CINXE.COM

Donald Buerk | Drexel University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Donald Buerk | Drexel University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="WiGf7yHTbZUgVyKhjYyFdbr4mR63J9tlPFz+AQ1EJzpKkBX/FYDU3OFQqX0isUce9fDCvp9TAS1lD5XgC91NlA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="donald buerk" /> <meta name="description" content="Donald Buerk, Drexel University: 16 Followers, 6 Following, 19 Research papers. Research interests: Functional Connectivity, Neurodegenerative Diseases, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b67ef4c3c1ecbe370843942feb5e75d02a3437b4'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277507103,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732765710000); window.Aedu.timeDifference = new Date().getTime() - 1732765710000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7734a8b54dedb8fefe75ef934203d0ef41d066c1c5cfa6ba2a13dd7ec8bce449.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-33f19fd043c8c49f63805d0288e3f2d1d21ba0d2e162ab59bb7c183e51000368.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://drexel.academia.edu/DonaldBuerk" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-5bfddbc4b28f8f9ddce2d621140b78079ab395a6b1c021e652fc7c5ef8016591.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":7070,"name":"Biomedical Engineering","url":"https://drexel.academia.edu/Departments/Biomedical_Engineering/Documents","university":{"id":1236,"name":"Drexel University","url":"https://drexel.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":52763,"name":"Functional Connectivity","url":"https://www.academia.edu/Documents/in/Functional_Connectivity"},{"id":37848,"name":"Neurodegenerative Diseases","url":"https://www.academia.edu/Documents/in/Neurodegenerative_Diseases"},{"id":191803,"name":"Drogas","url":"https://www.academia.edu/Documents/in/Drogas"},{"id":7989,"name":"Drugs and drug culture","url":"https://www.academia.edu/Documents/in/Drugs_and_drug_culture"},{"id":3776,"name":"Alzheimer's Disease","url":"https://www.academia.edu/Documents/in/Alzheimers_Disease"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://drexel.academia.edu/DonaldBuerk&quot;,&quot;location&quot;:&quot;/DonaldBuerk&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;drexel.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/DonaldBuerk&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-177fbe21-5b39-4051-8ea4-6d227e9a1353"></div> <div id="ProfileCheckPaperUpdate-react-component-177fbe21-5b39-4051-8ea4-6d227e9a1353"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Donald Buerk</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://drexel.academia.edu/">Drexel University</a>, <a class="u-tcGrayDarker" href="https://drexel.academia.edu/Departments/Biomedical_Engineering/Documents">Biomedical Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Donald" data-follow-user-id="32697935" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32697935"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">16</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">6</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="32697935">View All (6)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32697935" href="https://www.academia.edu/Documents/in/Functional_Connectivity"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://drexel.academia.edu/DonaldBuerk&quot;,&quot;location&quot;:&quot;/DonaldBuerk&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;drexel.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/DonaldBuerk&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Functional Connectivity&quot;]}" data-trace="false" data-dom-id="Pill-react-component-358675bd-f903-4853-a67a-70b84d593fbf"></div> <div id="Pill-react-component-358675bd-f903-4853-a67a-70b84d593fbf"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32697935" href="https://www.academia.edu/Documents/in/Neurodegenerative_Diseases"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Neurodegenerative Diseases&quot;]}" data-trace="false" data-dom-id="Pill-react-component-dc2e05f4-31a5-46ff-9b37-35c4cbc2b595"></div> <div id="Pill-react-component-dc2e05f4-31a5-46ff-9b37-35c4cbc2b595"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32697935" href="https://www.academia.edu/Documents/in/Drogas"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Drogas&quot;]}" data-trace="false" data-dom-id="Pill-react-component-8096f1de-96c7-46fc-8249-508c6528ff27"></div> <div id="Pill-react-component-8096f1de-96c7-46fc-8249-508c6528ff27"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32697935" href="https://www.academia.edu/Documents/in/Drugs_and_drug_culture"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Drugs and drug culture&quot;]}" data-trace="false" data-dom-id="Pill-react-component-02ba32b3-4ffb-4ceb-881d-fb205f4ae9e1"></div> <div id="Pill-react-component-02ba32b3-4ffb-4ceb-881d-fb205f4ae9e1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32697935" href="https://www.academia.edu/Documents/in/Alzheimers_Disease"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Alzheimer&#39;s Disease&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c8cc5f78-2bc1-4751-b0b2-a0e6dd4ce709"></div> <div id="Pill-react-component-c8cc5f78-2bc1-4751-b0b2-a0e6dd4ce709"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="left-most js-UserInfo-social-cv" data-broccoli-component="user-info.cv-button" data-click-track="profile-user-info-cv" data-cv-filename="Buerk_Academic_2015.pdf" data-placement="top" data-toggle="tooltip" href="/DonaldBuerk/CurriculumVitae"><button class="ds2-5-text-link ds2-5-text-link--small" style="font-size: 20px; letter-spacing: 0.8px"><span class="ds2-5-text-link__content">CV</span></button></li><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Donald Buerk</h3></div><div class="js-work-strip profile--work_container" data-work-id="19234095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/19234095/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model"><img alt="Research paper thumbnail of Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/19234095/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model">Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IndiraPrabakaran">Indira Prabakaran</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a></span></div><div class="wp-workCard_item"><span>Journal of the American College of Surgeons</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="19234095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="19234095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19234095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19234095]").text(description); $(".js-view-count[data-work-id=19234095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19234095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='19234095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 19234095, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=19234095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":19234095,"title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Journal of the American College of Surgeons"},"translated_abstract":null,"internal_url":"https://www.academia.edu/19234095/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model","translated_internal_url":"","created_at":"2015-11-30T07:17:21.457-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39467948,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":11302030,"work_id":19234095,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":564240,"email":"f***d@uphs.upenn.edu","display_order":0,"name":"Douglas Fraker","title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model"},{"id":11302040,"work_id":19234095,"tagging_user_id":39467948,"tagged_user_id":32697935,"co_author_invite_id":2648583,"email":"b***k@seas.upenn.edu","affiliation":"Drexel University","display_order":4194304,"name":"Donald Buerk","title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model"},{"id":11302064,"work_id":19234095,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":2648591,"email":"a***i@biochain.com","display_order":6291456,"name":"Alex Hsi","title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model"}],"downloadable_attachments":[],"slug":"Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39467948,"first_name":"Indira","middle_initials":null,"last_name":"Prabakaran","page_name":"IndiraPrabakaran","domain_name":"independent","created_at":"2015-11-30T07:17:05.029-08:00","display_name":"Indira Prabakaran","url":"https://independent.academia.edu/IndiraPrabakaran","email":"SGxFOGJFVUdraTJmWjlBMnZSM2JLbWZSRUVxQy81UG1uWnhybWV2U3krUTJZVHhmNXQyNm5hZjE1MGdnV0VXMC0tMmRvSUJGRmo0VTZuTSs3TDcvUXpQZz09--ad74686053a515defc69bbf52870b7223ceb9c2f"},"attachments":[],"research_interests":[{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="19234100"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/19234100/An_integrated_approach_to_measuring_tumor_oxygen_status_using_human_melanoma_xenografts_as_a_model"><img alt="Research paper thumbnail of An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model" class="work-thumbnail" src="https://attachments.academia-assets.com/40506712/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/19234100/An_integrated_approach_to_measuring_tumor_oxygen_status_using_human_melanoma_xenografts_as_a_model">An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IndiraPrabakaran">Indira Prabakaran</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a></span></div><div class="wp-workCard_item"><span>Cancer research</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcom...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen saturation, tissue pO(2), oxygen consumption rate, and hypoxic fraction. The goal of this investigation was to integrate these measurements to obtain a comprehensive profile of tumor oxygenation. Platelet/endothelial cell adhesion molecule immunohistochemistry, the recessed oxygen microelectrode, color and power Doppler ultrasound (DUS), and diffuse light spectroscopy (DLS) were used to measure tumor oxygen status using vascular endothelial growth factor (VEGF)-transfected hypervascular human melanoma xenografts and their nontransfected counterparts as a model. NIH1286 human melanoma cells were transfected with a retroviral vector +/- a 720-bp fr...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21bca761714910a4b82c8f20a2e8a876" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:40506712,&quot;asset_id&quot;:19234100,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/40506712/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="19234100"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="19234100"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19234100; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19234100]").text(description); $(".js-view-count[data-work-id=19234100]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19234100; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='19234100']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 19234100, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21bca761714910a4b82c8f20a2e8a876" } } $('.js-work-strip[data-work-id=19234100]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":19234100,"title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model","translated_title":"","metadata":{"abstract":"Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen saturation, tissue pO(2), oxygen consumption rate, and hypoxic fraction. The goal of this investigation was to integrate these measurements to obtain a comprehensive profile of tumor oxygenation. Platelet/endothelial cell adhesion molecule immunohistochemistry, the recessed oxygen microelectrode, color and power Doppler ultrasound (DUS), and diffuse light spectroscopy (DLS) were used to measure tumor oxygen status using vascular endothelial growth factor (VEGF)-transfected hypervascular human melanoma xenografts and their nontransfected counterparts as a model. NIH1286 human melanoma cells were transfected with a retroviral vector +/- a 720-bp fr...","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Cancer research"},"translated_abstract":"Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen saturation, tissue pO(2), oxygen consumption rate, and hypoxic fraction. The goal of this investigation was to integrate these measurements to obtain a comprehensive profile of tumor oxygenation. Platelet/endothelial cell adhesion molecule immunohistochemistry, the recessed oxygen microelectrode, color and power Doppler ultrasound (DUS), and diffuse light spectroscopy (DLS) were used to measure tumor oxygen status using vascular endothelial growth factor (VEGF)-transfected hypervascular human melanoma xenografts and their nontransfected counterparts as a model. NIH1286 human melanoma cells were transfected with a retroviral vector +/- a 720-bp fr...","internal_url":"https://www.academia.edu/19234100/An_integrated_approach_to_measuring_tumor_oxygen_status_using_human_melanoma_xenografts_as_a_model","translated_internal_url":"","created_at":"2015-11-30T07:17:22.067-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39467948,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":11302031,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":564240,"email":"f***d@uphs.upenn.edu","display_order":0,"name":"Douglas Fraker","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"},{"id":11302041,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":32697935,"co_author_invite_id":2648583,"email":"b***k@seas.upenn.edu","affiliation":"Drexel University","display_order":4194304,"name":"Donald Buerk","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"},{"id":11302043,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":95190,"email":"c***l@uphs.upenn.edu","display_order":6291456,"name":"Chandra Sehgal","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"},{"id":11302065,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":2648591,"email":"a***i@biochain.com","display_order":7340032,"name":"Alex Hsi","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"},{"id":11302067,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":745225,"email":"c***j@wustl.edu","display_order":7864320,"name":"Joseph Culver","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"}],"downloadable_attachments":[{"id":40506712,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/40506712/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/40506712/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_integrated_approach_to_measuring_tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/40506712/CMenon2003CRv63-libre.pdf?1448896881=\u0026response-content-disposition=attachment%3B+filename%3DAn_integrated_approach_to_measuring_tumo.pdf\u0026Expires=1732769309\u0026Signature=GEq25GcauBSXDfd16O5KyX5abcC2mzr6JeQcwWtPaw-Nb~HtQfhNgioA8dx2kj1nbPuNw89N5PfeG4PXrvjF0UmAiEB4X-K4sgLAH3rjEh~2BE36OI-wxww83knF5enI17ara3SwyzMhJhaR2bYgoA95AxOK18cjs8cGMWpfnmQ3PxhYYe16ZNNwqkIUgeONgotCcV7PzVyTaNYv6F3KiCBVbAvuE3uxaHOsvoEAyWDnko6ASFIctq3zYMIyo3YVqX7D-stivhcICVBgAjJ88PTz2TYou9OVwIly2sah6jRY3n6KByBn0CULjAu5~qZ1~-98Vu4lvyFzP0HXeDA63g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_integrated_approach_to_measuring_tumor_oxygen_status_using_human_melanoma_xenografts_as_a_model","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":39467948,"first_name":"Indira","middle_initials":null,"last_name":"Prabakaran","page_name":"IndiraPrabakaran","domain_name":"independent","created_at":"2015-11-30T07:17:05.029-08:00","display_name":"Indira Prabakaran","url":"https://independent.academia.edu/IndiraPrabakaran"},"attachments":[{"id":40506712,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/40506712/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/40506712/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_integrated_approach_to_measuring_tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/40506712/CMenon2003CRv63-libre.pdf?1448896881=\u0026response-content-disposition=attachment%3B+filename%3DAn_integrated_approach_to_measuring_tumo.pdf\u0026Expires=1732769309\u0026Signature=GEq25GcauBSXDfd16O5KyX5abcC2mzr6JeQcwWtPaw-Nb~HtQfhNgioA8dx2kj1nbPuNw89N5PfeG4PXrvjF0UmAiEB4X-K4sgLAH3rjEh~2BE36OI-wxww83knF5enI17ara3SwyzMhJhaR2bYgoA95AxOK18cjs8cGMWpfnmQ3PxhYYe16ZNNwqkIUgeONgotCcV7PzVyTaNYv6F3KiCBVbAvuE3uxaHOsvoEAyWDnko6ASFIctq3zYMIyo3YVqX7D-stivhcICVBgAjJ88PTz2TYou9OVwIly2sah6jRY3n6KByBn0CULjAu5~qZ1~-98Vu4lvyFzP0HXeDA63g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":15639,"name":"Ultrasound","url":"https://www.academia.edu/Documents/in/Ultrasound"},{"id":37434,"name":"Quantitative analysis","url":"https://www.academia.edu/Documents/in/Quantitative_analysis"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99023,"name":"Melanoma","url":"https://www.academia.edu/Documents/in/Melanoma"},{"id":285086,"name":"Integrated Approach","url":"https://www.academia.edu/Documents/in/Integrated_Approach"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":426588,"name":"Blood Flow","url":"https://www.academia.edu/Documents/in/Blood_Flow"},{"id":533274,"name":"Growth rate","url":"https://www.academia.edu/Documents/in/Growth_rate"},{"id":571738,"name":"Internal medicine Doppler ultrasonography","url":"https://www.academia.edu/Documents/in/Internal_medicine_Doppler_ultrasonography"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":641216,"name":"Quantitative Analysis","url":"https://www.academia.edu/Documents/in/Quantitative_Analysis-1"},{"id":1193624,"name":"Oxygen Consumption","url":"https://www.academia.edu/Documents/in/Oxygen_Consumption"},{"id":1213145,"name":"power Doppler","url":"https://www.academia.edu/Documents/in/power_Doppler"},{"id":1558342,"name":"Oxygen saturation","url":"https://www.academia.edu/Documents/in/Oxygen_saturation"},{"id":1796877,"name":"Vascular Endothelial Growth Factor","url":"https://www.academia.edu/Documents/in/Vascular_Endothelial_Growth_Factor"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488217"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488217/Shear_stress_induced_NO_production_is_dependent_on_ATP_autocrine_signaling_and_capacitative_calcium_entry"><img alt="Research paper thumbnail of Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry" class="work-thumbnail" src="https://attachments.academia-assets.com/45280909/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488217/Shear_stress_induced_NO_production_is_dependent_on_ATP_autocrine_signaling_and_capacitative_calcium_entry">Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry</a></div><div class="wp-workCard_item"><span>Cellular and molecular bioengineering</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is als...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ac3f3aa6b7bb6096617299d7caadc3a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280909,&quot;asset_id&quot;:13488217,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280909/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488217"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488217"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488217; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488217]").text(description); $(".js-view-count[data-work-id=13488217]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488217; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488217']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488217, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ac3f3aa6b7bb6096617299d7caadc3a8" } } $('.js-work-strip[data-work-id=13488217]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488217,"title":"Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry","translated_title":"","metadata":{"abstract":"Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is als...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Cellular and molecular bioengineering"},"translated_abstract":"Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is als...","internal_url":"https://www.academia.edu/13488217/Shear_stress_induced_NO_production_is_dependent_on_ATP_autocrine_signaling_and_capacitative_calcium_entry","translated_internal_url":"","created_at":"2015-07-01T04:56:21.591-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951278,"work_id":13488217,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564225,"email":"b***e@drexel.edu","display_order":0,"name":"Kenneth Barbee","title":"Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry"},{"id":1951280,"work_id":13488217,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564226,"email":"b***e@coe.drexel.edu","display_order":4194304,"name":"Kenneth Barbee","title":"Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry"}],"downloadable_attachments":[{"id":45280909,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280909/thumbnails/1.jpg","file_name":"Shear_Stress-Induced_NO_Production_is_De20160502-10677-4l77hk.pdf","download_url":"https://www.academia.edu/attachments/45280909/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Shear_stress_induced_NO_production_is_de.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280909/Shear_Stress-Induced_NO_Production_is_De20160502-10677-4l77hk-libre.pdf?1462205510=\u0026response-content-disposition=attachment%3B+filename%3DShear_stress_induced_NO_production_is_de.pdf\u0026Expires=1732769309\u0026Signature=CFhimYco8rwvBqQcCwrJAmvHh0lz9JZJDmNzE5k-wimU0HzMtw7UI3EGIRRwKaitLsdk1-dWEA9MzoLJ7mcT9dDOni5xe5oivGpaiDyqElw-nZmGvaAZHv2aiy4znqcKSNFx9WioAAhS0XxpUB97Vc2hiKtm3IYZO9ZCAJGXUy7svt0a3ePZetf4uSE0vXVgyJ8d1-3KiMbXbMbfIHSWUq4TVW7tP-Y3LAusRmS4Ka9ijuf-IzRRAcBOTDl4755wAOerIF565tZ16sOnnPqCbWTMHFOTSKqNwyr8QytUklinlLnEgsFxLaePuxujs512rRlUM0uJ3UlgWcIe7smNCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Shear_stress_induced_NO_production_is_dependent_on_ATP_autocrine_signaling_and_capacitative_calcium_entry","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280909,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280909/thumbnails/1.jpg","file_name":"Shear_Stress-Induced_NO_Production_is_De20160502-10677-4l77hk.pdf","download_url":"https://www.academia.edu/attachments/45280909/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Shear_stress_induced_NO_production_is_de.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280909/Shear_Stress-Induced_NO_Production_is_De20160502-10677-4l77hk-libre.pdf?1462205510=\u0026response-content-disposition=attachment%3B+filename%3DShear_stress_induced_NO_production_is_de.pdf\u0026Expires=1732769309\u0026Signature=CFhimYco8rwvBqQcCwrJAmvHh0lz9JZJDmNzE5k-wimU0HzMtw7UI3EGIRRwKaitLsdk1-dWEA9MzoLJ7mcT9dDOni5xe5oivGpaiDyqElw-nZmGvaAZHv2aiy4znqcKSNFx9WioAAhS0XxpUB97Vc2hiKtm3IYZO9ZCAJGXUy7svt0a3ePZetf4uSE0vXVgyJ8d1-3KiMbXbMbfIHSWUq4TVW7tP-Y3LAusRmS4Ka9ijuf-IzRRAcBOTDl4755wAOerIF565tZ16sOnnPqCbWTMHFOTSKqNwyr8QytUklinlLnEgsFxLaePuxujs512rRlUM0uJ3UlgWcIe7smNCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488216"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488216/Effects_of_iron_chelators_on_ion_channels_and_HIF_1%CE%B1_in_the_carotid_body"><img alt="Research paper thumbnail of Effects of iron-chelators on ion-channels and HIF-1α in the carotid body" class="work-thumbnail" src="https://attachments.academia-assets.com/45280887/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488216/Effects_of_iron_chelators_on_ion_channels_and_HIF_1%CE%B1_in_the_carotid_body">Effects of iron-chelators on ion-channels and HIF-1α in the carotid body</a></div><div class="wp-workCard_item"><span>Respiratory Physiology &amp; Neurobiology</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increasing ventilation mostly by inhibiting the oxygen sensitive ion channels and exciting the mitochondrial functions in the glomus cells. On the other hand, Fe2+-chelation mimics hypoxia by inhibiting the prolyl hydroxylases and the degradation of HIF-1α in non-excitable cells. Whether Fe2+-chelation can inhibit the ion channels giving rise to</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4406c75550428abc2f748984f95b1959" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280887,&quot;asset_id&quot;:13488216,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280887/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488216"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488216"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488216; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488216]").text(description); $(".js-view-count[data-work-id=13488216]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488216; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488216']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488216, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4406c75550428abc2f748984f95b1959" } } $('.js-work-strip[data-work-id=13488216]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488216,"title":"Effects of iron-chelators on ion-channels and HIF-1α in the carotid body","translated_title":"","metadata":{"abstract":"Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increasing ventilation mostly by inhibiting the oxygen sensitive ion channels and exciting the mitochondrial functions in the glomus cells. On the other hand, Fe2+-chelation mimics hypoxia by inhibiting the prolyl hydroxylases and the degradation of HIF-1α in non-excitable cells. Whether Fe2+-chelation can inhibit the ion channels giving rise to","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Respiratory Physiology \u0026 Neurobiology"},"translated_abstract":"Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increasing ventilation mostly by inhibiting the oxygen sensitive ion channels and exciting the mitochondrial functions in the glomus cells. On the other hand, Fe2+-chelation mimics hypoxia by inhibiting the prolyl hydroxylases and the degradation of HIF-1α in non-excitable cells. Whether Fe2+-chelation can inhibit the ion channels giving rise to","internal_url":"https://www.academia.edu/13488216/Effects_of_iron_chelators_on_ion_channels_and_HIF_1%CE%B1_in_the_carotid_body","translated_internal_url":"","created_at":"2015-07-01T04:56:21.450-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951299,"work_id":13488216,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564241,"email":"a***y@hotmail.com","display_order":0,"name":"Arijit Roy","title":"Effects of iron-chelators on ion-channels and HIF-1α in the carotid body"}],"downloadable_attachments":[{"id":45280887,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280887/thumbnails/1.jpg","file_name":"j.resp.2004.03.010.pdf20160502-5574-16ylz31","download_url":"https://www.academia.edu/attachments/45280887/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effects_of_iron_chelators_on_ion_channel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280887/j.resp.2004.03.010-libre.pdf20160502-5574-16ylz31?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_iron_chelators_on_ion_channel.pdf\u0026Expires=1732769309\u0026Signature=OB88t6H6hGcZ1SnoCBv7PXyrAVoHlKh7jGHo6jlrdIjk03pcgYWsrdVCzWYSzojlcvmbeOo53txvkg0I40NJ-E5zSgbThZiQ13QqDWYxegAvi-ZvYrfPj~-gdOyCuAXsb18ehhr4sS1mBw-s3Yg57jlf~7ayEwALSZ5J-gDnsDPirQi2cPgWDB3BzRCT4moKxzZiTjPohiThtmkIi2kUaOhjdogm19STO3QXizu~sVIA1dVjiFUcqT7WHTHW~DFJg4SY8ADr0PTU2t3L8Yh1HDUfU-NC9c0RpmDN9BmfgycHsyiwj~2QKDStp1vauEZWBw5IMofmj1-icwF4agLcMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effects_of_iron_chelators_on_ion_channels_and_HIF_1α_in_the_carotid_body","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280887,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280887/thumbnails/1.jpg","file_name":"j.resp.2004.03.010.pdf20160502-5574-16ylz31","download_url":"https://www.academia.edu/attachments/45280887/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effects_of_iron_chelators_on_ion_channel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280887/j.resp.2004.03.010-libre.pdf20160502-5574-16ylz31?