves. Data collection is a time-consuming process, and we faced many obstacles that we had to overcome. We train the YOLO v3 network from scratch to detect an object from multi-spectral images. Also, to avoid overfitting, we have done data augmentation and tune hyperparameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03115v1-abstract-full').style.display = 'none'; document.getElementById('2102.03115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14774">arXiv:2010.14774</a> <span> [<a href="https://arxiv.org/pdf/2010.14774">pdf</a>, <a href="https://arxiv.org/format/2010.14774">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Structural Causal Model with Expert Augmented Knowledge to Estimate the Effect of Oxygen Therapy on Mortality in the ICU </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gani%2C+M+O">Md Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Kethireddy%2C+S">Shravan Kethireddy</a>, <a href="/search/cs?searchtype=author&query=Bikak%2C+M">Marvi Bikak</a>, <a href="/search/cs?searchtype=author&query=Griffin%2C+P">Paul Griffin</a>, <a href="/search/cs?searchtype=author&query=Adibuzzaman%2C+M">Mohammad Adibuzzaman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14774v1-abstract-short" style="display: inline;"> Recent advances in causal inference techniques, more specifically, in the theory of structural causal models, provide the framework for identification of causal effects from observational data in the cases where the causal graph is identifiable, i.e., the data generating mechanism can be recovered from the joint distribution. However, no such studies have been done to demonstrate this concept with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14774v1-abstract-full').style.display = 'inline'; document.getElementById('2010.14774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14774v1-abstract-full" style="display: none;"> Recent advances in causal inference techniques, more specifically, in the theory of structural causal models, provide the framework for identification of causal effects from observational data in the cases where the causal graph is identifiable, i.e., the data generating mechanism can be recovered from the joint distribution. However, no such studies have been done to demonstrate this concept with a clinical example. We present a complete framework to estimate the causal effect from observational data by augmenting expert knowledge in the model development phase and with a practical clinical application. Our clinical application entails a timely and important research question, i.e., the effect of oxygen therapy intervention in the intensive care unit (ICU); the result of this project is useful in a variety of disease conditions, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) patients in the ICU. We used data from the MIMIC III database, a standard database in the machine learning community that contains 58,976 admissions from an ICU in Boston, MA, for estimating the oxygen therapy effect on morality. We also identified the covariate-specific effect to oxygen therapy from the model for more personalized intervention. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14774v1-abstract-full').style.display = 'none'; document.getElementById('2010.14774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.09267">arXiv:1905.09267</a> <span> [<a href="https://arxiv.org/pdf/1905.09267">pdf</a>, <a href="https://arxiv.org/ps/1905.09267">ps</a>, <a href="https://arxiv.org/format/1905.09267">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Real-Time Hardware-In-the-Loop Emulation Framework for DSRC-based Connected Vehicle Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Shah%2C+G">Ghayoor Shah</a>, <a href="/search/cs?searchtype=author&query=Valiente%2C+R">Rodolfo Valiente</a>, <a href="/search/cs?searchtype=author&query=Gupta%2C+N">Nitish Gupta</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+S+M+O">S M Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Toghi%2C+B">Behrad Toghi</a>, <a href="/search/cs?searchtype=author&query=Fallah%2C+Y+P">Yaser P. Fallah</a>, <a href="/search/cs?searchtype=author&query=Gupta%2C+S+D">Somak Datta Gupta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.09267v2-abstract-short" style="display: inline;"> The rapid growth of connected and automated vehicle (CAV) solutions have made a significant impact on the safety of intelligent transportation systems. However, similar to any other emerging technology, thorough testing and evaluation studies are of paramount importance for the effectiveness of these solutions. Due to the safety-critical nature of this problem, large-scale real-world field tests d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.09267v2-abstract-full').style.display = 'inline'; document.getElementById('1905.09267v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.09267v2-abstract-full" style="display: none;"> The rapid growth of connected and automated vehicle (CAV) solutions have made a significant impact on the safety of intelligent transportation systems. However, similar to any other emerging technology, thorough testing and evaluation studies are of paramount importance for the effectiveness of these solutions. Due to the safety-critical nature of this problem, large-scale real-world field tests do not seem to be a feasible and practical option. Thus, employing simulation and emulation approaches are preferred in the development phase of the safety-related applications in CAVs. Such methodologies not only mitigate the high cost of deploying large number of real vehicles, but also enable researchers to exhaustively perform repeatable tests in various scenarios. Software simulation of very large-scale vehicular scenarios is mostly a time consuming task and as a matter of fact, any simulation environment would include abstractions in order to model the real-world system. In contrast to the simulation-based solutions, network emulators are able to produce more realistic test environments. In this work, we propose a high-fidelity hardware-in-the-loop network emulator framework in order to create testing environments for vehicle-to-vehicle (V2V) communication. The proposed architecture is able to run in real-time fashion in contrast to other existing systems, which can potentially boost the development and validation of V2V systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.09267v2-abstract-full').style.display = 'none'; document.getElementById('1905.09267v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.01576">arXiv:1903.01576</a> <span> [<a href="https://arxiv.org/pdf/1903.01576">pdf</a>, <a href="https://arxiv.org/ps/1903.01576">ps</a>, <a href="https://arxiv.org/format/1903.01576">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> V2X System Architecture Utilizing Hybrid Gaussian Process-based Model Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Mahjoub%2C+H+N">Hossein Nourkhiz Mahjoub</a>, <a href="/search/cs?searchtype=author&query=Toghi%2C+B">Behrad Toghi</a>, <a href="/search/cs?searchtype=author&query=Gani%2C+S+M+O">S M Osman Gani</a>, <a href="/search/cs?searchtype=author&query=Fallah%2C+Y+P">Yaser P. Fallah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.01576v2-abstract-short" style="display: inline;"> Scalable communication is of utmost importance for reliable dissemination of time-sensitive information in cooperative vehicular ad-hoc networks (VANETs), which is, in turn, an essential prerequisite for the proper operation of the critical cooperative safety applications. The model-based communication (MBC) is a recently-explored scalability solution proposed in the literature, which has shown a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01576v2-abstract-full').style.display = 'inline'; document.getElementById('1903.01576v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.01576v2-abstract-full" style="display: none;"> Scalable communication is of utmost importance for reliable dissemination of time-sensitive information in cooperative vehicular ad-hoc networks (VANETs), which is, in turn, an essential prerequisite for the proper operation of the critical cooperative safety applications. The model-based communication (MBC) is a recently-explored scalability solution proposed in the literature, which has shown a promising potential to reduce the channel congestion to a great extent. In this work, based on the MBC notion, a technology-agnostic hybrid model selection policy for Vehicle-to-Everything (V2X) communication is proposed which benefits from the characteristics of the non-parametric Bayesian inference techniques, specifically Gaussian Processes. The results show the effectiveness of the proposed communication architecture on both reducing the required message exchange rate and increasing the remote agent tracking precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01576v2-abstract-full').style.display = 'none'; document.getElementById('1903.01576v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for Oral Presentation at the 13th IEEE Systems Conference (SysCon 2019)</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>