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_iron_chelators_on_ion_channel.pdf\u0026Expires=1732769309\u0026Signature=OB88t6H6hGcZ1SnoCBv7PXyrAVoHlKh7jGHo6jlrdIjk03pcgYWsrdVCzWYSzojlcvmbeOo53txvkg0I40NJ-E5zSgbThZiQ13QqDWYxegAvi-ZvYrfPj~-gdOyCuAXsb18ehhr4sS1mBw-s3Yg57jlf~7ayEwALSZ5J-gDnsDPirQi2cPgWDB3BzRCT4moKxzZiTjPohiThtmkIi2kUaOhjdogm19STO3QXizu~sVIA1dVjiFUcqT7WHTHW~DFJg4SY8ADr0PTU2t3L8Yh1HDUfU-NC9c0RpmDN9BmfgycHsyiwj~2QKDStp1vauEZWBw5IMofmj1-icwF4agLcMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":23323,"name":"Transcription Factors","url":"https://www.academia.edu/Documents/in/Transcription_Factors"},{"id":23772,"name":"Respiratory Physiology","url":"https://www.academia.edu/Documents/in/Respiratory_Physiology"},{"id":31084,"name":"Ion Channels","url":"https://www.academia.edu/Documents/in/Ion_Channels"},{"id":51566,"name":"Dopamine","url":"https://www.academia.edu/Documents/in/Dopamine"},{"id":158597,"name":"Iron","url":"https://www.academia.edu/Documents/in/Iron"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":352757,"name":"Ascorbic Acid","url":"https://www.academia.edu/Documents/in/Ascorbic_Acid"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":715895,"name":"Carotid Body","url":"https://www.academia.edu/Documents/in/Carotid_Body"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":4920468,"url":"http://www.sciencedirect.com/science/article/pii/S1569904804000552"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488215"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488215/Suppression_of_glomus_cell_K_conductance_by_4_aminopyridine_is_not_related_to_Ca_2_i_dopamine_release_and_chemosensory_discharge_from_carotid_body"><img alt="Research paper thumbnail of Suppression of glomus cell K + conductance by 4-aminopyridine is not related to [Ca 2+] i , dopamine release and chemosensory discharge from carotid body" class="work-thumbnail" src="https://attachments.academia-assets.com/45280890/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488215/Suppression_of_glomus_cell_K_conductance_by_4_aminopyridine_is_not_related_to_Ca_2_i_dopamine_release_and_chemosensory_discharge_from_carotid_body">Suppression of glomus cell K + conductance by 4-aminopyridine is not related to [Ca 2+] i , dopamine release and chemosensory discharge from carotid body</a></div><div class="wp-workCard_item"><span>Brain Research</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The hypothesis that suppression of O2-sensitive K+ current is the initial event in hypoxic chemot...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The hypothesis that suppression of O2-sensitive K+ current is the initial event in hypoxic chemotransduction in the carotid body glomus cells was tested by using 4-aminopyridine (4-AP), a known suppressant of K+ current, on intracellular [Ca2+]i, dopamine secretion and chemosensory discharge in cat carotid body (CB). In vitro experiments were performed with superfused–perfused cat CBs, measuring chemosensory discharge, monitoring dopamine</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="651cba1c92d5bc59d823059c510dc87a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280890,&quot;asset_id&quot;:13488215,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280890/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488215"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488215"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488215; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488215]").text(description); $(".js-view-count[data-work-id=13488215]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488215; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488215']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488215, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "651cba1c92d5bc59d823059c510dc87a" } } $('.js-work-strip[data-work-id=13488215]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488215,"title":"Suppression of glomus cell K + conductance by 4-aminopyridine is not related to [Ca 2+] i , dopamine release and chemosensory discharge from carotid body","translated_title":"","metadata":{"abstract":"The hypothesis that suppression of O2-sensitive K+ current is the initial event in hypoxic chemotransduction in the carotid body glomus cells was tested by using 4-aminopyridine (4-AP), a known suppressant of K+ current, on intracellular [Ca2+]i, dopamine secretion and chemosensory discharge in cat carotid body (CB). In vitro experiments were performed with superfused–perfused cat CBs, measuring chemosensory discharge, monitoring dopamine","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Brain Research"},"translated_abstract":"The hypothesis that suppression of O2-sensitive K+ current is the initial event in hypoxic chemotransduction in the carotid body glomus cells was tested by using 4-aminopyridine (4-AP), a known suppressant of K+ current, on intracellular [Ca2+]i, dopamine secretion and chemosensory discharge in cat carotid body (CB). In vitro experiments were performed with superfused–perfused cat CBs, measuring chemosensory discharge, monitoring dopamine","internal_url":"https://www.academia.edu/13488215/Suppression_of_glomus_cell_K_conductance_by_4_aminopyridine_is_not_related_to_Ca_2_i_dopamine_release_and_chemosensory_discharge_from_carotid_body","translated_internal_url":"","created_at":"2015-07-01T04:56:21.332-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951298,"work_id":13488215,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564241,"email":"a***y@hotmail.com","display_order":0,"name":"Arijit Roy","title":"Suppression of glomus cell K + conductance by 4-aminopyridine is not related to [Ca 2+] i , dopamine release and chemosensory discharge from carotid body"}],"downloadable_attachments":[{"id":45280890,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280890/thumbnails/1.jpg","file_name":"s0006-8993_2897_2901276-6.pdf20160502-6630-xqfnlu","download_url":"https://www.academia.edu/attachments/45280890/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Suppression_of_glomus_cell_K_conductance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280890/s0006-8993_2897_2901276-6-libre.pdf20160502-6630-xqfnlu?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_glomus_cell_K_conductance.pdf\u0026Expires=1732769309\u0026Signature=fKuNqB92Vup8FSeqj~YMj5p7YI~oF4kuq6wRbgdPUF8ftxYop6NaZ1Gfd1DXJMbaqoJN9z-3pqcMpX9omCgTz1a7MT0DWusJFWzmPdGBcaN-EPBmGYXxAca9I8MVvJ-LaycaWEJdzPylQy9idjEKktb-C75wwEzKbLtiv7gtNXX-lpbxkT38juxMwZsMXn5OHeoKCMalXYTVxJn2R-fehVPqCkJLlRist1lUVtDG555L6zlP8ntW9-7qYemMisNkG3r7vtU3Z9Zj9b-Fnj-ZhOOSu7EPh3cJPVKtr7ctY9CqCeVGlyZLtP4mimKRla-Nvepsohh6mryYoN08liX6dQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Suppression_of_glomus_cell_K_conductance_by_4_aminopyridine_is_not_related_to_Ca_2_i_dopamine_release_and_chemosensory_discharge_from_carotid_body","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280890,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280890/thumbnails/1.jpg","file_name":"s0006-8993_2897_2901276-6.pdf20160502-6630-xqfnlu","download_url":"https://www.academia.edu/attachments/45280890/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Suppression_of_glomus_cell_K_conductance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280890/s0006-8993_2897_2901276-6-libre.pdf20160502-6630-xqfnlu?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_glomus_cell_K_conductance.pdf\u0026Expires=1732769309\u0026Signature=fKuNqB92Vup8FSeqj~YMj5p7YI~oF4kuq6wRbgdPUF8ftxYop6NaZ1Gfd1DXJMbaqoJN9z-3pqcMpX9omCgTz1a7MT0DWusJFWzmPdGBcaN-EPBmGYXxAca9I8MVvJ-LaycaWEJdzPylQy9idjEKktb-C75wwEzKbLtiv7gtNXX-lpbxkT38juxMwZsMXn5OHeoKCMalXYTVxJn2R-fehVPqCkJLlRist1lUVtDG555L6zlP8ntW9-7qYemMisNkG3r7vtU3Z9Zj9b-Fnj-ZhOOSu7EPh3cJPVKtr7ctY9CqCeVGlyZLtP4mimKRla-Nvepsohh6mryYoN08liX6dQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":51566,"name":"Dopamine","url":"https://www.academia.edu/Documents/in/Dopamine"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":67133,"name":"Anoxia","url":"https://www.academia.edu/Documents/in/Anoxia"},{"id":363533,"name":"Carotid Sinus","url":"https://www.academia.edu/Documents/in/Carotid_Sinus"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":557691,"name":"Potassium Channels","url":"https://www.academia.edu/Documents/in/Potassium_Channels"},{"id":715895,"name":"Carotid Body","url":"https://www.academia.edu/Documents/in/Carotid_Body"},{"id":801444,"name":"Aminopyridine","url":"https://www.academia.edu/Documents/in/Aminopyridine"},{"id":1000427,"name":"Reference Values","url":"https://www.academia.edu/Documents/in/Reference_Values"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1823382,"name":"Intracellular Calcium","url":"https://www.academia.edu/Documents/in/Intracellular_Calcium"}],"urls":[{"id":4920467,"url":"http://www.sciencedirect.com/science/article/pii/S0006899397012766"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488214"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488214/An_Integrated_Approach_to_Measuring_Tumor_Oxygen_Status_Using_Human_Melanoma_Xenografts_as_a_Model1"><img alt="Research paper thumbnail of An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1" class="work-thumbnail" src="https://attachments.academia-assets.com/38058684/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488214/An_Integrated_Approach_to_Measuring_Tumor_Oxygen_Status_Using_Human_Melanoma_Xenografts_as_a_Model1">An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcom...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen satu- ration, tissue pO2, oxygen consumption rate, and hypoxic fraction. The</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a6a9c8b7a33140e3a0dddf66e05f204e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:38058684,&quot;asset_id&quot;:13488214,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/38058684/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488214"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488214"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488214; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488214]").text(description); $(".js-view-count[data-work-id=13488214]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488214; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488214']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488214, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a6a9c8b7a33140e3a0dddf66e05f204e" } } $('.js-work-strip[data-work-id=13488214]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488214,"title":"An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1","translated_title":"","metadata":{"abstract":"Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen satu- ration, tissue pO2, oxygen consumption rate, and hypoxic fraction. The","publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":"Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen satu- ration, tissue pO2, oxygen consumption rate, and hypoxic fraction. The","internal_url":"https://www.academia.edu/13488214/An_Integrated_Approach_to_Measuring_Tumor_Oxygen_Status_Using_Human_Melanoma_Xenografts_as_a_Model1","translated_internal_url":"","created_at":"2015-07-01T04:56:21.215-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951282,"work_id":13488214,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":158599,"email":"y***h@physics.upenn.edu","display_order":0,"name":"Arjun Yodh","title":"An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1"},{"id":1951283,"work_id":13488214,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564228,"email":"m***c@uphs.upenn.edu","display_order":4194304,"name":"Chandrakala Menon","title":"An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1"},{"id":1951297,"work_id":13488214,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564240,"email":"f***d@uphs.upenn.edu","display_order":6291456,"name":"Douglas Fraker","title":"An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1"}],"downloadable_attachments":[{"id":38058684,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38058684/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/38058684/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Integrated_Approach_to_Measuring_Tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38058684/CMenon2003CRv63-libre.pdf?1435752181=\u0026response-content-disposition=attachment%3B+filename%3DAn_Integrated_Approach_to_Measuring_Tumo.pdf\u0026Expires=1732769309\u0026Signature=X4S8YTUUWNQU-y6IGTu60-yZLbO~ip4cqKzm4wvKEhwDeqAoaCmISt~gkF-n2mlgFZsXqhUG8LBZGh~~lCpEuqnf1a43NQXWqUA3Scfv8sgL3z8o-aZoSVGVL1s8GuKtDyctXPdkNtKqpqs3R1NQrv-wM3T41CZX-yoZilApY6kYMgvjPOBbWY6mN~65BKZJueJzlDuKSqngpV3j3aiaajlBF8p4X4x8gTr3FaQtAsn8FTblQQk9hzqGpsPPZJI3J09xjMK-A1x7~wc0CJ~iXxEY2kjIVjWHp288zuXU9tm6SBlE~zM1C571vla-Ej4DO8F8DBEEtlQ1Ov9fnn332w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Integrated_Approach_to_Measuring_Tumor_Oxygen_Status_Using_Human_Melanoma_Xenografts_as_a_Model1","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":38058684,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38058684/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/38058684/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Integrated_Approach_to_Measuring_Tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38058684/CMenon2003CRv63-libre.pdf?1435752181=\u0026response-content-disposition=attachment%3B+filename%3DAn_Integrated_Approach_to_Measuring_Tumo.pdf\u0026Expires=1732769309\u0026Signature=X4S8YTUUWNQU-y6IGTu60-yZLbO~ip4cqKzm4wvKEhwDeqAoaCmISt~gkF-n2mlgFZsXqhUG8LBZGh~~lCpEuqnf1a43NQXWqUA3Scfv8sgL3z8o-aZoSVGVL1s8GuKtDyctXPdkNtKqpqs3R1NQrv-wM3T41CZX-yoZilApY6kYMgvjPOBbWY6mN~65BKZJueJzlDuKSqngpV3j3aiaajlBF8p4X4x8gTr3FaQtAsn8FTblQQk9hzqGpsPPZJI3J09xjMK-A1x7~wc0CJ~iXxEY2kjIVjWHp288zuXU9tm6SBlE~zM1C571vla-Ej4DO8F8DBEEtlQ1Ov9fnn332w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":38058683,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38058683/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/38058683/download_file","bulk_download_file_name":"An_Integrated_Approach_to_Measuring_Tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38058683/CMenon2003CRv63-libre.pdf?1435752181=\u0026response-content-disposition=attachment%3B+filename%3DAn_Integrated_Approach_to_Measuring_Tumo.pdf\u0026Expires=1732769309\u0026Signature=f1y0wORma~DBi~Mt48GwOEKWF7np4mVwuZgDGbW~o-Uys~uIL-yYKZvIpnGoRW8x5fHUa76RN7MFhn~LFFHDqJNF6OmslITnrXYxmIrDSvG8KWCqC0AABegd1mUriaZXQaA4aj80UXw9mAsKOHtBosnit7oIDcFyqz0YJVgpr0di26uqlSJllGjkmtv2eVgkePhpYnwbt8snc25qYNrSadZmCZyf0~uKvM-l7oMUGFOO8DEN06UBI6QIZE4SslQ-LMBt6ex-mGKMzXAfN5PrVV7060TPDGdrKqqMhfk1BZrHDlJspOlDhycTZq6I4Dsk6~nC9g09HFpvtXr3b8G9jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":15639,"name":"Ultrasound","url":"https://www.academia.edu/Documents/in/Ultrasound"},{"id":37434,"name":"Quantitative analysis","url":"https://www.academia.edu/Documents/in/Quantitative_analysis"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99023,"name":"Melanoma","url":"https://www.academia.edu/Documents/in/Melanoma"},{"id":285086,"name":"Integrated Approach","url":"https://www.academia.edu/Documents/in/Integrated_Approach"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":426588,"name":"Blood Flow","url":"https://www.academia.edu/Documents/in/Blood_Flow"},{"id":533274,"name":"Growth rate","url":"https://www.academia.edu/Documents/in/Growth_rate"},{"id":571738,"name":"Internal medicine Doppler ultrasonography","url":"https://www.academia.edu/Documents/in/Internal_medicine_Doppler_ultrasonography"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":641216,"name":"Quantitative Analysis","url":"https://www.academia.edu/Documents/in/Quantitative_Analysis-1"},{"id":1193624,"name":"Oxygen Consumption","url":"https://www.academia.edu/Documents/in/Oxygen_Consumption"},{"id":1213145,"name":"power Doppler","url":"https://www.academia.edu/Documents/in/power_Doppler"},{"id":1558342,"name":"Oxygen saturation","url":"https://www.academia.edu/Documents/in/Oxygen_saturation"},{"id":1796877,"name":"Vascular Endothelial Growth Factor","url":"https://www.academia.edu/Documents/in/Vascular_Endothelial_Growth_Factor"}],"urls":[{"id":4920466,"url":"http://dept.physics.upenn.edu/yodhlab/papers/2003/CMenon2003CRv63.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488213"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488213/Predominant_role_of_endothelial_nitric_oxide_synthase_in_vascular_endothelial_growth_factor_induced_angiogenesis_and_vascular_permeability"><img alt="Research paper thumbnail of Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability" class="work-thumbnail" src="https://attachments.academia-assets.com/45280900/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488213/Predominant_role_of_endothelial_nitric_oxide_synthase_in_vascular_endothelial_growth_factor_induced_angiogenesis_and_vascular_permeability">Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability</a></div><div class="wp-workCard_item"><span>Proceedings of The National Academy of Sciences</span><span>, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="230dd7442b8e567e3f5961563a5a9912" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280900,&quot;asset_id&quot;:13488213,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280900/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488213"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488213"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488213; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488213]").text(description); $(".js-view-count[data-work-id=13488213]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488213; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488213']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488213, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "230dd7442b8e567e3f5961563a5a9912" } } $('.js-work-strip[data-work-id=13488213]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488213,"title":"Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability","translated_title":"","metadata":{"grobid_abstract":"Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [L-N 6 -(1-iminoethyl) lysine, L-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) \u003e WT with L-NIL or iNOS ؊/؊ \u003e eNOS ؊/؊ \u003e eNOS ؊/؊ with L-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS-and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS ؊/؊ mice but not in eNOS ؊/؊ mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Proceedings of The National Academy of Sciences","grobid_abstract_attachment_id":45280900},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488213/Predominant_role_of_endothelial_nitric_oxide_synthase_in_vascular_endothelial_growth_factor_induced_angiogenesis_and_vascular_permeability","translated_internal_url":"","created_at":"2015-07-01T04:56:21.083-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951281,"work_id":13488213,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564227,"email":"c***k@yumc.yonsei.ac.kr","display_order":0,"name":"Chae-ok Yun","title":"Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability"},{"id":1951296,"work_id":13488213,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564239,"email":"j***g@mail.jci.tju.edu","display_order":4194304,"name":"Jenifer Ang","title":"Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability"}],"downloadable_attachments":[{"id":45280900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280900/thumbnails/1.jpg","file_name":"Fukumura_D_Gohongi_T_Kadambi_A_Izumi_Y_A20160502-5585-1nupkmy.pdf","download_url":"https://www.academia.edu/attachments/45280900/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predominant_role_of_endothelial_nitric_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280900/Fukumura_D_Gohongi_T_Kadambi_A_Izumi_Y_A20160502-5585-1nupkmy-libre.pdf?1462205510=\u0026response-content-disposition=attachment%3B+filename%3DPredominant_role_of_endothelial_nitric_o.pdf\u0026Expires=1732769309\u0026Signature=Ao-d3KySxjrHkONImGhHRreeZu~hkNlC8HncWVsZ8ikZRKPPakUtURFtWl6w5txvyzuNHS1U9LwkGD2y45mhLSjstWz8vQt5xNLARtSbc7NRzOWP1brC1rhmONfqqVfs1Ce4-FMrWvDPaOECaJjCVfe2jzWESnFadZUFafjxxCuPQqykJwAeykGaO4enwjW3wcVs2FrS6rKtQFr7iyCJdB1143fDMJuFnU5i4TjC-IMP3tYXEJjapLUUvafGP1JKXMIF-NbDcB41TLKZ4But15jayo6nB4yWcBgs~4fGBc4S7HiCLNcoLweeIvHFuNA-xTFajNAed8PQdJw6C5O6iA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predominant_role_of_endothelial_nitric_oxide_synthase_in_vascular_endothelial_growth_factor_induced_angiogenesis_and_vascular_permeability","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280900/thumbnails/1.jpg","file_name":"Fukumura_D_Gohongi_T_Kadambi_A_Izumi_Y_A20160502-5585-1nupkmy.pdf","download_url":"https://www.academia.edu/attachments/45280900/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predominant_role_of_endothelial_nitric_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280900/Fukumura_D_Gohongi_T_Kadambi_A_Izumi_Y_A20160502-5585-1nupkmy-libre.pdf?1462205510=\u0026response-content-disposition=attachment%3B+filename%3DPredominant_role_of_endothelial_nitric_o.pdf\u0026Expires=1732769309\u0026Signature=Ao-d3KySxjrHkONImGhHRreeZu~hkNlC8HncWVsZ8ikZRKPPakUtURFtWl6w5txvyzuNHS1U9LwkGD2y45mhLSjstWz8vQt5xNLARtSbc7NRzOWP1brC1rhmONfqqVfs1Ce4-FMrWvDPaOECaJjCVfe2jzWESnFadZUFafjxxCuPQqykJwAeykGaO4enwjW3wcVs2FrS6rKtQFr7iyCJdB1143fDMJuFnU5i4TjC-IMP3tYXEJjapLUUvafGP1JKXMIF-NbDcB41TLKZ4But15jayo6nB4yWcBgs~4fGBc4S7HiCLNcoLweeIvHFuNA-xTFajNAed8PQdJw6C5O6iA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":1142512,"name":"Vascular Permeability","url":"https://www.academia.edu/Documents/in/Vascular_Permeability"},{"id":1796877,"name":"Vascular Endothelial Growth Factor","url":"https://www.academia.edu/Documents/in/Vascular_Endothelial_Growth_Factor"}],"urls":[{"id":4920465,"url":"http://www.pnas.org/cgi/doi/10.1073/pnas.041359198"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488212"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488212/Previous_Speakers_at_The_Svedberg_Lecture_Series_at_BMC"><img alt="Research paper thumbnail of Previous Speakers at The Svedberg Lecture Series at BMC" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488212/Previous_Speakers_at_The_Svedberg_Lecture_Series_at_BMC">Previous Speakers at The Svedberg Lecture Series at BMC</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/EricWesthof">Eric Westhof</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488212"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488212"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488212; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488212]").text(description); $(".js-view-count[data-work-id=13488212]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488212; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488212']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488212, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13488212]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488212,"title":"Previous Speakers at The Svedberg Lecture Series at BMC","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488212/Previous_Speakers_at_The_Svedberg_Lecture_Series_at_BMC","translated_internal_url":"","created_at":"2015-07-01T04:56:20.943-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951260,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":39581848,"co_author_invite_id":60597,"email":"c***t@ncifcrf.gov","display_order":0,"name":"Don Court","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951261,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":524103,"email":"j***n@ski.mskcc.org","display_order":4194304,"name":"James Rothman","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951262,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":126632,"email":"h***8@york.ac.uk","display_order":6291456,"name":"Helen Cox","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951263,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":126633,"email":"h***x@yahoo.com.au","display_order":7340032,"name":"Helen Cox","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951264,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":203154,"email":"v***n@molgen.mpg.de","display_order":7864320,"name":"Martin Vingron","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951265,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":32694268,"co_author_invite_id":null,"email":"l***h@wi.mit.edu","display_order":8126464,"name":"H. Lodish","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951266,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":256399,"email":"s***3@mole.bio.cam.ac.uk","display_order":8257536,"name":"Stephen Jackson","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951267,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":235858,"email":"c***d@mail.nih.gov","display_order":8323072,"name":"Donald Court","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951268,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":450972,"email":"k***s@newcastle.ac.uk","display_order":8355840,"name":"Kenn Gerdes","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951269,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":450973,"email":"k***s@ncl.ac.uk","display_order":8372224,"name":"Kenn Gerdes","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951271,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":32523828,"co_author_invite_id":null,"email":"e***f@ibmc-cnrs.unistra.fr","display_order":8384512,"name":"Eric Westhof","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951286,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":34854869,"co_author_invite_id":564231,"email":"k***n@berkeley.edu","display_order":8386560,"name":"Judith Klinman","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951287,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564232,"email":"a***r@amedd.army.mil","display_order":8387584,"name":"Arthur Lander","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951288,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564233,"email":"h***s@forsyth.org","display_order":8388096,"name":"M. Hamarlund-udenaes","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951289,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564234,"email":"t***y@iwind.com.tw","display_order":8388352,"name":"Tor Ny","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951290,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564235,"email":"l***l@chem.tamu.edu","display_order":8388480,"name":"Per Lindahl","title":"Previous Speakers at The Svedberg Lecture Series at BMC"}],"downloadable_attachments":[],"slug":"Previous_Speakers_at_The_Svedberg_Lecture_Series_at_BMC","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[],"research_interests":[],"urls":[{"id":4920464,"url":"http://www.bmc.uu.se/en/filedownload.php?id=721"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488211"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488211/Endothelial_Progenitor_Cell_Release_into_Circulation_Is_Triggered_by_Hyperoxia_Induced_Increases_in_Bone_Marrow_Nitric_Oxide"><img alt="Research paper thumbnail of Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide" class="work-thumbnail" src="https://attachments.academia-assets.com/45280923/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488211/Endothelial_Progenitor_Cell_Release_into_Circulation_Is_Triggered_by_Hyperoxia_Induced_Increases_in_Bone_Marrow_Nitric_Oxide">Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide</a></div><div class="wp-workCard_item"><span>Stem Cells</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b917b1975a811d2a6e96172ea96ec3eb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280923,&quot;asset_id&quot;:13488211,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280923/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488211"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488211"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488211; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488211]").text(description); $(".js-view-count[data-work-id=13488211]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488211; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488211']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488211, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b917b1975a811d2a6e96172ea96ec3eb" } } $('.js-work-strip[data-work-id=13488211]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488211,"title":"Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide","translated_title":"","metadata":{"grobid_abstract":"Endothelial progenitor cells (EPC) are known to contribute to wound healing, but the physiologic triggers for their mobilization are often insufficient to induce complete wound healing in the presence of severe ischemia. EPC trafficking is known to be regulated by hypoxic gradients and induced by vascular endothelial growth factor-mediated increases in bone marrow nitric oxide (NO). Hyperbaric oxygen (HBO) enhances wound healing, although the mechanisms for its therapeutic effects are incompletely understood. It is known that HBO increases nitric oxide levels in perivascular tissues via stimulation of nitric oxide synthase (NOS). Here we show that HBO increases bone marrow NO in vivo thereby in-creasing release of EPC into circulation. These effects are inhibited by pretreatment with the NOS inhibitor L-nitroarginine methyl ester (L-NAME). HBO-mediated mobilization of EPC is associated with increased lower limb spontaneous circulatory recovery after femoral ligation and enhanced closure of ischemic wounds, and these effects on limb perfusion and wound healing are also inhibited by L-NAME pretreatment. These data show that EPC mobilization into circulation is triggered by hyperoxia through induction of bone marrow NO with resulting enhancement in ischemic limb perfusion and wound healing. STEM CELLS","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Stem Cells","grobid_abstract_attachment_id":45280923},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488211/Endothelial_Progenitor_Cell_Release_into_Circulation_Is_Triggered_by_Hyperoxia_Induced_Increases_in_Bone_Marrow_Nitric_Oxide","translated_internal_url":"","created_at":"2015-07-01T04:56:20.860-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951251,"work_id":13488211,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564221,"email":"o***z@uphs.upenn.edu","display_order":0,"name":"Omaida Velazquez","title":"Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide"},{"id":1951274,"work_id":13488211,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564223,"email":"s***m@mail.med.upenn.edu","display_order":4194304,"name":"Stephen Thom","title":"Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide"}],"downloadable_attachments":[{"id":45280923,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280923/thumbnails/1.jpg","file_name":"Endothelial_Progenitor_Cell_Release_into20160502-10677-19k26z3.pdf","download_url":"https://www.academia.edu/attachments/45280923/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Endothelial_Progenitor_Cell_Release_into.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280923/Endothelial_Progenitor_Cell_Release_into20160502-10677-19k26z3-libre.pdf?1462205509=\u0026response-content-disposition=attachment%3B+filename%3DEndothelial_Progenitor_Cell_Release_into.pdf\u0026Expires=1732769309\u0026Signature=ICeZbggc1wv~~Ha21xiLBiIQj~mxXqMBWrj02YifHCm-SNecZDZUFpGM5I2jx19ph4fIZYKprzHXJNSWowpC-ShW3-cihW6G7vsMbjRavxdgF1YfPGUIQIHmrhVMl7Z7C8~adVeNSfdbwygLGL9ikUkIl7ciEhwON3cjO42zUATo5KW2KZba140Dp0sLzWKHtjNPFaWGTVAFp95n9UvjXP4Pla~a~JcJVpsATZotZ4QPfFFVQ3nfr1-PkELhpIaEnZCpv~Jkmy8jYFZLR3i-NHAMVHz7l9SrDx1SoA7aR2FdjMyqwkTMRwynLAXFv12yGFXhxmWeJ4gEg9~oLSdYGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Endothelial_Progenitor_Cell_Release_into_Circulation_Is_Triggered_by_Hyperoxia_Induced_Increases_in_Bone_Marrow_Nitric_Oxide","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280923,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280923/thumbnails/1.jpg","file_name":"Endothelial_Progenitor_Cell_Release_into20160502-10677-19k26z3.pdf","download_url":"https://www.academia.edu/attachments/45280923/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Endothelial_Progenitor_Cell_Release_into.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280923/Endothelial_Progenitor_Cell_Release_into20160502-10677-19k26z3-libre.pdf?1462205509=\u0026response-content-disposition=attachment%3B+filename%3DEndothelial_Progenitor_Cell_Release_into.pdf\u0026Expires=1732769309\u0026Signature=ICeZbggc1wv~~Ha21xiLBiIQj~mxXqMBWrj02YifHCm-SNecZDZUFpGM5I2jx19ph4fIZYKprzHXJNSWowpC-ShW3-cihW6G7vsMbjRavxdgF1YfPGUIQIHmrhVMl7Z7C8~adVeNSfdbwygLGL9ikUkIl7ciEhwON3cjO42zUATo5KW2KZba140Dp0sLzWKHtjNPFaWGTVAFp95n9UvjXP4Pla~a~JcJVpsATZotZ4QPfFFVQ3nfr1-PkELhpIaEnZCpv~Jkmy8jYFZLR3i-NHAMVHz7l9SrDx1SoA7aR2FdjMyqwkTMRwynLAXFv12yGFXhxmWeJ4gEg9~oLSdYGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":3642,"name":"Stem Cells","url":"https://www.academia.edu/Documents/in/Stem_Cells"},{"id":8991,"name":"Wound Healing","url":"https://www.academia.edu/Documents/in/Wound_Healing"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":82983,"name":"Ischemia","url":"https://www.academia.edu/Documents/in/Ischemia"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":121940,"name":"STEM","url":"https://www.academia.edu/Documents/in/STEM"},{"id":159239,"name":"Bone marrow","url":"https://www.academia.edu/Documents/in/Bone_marrow"},{"id":354937,"name":"Bone Marrow Transplantation","url":"https://www.academia.edu/Documents/in/Bone_Marrow_Transplantation"},{"id":561057,"name":"Hyperbaric Oxygenation","url":"https://www.academia.edu/Documents/in/Hyperbaric_Oxygenation"},{"id":995532,"name":"Hyperoxia","url":"https://www.academia.edu/Documents/in/Hyperoxia"},{"id":1665885,"name":"Laser Doppler Flowmetry","url":"https://www.academia.edu/Documents/in/Laser_Doppler_Flowmetry"},{"id":2197154,"name":"Extremities","url":"https://www.academia.edu/Documents/in/Extremities"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13421677"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13421677/Temporal_dynamics_of_the_partial_pressure_of_brain_tissue_oxygen_during_functional_forepaw_stimulation_in_rats"><img alt="Research paper thumbnail of Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats" class="work-thumbnail" src="https://attachments.academia-assets.com/45361015/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13421677/Temporal_dynamics_of_the_partial_pressure_of_brain_tissue_oxygen_during_functional_forepaw_stimulation_in_rats">Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://upenn.academia.edu/JoelGreenberg">Joel Greenberg</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a></span></div><div class="wp-workCard_item"><span>Neuroscience Letters</span><span>, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c087fb3223684b1723ec264a1dd95f2e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45361015,&quot;asset_id&quot;:13421677,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45361015/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13421677"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13421677"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13421677; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13421677]").text(description); $(".js-view-count[data-work-id=13421677]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13421677; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13421677']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13421677, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c087fb3223684b1723ec264a1dd95f2e" } } $('.js-work-strip[data-work-id=13421677]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13421677,"title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats","translated_title":"","metadata":{"grobid_abstract":"The partial pressure of tissue oxygen (pO 2 ) was measured in rat somatosensory cortex during periodic electrical forepaw stimulation of either 1 min or 4 s in duration, and correlated with simultaneous laser Doppler¯owmetry. For both stimulus durations, a transient decrease in tissue pO 2 preceded blood¯ow changes, followed by a peak in blood ow and an overshoot in tissue pO 2 . With protracted stimulation, tissue pO 2 remained only slightly above pre-stimulus baseline, while blood¯ow was maintained at a reduced plateau phase. A sustained post-stimulus undershoot in tissue pO 2 was observed only for the 1 min stimulus. These ®ndings suggest a complex dynamic relationship between oxygen utilization and blood¯ow. q","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Neuroscience Letters","grobid_abstract_attachment_id":45361015},"translated_abstract":null,"internal_url":"https://www.academia.edu/13421677/Temporal_dynamics_of_the_partial_pressure_of_brain_tissue_oxygen_during_functional_forepaw_stimulation_in_rats","translated_internal_url":"","created_at":"2015-06-29T07:58:18.675-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32638922,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1828907,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":32500251,"co_author_invite_id":null,"email":"d***e@mail.med.upenn.edu","display_order":0,"name":"John Detre","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1828948,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":319414,"email":"a***b@neuro.wustl.edu","display_order":4194304,"name":"Beau Ances","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1828965,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":540267,"email":"b***s@wust1.edu","display_order":6291456,"name":"Beau Ances","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1828986,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":48721395,"co_author_invite_id":319415,"email":"b***s@wustl.edu","display_order":7340032,"name":"Beau Ances","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1829002,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":540276,"email":"b***s@uphs.upenn.edu","display_order":7864320,"name":"B. Ances","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1829064,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":32697935,"co_author_invite_id":540285,"email":"b***k@seas.upenn.edu","affiliation":"Drexel University","display_order":8126464,"name":"Donald Buerk","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"}],"downloadable_attachments":[{"id":45361015,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45361015/thumbnails/1.jpg","file_name":"Ances_B.M._Buerk_D.G._Greenberg_J.H.__De20160504-25010-xlo26x.pdf","download_url":"https://www.academia.edu/attachments/45361015/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Temporal_dynamics_of_the_partial_pressur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45361015/Ances_B.M._Buerk_D.G._Greenberg_J.H.__De20160504-25010-xlo26x-libre.pdf?1462410125=\u0026response-content-disposition=attachment%3B+filename%3DTemporal_dynamics_of_the_partial_pressur.pdf\u0026Expires=1732769309\u0026Signature=UCeijFDH49TGfzEan7QgPXAW~jfzWxS8l2pTKA-vBqPZJ4tgRYq6GthDb2GuAHVFfxWa1ZSIsX8RhResVFspV3ZzOMr4rW--wc2Ou6vSaAOMa7aGRhfNEO8Z95PafNcjacN3UzAs7sCr2EwT9iONQZwI0b8qGa0agc5Oik3Zj-mqPQxTNzTNmjwZGibgJiQ3z9g6nTXJ6fox2XJViLmVHq6oFksifXSLUfgxvW~mvGP1QWgEoE33NNRWScaVqEJyvrq3vRfTajUoKByk4rX0Qf5dO0zb3Ir4VVzu8oDT4VU2wgLwxsrjb2KMUWWMUxhB~u8Drf8Cg4YkldvVgJGNag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Temporal_dynamics_of_the_partial_pressure_of_brain_tissue_oxygen_during_functional_forepaw_stimulation_in_rats","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":32638922,"first_name":"Joel","middle_initials":null,"last_name":"Greenberg","page_name":"JoelGreenberg","domain_name":"upenn","created_at":"2015-06-29T07:56:13.703-07:00","display_name":"Joel Greenberg","url":"https://upenn.academia.edu/JoelGreenberg"},"attachments":[{"id":45361015,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45361015/thumbnails/1.jpg","file_name":"Ances_B.M._Buerk_D.G._Greenberg_J.H.__De20160504-25010-xlo26x.pdf","download_url":"https://www.academia.edu/attachments/45361015/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Temporal_dynamics_of_the_partial_pressur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45361015/Ances_B.M._Buerk_D.G._Greenberg_J.H.__De20160504-25010-xlo26x-libre.pdf?1462410125=\u0026response-content-disposition=attachment%3B+filename%3DTemporal_dynamics_of_the_partial_pressur.pdf\u0026Expires=1732769309\u0026Signature=UCeijFDH49TGfzEan7QgPXAW~jfzWxS8l2pTKA-vBqPZJ4tgRYq6GthDb2GuAHVFfxWa1ZSIsX8RhResVFspV3ZzOMr4rW--wc2Ou6vSaAOMa7aGRhfNEO8Z95PafNcjacN3UzAs7sCr2EwT9iONQZwI0b8qGa0agc5Oik3Zj-mqPQxTNzTNmjwZGibgJiQ3z9g6nTXJ6fox2XJViLmVHq6oFksifXSLUfgxvW~mvGP1QWgEoE33NNRWScaVqEJyvrq3vRfTajUoKByk4rX0Qf5dO0zb3Ir4VVzu8oDT4VU2wgLwxsrjb2KMUWWMUxhB~u8Drf8Cg4YkldvVgJGNag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488210"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488210/Immunotargeting_of_catalase_to_the_pulmonary_endothelium_alleviates_oxidative_stress_and_reduces_acute_lung_transplantation_injury"><img alt="Research paper thumbnail of Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury" class="work-thumbnail" src="https://attachments.academia-assets.com/45280945/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488210/Immunotargeting_of_catalase_to_the_pulmonary_endothelium_alleviates_oxidative_stress_and_reduces_acute_lung_transplantation_injury">Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury</a></div><div class="wp-workCard_item"><span>Nature Biotechnology</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="473197e05e405f0b3eb23ca5b3bbbec7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280945,&quot;asset_id&quot;:13488210,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280945/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488210"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488210]").text(description); $(".js-view-count[data-work-id=13488210]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488210']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488210, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "473197e05e405f0b3eb23ca5b3bbbec7" } } $('.js-work-strip[data-work-id=13488210]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488210,"title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury","translated_title":"","metadata":{"grobid_abstract":"Vascular immunotargeting may facilitate the rapid and specific delivery of therapeutic agents to endothelial cells. We investigated whether targeting of an antioxidant enzyme, catalase, to the pulmonary endothelium alleviates oxidative stress in an in vivo model of lung transplantation. Intravenously injected enzymes, conjugated with an antibody to platelet-endothelial cell adhesion molecule-1, accumulate in the pulmonary vasculature and retain their activity during prolonged cold storage and transplantation. Immunotargeting of catalase to donor rats augments the antioxidant capacity of the pulmonary endothelium, reduces oxidative stress, ameliorates ischemia-reperfusion injury, prolongs the acceptable cold ischemia period of lung grafts, and improves the function of transplanted lung grafts. These findings validate the therapeutic potential of vascular immunotargeting as a drug delivery strategy to reduce endothelial injury. Potential applications of this strategy include improving the outcome of clinical lung transplantation and treating a wide variety of endothelial disorders.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Nature Biotechnology","grobid_abstract_attachment_id":45280945},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488210/Immunotargeting_of_catalase_to_the_pulmonary_endothelium_alleviates_oxidative_stress_and_reduces_acute_lung_transplantation_injury","translated_internal_url":"","created_at":"2015-07-01T04:56:20.698-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951275,"work_id":13488210,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564224,"email":"m***o@umd.edu","display_order":0,"name":"Silvia Muro","title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury"},{"id":1951276,"work_id":13488210,"tagging_user_id":32697935,"tagged_user_id":33952520,"co_author_invite_id":510321,"email":"m***o@mail.med.upenn.edu","display_order":4194304,"name":"Melpo Christofidou-solomidou","title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury"},{"id":1951291,"work_id":13488210,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":180724,"email":"c***s@tennisexpress.com","display_order":6291456,"name":"Melpo Christofidou-solomidou","title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury"},{"id":1951292,"work_id":13488210,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":347953,"email":"a***a@mail.med.upenn.edu","display_order":7340032,"name":"Steven Albelda","title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury"}],"downloadable_attachments":[{"id":45280945,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280945/thumbnails/1.jpg","file_name":"Immunotargeting_of_catalase_to_the_pulmo20160502-7892-1e5ztib.pdf","download_url":"https://www.academia.edu/attachments/45280945/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Immunotargeting_of_catalase_to_the_pulmo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280945/Immunotargeting_of_catalase_to_the_pulmo20160502-7892-1e5ztib-libre.pdf?1462205509=\u0026response-content-disposition=attachment%3B+filename%3DImmunotargeting_of_catalase_to_the_pulmo.pdf\u0026Expires=1732769309\u0026Signature=YLhuUMxiWPiZSZffvW~WqTp7j7qyucqCuU1Nxdmu04lwVD-qzMI0v0LKawboSiKLd1WCNSSiFC34WFswZ-yOlqWLg4B4Pn732k5w2P5TrUu0qolkY6jBia7p1nVQuPQlTT0f4ZW8CMzfpMHlZ3kbZ1yYYCMfZzncBZrRlsRQ0yi7nwwP~sGRR~o4Ix4aXNYPqr1mExVEaXCXFz90bJbU6y6-bnkUe8WOuJvPlHfHxqVZrPa-vEed5P1EwRhfFjFrIyC9-g588MS6YRNCmOpuvU~8vYnXWYsUsTztrhL59PoYBomJx4TPyN0Tu7wkFomxlWXHgBod295YQwpbD0KRCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Immunotargeting_of_catalase_to_the_pulmonary_endothelium_alleviates_oxidative_stress_and_reduces_acute_lung_transplantation_injury","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280945,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280945/thumbnails/1.jpg","file_name":"Immunotargeting_of_catalase_to_the_pulmo20160502-7892-1e5ztib.pdf","download_url":"https://www.academia.edu/attachments/45280945/download_file?st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Immunotargeting_of_catalase_to_the_pulmo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280945/Immunotargeting_of_catalase_to_the_pulmo20160502-7892-1e5ztib-libre.pdf?1462205509=\u0026response-content-disposition=attachment%3B+filename%3DImmunotargeting_of_catalase_to_the_pulmo.pdf\u0026Expires=1732769309\u0026Signature=YLhuUMxiWPiZSZffvW~WqTp7j7qyucqCuU1Nxdmu04lwVD-qzMI0v0LKawboSiKLd1WCNSSiFC34WFswZ-yOlqWLg4B4Pn732k5w2P5TrUu0qolkY6jBia7p1nVQuPQlTT0f4ZW8CMzfpMHlZ3kbZ1yYYCMfZzncBZrRlsRQ0yi7nwwP~sGRR~o4Ix4aXNYPqr1mExVEaXCXFz90bJbU6y6-bnkUe8WOuJvPlHfHxqVZrPa-vEed5P1EwRhfFjFrIyC9-g588MS6YRNCmOpuvU~8vYnXWYsUsTztrhL59PoYBomJx4TPyN0Tu7wkFomxlWXHgBod295YQwpbD0KRCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":11257,"name":"Drug delivery","url":"https://www.academia.edu/Documents/in/Drug_delivery"},{"id":14292,"name":"Oxidative Stress","url":"https://www.academia.edu/Documents/in/Oxidative_Stress"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":50948,"name":"Ischemia Reperfusion Injury","url":"https://www.academia.edu/Documents/in/Ischemia_Reperfusion_Injury"},{"id":51711,"name":"Antioxidants","url":"https://www.academia.edu/Documents/in/Antioxidants"},{"id":126863,"name":"Immunotherapy","url":"https://www.academia.edu/Documents/in/Immunotherapy"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":139007,"name":"Catalase","url":"https://www.academia.edu/Documents/in/Catalase"},{"id":147196,"name":"Monoclonal Antibodies","url":"https://www.academia.edu/Documents/in/Monoclonal_Antibodies"},{"id":159187,"name":"Drug Delivery Systems","url":"https://www.academia.edu/Documents/in/Drug_Delivery_Systems"},{"id":197297,"name":"Lung","url":"https://www.academia.edu/Documents/in/Lung"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":295257,"name":"Antioxidant enzyme","url":"https://www.academia.edu/Documents/in/Antioxidant_enzyme"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":413115,"name":"Peroxidases","url":"https://www.academia.edu/Documents/in/Peroxidases"},{"id":794984,"name":"Reperfusion injury","url":"https://www.academia.edu/Documents/in/Reperfusion_injury"},{"id":858489,"name":"Cold Storage","url":"https://www.academia.edu/Documents/in/Cold_Storage"},{"id":1036494,"name":"Heart and Lung Transplantation","url":"https://www.academia.edu/Documents/in/Heart_and_Lung_Transplantation"},{"id":1322481,"name":"Antioxidant Capacity","url":"https://www.academia.edu/Documents/in/Antioxidant_Capacity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488209"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488209/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model"><img alt="Research paper thumbnail of Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488209/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model">Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model</a></div><div class="wp-workCard_item"><span>Journal of the American College of Surgeons</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488209"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488209]").text(description); $(".js-view-count[data-work-id=13488209]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488209']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488209, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13488209]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488209,"title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Journal of the American College of Surgeons"},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488209/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model","translated_internal_url":"","created_at":"2015-07-01T04:56:20.598-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951300,"work_id":13488209,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564240,"email":"f***d@uphs.upenn.edu","display_order":0,"name":"Douglas Fraker","title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model"}],"downloadable_attachments":[],"slug":"Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[],"research_interests":[{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488208"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488208/Diabetic_impairments_in_NO_mediated_endothelial_progenitor_cell_mobilization_and_homing_are_reversed_by_hyperoxia_and_SDF_1%CE%B1"><img alt="Research paper thumbnail of Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α" class="work-thumbnail" src="https://attachments.academia-assets.com/45280924/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488208/Diabetic_impairments_in_NO_mediated_endothelial_progenitor_cell_mobilization_and_homing_are_reversed_by_hyperoxia_and_SDF_1%CE%B1">Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α</a></div><div class="wp-workCard_item"><span>Journal of Clinical Investigation</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a65bfa381a78d846dde943a814cf89c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280924,&quot;asset_id&quot;:13488208,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280924/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488208"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488208"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488208; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488208]").text(description); $(".js-view-count[data-work-id=13488208]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488208; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488208']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488208, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a65bfa381a78d846dde943a814cf89c" } } $('.js-work-strip[data-work-id=13488208]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488208,"title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α","translated_title":"","metadata":{"grobid_abstract":"Endothelial progenitor cells (EPCs) are essential in vasculogenesis and wound healing, but their circulating and wound level numbers are decreased in diabetes. This study aimed to determine mechanisms responsible for the diabetic defect in circulating and wound EPCs. Since mobilization of BM EPCs occurs via eNOS activation, we hypothesized that eNOS activation is impaired in diabetes, which results in reduced EPC mobilization. Since hyperoxia activates NOS in other tissues, we investigated whether hyperoxia restores EPC mobilization in diabetic mice through BM NOS activation. Additionally, we studied the hypothesis that impaired EPC homing in diabetes is due to decreased wound level stromal cell-derived factor-1α (SDF-1α), a chemokine that mediates EPC recruitment in ischemia. Diabetic mice showed impaired phosphorylation of BM eNOS, decreased circulating EPCs, and diminished SDF-1α expression in cutaneous wounds. Hyperoxia increased BM NO and circulating EPCs, effects inhibited by the NOS inhibitor N-nitro-l-arginine-methyl ester. Administration of SDF-1α into wounds reversed the EPC homing impairment and, with hyperoxia, synergistically enhanced EPC mobilization, homing, and wound healing. Thus, hyperoxia reversed the diabetic defect in EPC mobilization, and SDF-1α reversed the diabetic defect in EPC homing. The targets identified, which we believe to be novel, can significantly advance the field of diabetic wound healing.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Journal of Clinical Investigation","grobid_abstract_attachment_id":45280924},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488208/Diabetic_impairments_in_NO_mediated_endothelial_progenitor_cell_mobilization_and_homing_are_reversed_by_hyperoxia_and_SDF_1%CE%B1","translated_internal_url":"","created_at":"2015-07-01T04:56:20.505-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951250,"work_id":13488208,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564221,"email":"o***z@uphs.upenn.edu","display_order":0,"name":"Omaida Velazquez","title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α"},{"id":1951252,"work_id":13488208,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":225801,"email":"h***n@wakehealth.edu","display_order":4194304,"name":"Haiying Chen","title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α"},{"id":1951272,"work_id":13488208,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564223,"email":"s***m@mail.med.upenn.edu","display_order":6291456,"name":"Stephen Thom","title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α"},{"id":1951284,"work_id":13488208,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564229,"email":"m***o@wistar.org","display_order":7340032,"name":"Min Xiao","title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α"}],"downloadable_attachments":[{"id":45280924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280924/thumbnails/1.jpg","file_name":"Gallagher_KA_Liu_ZJ_Xiao_M_Chen_H_Goldst20160502-13596-15j17ne.pdf","download_url":"https://www.academia.edu/attachments/45280924/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Diabetic_impairments_in_NO_mediated_endo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280924/Gallagher_KA_Liu_ZJ_Xiao_M_Chen_H_Goldst20160502-13596-15j17ne-libre.pdf?1462205512=\u0026response-content-disposition=attachment%3B+filename%3DDiabetic_impairments_in_NO_mediated_endo.pdf\u0026Expires=1732769309\u0026Signature=aXmkOYFu7UTQ0DOmpuwlPUeT0x9mfTPdaFlcZBC84QWSMl6ieuw7N82uYQEYbB3POL160OEREJQGMYYkd5YXii1Gmr4-O8yf-VP9JSQXWnaJh62VkdRkzzVh6eTXd9KwJLjBQBJdm4Ebch0v1-5J56WpCDjeNuc5dHTTGGSk224nHpt6UxEj~cZWabjwMnl-7oGqAU9p9HRuxGtFaQWLCrF6JTinq-xiar7wRpczpgRvqVhQVhOPzsxfcSIfkBwTVbFCeEIRcln61IERnjiPb9oBrHqvP7c5~e8QzhhW7IzsgU9RigXIDflVnxkdopcb512iP60Fqbk8bFNl-bfk9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Diabetic_impairments_in_NO_mediated_endothelial_progenitor_cell_mobilization_and_homing_are_reversed_by_hyperoxia_and_SDF_1α","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280924/thumbnails/1.jpg","file_name":"Gallagher_KA_Liu_ZJ_Xiao_M_Chen_H_Goldst20160502-13596-15j17ne.pdf","download_url":"https://www.academia.edu/attachments/45280924/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Diabetic_impairments_in_NO_mediated_endo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280924/Gallagher_KA_Liu_ZJ_Xiao_M_Chen_H_Goldst20160502-13596-15j17ne-libre.pdf?1462205512=\u0026response-content-disposition=attachment%3B+filename%3DDiabetic_impairments_in_NO_mediated_endo.pdf\u0026Expires=1732769310\u0026Signature=AqAHaki~QnDMkh2b1U~cxJO-fSM9n9SzWyxmcspMIF1jB8e9wxbHK~SPfpCWHRHtXHZV-M62wJrxA~KAemd2jTmvKb0snYkNzaOIl2j0ufgl69B~wb-4RkGFhtx3aAEV2b7rU8TTnbiJ6eEPD32QnKUeXVhiQmKdNAcEW3Wr7q-Ot~HMcwsn4xvOK-uM28Axm9nl-ke7kcnKi6BZ3oPegI2IvmhyDEDmBDvMH-07tUnogmNRwy96ThH9Ux5hLqwEFSJzcYvDgM7j3aEtg2ulwFkUVO-SA1stqvCTl9LBvBzIHJjD~74UpmxF43G3eClogNRAcpwGqyaKf2fqtLeC7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3642,"name":"Stem Cells","url":"https://www.academia.edu/Documents/in/Stem_Cells"},{"id":8991,"name":"Wound Healing","url":"https://www.academia.edu/Documents/in/Wound_Healing"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":99708,"name":"Clinical","url":"https://www.academia.edu/Documents/in/Clinical"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":995532,"name":"Hyperoxia","url":"https://www.academia.edu/Documents/in/Hyperoxia"},{"id":1144154,"name":"Clinical Investigation","url":"https://www.academia.edu/Documents/in/Clinical_Investigation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488206"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488206/NO_mediates_mural_cell_recruitment_and_vessel_morphogenesis_in_murine_melanomas_and_tissue_engineered_blood_vessels"><img alt="Research paper thumbnail of NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels" class="work-thumbnail" src="https://attachments.academia-assets.com/45280895/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488206/NO_mediates_mural_cell_recruitment_and_vessel_morphogenesis_in_murine_melanomas_and_tissue_engineered_blood_vessels">NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels</a></div><div class="wp-workCard_item"><span>Journal of Clinical Investigation</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="35aa98d65187e75bf1d57946adba00ed" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280895,&quot;asset_id&quot;:13488206,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280895/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488206"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488206"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488206; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488206]").text(description); $(".js-view-count[data-work-id=13488206]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488206; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488206']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488206, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "35aa98d65187e75bf1d57946adba00ed" } } $('.js-work-strip[data-work-id=13488206]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488206,"title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels","translated_title":"","metadata":{"grobid_abstract":"NO has been shown to mediate angiogenesis; however, its role in vessel morphogenesis and maturation is not known. Using intravital microscopy, histological analysis, α-smooth muscle actin and chondroitin sulfate proteoglycan 4 staining, microsensor NO measurements, and an NO synthase (NOS) inhibitor, we found that NO mediates mural cell coverage as well as vessel branching and longitudinal extension but not the circumferential growth of blood vessels in B16 murine melanomas.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Journal of Clinical Investigation","grobid_abstract_attachment_id":45280895},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488206/NO_mediates_mural_cell_recruitment_and_vessel_morphogenesis_in_murine_melanomas_and_tissue_engineered_blood_vessels","translated_internal_url":"","created_at":"2015-07-01T04:56:20.405-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951253,"work_id":13488206,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":502181,"email":"m***n@steele.mgh.harvard.edu","display_order":0,"name":"Lance Munn","title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels"},{"id":1951254,"work_id":13488206,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":502182,"email":"l***n@mgh.harvard.edu","display_order":4194304,"name":"Lance Munn","title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels"},{"id":1951255,"work_id":13488206,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":502183,"email":"l***e@steele.mgh.harvard.edu","display_order":6291456,"name":"Lance Munn","title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels"},{"id":1951256,"work_id":13488206,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564222,"email":"z***u@childrensmemorial.org","display_order":7340032,"name":"Zoe Demou","title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels"}],"downloadable_attachments":[{"id":45280895,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280895/thumbnails/1.jpg","file_name":"NO_mediates_mural_cell_recruitment_and_v20160502-6630-1niq0ya.pdf","download_url":"https://www.academia.edu/attachments/45280895/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"NO_mediates_mural_cell_recruitment_and_v.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280895/NO_mediates_mural_cell_recruitment_and_v20160502-6630-1niq0ya-libre.pdf?1462205513=\u0026response-content-disposition=attachment%3B+filename%3DNO_mediates_mural_cell_recruitment_and_v.pdf\u0026Expires=1732769310\u0026Signature=RH44Y7QgjxFI-Xobog0sAivgnYbyaJHE-4LMnhq5TVM04M6g1xbYSFtBiflV3zQ82pGCvs5AfjjauQ9DYzTPdal7RZOVrUuaiH27tSdIouCt~V7nTXo8PJJNnwjR6Hm6A2iz5Lj6aMgeDMU0~9~OeDJ9I9UJWAR8gnl2q-Odm6G~QVPHeHsvbILiy787urcJa9ucnrrX6lVm4jAZ9sKiOcOqqv~3WcWL58gmQCeH3mwI2RmjV401myAQcBEraAT9aauAUieLPogDV~HbrT7k6QXHV2jZBvyzwY8Yb~B6H~h4l2bhLenyeK0xwRNwnYXTs8TNY9o1fHkLSIw~ARVWGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"NO_mediates_mural_cell_recruitment_and_vessel_morphogenesis_in_murine_melanomas_and_tissue_engineered_blood_vessels","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280895,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280895/thumbnails/1.jpg","file_name":"NO_mediates_mural_cell_recruitment_and_v20160502-6630-1niq0ya.pdf","download_url":"https://www.academia.edu/attachments/45280895/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"NO_mediates_mural_cell_recruitment_and_v.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280895/NO_mediates_mural_cell_recruitment_and_v20160502-6630-1niq0ya-libre.pdf?1462205513=\u0026response-content-disposition=attachment%3B+filename%3DNO_mediates_mural_cell_recruitment_and_v.pdf\u0026Expires=1732769310\u0026Signature=RH44Y7QgjxFI-Xobog0sAivgnYbyaJHE-4LMnhq5TVM04M6g1xbYSFtBiflV3zQ82pGCvs5AfjjauQ9DYzTPdal7RZOVrUuaiH27tSdIouCt~V7nTXo8PJJNnwjR6Hm6A2iz5Lj6aMgeDMU0~9~OeDJ9I9UJWAR8gnl2q-Odm6G~QVPHeHsvbILiy787urcJa9ucnrrX6lVm4jAZ9sKiOcOqqv~3WcWL58gmQCeH3mwI2RmjV401myAQcBEraAT9aauAUieLPogDV~HbrT7k6QXHV2jZBvyzwY8Yb~B6H~h4l2bhLenyeK0xwRNwnYXTs8TNY9o1fHkLSIw~ARVWGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":1144154,"name":"Clinical Investigation","url":"https://www.academia.edu/Documents/in/Clinical_Investigation"},{"id":1251210,"name":"Blood Vessel","url":"https://www.academia.edu/Documents/in/Blood_Vessel"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488205"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488205/Reduced_Nitric_Oxide_Concentration_in_the_Renal_Cortex_of_Streptozotocin_Induced_Diabetic_Rats_Effects_on_Renal_Oxygenation_and_Microcirculation"><img alt="Research paper thumbnail of Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488205/Reduced_Nitric_Oxide_Concentration_in_the_Renal_Cortex_of_Streptozotocin_Induced_Diabetic_Rats_Effects_on_Renal_Oxygenation_and_Microcirculation">Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PHansell">P. Hansell</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PLiss">P. Liss</a></span></div><div class="wp-workCard_item"><span>Diabetes</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypothesis that there is reduced NO concentration in the renal cortex of diabetic rats that mediates reduced renal cortical blood perfusion and oxygen tension (P O2). Streptozotocin-induced diabetic and control rats were injected with l-arginine followed by Nomega-nitro-L-arginine-metyl-ester (L-NAME). NO and P O2 were measured using microsensors, and local blood flow was recorded by laser-Doppler flowmetry. Plasma arginine and asymmetric dimethylarginine (ADMA) were analyzed by high-performance liquid chromatography. L-Arginine increased cortical NO concentrations more in diabetic animals, whereas changes in blood flow were similar. Cortical P O2 was unaffected by L-arginine in both groups. L-NAME decreased NO in control animals by 87 +/- 15 nmol/l compared with 45 +/- 7 nmol/l in diabetic animals. L-NAME decreased blood perfusion more in diabetic animals, but it only affected P O2 in control animals. Plasma arginine was significantly lower in diabetic animals (79.7 +/- 6.7 vs. 127.9 +/- 3.9 mmol/l), whereas ADMA was unchanged. A larger increase in renal cortical NO concentration after l-arginine injection, a smaller decrease in NO after L-NAME, and reduced plasma arginine suggest substrate limitation for NO formation in the renal cortex of diabetic animals. This demonstrates a new mechanism for diabetes-induced alteration in renal oxygen metabolism and local blood flow regulation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488205"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488205"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488205; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488205]").text(description); $(".js-view-count[data-work-id=13488205]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488205; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488205']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488205, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13488205]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488205,"title":"Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation","translated_title":"","metadata":{"abstract":"Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypothesis that there is reduced NO concentration in the renal cortex of diabetic rats that mediates reduced renal cortical blood perfusion and oxygen tension (P O2). Streptozotocin-induced diabetic and control rats were injected with l-arginine followed by Nomega-nitro-L-arginine-metyl-ester (L-NAME). NO and P O2 were measured using microsensors, and local blood flow was recorded by laser-Doppler flowmetry. Plasma arginine and asymmetric dimethylarginine (ADMA) were analyzed by high-performance liquid chromatography. L-Arginine increased cortical NO concentrations more in diabetic animals, whereas changes in blood flow were similar. Cortical P O2 was unaffected by L-arginine in both groups. L-NAME decreased NO in control animals by 87 +/- 15 nmol/l compared with 45 +/- 7 nmol/l in diabetic animals. L-NAME decreased blood perfusion more in diabetic animals, but it only affected P O2 in control animals. Plasma arginine was significantly lower in diabetic animals (79.7 +/- 6.7 vs. 127.9 +/- 3.9 mmol/l), whereas ADMA was unchanged. A larger increase in renal cortical NO concentration after l-arginine injection, a smaller decrease in NO after L-NAME, and reduced plasma arginine suggest substrate limitation for NO formation in the renal cortex of diabetic animals. This demonstrates a new mechanism for diabetes-induced alteration in renal oxygen metabolism and local blood flow regulation.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Diabetes"},"translated_abstract":"Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypothesis that there is reduced NO concentration in the renal cortex of diabetic rats that mediates reduced renal cortical blood perfusion and oxygen tension (P O2). Streptozotocin-induced diabetic and control rats were injected with l-arginine followed by Nomega-nitro-L-arginine-metyl-ester (L-NAME). NO and P O2 were measured using microsensors, and local blood flow was recorded by laser-Doppler flowmetry. Plasma arginine and asymmetric dimethylarginine (ADMA) were analyzed by high-performance liquid chromatography. L-Arginine increased cortical NO concentrations more in diabetic animals, whereas changes in blood flow were similar. Cortical P O2 was unaffected by L-arginine in both groups. L-NAME decreased NO in control animals by 87 +/- 15 nmol/l compared with 45 +/- 7 nmol/l in diabetic animals. L-NAME decreased blood perfusion more in diabetic animals, but it only affected P O2 in control animals. Plasma arginine was significantly lower in diabetic animals (79.7 +/- 6.7 vs. 127.9 +/- 3.9 mmol/l), whereas ADMA was unchanged. A larger increase in renal cortical NO concentration after l-arginine injection, a smaller decrease in NO after L-NAME, and reduced plasma arginine suggest substrate limitation for NO formation in the renal cortex of diabetic animals. This demonstrates a new mechanism for diabetes-induced alteration in renal oxygen metabolism and local blood flow regulation.","internal_url":"https://www.academia.edu/13488205/Reduced_Nitric_Oxide_Concentration_in_the_Renal_Cortex_of_Streptozotocin_Induced_Diabetic_Rats_Effects_on_Renal_Oxygenation_and_Microcirculation","translated_internal_url":"","created_at":"2015-07-01T04:56:20.315-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951293,"work_id":13488205,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564236,"email":"f***m@mcb.uu.se","display_order":0,"name":"F. Palm","title":"Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation"},{"id":1951294,"work_id":13488205,"tagging_user_id":32697935,"tagged_user_id":35829740,"co_author_invite_id":564237,"email":"p***l@mcb.uu.se","display_order":4194304,"name":"P. Hansell","title":"Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation"},{"id":1951295,"work_id":13488205,"tagging_user_id":32697935,"tagged_user_id":32841830,"co_author_invite_id":564238,"email":"p***s@radiol.uu.se","display_order":6291456,"name":"P. Liss","title":"Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation"}],"downloadable_attachments":[],"slug":"Reduced_Nitric_Oxide_Concentration_in_the_Renal_Cortex_of_Streptozotocin_Induced_Diabetic_Rats_Effects_on_Renal_Oxygenation_and_Microcirculation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[],"research_interests":[{"id":4581,"name":"Diabetes","url":"https://www.academia.edu/Documents/in/Diabetes"},{"id":8017,"name":"Microcirculation","url":"https://www.academia.edu/Documents/in/Microcirculation"},{"id":14292,"name":"Oxidative Stress","url":"https://www.academia.edu/Documents/in/Oxidative_Stress"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":555120,"name":"Arginine","url":"https://www.academia.edu/Documents/in/Arginine"},{"id":790002,"name":"Streptozotocin","url":"https://www.academia.edu/Documents/in/Streptozotocin"},{"id":1031967,"name":"Diabetic Rat","url":"https://www.academia.edu/Documents/in/Diabetic_Rat"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488204"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488204/Stimulation_of_nitric_oxide_synthase_in_cerebral_cortex_due_to_elevated_partial_pressures_of_oxygen_An_oxidative_stress_response"><img alt="Research paper thumbnail of Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response" class="work-thumbnail" src="https://attachments.academia-assets.com/45280903/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488204/Stimulation_of_nitric_oxide_synthase_in_cerebral_cortex_due_to_elevated_partial_pressures_of_oxygen_An_oxidative_stress_response">Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response</a></div><div class="wp-workCard_item"><span>Journal of Neurobiology</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="704e1a3a55ee520dc9641082e17405ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280903,&quot;asset_id&quot;:13488204,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280903/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488204"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488204"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488204; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488204]").text(description); $(".js-view-count[data-work-id=13488204]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488204; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488204']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488204, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "704e1a3a55ee520dc9641082e17405ce" } } $('.js-work-strip[data-work-id=13488204]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488204,"title":"Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response","translated_title":"","metadata":{"grobid_abstract":"The purpose of this investigation was to determine the impact of elevated partial pressures of O 2 on the steady state concentration of nitric oxide ( • NO) in the cerebral cortex. Rodents with implanted O 2 -and • NOspecific microelectrodes were exposed to O 2 at partial pressures from 0.2 to 2.8 atmospheres absolute (ATA) for up to 45 min. Elevations in • NO concentration occurred with all partial pressures above that of ambient air. In rats exposed to 2.8 ATA O 2 the increase was 692 ؎ 73 nM (S.E., n ‫؍‬ 5) over control. Changes were not associated with alterations in concentrations of nitric oxide synthase (NOS) enzymes. Based on studies with knock-out mice lacking genes for neuronal NOS (nNOS) or endothelial NOS (eNOS), nNOS activity contributed over 90% to total • NO elevation due to hyperoxia. Immunoprecipitation studies indicated that hyperoxia doubles the amount of nNOS associated with the molecular chaperone, heat shock protein 90 (Hsp90). Both • NO elevations and the association between nNOS and Hsp90 were inhibited in rats infused with superoxide dismutase. Elevations of • NO were also inhibited by treatment with the relatively specific nNOS inhibitor, 7 nitroindazole, by the ansamycin antibiotics herbimycin and geldanamycin, by the antioxidant N-acetylcysteine, by the calcium channel blocker nimodipine, and by the N-methyl-D-aspartate inhibitor, MK 801. Hyperoxia did not alter eNOS association with Hsp90, nor did it modify nNOS or eNOS associations with calmodulin, the magnitude of eNOS tyrosine phosphorylation, or nNOS phosphorylation via calmodulin kinase. Cerebral cortex blood flow, measured by laser Doppler flow probe, increased during hyperoxia and may be causally related to elevations of steady state • NO concentration. We conclude that hyperoxia causes an increase in • NO synthesis as part of a response to oxidative stress. Mechanisms for nNOS activation include augmentation in the association with Hsp90 and intracellular entry of calcium.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Journal of Neurobiology","grobid_abstract_attachment_id":45280903},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488204/Stimulation_of_nitric_oxide_synthase_in_cerebral_cortex_due_to_elevated_partial_pressures_of_oxygen_An_oxidative_stress_response","translated_internal_url":"","created_at":"2015-07-01T04:56:20.241-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951273,"work_id":13488204,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564223,"email":"s***m@mail.med.upenn.edu","display_order":0,"name":"Stephen Thom","title":"Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response"}],"downloadable_attachments":[{"id":45280903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280903/thumbnails/1.jpg","file_name":"FAST_TRACK_Stimulation_of_Nitric_Oxide_S20160502-31897-1v6twd7.pdf","download_url":"https://www.academia.edu/attachments/45280903/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stimulation_of_nitric_oxide_synthase_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280903/FAST_TRACK_Stimulation_of_Nitric_Oxide_S20160502-31897-1v6twd7-libre.pdf?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DStimulation_of_nitric_oxide_synthase_in.pdf\u0026Expires=1732769310\u0026Signature=Rno-BNyK1OLZ4tlDxpXVtT0PtQumTfsnr~RZVawk7l~myXrvYlChfFW8W0AryXS~1HRJllxqn9OPqHsX~1d7uiRxwN8Xw9SDGKKZhZa42DT8uybd4aj8nBWFE60jjjk~Kx8NCSyEXAgDyhos15NW4nnCfprYYER3jLf0s8JnvGQCSAOD9rgLY52vo1VGXlIF6crLtvld71YD5f1SPnNszoUnjtakpG3kTGtWxnAwI85ILLBe6W3Y4ZQ66YgyxyFmLQgKJOTwXWfh1L3lCabAvXSpz0prbE8F2FxePKD7hNAZ5oTyKnQazvX4yn06nj3vhbAWxzXDQlEGZnIwzXWsCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stimulation_of_nitric_oxide_synthase_in_cerebral_cortex_due_to_elevated_partial_pressures_of_oxygen_An_oxidative_stress_response","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280903/thumbnails/1.jpg","file_name":"FAST_TRACK_Stimulation_of_Nitric_Oxide_S20160502-31897-1v6twd7.pdf","download_url":"https://www.academia.edu/attachments/45280903/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stimulation_of_nitric_oxide_synthase_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280903/FAST_TRACK_Stimulation_of_Nitric_Oxide_S20160502-31897-1v6twd7-libre.pdf?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DStimulation_of_nitric_oxide_synthase_in.pdf\u0026Expires=1732769310\u0026Signature=Rno-BNyK1OLZ4tlDxpXVtT0PtQumTfsnr~RZVawk7l~myXrvYlChfFW8W0AryXS~1HRJllxqn9OPqHsX~1d7uiRxwN8Xw9SDGKKZhZa42DT8uybd4aj8nBWFE60jjjk~Kx8NCSyEXAgDyhos15NW4nnCfprYYER3jLf0s8JnvGQCSAOD9rgLY52vo1VGXlIF6crLtvld71YD5f1SPnNszoUnjtakpG3kTGtWxnAwI85ILLBe6W3Y4ZQ66YgyxyFmLQgKJOTwXWfh1L3lCabAvXSpz0prbE8F2FxePKD7hNAZ5oTyKnQazvX4yn06nj3vhbAWxzXDQlEGZnIwzXWsCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":14292,"name":"Oxidative Stress","url":"https://www.academia.edu/Documents/in/Oxidative_Stress"},{"id":25804,"name":"Neurobiology","url":"https://www.academia.edu/Documents/in/Neurobiology"},{"id":51711,"name":"Antioxidants","url":"https://www.academia.edu/Documents/in/Antioxidants"},{"id":78467,"name":"Cerebral Cortex","url":"https://www.academia.edu/Documents/in/Cerebral_Cortex"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":437728,"name":"Isoenzymes","url":"https://www.academia.edu/Documents/in/Isoenzymes"},{"id":561057,"name":"Hyperbaric Oxygenation","url":"https://www.academia.edu/Documents/in/Hyperbaric_Oxygenation"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":970066,"name":"Cerebral Blood Flow","url":"https://www.academia.edu/Documents/in/Cerebral_Blood_Flow"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488203"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488203/Nitric_Oxide_Signaling_in_the_Microcirculation"><img alt="Research paper thumbnail of Nitric Oxide Signaling in the Microcirculation" class="work-thumbnail" src="https://attachments.academia-assets.com/45280906/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488203/Nitric_Oxide_Signaling_in_the_Microcirculation">Nitric Oxide Signaling in the Microcirculation</a></div><div class="wp-workCard_item"><span>Critical Reviews™ in Biomedical Engineering</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="43c5b27dcbae3a11f7f288be1ee6bcc0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280906,&quot;asset_id&quot;:13488203,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280906/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488203"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488203"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488203; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488203]").text(description); $(".js-view-count[data-work-id=13488203]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488203; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488203']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488203, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "43c5b27dcbae3a11f7f288be1ee6bcc0" } } $('.js-work-strip[data-work-id=13488203]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488203,"title":"Nitric Oxide Signaling in the Microcirculation","translated_title":"","metadata":{"grobid_abstract":"Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Critical Reviews™ in Biomedical Engineering","grobid_abstract_attachment_id":45280906},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488203/Nitric_Oxide_Signaling_in_the_Microcirculation","translated_internal_url":"","created_at":"2015-07-01T04:56:20.167-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951277,"work_id":13488203,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564225,"email":"b***e@drexel.edu","display_order":0,"name":"Kenneth Barbee","title":"Nitric Oxide Signaling in the Microcirculation"},{"id":1951279,"work_id":13488203,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564226,"email":"b***e@coe.drexel.edu","display_order":4194304,"name":"Kenneth Barbee","title":"Nitric Oxide Signaling in the Microcirculation"}],"downloadable_attachments":[{"id":45280906,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280906/thumbnails/1.jpg","file_name":"Nitric_Oxide_Signaling_in_the_Microcircu20160502-31897-1we9dw2.pdf","download_url":"https://www.academia.edu/attachments/45280906/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nitric_Oxide_Signaling_in_the_Microcircu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280906/Nitric_Oxide_Signaling_in_the_Microcircu20160502-31897-1we9dw2-libre.pdf?1462205512=\u0026response-content-disposition=attachment%3B+filename%3DNitric_Oxide_Signaling_in_the_Microcircu.pdf\u0026Expires=1732769310\u0026Signature=V-clzm9XVjOz8TslhM3gEBHohi3-QAKOJ9Sog6d5tUyMyZ6VvMhglB57t9QQxAx4H~aMHWQs51xe1tFn87JcRWwMLsr--ubu0DKMUUYaLXOJCXbwr0rrqbB62oqvd7rAudWcMYzH0tH0N5-cEjC3oLQiq3rksnacEB5EhCx0FNSlKjIBymyT2qkgUGp2OsAx05InNxFtk71kJq0087EkF3N720SAVNhPEsMuw9jj84~om-bnEBgeLPg7ngiL35VunpH9Aq65HIDr0fTOeyMsHm8lxCmqHnQ0sW2fK-RtJeb1ewu8zez03~BL8p-bSWpOV3UpBuu8J6c86sqSpY6hEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nitric_Oxide_Signaling_in_the_Microcirculation","translated_slug":"","page_count":44,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280906,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280906/thumbnails/1.jpg","file_name":"Nitric_Oxide_Signaling_in_the_Microcircu20160502-31897-1we9dw2.pdf","download_url":"https://www.academia.edu/attachments/45280906/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nitric_Oxide_Signaling_in_the_Microcircu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280906/Nitric_Oxide_Signaling_in_the_Microcircu20160502-31897-1we9dw2-libre.pdf?1462205512=\u0026response-content-disposition=attachment%3B+filename%3DNitric_Oxide_Signaling_in_the_Microcircu.pdf\u0026Expires=1732769310\u0026Signature=V-clzm9XVjOz8TslhM3gEBHohi3-QAKOJ9Sog6d5tUyMyZ6VvMhglB57t9QQxAx4H~aMHWQs51xe1tFn87JcRWwMLsr--ubu0DKMUUYaLXOJCXbwr0rrqbB62oqvd7rAudWcMYzH0tH0N5-cEjC3oLQiq3rksnacEB5EhCx0FNSlKjIBymyT2qkgUGp2OsAx05InNxFtk71kJq0087EkF3N720SAVNhPEsMuw9jj84~om-bnEBgeLPg7ngiL35VunpH9Aq65HIDr0fTOeyMsHm8lxCmqHnQ0sW2fK-RtJeb1ewu8zez03~BL8p-bSWpOV3UpBuu8J6c86sqSpY6hEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":8017,"name":"Microcirculation","url":"https://www.academia.edu/Documents/in/Microcirculation"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":67133,"name":"Anoxia","url":"https://www.academia.edu/Documents/in/Anoxia"},{"id":74347,"name":"Hemodynamics","url":"https://www.academia.edu/Documents/in/Hemodynamics"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":555120,"name":"Arginine","url":"https://www.academia.edu/Documents/in/Arginine"},{"id":846581,"name":"Cell communication","url":"https://www.academia.edu/Documents/in/Cell_communication"},{"id":982534,"name":"Erythrocytes","url":"https://www.academia.edu/Documents/in/Erythrocytes"},{"id":995532,"name":"Hyperoxia","url":"https://www.academia.edu/Documents/in/Hyperoxia"},{"id":1311261,"name":"Hemoglobins","url":"https://www.academia.edu/Documents/in/Hemoglobins"},{"id":1621878,"name":"Guanylate Cyclase","url":"https://www.academia.edu/Documents/in/Guanylate_Cyclase"},{"id":1816594,"name":"Adenosine Triphosphate","url":"https://www.academia.edu/Documents/in/Adenosine_Triphosphate"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488202"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488202/Elevated_plasma_viscosity_in_extreme_hemodilution_increases_perivascular_nitric_oxide_concentration_and_microvascular_perfusion"><img alt="Research paper thumbnail of Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488202/Elevated_plasma_viscosity_in_extreme_hemodilution_increases_perivascular_nitric_oxide_concentration_and_microvascular_perfusion">Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://ucsd.academia.edu/PedroCabrales">Pedro Cabrales</a></span></div><div class="wp-workCard_item"><span>AJP: Heart and Circulatory Physiology</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 (n = 6) or Dextran 70 (n = 5) with final plasma viscosities of 1.99 +/- 0.11 and 1.33 +/- 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control (n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488202"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488202"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488202; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488202]").text(description); $(".js-view-count[data-work-id=13488202]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488202; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488202']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488202, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13488202]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488202,"title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion","translated_title":"","metadata":{"abstract":"We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 (n = 6) or Dextran 70 (n = 5) with final plasma viscosities of 1.99 +/- 0.11 and 1.33 +/- 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control (n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"AJP: Heart and Circulatory Physiology"},"translated_abstract":"We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 (n = 6) or Dextran 70 (n = 5) with final plasma viscosities of 1.99 +/- 0.11 and 1.33 +/- 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control (n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.","internal_url":"https://www.academia.edu/13488202/Elevated_plasma_viscosity_in_extreme_hemodilution_increases_perivascular_nitric_oxide_concentration_and_microvascular_perfusion","translated_internal_url":"","created_at":"2015-07-01T04:56:20.089-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951257,"work_id":13488202,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":392042,"email":"p***s@ucsd.edum","display_order":0,"name":"Pedro Cabrales","title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion"},{"id":1951258,"work_id":13488202,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":238984,"email":"p***s@uscd.edu","display_order":4194304,"name":"Pedro Cabrales","title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion"},{"id":1951259,"work_id":13488202,"tagging_user_id":32697935,"tagged_user_id":32744362,"co_author_invite_id":238985,"email":"p***s@ucsd.edu","affiliation":"University of California, San Diego","display_order":6291456,"name":"Pedro Cabrales","title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion"},{"id":1951285,"work_id":13488202,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564230,"email":"a***y@bit-ibio.com","display_order":7340032,"name":"G. Amy","title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion"}],"downloadable_attachments":[],"slug":"Elevated_plasma_viscosity_in_extreme_hemodilution_increases_perivascular_nitric_oxide_concentration_and_microvascular_perfusion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[],"research_interests":[{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"},{"id":71421,"name":"Capillaries","url":"https://www.academia.edu/Documents/in/Capillaries"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":133362,"name":"Osmotic pressure","url":"https://www.academia.edu/Documents/in/Osmotic_pressure"},{"id":151448,"name":"American","url":"https://www.academia.edu/Documents/in/American"},{"id":162553,"name":"Skin","url":"https://www.academia.edu/Documents/in/Skin"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":389277,"name":"Blood Viscosity","url":"https://www.academia.edu/Documents/in/Blood_Viscosity"},{"id":831753,"name":"Hemodilution","url":"https://www.academia.edu/Documents/in/Hemodilution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13421673"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13421673/Temporal_Dynamics_of_Brain_Tissue_Nitric_Oxide_during_Functional_Forepaw_Stimulation_in_Rats"><img alt="Research paper thumbnail of Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13421673/Temporal_Dynamics_of_Brain_Tissue_Nitric_Oxide_during_Functional_Forepaw_Stimulation_in_Rats">Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://upenn.academia.edu/JoelGreenberg">Joel Greenberg</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a></span></div><div class="wp-workCard_item"><span>NeuroImage</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation of rat somatosensory cortex by electrical forepaw stimulation. Cortical tissue NO was measured electrochemically with rapid-responding recessed microelectrodes (tips &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;10 microm). Simultaneous blood flow measurements were made by laser-Doppler flowmetry (LDF). NO immediately increased, reaching a peak 125.5 +/- 32.8 (SE) nM above baseline (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) within 400 ms after stimulus onset, preceding any LDF changes, and then returned close to prestimulus levels after 2 s (123 signal-averaged trials, 12 rats). Blood flow began rising after a 1-s delay, reaching a peak just before electrical stimulation was ended at t = 4 s. A consistent poststimulus NO undershoot was observed as LDF returned to baseline. These findings complement our previous study (B. M. Ances et al., 2001, Neurosci. Lett. 306, 106-110) in which a transient decrease in rat somatosensory cortex tissue oxygen partial pressure was found to precede blood flow increases during functional activation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13421673"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13421673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13421673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13421673]").text(description); $(".js-view-count[data-work-id=13421673]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13421673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13421673']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13421673, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13421673]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13421673,"title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats","translated_title":"","metadata":{"abstract":"We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation of rat somatosensory cortex by electrical forepaw stimulation. Cortical tissue NO was measured electrochemically with rapid-responding recessed microelectrodes (tips \u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;10 microm). Simultaneous blood flow measurements were made by laser-Doppler flowmetry (LDF). NO immediately increased, reaching a peak 125.5 +/- 32.8 (SE) nM above baseline (P \u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) within 400 ms after stimulus onset, preceding any LDF changes, and then returned close to prestimulus levels after 2 s (123 signal-averaged trials, 12 rats). Blood flow began rising after a 1-s delay, reaching a peak just before electrical stimulation was ended at t = 4 s. A consistent poststimulus NO undershoot was observed as LDF returned to baseline. These findings complement our previous study (B. M. Ances et al., 2001, Neurosci. Lett. 306, 106-110) in which a transient decrease in rat somatosensory cortex tissue oxygen partial pressure was found to precede blood flow increases during functional activation.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"NeuroImage"},"translated_abstract":"We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation of rat somatosensory cortex by electrical forepaw stimulation. Cortical tissue NO was measured electrochemically with rapid-responding recessed microelectrodes (tips \u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;10 microm). Simultaneous blood flow measurements were made by laser-Doppler flowmetry (LDF). NO immediately increased, reaching a peak 125.5 +/- 32.8 (SE) nM above baseline (P \u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) within 400 ms after stimulus onset, preceding any LDF changes, and then returned close to prestimulus levels after 2 s (123 signal-averaged trials, 12 rats). Blood flow began rising after a 1-s delay, reaching a peak just before electrical stimulation was ended at t = 4 s. A consistent poststimulus NO undershoot was observed as LDF returned to baseline. These findings complement our previous study (B. M. Ances et al., 2001, Neurosci. Lett. 306, 106-110) in which a transient decrease in rat somatosensory cortex tissue oxygen partial pressure was found to precede blood flow increases during functional activation.","internal_url":"https://www.academia.edu/13421673/Temporal_Dynamics_of_Brain_Tissue_Nitric_Oxide_during_Functional_Forepaw_Stimulation_in_Rats","translated_internal_url":"","created_at":"2015-06-29T07:58:18.161-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32638922,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1828911,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":32500251,"co_author_invite_id":null,"email":"d***e@mail.med.upenn.edu","display_order":0,"name":"John Detre","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1828952,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":319414,"email":"a***b@neuro.wustl.edu","display_order":4194304,"name":"Beau Ances","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1828974,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":540267,"email":"b***s@wust1.edu","display_order":6291456,"name":"Beau Ances","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1828993,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":48721395,"co_author_invite_id":319415,"email":"b***s@wustl.edu","display_order":7340032,"name":"Beau Ances","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1829006,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":540276,"email":"b***s@uphs.upenn.edu","display_order":7864320,"name":"B. Ances","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1829065,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":32697935,"co_author_invite_id":540285,"email":"b***k@seas.upenn.edu","affiliation":"Drexel University","display_order":8126464,"name":"Donald Buerk","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"}],"downloadable_attachments":[],"slug":"Temporal_Dynamics_of_Brain_Tissue_Nitric_Oxide_during_Functional_Forepaw_Stimulation_in_Rats","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32638922,"first_name":"Joel","middle_initials":null,"last_name":"Greenberg","page_name":"JoelGreenberg","domain_name":"upenn","created_at":"2015-06-29T07:56:13.703-07:00","display_name":"Joel Greenberg","url":"https://upenn.academia.edu/JoelGreenberg"},"attachments":[],"research_interests":[{"id":445,"name":"Computer Graphics","url":"https://www.academia.edu/Documents/in/Computer_Graphics"},{"id":28501,"name":"Temporal dynamics","url":"https://www.academia.edu/Documents/in/Temporal_dynamics"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":103260,"name":"Neuroimage","url":"https://www.academia.edu/Documents/in/Neuroimage"},{"id":104621,"name":"Data Display","url":"https://www.academia.edu/Documents/in/Data_Display"},{"id":184907,"name":"Microelectrodes","url":"https://www.academia.edu/Documents/in/Microelectrodes"},{"id":277717,"name":"Somatosensory Cortex","url":"https://www.academia.edu/Documents/in/Somatosensory_Cortex"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":426588,"name":"Blood Flow","url":"https://www.academia.edu/Documents/in/Blood_Flow"},{"id":970066,"name":"Cerebral Blood Flow","url":"https://www.academia.edu/Documents/in/Cerebral_Blood_Flow"},{"id":1157501,"name":"Blood Flow Velocity","url":"https://www.academia.edu/Documents/in/Blood_Flow_Velocity"},{"id":1193624,"name":"Oxygen Consumption","url":"https://www.academia.edu/Documents/in/Oxygen_Consumption"},{"id":1665885,"name":"Laser Doppler Flowmetry","url":"https://www.academia.edu/Documents/in/Laser_Doppler_Flowmetry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3129612" id="papers"><div class="js-work-strip profile--work_container" data-work-id="19234095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/19234095/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model"><img alt="Research paper thumbnail of Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/19234095/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model">Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IndiraPrabakaran">Indira Prabakaran</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a></span></div><div class="wp-workCard_item"><span>Journal of the American College of Surgeons</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="19234095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="19234095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19234095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19234095]").text(description); $(".js-view-count[data-work-id=19234095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19234095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='19234095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 19234095, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=19234095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":19234095,"title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Journal of the American College of Surgeons"},"translated_abstract":null,"internal_url":"https://www.academia.edu/19234095/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model","translated_internal_url":"","created_at":"2015-11-30T07:17:21.457-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39467948,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":11302030,"work_id":19234095,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":564240,"email":"f***d@uphs.upenn.edu","display_order":0,"name":"Douglas Fraker","title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model"},{"id":11302040,"work_id":19234095,"tagging_user_id":39467948,"tagged_user_id":32697935,"co_author_invite_id":2648583,"email":"b***k@seas.upenn.edu","affiliation":"Drexel University","display_order":4194304,"name":"Donald Buerk","title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model"},{"id":11302064,"work_id":19234095,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":2648591,"email":"a***i@biochain.com","display_order":6291456,"name":"Alex Hsi","title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model"}],"downloadable_attachments":[],"slug":"Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39467948,"first_name":"Indira","middle_initials":null,"last_name":"Prabakaran","page_name":"IndiraPrabakaran","domain_name":"independent","created_at":"2015-11-30T07:17:05.029-08:00","display_name":"Indira Prabakaran","url":"https://independent.academia.edu/IndiraPrabakaran","email":"SGxFOGJFVUdraTJmWjlBMnZSM2JLbWZSRUVxQy81UG1uWnhybWV2U3krUTJZVHhmNXQyNm5hZjE1MGdnV0VXMC0tMmRvSUJGRmo0VTZuTSs3TDcvUXpQZz09--ad74686053a515defc69bbf52870b7223ceb9c2f"},"attachments":[],"research_interests":[{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="19234100"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/19234100/An_integrated_approach_to_measuring_tumor_oxygen_status_using_human_melanoma_xenografts_as_a_model"><img alt="Research paper thumbnail of An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model" class="work-thumbnail" src="https://attachments.academia-assets.com/40506712/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/19234100/An_integrated_approach_to_measuring_tumor_oxygen_status_using_human_melanoma_xenografts_as_a_model">An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IndiraPrabakaran">Indira Prabakaran</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a></span></div><div class="wp-workCard_item"><span>Cancer research</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcom...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen saturation, tissue pO(2), oxygen consumption rate, and hypoxic fraction. The goal of this investigation was to integrate these measurements to obtain a comprehensive profile of tumor oxygenation. Platelet/endothelial cell adhesion molecule immunohistochemistry, the recessed oxygen microelectrode, color and power Doppler ultrasound (DUS), and diffuse light spectroscopy (DLS) were used to measure tumor oxygen status using vascular endothelial growth factor (VEGF)-transfected hypervascular human melanoma xenografts and their nontransfected counterparts as a model. NIH1286 human melanoma cells were transfected with a retroviral vector +/- a 720-bp fr...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21bca761714910a4b82c8f20a2e8a876" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:40506712,&quot;asset_id&quot;:19234100,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/40506712/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="19234100"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="19234100"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19234100; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19234100]").text(description); $(".js-view-count[data-work-id=19234100]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19234100; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='19234100']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 19234100, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21bca761714910a4b82c8f20a2e8a876" } } $('.js-work-strip[data-work-id=19234100]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":19234100,"title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model","translated_title":"","metadata":{"abstract":"Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen saturation, tissue pO(2), oxygen consumption rate, and hypoxic fraction. The goal of this investigation was to integrate these measurements to obtain a comprehensive profile of tumor oxygenation. Platelet/endothelial cell adhesion molecule immunohistochemistry, the recessed oxygen microelectrode, color and power Doppler ultrasound (DUS), and diffuse light spectroscopy (DLS) were used to measure tumor oxygen status using vascular endothelial growth factor (VEGF)-transfected hypervascular human melanoma xenografts and their nontransfected counterparts as a model. NIH1286 human melanoma cells were transfected with a retroviral vector +/- a 720-bp fr...","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Cancer research"},"translated_abstract":"Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen saturation, tissue pO(2), oxygen consumption rate, and hypoxic fraction. The goal of this investigation was to integrate these measurements to obtain a comprehensive profile of tumor oxygenation. Platelet/endothelial cell adhesion molecule immunohistochemistry, the recessed oxygen microelectrode, color and power Doppler ultrasound (DUS), and diffuse light spectroscopy (DLS) were used to measure tumor oxygen status using vascular endothelial growth factor (VEGF)-transfected hypervascular human melanoma xenografts and their nontransfected counterparts as a model. NIH1286 human melanoma cells were transfected with a retroviral vector +/- a 720-bp fr...","internal_url":"https://www.academia.edu/19234100/An_integrated_approach_to_measuring_tumor_oxygen_status_using_human_melanoma_xenografts_as_a_model","translated_internal_url":"","created_at":"2015-11-30T07:17:22.067-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39467948,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":11302031,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":564240,"email":"f***d@uphs.upenn.edu","display_order":0,"name":"Douglas Fraker","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"},{"id":11302041,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":32697935,"co_author_invite_id":2648583,"email":"b***k@seas.upenn.edu","affiliation":"Drexel University","display_order":4194304,"name":"Donald Buerk","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"},{"id":11302043,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":95190,"email":"c***l@uphs.upenn.edu","display_order":6291456,"name":"Chandra Sehgal","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"},{"id":11302065,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":2648591,"email":"a***i@biochain.com","display_order":7340032,"name":"Alex Hsi","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"},{"id":11302067,"work_id":19234100,"tagging_user_id":39467948,"tagged_user_id":null,"co_author_invite_id":745225,"email":"c***j@wustl.edu","display_order":7864320,"name":"Joseph Culver","title":"An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model"}],"downloadable_attachments":[{"id":40506712,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/40506712/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/40506712/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_integrated_approach_to_measuring_tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/40506712/CMenon2003CRv63-libre.pdf?1448896881=\u0026response-content-disposition=attachment%3B+filename%3DAn_integrated_approach_to_measuring_tumo.pdf\u0026Expires=1732769309\u0026Signature=GEq25GcauBSXDfd16O5KyX5abcC2mzr6JeQcwWtPaw-Nb~HtQfhNgioA8dx2kj1nbPuNw89N5PfeG4PXrvjF0UmAiEB4X-K4sgLAH3rjEh~2BE36OI-wxww83knF5enI17ara3SwyzMhJhaR2bYgoA95AxOK18cjs8cGMWpfnmQ3PxhYYe16ZNNwqkIUgeONgotCcV7PzVyTaNYv6F3KiCBVbAvuE3uxaHOsvoEAyWDnko6ASFIctq3zYMIyo3YVqX7D-stivhcICVBgAjJ88PTz2TYou9OVwIly2sah6jRY3n6KByBn0CULjAu5~qZ1~-98Vu4lvyFzP0HXeDA63g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_integrated_approach_to_measuring_tumor_oxygen_status_using_human_melanoma_xenografts_as_a_model","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":39467948,"first_name":"Indira","middle_initials":null,"last_name":"Prabakaran","page_name":"IndiraPrabakaran","domain_name":"independent","created_at":"2015-11-30T07:17:05.029-08:00","display_name":"Indira Prabakaran","url":"https://independent.academia.edu/IndiraPrabakaran"},"attachments":[{"id":40506712,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/40506712/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/40506712/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_integrated_approach_to_measuring_tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/40506712/CMenon2003CRv63-libre.pdf?1448896881=\u0026response-content-disposition=attachment%3B+filename%3DAn_integrated_approach_to_measuring_tumo.pdf\u0026Expires=1732769309\u0026Signature=GEq25GcauBSXDfd16O5KyX5abcC2mzr6JeQcwWtPaw-Nb~HtQfhNgioA8dx2kj1nbPuNw89N5PfeG4PXrvjF0UmAiEB4X-K4sgLAH3rjEh~2BE36OI-wxww83knF5enI17ara3SwyzMhJhaR2bYgoA95AxOK18cjs8cGMWpfnmQ3PxhYYe16ZNNwqkIUgeONgotCcV7PzVyTaNYv6F3KiCBVbAvuE3uxaHOsvoEAyWDnko6ASFIctq3zYMIyo3YVqX7D-stivhcICVBgAjJ88PTz2TYou9OVwIly2sah6jRY3n6KByBn0CULjAu5~qZ1~-98Vu4lvyFzP0HXeDA63g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":15639,"name":"Ultrasound","url":"https://www.academia.edu/Documents/in/Ultrasound"},{"id":37434,"name":"Quantitative analysis","url":"https://www.academia.edu/Documents/in/Quantitative_analysis"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99023,"name":"Melanoma","url":"https://www.academia.edu/Documents/in/Melanoma"},{"id":285086,"name":"Integrated Approach","url":"https://www.academia.edu/Documents/in/Integrated_Approach"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":426588,"name":"Blood Flow","url":"https://www.academia.edu/Documents/in/Blood_Flow"},{"id":533274,"name":"Growth rate","url":"https://www.academia.edu/Documents/in/Growth_rate"},{"id":571738,"name":"Internal medicine Doppler ultrasonography","url":"https://www.academia.edu/Documents/in/Internal_medicine_Doppler_ultrasonography"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":641216,"name":"Quantitative Analysis","url":"https://www.academia.edu/Documents/in/Quantitative_Analysis-1"},{"id":1193624,"name":"Oxygen Consumption","url":"https://www.academia.edu/Documents/in/Oxygen_Consumption"},{"id":1213145,"name":"power Doppler","url":"https://www.academia.edu/Documents/in/power_Doppler"},{"id":1558342,"name":"Oxygen saturation","url":"https://www.academia.edu/Documents/in/Oxygen_saturation"},{"id":1796877,"name":"Vascular Endothelial Growth Factor","url":"https://www.academia.edu/Documents/in/Vascular_Endothelial_Growth_Factor"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488217"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488217/Shear_stress_induced_NO_production_is_dependent_on_ATP_autocrine_signaling_and_capacitative_calcium_entry"><img alt="Research paper thumbnail of Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry" class="work-thumbnail" src="https://attachments.academia-assets.com/45280909/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488217/Shear_stress_induced_NO_production_is_dependent_on_ATP_autocrine_signaling_and_capacitative_calcium_entry">Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry</a></div><div class="wp-workCard_item"><span>Cellular and molecular bioengineering</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is als...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ac3f3aa6b7bb6096617299d7caadc3a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280909,&quot;asset_id&quot;:13488217,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280909/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488217"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488217"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488217; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488217]").text(description); $(".js-view-count[data-work-id=13488217]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488217; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488217']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488217, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ac3f3aa6b7bb6096617299d7caadc3a8" } } $('.js-work-strip[data-work-id=13488217]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488217,"title":"Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry","translated_title":"","metadata":{"abstract":"Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is als...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Cellular and molecular bioengineering"},"translated_abstract":"Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is als...","internal_url":"https://www.academia.edu/13488217/Shear_stress_induced_NO_production_is_dependent_on_ATP_autocrine_signaling_and_capacitative_calcium_entry","translated_internal_url":"","created_at":"2015-07-01T04:56:21.591-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951278,"work_id":13488217,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564225,"email":"b***e@drexel.edu","display_order":0,"name":"Kenneth Barbee","title":"Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry"},{"id":1951280,"work_id":13488217,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564226,"email":"b***e@coe.drexel.edu","display_order":4194304,"name":"Kenneth Barbee","title":"Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry"}],"downloadable_attachments":[{"id":45280909,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280909/thumbnails/1.jpg","file_name":"Shear_Stress-Induced_NO_Production_is_De20160502-10677-4l77hk.pdf","download_url":"https://www.academia.edu/attachments/45280909/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Shear_stress_induced_NO_production_is_de.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280909/Shear_Stress-Induced_NO_Production_is_De20160502-10677-4l77hk-libre.pdf?1462205510=\u0026response-content-disposition=attachment%3B+filename%3DShear_stress_induced_NO_production_is_de.pdf\u0026Expires=1732769309\u0026Signature=CFhimYco8rwvBqQcCwrJAmvHh0lz9JZJDmNzE5k-wimU0HzMtw7UI3EGIRRwKaitLsdk1-dWEA9MzoLJ7mcT9dDOni5xe5oivGpaiDyqElw-nZmGvaAZHv2aiy4znqcKSNFx9WioAAhS0XxpUB97Vc2hiKtm3IYZO9ZCAJGXUy7svt0a3ePZetf4uSE0vXVgyJ8d1-3KiMbXbMbfIHSWUq4TVW7tP-Y3LAusRmS4Ka9ijuf-IzRRAcBOTDl4755wAOerIF565tZ16sOnnPqCbWTMHFOTSKqNwyr8QytUklinlLnEgsFxLaePuxujs512rRlUM0uJ3UlgWcIe7smNCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Shear_stress_induced_NO_production_is_dependent_on_ATP_autocrine_signaling_and_capacitative_calcium_entry","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280909,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280909/thumbnails/1.jpg","file_name":"Shear_Stress-Induced_NO_Production_is_De20160502-10677-4l77hk.pdf","download_url":"https://www.academia.edu/attachments/45280909/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Shear_stress_induced_NO_production_is_de.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280909/Shear_Stress-Induced_NO_Production_is_De20160502-10677-4l77hk-libre.pdf?1462205510=\u0026response-content-disposition=attachment%3B+filename%3DShear_stress_induced_NO_production_is_de.pdf\u0026Expires=1732769309\u0026Signature=CFhimYco8rwvBqQcCwrJAmvHh0lz9JZJDmNzE5k-wimU0HzMtw7UI3EGIRRwKaitLsdk1-dWEA9MzoLJ7mcT9dDOni5xe5oivGpaiDyqElw-nZmGvaAZHv2aiy4znqcKSNFx9WioAAhS0XxpUB97Vc2hiKtm3IYZO9ZCAJGXUy7svt0a3ePZetf4uSE0vXVgyJ8d1-3KiMbXbMbfIHSWUq4TVW7tP-Y3LAusRmS4Ka9ijuf-IzRRAcBOTDl4755wAOerIF565tZ16sOnnPqCbWTMHFOTSKqNwyr8QytUklinlLnEgsFxLaePuxujs512rRlUM0uJ3UlgWcIe7smNCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488216"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488216/Effects_of_iron_chelators_on_ion_channels_and_HIF_1%CE%B1_in_the_carotid_body"><img alt="Research paper thumbnail of Effects of iron-chelators on ion-channels and HIF-1α in the carotid body" class="work-thumbnail" src="https://attachments.academia-assets.com/45280887/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488216/Effects_of_iron_chelators_on_ion_channels_and_HIF_1%CE%B1_in_the_carotid_body">Effects of iron-chelators on ion-channels and HIF-1α in the carotid body</a></div><div class="wp-workCard_item"><span>Respiratory Physiology &amp; Neurobiology</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increasing ventilation mostly by inhibiting the oxygen sensitive ion channels and exciting the mitochondrial functions in the glomus cells. On the other hand, Fe2+-chelation mimics hypoxia by inhibiting the prolyl hydroxylases and the degradation of HIF-1α in non-excitable cells. Whether Fe2+-chelation can inhibit the ion channels giving rise to</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4406c75550428abc2f748984f95b1959" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280887,&quot;asset_id&quot;:13488216,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280887/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488216"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488216"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488216; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488216]").text(description); $(".js-view-count[data-work-id=13488216]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488216; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488216']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488216, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4406c75550428abc2f748984f95b1959" } } $('.js-work-strip[data-work-id=13488216]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488216,"title":"Effects of iron-chelators on ion-channels and HIF-1α in the carotid body","translated_title":"","metadata":{"abstract":"Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increasing ventilation mostly by inhibiting the oxygen sensitive ion channels and exciting the mitochondrial functions in the glomus cells. On the other hand, Fe2+-chelation mimics hypoxia by inhibiting the prolyl hydroxylases and the degradation of HIF-1α in non-excitable cells. Whether Fe2+-chelation can inhibit the ion channels giving rise to","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Respiratory Physiology \u0026 Neurobiology"},"translated_abstract":"Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increasing ventilation mostly by inhibiting the oxygen sensitive ion channels and exciting the mitochondrial functions in the glomus cells. On the other hand, Fe2+-chelation mimics hypoxia by inhibiting the prolyl hydroxylases and the degradation of HIF-1α in non-excitable cells. Whether Fe2+-chelation can inhibit the ion channels giving rise to","internal_url":"https://www.academia.edu/13488216/Effects_of_iron_chelators_on_ion_channels_and_HIF_1%CE%B1_in_the_carotid_body","translated_internal_url":"","created_at":"2015-07-01T04:56:21.450-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951299,"work_id":13488216,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564241,"email":"a***y@hotmail.com","display_order":0,"name":"Arijit Roy","title":"Effects of iron-chelators on ion-channels and HIF-1α in the carotid body"}],"downloadable_attachments":[{"id":45280887,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280887/thumbnails/1.jpg","file_name":"j.resp.2004.03.010.pdf20160502-5574-16ylz31","download_url":"https://www.academia.edu/attachments/45280887/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effects_of_iron_chelators_on_ion_channel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280887/j.resp.2004.03.010-libre.pdf20160502-5574-16ylz31?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_iron_chelators_on_ion_channel.pdf\u0026Expires=1732769309\u0026Signature=OB88t6H6hGcZ1SnoCBv7PXyrAVoHlKh7jGHo6jlrdIjk03pcgYWsrdVCzWYSzojlcvmbeOo53txvkg0I40NJ-E5zSgbThZiQ13QqDWYxegAvi-ZvYrfPj~-gdOyCuAXsb18ehhr4sS1mBw-s3Yg57jlf~7ayEwALSZ5J-gDnsDPirQi2cPgWDB3BzRCT4moKxzZiTjPohiThtmkIi2kUaOhjdogm19STO3QXizu~sVIA1dVjiFUcqT7WHTHW~DFJg4SY8ADr0PTU2t3L8Yh1HDUfU-NC9c0RpmDN9BmfgycHsyiwj~2QKDStp1vauEZWBw5IMofmj1-icwF4agLcMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effects_of_iron_chelators_on_ion_channels_and_HIF_1α_in_the_carotid_body","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280887,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280887/thumbnails/1.jpg","file_name":"j.resp.2004.03.010.pdf20160502-5574-16ylz31","download_url":"https://www.academia.edu/attachments/45280887/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effects_of_iron_chelators_on_ion_channel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280887/j.resp.2004.03.010-libre.pdf20160502-5574-16ylz31?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_iron_chelators_on_ion_channel.pdf\u0026Expires=1732769309\u0026Signature=OB88t6H6hGcZ1SnoCBv7PXyrAVoHlKh7jGHo6jlrdIjk03pcgYWsrdVCzWYSzojlcvmbeOo53txvkg0I40NJ-E5zSgbThZiQ13QqDWYxegAvi-ZvYrfPj~-gdOyCuAXsb18ehhr4sS1mBw-s3Yg57jlf~7ayEwALSZ5J-gDnsDPirQi2cPgWDB3BzRCT4moKxzZiTjPohiThtmkIi2kUaOhjdogm19STO3QXizu~sVIA1dVjiFUcqT7WHTHW~DFJg4SY8ADr0PTU2t3L8Yh1HDUfU-NC9c0RpmDN9BmfgycHsyiwj~2QKDStp1vauEZWBw5IMofmj1-icwF4agLcMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":23323,"name":"Transcription Factors","url":"https://www.academia.edu/Documents/in/Transcription_Factors"},{"id":23772,"name":"Respiratory Physiology","url":"https://www.academia.edu/Documents/in/Respiratory_Physiology"},{"id":31084,"name":"Ion Channels","url":"https://www.academia.edu/Documents/in/Ion_Channels"},{"id":51566,"name":"Dopamine","url":"https://www.academia.edu/Documents/in/Dopamine"},{"id":158597,"name":"Iron","url":"https://www.academia.edu/Documents/in/Iron"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":352757,"name":"Ascorbic Acid","url":"https://www.academia.edu/Documents/in/Ascorbic_Acid"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":715895,"name":"Carotid Body","url":"https://www.academia.edu/Documents/in/Carotid_Body"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":4920468,"url":"http://www.sciencedirect.com/science/article/pii/S1569904804000552"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488215"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488215/Suppression_of_glomus_cell_K_conductance_by_4_aminopyridine_is_not_related_to_Ca_2_i_dopamine_release_and_chemosensory_discharge_from_carotid_body"><img alt="Research paper thumbnail of Suppression of glomus cell K + conductance by 4-aminopyridine is not related to [Ca 2+] i , dopamine release and chemosensory discharge from carotid body" class="work-thumbnail" src="https://attachments.academia-assets.com/45280890/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488215/Suppression_of_glomus_cell_K_conductance_by_4_aminopyridine_is_not_related_to_Ca_2_i_dopamine_release_and_chemosensory_discharge_from_carotid_body">Suppression of glomus cell K + conductance by 4-aminopyridine is not related to [Ca 2+] i , dopamine release and chemosensory discharge from carotid body</a></div><div class="wp-workCard_item"><span>Brain Research</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The hypothesis that suppression of O2-sensitive K+ current is the initial event in hypoxic chemot...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The hypothesis that suppression of O2-sensitive K+ current is the initial event in hypoxic chemotransduction in the carotid body glomus cells was tested by using 4-aminopyridine (4-AP), a known suppressant of K+ current, on intracellular [Ca2+]i, dopamine secretion and chemosensory discharge in cat carotid body (CB). In vitro experiments were performed with superfused–perfused cat CBs, measuring chemosensory discharge, monitoring dopamine</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="651cba1c92d5bc59d823059c510dc87a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280890,&quot;asset_id&quot;:13488215,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280890/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488215"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488215"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488215; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488215]").text(description); $(".js-view-count[data-work-id=13488215]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488215; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488215']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488215, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "651cba1c92d5bc59d823059c510dc87a" } } $('.js-work-strip[data-work-id=13488215]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488215,"title":"Suppression of glomus cell K + conductance by 4-aminopyridine is not related to [Ca 2+] i , dopamine release and chemosensory discharge from carotid body","translated_title":"","metadata":{"abstract":"The hypothesis that suppression of O2-sensitive K+ current is the initial event in hypoxic chemotransduction in the carotid body glomus cells was tested by using 4-aminopyridine (4-AP), a known suppressant of K+ current, on intracellular [Ca2+]i, dopamine secretion and chemosensory discharge in cat carotid body (CB). In vitro experiments were performed with superfused–perfused cat CBs, measuring chemosensory discharge, monitoring dopamine","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Brain Research"},"translated_abstract":"The hypothesis that suppression of O2-sensitive K+ current is the initial event in hypoxic chemotransduction in the carotid body glomus cells was tested by using 4-aminopyridine (4-AP), a known suppressant of K+ current, on intracellular [Ca2+]i, dopamine secretion and chemosensory discharge in cat carotid body (CB). In vitro experiments were performed with superfused–perfused cat CBs, measuring chemosensory discharge, monitoring dopamine","internal_url":"https://www.academia.edu/13488215/Suppression_of_glomus_cell_K_conductance_by_4_aminopyridine_is_not_related_to_Ca_2_i_dopamine_release_and_chemosensory_discharge_from_carotid_body","translated_internal_url":"","created_at":"2015-07-01T04:56:21.332-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951298,"work_id":13488215,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564241,"email":"a***y@hotmail.com","display_order":0,"name":"Arijit Roy","title":"Suppression of glomus cell K + conductance by 4-aminopyridine is not related to [Ca 2+] i , dopamine release and chemosensory discharge from carotid body"}],"downloadable_attachments":[{"id":45280890,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280890/thumbnails/1.jpg","file_name":"s0006-8993_2897_2901276-6.pdf20160502-6630-xqfnlu","download_url":"https://www.academia.edu/attachments/45280890/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Suppression_of_glomus_cell_K_conductance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280890/s0006-8993_2897_2901276-6-libre.pdf20160502-6630-xqfnlu?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_glomus_cell_K_conductance.pdf\u0026Expires=1732769309\u0026Signature=fKuNqB92Vup8FSeqj~YMj5p7YI~oF4kuq6wRbgdPUF8ftxYop6NaZ1Gfd1DXJMbaqoJN9z-3pqcMpX9omCgTz1a7MT0DWusJFWzmPdGBcaN-EPBmGYXxAca9I8MVvJ-LaycaWEJdzPylQy9idjEKktb-C75wwEzKbLtiv7gtNXX-lpbxkT38juxMwZsMXn5OHeoKCMalXYTVxJn2R-fehVPqCkJLlRist1lUVtDG555L6zlP8ntW9-7qYemMisNkG3r7vtU3Z9Zj9b-Fnj-ZhOOSu7EPh3cJPVKtr7ctY9CqCeVGlyZLtP4mimKRla-Nvepsohh6mryYoN08liX6dQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Suppression_of_glomus_cell_K_conductance_by_4_aminopyridine_is_not_related_to_Ca_2_i_dopamine_release_and_chemosensory_discharge_from_carotid_body","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280890,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280890/thumbnails/1.jpg","file_name":"s0006-8993_2897_2901276-6.pdf20160502-6630-xqfnlu","download_url":"https://www.academia.edu/attachments/45280890/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Suppression_of_glomus_cell_K_conductance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280890/s0006-8993_2897_2901276-6-libre.pdf20160502-6630-xqfnlu?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DSuppression_of_glomus_cell_K_conductance.pdf\u0026Expires=1732769309\u0026Signature=fKuNqB92Vup8FSeqj~YMj5p7YI~oF4kuq6wRbgdPUF8ftxYop6NaZ1Gfd1DXJMbaqoJN9z-3pqcMpX9omCgTz1a7MT0DWusJFWzmPdGBcaN-EPBmGYXxAca9I8MVvJ-LaycaWEJdzPylQy9idjEKktb-C75wwEzKbLtiv7gtNXX-lpbxkT38juxMwZsMXn5OHeoKCMalXYTVxJn2R-fehVPqCkJLlRist1lUVtDG555L6zlP8ntW9-7qYemMisNkG3r7vtU3Z9Zj9b-Fnj-ZhOOSu7EPh3cJPVKtr7ctY9CqCeVGlyZLtP4mimKRla-Nvepsohh6mryYoN08liX6dQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":51566,"name":"Dopamine","url":"https://www.academia.edu/Documents/in/Dopamine"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":67133,"name":"Anoxia","url":"https://www.academia.edu/Documents/in/Anoxia"},{"id":363533,"name":"Carotid Sinus","url":"https://www.academia.edu/Documents/in/Carotid_Sinus"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":557691,"name":"Potassium Channels","url":"https://www.academia.edu/Documents/in/Potassium_Channels"},{"id":715895,"name":"Carotid Body","url":"https://www.academia.edu/Documents/in/Carotid_Body"},{"id":801444,"name":"Aminopyridine","url":"https://www.academia.edu/Documents/in/Aminopyridine"},{"id":1000427,"name":"Reference Values","url":"https://www.academia.edu/Documents/in/Reference_Values"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1823382,"name":"Intracellular Calcium","url":"https://www.academia.edu/Documents/in/Intracellular_Calcium"}],"urls":[{"id":4920467,"url":"http://www.sciencedirect.com/science/article/pii/S0006899397012766"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488214"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488214/An_Integrated_Approach_to_Measuring_Tumor_Oxygen_Status_Using_Human_Melanoma_Xenografts_as_a_Model1"><img alt="Research paper thumbnail of An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1" class="work-thumbnail" src="https://attachments.academia-assets.com/38058684/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488214/An_Integrated_Approach_to_Measuring_Tumor_Oxygen_Status_Using_Human_Melanoma_Xenografts_as_a_Model1">An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcom...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen satu- ration, tissue pO2, oxygen consumption rate, and hypoxic fraction. The</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a6a9c8b7a33140e3a0dddf66e05f204e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:38058684,&quot;asset_id&quot;:13488214,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/38058684/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488214"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488214"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488214; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488214]").text(description); $(".js-view-count[data-work-id=13488214]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488214; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488214']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488214, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a6a9c8b7a33140e3a0dddf66e05f204e" } } $('.js-work-strip[data-work-id=13488214]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488214,"title":"An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1","translated_title":"","metadata":{"abstract":"Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen satu- ration, tissue pO2, oxygen consumption rate, and hypoxic fraction. The","publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":"Tumor oxygen status is a reliable prognostic marker that impacts malignant progression and outcome of tumor therapy. However, tumor oxygenation is heterogeneous and cannot be sufficiently described by a single parameter. It is influenced by several factors including microvessel density (MVD), blood flow (BF), blood volume (BV), blood oxygen satu- ration, tissue pO2, oxygen consumption rate, and hypoxic fraction. The","internal_url":"https://www.academia.edu/13488214/An_Integrated_Approach_to_Measuring_Tumor_Oxygen_Status_Using_Human_Melanoma_Xenografts_as_a_Model1","translated_internal_url":"","created_at":"2015-07-01T04:56:21.215-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951282,"work_id":13488214,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":158599,"email":"y***h@physics.upenn.edu","display_order":0,"name":"Arjun Yodh","title":"An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1"},{"id":1951283,"work_id":13488214,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564228,"email":"m***c@uphs.upenn.edu","display_order":4194304,"name":"Chandrakala Menon","title":"An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1"},{"id":1951297,"work_id":13488214,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564240,"email":"f***d@uphs.upenn.edu","display_order":6291456,"name":"Douglas Fraker","title":"An Integrated Approach to Measuring Tumor Oxygen Status Using Human Melanoma Xenografts as a Model1"}],"downloadable_attachments":[{"id":38058684,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38058684/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/38058684/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Integrated_Approach_to_Measuring_Tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38058684/CMenon2003CRv63-libre.pdf?1435752181=\u0026response-content-disposition=attachment%3B+filename%3DAn_Integrated_Approach_to_Measuring_Tumo.pdf\u0026Expires=1732769309\u0026Signature=X4S8YTUUWNQU-y6IGTu60-yZLbO~ip4cqKzm4wvKEhwDeqAoaCmISt~gkF-n2mlgFZsXqhUG8LBZGh~~lCpEuqnf1a43NQXWqUA3Scfv8sgL3z8o-aZoSVGVL1s8GuKtDyctXPdkNtKqpqs3R1NQrv-wM3T41CZX-yoZilApY6kYMgvjPOBbWY6mN~65BKZJueJzlDuKSqngpV3j3aiaajlBF8p4X4x8gTr3FaQtAsn8FTblQQk9hzqGpsPPZJI3J09xjMK-A1x7~wc0CJ~iXxEY2kjIVjWHp288zuXU9tm6SBlE~zM1C571vla-Ej4DO8F8DBEEtlQ1Ov9fnn332w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Integrated_Approach_to_Measuring_Tumor_Oxygen_Status_Using_Human_Melanoma_Xenografts_as_a_Model1","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":38058684,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38058684/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/38058684/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Integrated_Approach_to_Measuring_Tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38058684/CMenon2003CRv63-libre.pdf?1435752181=\u0026response-content-disposition=attachment%3B+filename%3DAn_Integrated_Approach_to_Measuring_Tumo.pdf\u0026Expires=1732769309\u0026Signature=X4S8YTUUWNQU-y6IGTu60-yZLbO~ip4cqKzm4wvKEhwDeqAoaCmISt~gkF-n2mlgFZsXqhUG8LBZGh~~lCpEuqnf1a43NQXWqUA3Scfv8sgL3z8o-aZoSVGVL1s8GuKtDyctXPdkNtKqpqs3R1NQrv-wM3T41CZX-yoZilApY6kYMgvjPOBbWY6mN~65BKZJueJzlDuKSqngpV3j3aiaajlBF8p4X4x8gTr3FaQtAsn8FTblQQk9hzqGpsPPZJI3J09xjMK-A1x7~wc0CJ~iXxEY2kjIVjWHp288zuXU9tm6SBlE~zM1C571vla-Ej4DO8F8DBEEtlQ1Ov9fnn332w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":38058683,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38058683/thumbnails/1.jpg","file_name":"CMenon2003CRv63.pdf","download_url":"https://www.academia.edu/attachments/38058683/download_file","bulk_download_file_name":"An_Integrated_Approach_to_Measuring_Tumo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38058683/CMenon2003CRv63-libre.pdf?1435752181=\u0026response-content-disposition=attachment%3B+filename%3DAn_Integrated_Approach_to_Measuring_Tumo.pdf\u0026Expires=1732769309\u0026Signature=f1y0wORma~DBi~Mt48GwOEKWF7np4mVwuZgDGbW~o-Uys~uIL-yYKZvIpnGoRW8x5fHUa76RN7MFhn~LFFHDqJNF6OmslITnrXYxmIrDSvG8KWCqC0AABegd1mUriaZXQaA4aj80UXw9mAsKOHtBosnit7oIDcFyqz0YJVgpr0di26uqlSJllGjkmtv2eVgkePhpYnwbt8snc25qYNrSadZmCZyf0~uKvM-l7oMUGFOO8DEN06UBI6QIZE4SslQ-LMBt6ex-mGKMzXAfN5PrVV7060TPDGdrKqqMhfk1BZrHDlJspOlDhycTZq6I4Dsk6~nC9g09HFpvtXr3b8G9jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":15639,"name":"Ultrasound","url":"https://www.academia.edu/Documents/in/Ultrasound"},{"id":37434,"name":"Quantitative analysis","url":"https://www.academia.edu/Documents/in/Quantitative_analysis"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99023,"name":"Melanoma","url":"https://www.academia.edu/Documents/in/Melanoma"},{"id":285086,"name":"Integrated Approach","url":"https://www.academia.edu/Documents/in/Integrated_Approach"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":426588,"name":"Blood Flow","url":"https://www.academia.edu/Documents/in/Blood_Flow"},{"id":533274,"name":"Growth rate","url":"https://www.academia.edu/Documents/in/Growth_rate"},{"id":571738,"name":"Internal medicine Doppler ultrasonography","url":"https://www.academia.edu/Documents/in/Internal_medicine_Doppler_ultrasonography"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":641216,"name":"Quantitative Analysis","url":"https://www.academia.edu/Documents/in/Quantitative_Analysis-1"},{"id":1193624,"name":"Oxygen Consumption","url":"https://www.academia.edu/Documents/in/Oxygen_Consumption"},{"id":1213145,"name":"power Doppler","url":"https://www.academia.edu/Documents/in/power_Doppler"},{"id":1558342,"name":"Oxygen saturation","url":"https://www.academia.edu/Documents/in/Oxygen_saturation"},{"id":1796877,"name":"Vascular Endothelial Growth Factor","url":"https://www.academia.edu/Documents/in/Vascular_Endothelial_Growth_Factor"}],"urls":[{"id":4920466,"url":"http://dept.physics.upenn.edu/yodhlab/papers/2003/CMenon2003CRv63.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488213"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488213/Predominant_role_of_endothelial_nitric_oxide_synthase_in_vascular_endothelial_growth_factor_induced_angiogenesis_and_vascular_permeability"><img alt="Research paper thumbnail of Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability" class="work-thumbnail" src="https://attachments.academia-assets.com/45280900/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488213/Predominant_role_of_endothelial_nitric_oxide_synthase_in_vascular_endothelial_growth_factor_induced_angiogenesis_and_vascular_permeability">Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability</a></div><div class="wp-workCard_item"><span>Proceedings of The National Academy of Sciences</span><span>, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="230dd7442b8e567e3f5961563a5a9912" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280900,&quot;asset_id&quot;:13488213,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280900/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488213"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488213"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488213; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488213]").text(description); $(".js-view-count[data-work-id=13488213]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488213; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488213']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488213, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "230dd7442b8e567e3f5961563a5a9912" } } $('.js-work-strip[data-work-id=13488213]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488213,"title":"Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability","translated_title":"","metadata":{"grobid_abstract":"Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [L-N 6 -(1-iminoethyl) lysine, L-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) \u003e WT with L-NIL or iNOS ؊/؊ \u003e eNOS ؊/؊ \u003e eNOS ؊/؊ with L-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS-and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS ؊/؊ mice but not in eNOS ؊/؊ mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Proceedings of The National Academy of Sciences","grobid_abstract_attachment_id":45280900},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488213/Predominant_role_of_endothelial_nitric_oxide_synthase_in_vascular_endothelial_growth_factor_induced_angiogenesis_and_vascular_permeability","translated_internal_url":"","created_at":"2015-07-01T04:56:21.083-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951281,"work_id":13488213,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564227,"email":"c***k@yumc.yonsei.ac.kr","display_order":0,"name":"Chae-ok Yun","title":"Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability"},{"id":1951296,"work_id":13488213,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564239,"email":"j***g@mail.jci.tju.edu","display_order":4194304,"name":"Jenifer Ang","title":"Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability"}],"downloadable_attachments":[{"id":45280900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280900/thumbnails/1.jpg","file_name":"Fukumura_D_Gohongi_T_Kadambi_A_Izumi_Y_A20160502-5585-1nupkmy.pdf","download_url":"https://www.academia.edu/attachments/45280900/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predominant_role_of_endothelial_nitric_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280900/Fukumura_D_Gohongi_T_Kadambi_A_Izumi_Y_A20160502-5585-1nupkmy-libre.pdf?1462205510=\u0026response-content-disposition=attachment%3B+filename%3DPredominant_role_of_endothelial_nitric_o.pdf\u0026Expires=1732769309\u0026Signature=Ao-d3KySxjrHkONImGhHRreeZu~hkNlC8HncWVsZ8ikZRKPPakUtURFtWl6w5txvyzuNHS1U9LwkGD2y45mhLSjstWz8vQt5xNLARtSbc7NRzOWP1brC1rhmONfqqVfs1Ce4-FMrWvDPaOECaJjCVfe2jzWESnFadZUFafjxxCuPQqykJwAeykGaO4enwjW3wcVs2FrS6rKtQFr7iyCJdB1143fDMJuFnU5i4TjC-IMP3tYXEJjapLUUvafGP1JKXMIF-NbDcB41TLKZ4But15jayo6nB4yWcBgs~4fGBc4S7HiCLNcoLweeIvHFuNA-xTFajNAed8PQdJw6C5O6iA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predominant_role_of_endothelial_nitric_oxide_synthase_in_vascular_endothelial_growth_factor_induced_angiogenesis_and_vascular_permeability","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280900/thumbnails/1.jpg","file_name":"Fukumura_D_Gohongi_T_Kadambi_A_Izumi_Y_A20160502-5585-1nupkmy.pdf","download_url":"https://www.academia.edu/attachments/45280900/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predominant_role_of_endothelial_nitric_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280900/Fukumura_D_Gohongi_T_Kadambi_A_Izumi_Y_A20160502-5585-1nupkmy-libre.pdf?1462205510=\u0026response-content-disposition=attachment%3B+filename%3DPredominant_role_of_endothelial_nitric_o.pdf\u0026Expires=1732769309\u0026Signature=Ao-d3KySxjrHkONImGhHRreeZu~hkNlC8HncWVsZ8ikZRKPPakUtURFtWl6w5txvyzuNHS1U9LwkGD2y45mhLSjstWz8vQt5xNLARtSbc7NRzOWP1brC1rhmONfqqVfs1Ce4-FMrWvDPaOECaJjCVfe2jzWESnFadZUFafjxxCuPQqykJwAeykGaO4enwjW3wcVs2FrS6rKtQFr7iyCJdB1143fDMJuFnU5i4TjC-IMP3tYXEJjapLUUvafGP1JKXMIF-NbDcB41TLKZ4But15jayo6nB4yWcBgs~4fGBc4S7HiCLNcoLweeIvHFuNA-xTFajNAed8PQdJw6C5O6iA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":1142512,"name":"Vascular Permeability","url":"https://www.academia.edu/Documents/in/Vascular_Permeability"},{"id":1796877,"name":"Vascular Endothelial Growth Factor","url":"https://www.academia.edu/Documents/in/Vascular_Endothelial_Growth_Factor"}],"urls":[{"id":4920465,"url":"http://www.pnas.org/cgi/doi/10.1073/pnas.041359198"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488212"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488212/Previous_Speakers_at_The_Svedberg_Lecture_Series_at_BMC"><img alt="Research paper thumbnail of Previous Speakers at The Svedberg Lecture Series at BMC" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488212/Previous_Speakers_at_The_Svedberg_Lecture_Series_at_BMC">Previous Speakers at The Svedberg Lecture Series at BMC</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/EricWesthof">Eric Westhof</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488212"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488212"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488212; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488212]").text(description); $(".js-view-count[data-work-id=13488212]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488212; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488212']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488212, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13488212]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488212,"title":"Previous Speakers at The Svedberg Lecture Series at BMC","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488212/Previous_Speakers_at_The_Svedberg_Lecture_Series_at_BMC","translated_internal_url":"","created_at":"2015-07-01T04:56:20.943-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951260,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":39581848,"co_author_invite_id":60597,"email":"c***t@ncifcrf.gov","display_order":0,"name":"Don Court","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951261,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":524103,"email":"j***n@ski.mskcc.org","display_order":4194304,"name":"James Rothman","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951262,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":126632,"email":"h***8@york.ac.uk","display_order":6291456,"name":"Helen Cox","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951263,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":126633,"email":"h***x@yahoo.com.au","display_order":7340032,"name":"Helen Cox","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951264,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":203154,"email":"v***n@molgen.mpg.de","display_order":7864320,"name":"Martin Vingron","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951265,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":32694268,"co_author_invite_id":null,"email":"l***h@wi.mit.edu","display_order":8126464,"name":"H. Lodish","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951266,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":256399,"email":"s***3@mole.bio.cam.ac.uk","display_order":8257536,"name":"Stephen Jackson","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951267,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":235858,"email":"c***d@mail.nih.gov","display_order":8323072,"name":"Donald Court","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951268,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":450972,"email":"k***s@newcastle.ac.uk","display_order":8355840,"name":"Kenn Gerdes","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951269,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":450973,"email":"k***s@ncl.ac.uk","display_order":8372224,"name":"Kenn Gerdes","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951271,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":32523828,"co_author_invite_id":null,"email":"e***f@ibmc-cnrs.unistra.fr","display_order":8384512,"name":"Eric Westhof","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951286,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":34854869,"co_author_invite_id":564231,"email":"k***n@berkeley.edu","display_order":8386560,"name":"Judith Klinman","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951287,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564232,"email":"a***r@amedd.army.mil","display_order":8387584,"name":"Arthur Lander","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951288,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564233,"email":"h***s@forsyth.org","display_order":8388096,"name":"M. Hamarlund-udenaes","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951289,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564234,"email":"t***y@iwind.com.tw","display_order":8388352,"name":"Tor Ny","title":"Previous Speakers at The Svedberg Lecture Series at BMC"},{"id":1951290,"work_id":13488212,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564235,"email":"l***l@chem.tamu.edu","display_order":8388480,"name":"Per Lindahl","title":"Previous Speakers at The Svedberg Lecture Series at BMC"}],"downloadable_attachments":[],"slug":"Previous_Speakers_at_The_Svedberg_Lecture_Series_at_BMC","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[],"research_interests":[],"urls":[{"id":4920464,"url":"http://www.bmc.uu.se/en/filedownload.php?id=721"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488211"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488211/Endothelial_Progenitor_Cell_Release_into_Circulation_Is_Triggered_by_Hyperoxia_Induced_Increases_in_Bone_Marrow_Nitric_Oxide"><img alt="Research paper thumbnail of Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide" class="work-thumbnail" src="https://attachments.academia-assets.com/45280923/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488211/Endothelial_Progenitor_Cell_Release_into_Circulation_Is_Triggered_by_Hyperoxia_Induced_Increases_in_Bone_Marrow_Nitric_Oxide">Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide</a></div><div class="wp-workCard_item"><span>Stem Cells</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b917b1975a811d2a6e96172ea96ec3eb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280923,&quot;asset_id&quot;:13488211,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280923/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488211"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488211"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488211; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488211]").text(description); $(".js-view-count[data-work-id=13488211]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488211; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488211']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488211, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b917b1975a811d2a6e96172ea96ec3eb" } } $('.js-work-strip[data-work-id=13488211]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488211,"title":"Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide","translated_title":"","metadata":{"grobid_abstract":"Endothelial progenitor cells (EPC) are known to contribute to wound healing, but the physiologic triggers for their mobilization are often insufficient to induce complete wound healing in the presence of severe ischemia. EPC trafficking is known to be regulated by hypoxic gradients and induced by vascular endothelial growth factor-mediated increases in bone marrow nitric oxide (NO). Hyperbaric oxygen (HBO) enhances wound healing, although the mechanisms for its therapeutic effects are incompletely understood. It is known that HBO increases nitric oxide levels in perivascular tissues via stimulation of nitric oxide synthase (NOS). Here we show that HBO increases bone marrow NO in vivo thereby in-creasing release of EPC into circulation. These effects are inhibited by pretreatment with the NOS inhibitor L-nitroarginine methyl ester (L-NAME). HBO-mediated mobilization of EPC is associated with increased lower limb spontaneous circulatory recovery after femoral ligation and enhanced closure of ischemic wounds, and these effects on limb perfusion and wound healing are also inhibited by L-NAME pretreatment. These data show that EPC mobilization into circulation is triggered by hyperoxia through induction of bone marrow NO with resulting enhancement in ischemic limb perfusion and wound healing. STEM CELLS","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Stem Cells","grobid_abstract_attachment_id":45280923},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488211/Endothelial_Progenitor_Cell_Release_into_Circulation_Is_Triggered_by_Hyperoxia_Induced_Increases_in_Bone_Marrow_Nitric_Oxide","translated_internal_url":"","created_at":"2015-07-01T04:56:20.860-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951251,"work_id":13488211,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564221,"email":"o***z@uphs.upenn.edu","display_order":0,"name":"Omaida Velazquez","title":"Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide"},{"id":1951274,"work_id":13488211,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564223,"email":"s***m@mail.med.upenn.edu","display_order":4194304,"name":"Stephen Thom","title":"Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide"}],"downloadable_attachments":[{"id":45280923,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280923/thumbnails/1.jpg","file_name":"Endothelial_Progenitor_Cell_Release_into20160502-10677-19k26z3.pdf","download_url":"https://www.academia.edu/attachments/45280923/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Endothelial_Progenitor_Cell_Release_into.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280923/Endothelial_Progenitor_Cell_Release_into20160502-10677-19k26z3-libre.pdf?1462205509=\u0026response-content-disposition=attachment%3B+filename%3DEndothelial_Progenitor_Cell_Release_into.pdf\u0026Expires=1732769309\u0026Signature=ICeZbggc1wv~~Ha21xiLBiIQj~mxXqMBWrj02YifHCm-SNecZDZUFpGM5I2jx19ph4fIZYKprzHXJNSWowpC-ShW3-cihW6G7vsMbjRavxdgF1YfPGUIQIHmrhVMl7Z7C8~adVeNSfdbwygLGL9ikUkIl7ciEhwON3cjO42zUATo5KW2KZba140Dp0sLzWKHtjNPFaWGTVAFp95n9UvjXP4Pla~a~JcJVpsATZotZ4QPfFFVQ3nfr1-PkELhpIaEnZCpv~Jkmy8jYFZLR3i-NHAMVHz7l9SrDx1SoA7aR2FdjMyqwkTMRwynLAXFv12yGFXhxmWeJ4gEg9~oLSdYGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Endothelial_Progenitor_Cell_Release_into_Circulation_Is_Triggered_by_Hyperoxia_Induced_Increases_in_Bone_Marrow_Nitric_Oxide","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280923,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280923/thumbnails/1.jpg","file_name":"Endothelial_Progenitor_Cell_Release_into20160502-10677-19k26z3.pdf","download_url":"https://www.academia.edu/attachments/45280923/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Endothelial_Progenitor_Cell_Release_into.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280923/Endothelial_Progenitor_Cell_Release_into20160502-10677-19k26z3-libre.pdf?1462205509=\u0026response-content-disposition=attachment%3B+filename%3DEndothelial_Progenitor_Cell_Release_into.pdf\u0026Expires=1732769309\u0026Signature=ICeZbggc1wv~~Ha21xiLBiIQj~mxXqMBWrj02YifHCm-SNecZDZUFpGM5I2jx19ph4fIZYKprzHXJNSWowpC-ShW3-cihW6G7vsMbjRavxdgF1YfPGUIQIHmrhVMl7Z7C8~adVeNSfdbwygLGL9ikUkIl7ciEhwON3cjO42zUATo5KW2KZba140Dp0sLzWKHtjNPFaWGTVAFp95n9UvjXP4Pla~a~JcJVpsATZotZ4QPfFFVQ3nfr1-PkELhpIaEnZCpv~Jkmy8jYFZLR3i-NHAMVHz7l9SrDx1SoA7aR2FdjMyqwkTMRwynLAXFv12yGFXhxmWeJ4gEg9~oLSdYGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":3642,"name":"Stem Cells","url":"https://www.academia.edu/Documents/in/Stem_Cells"},{"id":8991,"name":"Wound Healing","url":"https://www.academia.edu/Documents/in/Wound_Healing"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":82983,"name":"Ischemia","url":"https://www.academia.edu/Documents/in/Ischemia"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":121940,"name":"STEM","url":"https://www.academia.edu/Documents/in/STEM"},{"id":159239,"name":"Bone marrow","url":"https://www.academia.edu/Documents/in/Bone_marrow"},{"id":354937,"name":"Bone Marrow Transplantation","url":"https://www.academia.edu/Documents/in/Bone_Marrow_Transplantation"},{"id":561057,"name":"Hyperbaric Oxygenation","url":"https://www.academia.edu/Documents/in/Hyperbaric_Oxygenation"},{"id":995532,"name":"Hyperoxia","url":"https://www.academia.edu/Documents/in/Hyperoxia"},{"id":1665885,"name":"Laser Doppler Flowmetry","url":"https://www.academia.edu/Documents/in/Laser_Doppler_Flowmetry"},{"id":2197154,"name":"Extremities","url":"https://www.academia.edu/Documents/in/Extremities"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13421677"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13421677/Temporal_dynamics_of_the_partial_pressure_of_brain_tissue_oxygen_during_functional_forepaw_stimulation_in_rats"><img alt="Research paper thumbnail of Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats" class="work-thumbnail" src="https://attachments.academia-assets.com/45361015/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13421677/Temporal_dynamics_of_the_partial_pressure_of_brain_tissue_oxygen_during_functional_forepaw_stimulation_in_rats">Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://upenn.academia.edu/JoelGreenberg">Joel Greenberg</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a></span></div><div class="wp-workCard_item"><span>Neuroscience Letters</span><span>, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c087fb3223684b1723ec264a1dd95f2e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45361015,&quot;asset_id&quot;:13421677,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45361015/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13421677"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13421677"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13421677; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13421677]").text(description); $(".js-view-count[data-work-id=13421677]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13421677; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13421677']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13421677, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c087fb3223684b1723ec264a1dd95f2e" } } $('.js-work-strip[data-work-id=13421677]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13421677,"title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats","translated_title":"","metadata":{"grobid_abstract":"The partial pressure of tissue oxygen (pO 2 ) was measured in rat somatosensory cortex during periodic electrical forepaw stimulation of either 1 min or 4 s in duration, and correlated with simultaneous laser Doppler¯owmetry. For both stimulus durations, a transient decrease in tissue pO 2 preceded blood¯ow changes, followed by a peak in blood ow and an overshoot in tissue pO 2 . With protracted stimulation, tissue pO 2 remained only slightly above pre-stimulus baseline, while blood¯ow was maintained at a reduced plateau phase. A sustained post-stimulus undershoot in tissue pO 2 was observed only for the 1 min stimulus. These ®ndings suggest a complex dynamic relationship between oxygen utilization and blood¯ow. q","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Neuroscience Letters","grobid_abstract_attachment_id":45361015},"translated_abstract":null,"internal_url":"https://www.academia.edu/13421677/Temporal_dynamics_of_the_partial_pressure_of_brain_tissue_oxygen_during_functional_forepaw_stimulation_in_rats","translated_internal_url":"","created_at":"2015-06-29T07:58:18.675-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32638922,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1828907,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":32500251,"co_author_invite_id":null,"email":"d***e@mail.med.upenn.edu","display_order":0,"name":"John Detre","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1828948,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":319414,"email":"a***b@neuro.wustl.edu","display_order":4194304,"name":"Beau Ances","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1828965,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":540267,"email":"b***s@wust1.edu","display_order":6291456,"name":"Beau Ances","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1828986,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":48721395,"co_author_invite_id":319415,"email":"b***s@wustl.edu","display_order":7340032,"name":"Beau Ances","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1829002,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":540276,"email":"b***s@uphs.upenn.edu","display_order":7864320,"name":"B. Ances","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"},{"id":1829064,"work_id":13421677,"tagging_user_id":32638922,"tagged_user_id":32697935,"co_author_invite_id":540285,"email":"b***k@seas.upenn.edu","affiliation":"Drexel University","display_order":8126464,"name":"Donald Buerk","title":"Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats"}],"downloadable_attachments":[{"id":45361015,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45361015/thumbnails/1.jpg","file_name":"Ances_B.M._Buerk_D.G._Greenberg_J.H.__De20160504-25010-xlo26x.pdf","download_url":"https://www.academia.edu/attachments/45361015/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Temporal_dynamics_of_the_partial_pressur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45361015/Ances_B.M._Buerk_D.G._Greenberg_J.H.__De20160504-25010-xlo26x-libre.pdf?1462410125=\u0026response-content-disposition=attachment%3B+filename%3DTemporal_dynamics_of_the_partial_pressur.pdf\u0026Expires=1732769309\u0026Signature=UCeijFDH49TGfzEan7QgPXAW~jfzWxS8l2pTKA-vBqPZJ4tgRYq6GthDb2GuAHVFfxWa1ZSIsX8RhResVFspV3ZzOMr4rW--wc2Ou6vSaAOMa7aGRhfNEO8Z95PafNcjacN3UzAs7sCr2EwT9iONQZwI0b8qGa0agc5Oik3Zj-mqPQxTNzTNmjwZGibgJiQ3z9g6nTXJ6fox2XJViLmVHq6oFksifXSLUfgxvW~mvGP1QWgEoE33NNRWScaVqEJyvrq3vRfTajUoKByk4rX0Qf5dO0zb3Ir4VVzu8oDT4VU2wgLwxsrjb2KMUWWMUxhB~u8Drf8Cg4YkldvVgJGNag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Temporal_dynamics_of_the_partial_pressure_of_brain_tissue_oxygen_during_functional_forepaw_stimulation_in_rats","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":32638922,"first_name":"Joel","middle_initials":null,"last_name":"Greenberg","page_name":"JoelGreenberg","domain_name":"upenn","created_at":"2015-06-29T07:56:13.703-07:00","display_name":"Joel Greenberg","url":"https://upenn.academia.edu/JoelGreenberg"},"attachments":[{"id":45361015,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45361015/thumbnails/1.jpg","file_name":"Ances_B.M._Buerk_D.G._Greenberg_J.H.__De20160504-25010-xlo26x.pdf","download_url":"https://www.academia.edu/attachments/45361015/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Temporal_dynamics_of_the_partial_pressur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45361015/Ances_B.M._Buerk_D.G._Greenberg_J.H.__De20160504-25010-xlo26x-libre.pdf?1462410125=\u0026response-content-disposition=attachment%3B+filename%3DTemporal_dynamics_of_the_partial_pressur.pdf\u0026Expires=1732769309\u0026Signature=UCeijFDH49TGfzEan7QgPXAW~jfzWxS8l2pTKA-vBqPZJ4tgRYq6GthDb2GuAHVFfxWa1ZSIsX8RhResVFspV3ZzOMr4rW--wc2Ou6vSaAOMa7aGRhfNEO8Z95PafNcjacN3UzAs7sCr2EwT9iONQZwI0b8qGa0agc5Oik3Zj-mqPQxTNzTNmjwZGibgJiQ3z9g6nTXJ6fox2XJViLmVHq6oFksifXSLUfgxvW~mvGP1QWgEoE33NNRWScaVqEJyvrq3vRfTajUoKByk4rX0Qf5dO0zb3Ir4VVzu8oDT4VU2wgLwxsrjb2KMUWWMUxhB~u8Drf8Cg4YkldvVgJGNag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488210"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488210/Immunotargeting_of_catalase_to_the_pulmonary_endothelium_alleviates_oxidative_stress_and_reduces_acute_lung_transplantation_injury"><img alt="Research paper thumbnail of Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury" class="work-thumbnail" src="https://attachments.academia-assets.com/45280945/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488210/Immunotargeting_of_catalase_to_the_pulmonary_endothelium_alleviates_oxidative_stress_and_reduces_acute_lung_transplantation_injury">Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury</a></div><div class="wp-workCard_item"><span>Nature Biotechnology</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="473197e05e405f0b3eb23ca5b3bbbec7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280945,&quot;asset_id&quot;:13488210,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280945/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488210"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488210]").text(description); $(".js-view-count[data-work-id=13488210]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488210']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488210, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "473197e05e405f0b3eb23ca5b3bbbec7" } } $('.js-work-strip[data-work-id=13488210]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488210,"title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury","translated_title":"","metadata":{"grobid_abstract":"Vascular immunotargeting may facilitate the rapid and specific delivery of therapeutic agents to endothelial cells. We investigated whether targeting of an antioxidant enzyme, catalase, to the pulmonary endothelium alleviates oxidative stress in an in vivo model of lung transplantation. Intravenously injected enzymes, conjugated with an antibody to platelet-endothelial cell adhesion molecule-1, accumulate in the pulmonary vasculature and retain their activity during prolonged cold storage and transplantation. Immunotargeting of catalase to donor rats augments the antioxidant capacity of the pulmonary endothelium, reduces oxidative stress, ameliorates ischemia-reperfusion injury, prolongs the acceptable cold ischemia period of lung grafts, and improves the function of transplanted lung grafts. These findings validate the therapeutic potential of vascular immunotargeting as a drug delivery strategy to reduce endothelial injury. Potential applications of this strategy include improving the outcome of clinical lung transplantation and treating a wide variety of endothelial disorders.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Nature Biotechnology","grobid_abstract_attachment_id":45280945},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488210/Immunotargeting_of_catalase_to_the_pulmonary_endothelium_alleviates_oxidative_stress_and_reduces_acute_lung_transplantation_injury","translated_internal_url":"","created_at":"2015-07-01T04:56:20.698-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951275,"work_id":13488210,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564224,"email":"m***o@umd.edu","display_order":0,"name":"Silvia Muro","title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury"},{"id":1951276,"work_id":13488210,"tagging_user_id":32697935,"tagged_user_id":33952520,"co_author_invite_id":510321,"email":"m***o@mail.med.upenn.edu","display_order":4194304,"name":"Melpo Christofidou-solomidou","title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury"},{"id":1951291,"work_id":13488210,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":180724,"email":"c***s@tennisexpress.com","display_order":6291456,"name":"Melpo Christofidou-solomidou","title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury"},{"id":1951292,"work_id":13488210,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":347953,"email":"a***a@mail.med.upenn.edu","display_order":7340032,"name":"Steven Albelda","title":"Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury"}],"downloadable_attachments":[{"id":45280945,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280945/thumbnails/1.jpg","file_name":"Immunotargeting_of_catalase_to_the_pulmo20160502-7892-1e5ztib.pdf","download_url":"https://www.academia.edu/attachments/45280945/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Immunotargeting_of_catalase_to_the_pulmo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280945/Immunotargeting_of_catalase_to_the_pulmo20160502-7892-1e5ztib-libre.pdf?1462205509=\u0026response-content-disposition=attachment%3B+filename%3DImmunotargeting_of_catalase_to_the_pulmo.pdf\u0026Expires=1732769309\u0026Signature=YLhuUMxiWPiZSZffvW~WqTp7j7qyucqCuU1Nxdmu04lwVD-qzMI0v0LKawboSiKLd1WCNSSiFC34WFswZ-yOlqWLg4B4Pn732k5w2P5TrUu0qolkY6jBia7p1nVQuPQlTT0f4ZW8CMzfpMHlZ3kbZ1yYYCMfZzncBZrRlsRQ0yi7nwwP~sGRR~o4Ix4aXNYPqr1mExVEaXCXFz90bJbU6y6-bnkUe8WOuJvPlHfHxqVZrPa-vEed5P1EwRhfFjFrIyC9-g588MS6YRNCmOpuvU~8vYnXWYsUsTztrhL59PoYBomJx4TPyN0Tu7wkFomxlWXHgBod295YQwpbD0KRCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Immunotargeting_of_catalase_to_the_pulmonary_endothelium_alleviates_oxidative_stress_and_reduces_acute_lung_transplantation_injury","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280945,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280945/thumbnails/1.jpg","file_name":"Immunotargeting_of_catalase_to_the_pulmo20160502-7892-1e5ztib.pdf","download_url":"https://www.academia.edu/attachments/45280945/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcwOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Immunotargeting_of_catalase_to_the_pulmo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280945/Immunotargeting_of_catalase_to_the_pulmo20160502-7892-1e5ztib-libre.pdf?1462205509=\u0026response-content-disposition=attachment%3B+filename%3DImmunotargeting_of_catalase_to_the_pulmo.pdf\u0026Expires=1732769309\u0026Signature=YLhuUMxiWPiZSZffvW~WqTp7j7qyucqCuU1Nxdmu04lwVD-qzMI0v0LKawboSiKLd1WCNSSiFC34WFswZ-yOlqWLg4B4Pn732k5w2P5TrUu0qolkY6jBia7p1nVQuPQlTT0f4ZW8CMzfpMHlZ3kbZ1yYYCMfZzncBZrRlsRQ0yi7nwwP~sGRR~o4Ix4aXNYPqr1mExVEaXCXFz90bJbU6y6-bnkUe8WOuJvPlHfHxqVZrPa-vEed5P1EwRhfFjFrIyC9-g588MS6YRNCmOpuvU~8vYnXWYsUsTztrhL59PoYBomJx4TPyN0Tu7wkFomxlWXHgBod295YQwpbD0KRCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":11257,"name":"Drug delivery","url":"https://www.academia.edu/Documents/in/Drug_delivery"},{"id":14292,"name":"Oxidative Stress","url":"https://www.academia.edu/Documents/in/Oxidative_Stress"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":50948,"name":"Ischemia Reperfusion Injury","url":"https://www.academia.edu/Documents/in/Ischemia_Reperfusion_Injury"},{"id":51711,"name":"Antioxidants","url":"https://www.academia.edu/Documents/in/Antioxidants"},{"id":126863,"name":"Immunotherapy","url":"https://www.academia.edu/Documents/in/Immunotherapy"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":139007,"name":"Catalase","url":"https://www.academia.edu/Documents/in/Catalase"},{"id":147196,"name":"Monoclonal Antibodies","url":"https://www.academia.edu/Documents/in/Monoclonal_Antibodies"},{"id":159187,"name":"Drug Delivery Systems","url":"https://www.academia.edu/Documents/in/Drug_Delivery_Systems"},{"id":197297,"name":"Lung","url":"https://www.academia.edu/Documents/in/Lung"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":295257,"name":"Antioxidant enzyme","url":"https://www.academia.edu/Documents/in/Antioxidant_enzyme"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":413115,"name":"Peroxidases","url":"https://www.academia.edu/Documents/in/Peroxidases"},{"id":794984,"name":"Reperfusion injury","url":"https://www.academia.edu/Documents/in/Reperfusion_injury"},{"id":858489,"name":"Cold Storage","url":"https://www.academia.edu/Documents/in/Cold_Storage"},{"id":1036494,"name":"Heart and Lung Transplantation","url":"https://www.academia.edu/Documents/in/Heart_and_Lung_Transplantation"},{"id":1322481,"name":"Antioxidant Capacity","url":"https://www.academia.edu/Documents/in/Antioxidant_Capacity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488209"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488209/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model"><img alt="Research paper thumbnail of Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488209/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model">Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model</a></div><div class="wp-workCard_item"><span>Journal of the American College of Surgeons</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488209"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488209]").text(description); $(".js-view-count[data-work-id=13488209]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488209']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488209, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13488209]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488209,"title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Journal of the American College of Surgeons"},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488209/Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model","translated_internal_url":"","created_at":"2015-07-01T04:56:20.598-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951300,"work_id":13488209,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564240,"email":"f***d@uphs.upenn.edu","display_order":0,"name":"Douglas Fraker","title":"Eppendorf pO2 histograph and recessed pO2 microelectrode as methods of measuring in vivo oxygen tension in a murine tumor model"}],"downloadable_attachments":[],"slug":"Eppendorf_pO2_histograph_and_recessed_pO2_microelectrode_as_methods_of_measuring_in_vivo_oxygen_tension_in_a_murine_tumor_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[],"research_interests":[{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488208"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488208/Diabetic_impairments_in_NO_mediated_endothelial_progenitor_cell_mobilization_and_homing_are_reversed_by_hyperoxia_and_SDF_1%CE%B1"><img alt="Research paper thumbnail of Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α" class="work-thumbnail" src="https://attachments.academia-assets.com/45280924/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488208/Diabetic_impairments_in_NO_mediated_endothelial_progenitor_cell_mobilization_and_homing_are_reversed_by_hyperoxia_and_SDF_1%CE%B1">Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α</a></div><div class="wp-workCard_item"><span>Journal of Clinical Investigation</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a65bfa381a78d846dde943a814cf89c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280924,&quot;asset_id&quot;:13488208,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280924/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488208"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488208"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488208; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488208]").text(description); $(".js-view-count[data-work-id=13488208]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488208; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488208']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488208, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a65bfa381a78d846dde943a814cf89c" } } $('.js-work-strip[data-work-id=13488208]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488208,"title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α","translated_title":"","metadata":{"grobid_abstract":"Endothelial progenitor cells (EPCs) are essential in vasculogenesis and wound healing, but their circulating and wound level numbers are decreased in diabetes. This study aimed to determine mechanisms responsible for the diabetic defect in circulating and wound EPCs. Since mobilization of BM EPCs occurs via eNOS activation, we hypothesized that eNOS activation is impaired in diabetes, which results in reduced EPC mobilization. Since hyperoxia activates NOS in other tissues, we investigated whether hyperoxia restores EPC mobilization in diabetic mice through BM NOS activation. Additionally, we studied the hypothesis that impaired EPC homing in diabetes is due to decreased wound level stromal cell-derived factor-1α (SDF-1α), a chemokine that mediates EPC recruitment in ischemia. Diabetic mice showed impaired phosphorylation of BM eNOS, decreased circulating EPCs, and diminished SDF-1α expression in cutaneous wounds. Hyperoxia increased BM NO and circulating EPCs, effects inhibited by the NOS inhibitor N-nitro-l-arginine-methyl ester. Administration of SDF-1α into wounds reversed the EPC homing impairment and, with hyperoxia, synergistically enhanced EPC mobilization, homing, and wound healing. Thus, hyperoxia reversed the diabetic defect in EPC mobilization, and SDF-1α reversed the diabetic defect in EPC homing. The targets identified, which we believe to be novel, can significantly advance the field of diabetic wound healing.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Journal of Clinical Investigation","grobid_abstract_attachment_id":45280924},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488208/Diabetic_impairments_in_NO_mediated_endothelial_progenitor_cell_mobilization_and_homing_are_reversed_by_hyperoxia_and_SDF_1%CE%B1","translated_internal_url":"","created_at":"2015-07-01T04:56:20.505-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951250,"work_id":13488208,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564221,"email":"o***z@uphs.upenn.edu","display_order":0,"name":"Omaida Velazquez","title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α"},{"id":1951252,"work_id":13488208,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":225801,"email":"h***n@wakehealth.edu","display_order":4194304,"name":"Haiying Chen","title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α"},{"id":1951272,"work_id":13488208,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564223,"email":"s***m@mail.med.upenn.edu","display_order":6291456,"name":"Stephen Thom","title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α"},{"id":1951284,"work_id":13488208,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564229,"email":"m***o@wistar.org","display_order":7340032,"name":"Min Xiao","title":"Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α"}],"downloadable_attachments":[{"id":45280924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280924/thumbnails/1.jpg","file_name":"Gallagher_KA_Liu_ZJ_Xiao_M_Chen_H_Goldst20160502-13596-15j17ne.pdf","download_url":"https://www.academia.edu/attachments/45280924/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Diabetic_impairments_in_NO_mediated_endo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280924/Gallagher_KA_Liu_ZJ_Xiao_M_Chen_H_Goldst20160502-13596-15j17ne-libre.pdf?1462205512=\u0026response-content-disposition=attachment%3B+filename%3DDiabetic_impairments_in_NO_mediated_endo.pdf\u0026Expires=1732769309\u0026Signature=aXmkOYFu7UTQ0DOmpuwlPUeT0x9mfTPdaFlcZBC84QWSMl6ieuw7N82uYQEYbB3POL160OEREJQGMYYkd5YXii1Gmr4-O8yf-VP9JSQXWnaJh62VkdRkzzVh6eTXd9KwJLjBQBJdm4Ebch0v1-5J56WpCDjeNuc5dHTTGGSk224nHpt6UxEj~cZWabjwMnl-7oGqAU9p9HRuxGtFaQWLCrF6JTinq-xiar7wRpczpgRvqVhQVhOPzsxfcSIfkBwTVbFCeEIRcln61IERnjiPb9oBrHqvP7c5~e8QzhhW7IzsgU9RigXIDflVnxkdopcb512iP60Fqbk8bFNl-bfk9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Diabetic_impairments_in_NO_mediated_endothelial_progenitor_cell_mobilization_and_homing_are_reversed_by_hyperoxia_and_SDF_1α","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280924/thumbnails/1.jpg","file_name":"Gallagher_KA_Liu_ZJ_Xiao_M_Chen_H_Goldst20160502-13596-15j17ne.pdf","download_url":"https://www.academia.edu/attachments/45280924/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Diabetic_impairments_in_NO_mediated_endo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280924/Gallagher_KA_Liu_ZJ_Xiao_M_Chen_H_Goldst20160502-13596-15j17ne-libre.pdf?1462205512=\u0026response-content-disposition=attachment%3B+filename%3DDiabetic_impairments_in_NO_mediated_endo.pdf\u0026Expires=1732769310\u0026Signature=AqAHaki~QnDMkh2b1U~cxJO-fSM9n9SzWyxmcspMIF1jB8e9wxbHK~SPfpCWHRHtXHZV-M62wJrxA~KAemd2jTmvKb0snYkNzaOIl2j0ufgl69B~wb-4RkGFhtx3aAEV2b7rU8TTnbiJ6eEPD32QnKUeXVhiQmKdNAcEW3Wr7q-Ot~HMcwsn4xvOK-uM28Axm9nl-ke7kcnKi6BZ3oPegI2IvmhyDEDmBDvMH-07tUnogmNRwy96ThH9Ux5hLqwEFSJzcYvDgM7j3aEtg2ulwFkUVO-SA1stqvCTl9LBvBzIHJjD~74UpmxF43G3eClogNRAcpwGqyaKf2fqtLeC7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3642,"name":"Stem Cells","url":"https://www.academia.edu/Documents/in/Stem_Cells"},{"id":8991,"name":"Wound Healing","url":"https://www.academia.edu/Documents/in/Wound_Healing"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":99708,"name":"Clinical","url":"https://www.academia.edu/Documents/in/Clinical"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":995532,"name":"Hyperoxia","url":"https://www.academia.edu/Documents/in/Hyperoxia"},{"id":1144154,"name":"Clinical Investigation","url":"https://www.academia.edu/Documents/in/Clinical_Investigation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488206"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488206/NO_mediates_mural_cell_recruitment_and_vessel_morphogenesis_in_murine_melanomas_and_tissue_engineered_blood_vessels"><img alt="Research paper thumbnail of NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels" class="work-thumbnail" src="https://attachments.academia-assets.com/45280895/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488206/NO_mediates_mural_cell_recruitment_and_vessel_morphogenesis_in_murine_melanomas_and_tissue_engineered_blood_vessels">NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels</a></div><div class="wp-workCard_item"><span>Journal of Clinical Investigation</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="35aa98d65187e75bf1d57946adba00ed" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280895,&quot;asset_id&quot;:13488206,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280895/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488206"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488206"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488206; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488206]").text(description); $(".js-view-count[data-work-id=13488206]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488206; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488206']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488206, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "35aa98d65187e75bf1d57946adba00ed" } } $('.js-work-strip[data-work-id=13488206]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488206,"title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels","translated_title":"","metadata":{"grobid_abstract":"NO has been shown to mediate angiogenesis; however, its role in vessel morphogenesis and maturation is not known. Using intravital microscopy, histological analysis, α-smooth muscle actin and chondroitin sulfate proteoglycan 4 staining, microsensor NO measurements, and an NO synthase (NOS) inhibitor, we found that NO mediates mural cell coverage as well as vessel branching and longitudinal extension but not the circumferential growth of blood vessels in B16 murine melanomas.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Journal of Clinical Investigation","grobid_abstract_attachment_id":45280895},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488206/NO_mediates_mural_cell_recruitment_and_vessel_morphogenesis_in_murine_melanomas_and_tissue_engineered_blood_vessels","translated_internal_url":"","created_at":"2015-07-01T04:56:20.405-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951253,"work_id":13488206,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":502181,"email":"m***n@steele.mgh.harvard.edu","display_order":0,"name":"Lance Munn","title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels"},{"id":1951254,"work_id":13488206,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":502182,"email":"l***n@mgh.harvard.edu","display_order":4194304,"name":"Lance Munn","title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels"},{"id":1951255,"work_id":13488206,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":502183,"email":"l***e@steele.mgh.harvard.edu","display_order":6291456,"name":"Lance Munn","title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels"},{"id":1951256,"work_id":13488206,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564222,"email":"z***u@childrensmemorial.org","display_order":7340032,"name":"Zoe Demou","title":"NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels"}],"downloadable_attachments":[{"id":45280895,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280895/thumbnails/1.jpg","file_name":"NO_mediates_mural_cell_recruitment_and_v20160502-6630-1niq0ya.pdf","download_url":"https://www.academia.edu/attachments/45280895/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"NO_mediates_mural_cell_recruitment_and_v.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280895/NO_mediates_mural_cell_recruitment_and_v20160502-6630-1niq0ya-libre.pdf?1462205513=\u0026response-content-disposition=attachment%3B+filename%3DNO_mediates_mural_cell_recruitment_and_v.pdf\u0026Expires=1732769310\u0026Signature=RH44Y7QgjxFI-Xobog0sAivgnYbyaJHE-4LMnhq5TVM04M6g1xbYSFtBiflV3zQ82pGCvs5AfjjauQ9DYzTPdal7RZOVrUuaiH27tSdIouCt~V7nTXo8PJJNnwjR6Hm6A2iz5Lj6aMgeDMU0~9~OeDJ9I9UJWAR8gnl2q-Odm6G~QVPHeHsvbILiy787urcJa9ucnrrX6lVm4jAZ9sKiOcOqqv~3WcWL58gmQCeH3mwI2RmjV401myAQcBEraAT9aauAUieLPogDV~HbrT7k6QXHV2jZBvyzwY8Yb~B6H~h4l2bhLenyeK0xwRNwnYXTs8TNY9o1fHkLSIw~ARVWGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"NO_mediates_mural_cell_recruitment_and_vessel_morphogenesis_in_murine_melanomas_and_tissue_engineered_blood_vessels","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280895,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280895/thumbnails/1.jpg","file_name":"NO_mediates_mural_cell_recruitment_and_v20160502-6630-1niq0ya.pdf","download_url":"https://www.academia.edu/attachments/45280895/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"NO_mediates_mural_cell_recruitment_and_v.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280895/NO_mediates_mural_cell_recruitment_and_v20160502-6630-1niq0ya-libre.pdf?1462205513=\u0026response-content-disposition=attachment%3B+filename%3DNO_mediates_mural_cell_recruitment_and_v.pdf\u0026Expires=1732769310\u0026Signature=RH44Y7QgjxFI-Xobog0sAivgnYbyaJHE-4LMnhq5TVM04M6g1xbYSFtBiflV3zQ82pGCvs5AfjjauQ9DYzTPdal7RZOVrUuaiH27tSdIouCt~V7nTXo8PJJNnwjR6Hm6A2iz5Lj6aMgeDMU0~9~OeDJ9I9UJWAR8gnl2q-Odm6G~QVPHeHsvbILiy787urcJa9ucnrrX6lVm4jAZ9sKiOcOqqv~3WcWL58gmQCeH3mwI2RmjV401myAQcBEraAT9aauAUieLPogDV~HbrT7k6QXHV2jZBvyzwY8Yb~B6H~h4l2bhLenyeK0xwRNwnYXTs8TNY9o1fHkLSIw~ARVWGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2699,"name":"Tissue Engineering","url":"https://www.academia.edu/Documents/in/Tissue_Engineering"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":1144154,"name":"Clinical Investigation","url":"https://www.academia.edu/Documents/in/Clinical_Investigation"},{"id":1251210,"name":"Blood Vessel","url":"https://www.academia.edu/Documents/in/Blood_Vessel"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488205"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488205/Reduced_Nitric_Oxide_Concentration_in_the_Renal_Cortex_of_Streptozotocin_Induced_Diabetic_Rats_Effects_on_Renal_Oxygenation_and_Microcirculation"><img alt="Research paper thumbnail of Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488205/Reduced_Nitric_Oxide_Concentration_in_the_Renal_Cortex_of_Streptozotocin_Induced_Diabetic_Rats_Effects_on_Renal_Oxygenation_and_Microcirculation">Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PHansell">P. Hansell</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PLiss">P. Liss</a></span></div><div class="wp-workCard_item"><span>Diabetes</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypothesis that there is reduced NO concentration in the renal cortex of diabetic rats that mediates reduced renal cortical blood perfusion and oxygen tension (P O2). Streptozotocin-induced diabetic and control rats were injected with l-arginine followed by Nomega-nitro-L-arginine-metyl-ester (L-NAME). NO and P O2 were measured using microsensors, and local blood flow was recorded by laser-Doppler flowmetry. Plasma arginine and asymmetric dimethylarginine (ADMA) were analyzed by high-performance liquid chromatography. L-Arginine increased cortical NO concentrations more in diabetic animals, whereas changes in blood flow were similar. Cortical P O2 was unaffected by L-arginine in both groups. L-NAME decreased NO in control animals by 87 +/- 15 nmol/l compared with 45 +/- 7 nmol/l in diabetic animals. L-NAME decreased blood perfusion more in diabetic animals, but it only affected P O2 in control animals. Plasma arginine was significantly lower in diabetic animals (79.7 +/- 6.7 vs. 127.9 +/- 3.9 mmol/l), whereas ADMA was unchanged. A larger increase in renal cortical NO concentration after l-arginine injection, a smaller decrease in NO after L-NAME, and reduced plasma arginine suggest substrate limitation for NO formation in the renal cortex of diabetic animals. This demonstrates a new mechanism for diabetes-induced alteration in renal oxygen metabolism and local blood flow regulation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488205"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488205"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488205; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488205]").text(description); $(".js-view-count[data-work-id=13488205]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488205; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488205']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488205, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13488205]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488205,"title":"Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation","translated_title":"","metadata":{"abstract":"Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypothesis that there is reduced NO concentration in the renal cortex of diabetic rats that mediates reduced renal cortical blood perfusion and oxygen tension (P O2). Streptozotocin-induced diabetic and control rats were injected with l-arginine followed by Nomega-nitro-L-arginine-metyl-ester (L-NAME). NO and P O2 were measured using microsensors, and local blood flow was recorded by laser-Doppler flowmetry. Plasma arginine and asymmetric dimethylarginine (ADMA) were analyzed by high-performance liquid chromatography. L-Arginine increased cortical NO concentrations more in diabetic animals, whereas changes in blood flow were similar. Cortical P O2 was unaffected by L-arginine in both groups. L-NAME decreased NO in control animals by 87 +/- 15 nmol/l compared with 45 +/- 7 nmol/l in diabetic animals. L-NAME decreased blood perfusion more in diabetic animals, but it only affected P O2 in control animals. Plasma arginine was significantly lower in diabetic animals (79.7 +/- 6.7 vs. 127.9 +/- 3.9 mmol/l), whereas ADMA was unchanged. A larger increase in renal cortical NO concentration after l-arginine injection, a smaller decrease in NO after L-NAME, and reduced plasma arginine suggest substrate limitation for NO formation in the renal cortex of diabetic animals. This demonstrates a new mechanism for diabetes-induced alteration in renal oxygen metabolism and local blood flow regulation.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Diabetes"},"translated_abstract":"Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypothesis that there is reduced NO concentration in the renal cortex of diabetic rats that mediates reduced renal cortical blood perfusion and oxygen tension (P O2). Streptozotocin-induced diabetic and control rats were injected with l-arginine followed by Nomega-nitro-L-arginine-metyl-ester (L-NAME). NO and P O2 were measured using microsensors, and local blood flow was recorded by laser-Doppler flowmetry. Plasma arginine and asymmetric dimethylarginine (ADMA) were analyzed by high-performance liquid chromatography. L-Arginine increased cortical NO concentrations more in diabetic animals, whereas changes in blood flow were similar. Cortical P O2 was unaffected by L-arginine in both groups. L-NAME decreased NO in control animals by 87 +/- 15 nmol/l compared with 45 +/- 7 nmol/l in diabetic animals. L-NAME decreased blood perfusion more in diabetic animals, but it only affected P O2 in control animals. Plasma arginine was significantly lower in diabetic animals (79.7 +/- 6.7 vs. 127.9 +/- 3.9 mmol/l), whereas ADMA was unchanged. A larger increase in renal cortical NO concentration after l-arginine injection, a smaller decrease in NO after L-NAME, and reduced plasma arginine suggest substrate limitation for NO formation in the renal cortex of diabetic animals. This demonstrates a new mechanism for diabetes-induced alteration in renal oxygen metabolism and local blood flow regulation.","internal_url":"https://www.academia.edu/13488205/Reduced_Nitric_Oxide_Concentration_in_the_Renal_Cortex_of_Streptozotocin_Induced_Diabetic_Rats_Effects_on_Renal_Oxygenation_and_Microcirculation","translated_internal_url":"","created_at":"2015-07-01T04:56:20.315-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951293,"work_id":13488205,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564236,"email":"f***m@mcb.uu.se","display_order":0,"name":"F. Palm","title":"Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation"},{"id":1951294,"work_id":13488205,"tagging_user_id":32697935,"tagged_user_id":35829740,"co_author_invite_id":564237,"email":"p***l@mcb.uu.se","display_order":4194304,"name":"P. Hansell","title":"Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation"},{"id":1951295,"work_id":13488205,"tagging_user_id":32697935,"tagged_user_id":32841830,"co_author_invite_id":564238,"email":"p***s@radiol.uu.se","display_order":6291456,"name":"P. Liss","title":"Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation"}],"downloadable_attachments":[],"slug":"Reduced_Nitric_Oxide_Concentration_in_the_Renal_Cortex_of_Streptozotocin_Induced_Diabetic_Rats_Effects_on_Renal_Oxygenation_and_Microcirculation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[],"research_interests":[{"id":4581,"name":"Diabetes","url":"https://www.academia.edu/Documents/in/Diabetes"},{"id":8017,"name":"Microcirculation","url":"https://www.academia.edu/Documents/in/Microcirculation"},{"id":14292,"name":"Oxidative Stress","url":"https://www.academia.edu/Documents/in/Oxidative_Stress"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":555120,"name":"Arginine","url":"https://www.academia.edu/Documents/in/Arginine"},{"id":790002,"name":"Streptozotocin","url":"https://www.academia.edu/Documents/in/Streptozotocin"},{"id":1031967,"name":"Diabetic Rat","url":"https://www.academia.edu/Documents/in/Diabetic_Rat"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488204"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488204/Stimulation_of_nitric_oxide_synthase_in_cerebral_cortex_due_to_elevated_partial_pressures_of_oxygen_An_oxidative_stress_response"><img alt="Research paper thumbnail of Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response" class="work-thumbnail" src="https://attachments.academia-assets.com/45280903/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488204/Stimulation_of_nitric_oxide_synthase_in_cerebral_cortex_due_to_elevated_partial_pressures_of_oxygen_An_oxidative_stress_response">Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response</a></div><div class="wp-workCard_item"><span>Journal of Neurobiology</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="704e1a3a55ee520dc9641082e17405ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280903,&quot;asset_id&quot;:13488204,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280903/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488204"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488204"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488204; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488204]").text(description); $(".js-view-count[data-work-id=13488204]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488204; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488204']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488204, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "704e1a3a55ee520dc9641082e17405ce" } } $('.js-work-strip[data-work-id=13488204]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488204,"title":"Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response","translated_title":"","metadata":{"grobid_abstract":"The purpose of this investigation was to determine the impact of elevated partial pressures of O 2 on the steady state concentration of nitric oxide ( • NO) in the cerebral cortex. Rodents with implanted O 2 -and • NOspecific microelectrodes were exposed to O 2 at partial pressures from 0.2 to 2.8 atmospheres absolute (ATA) for up to 45 min. Elevations in • NO concentration occurred with all partial pressures above that of ambient air. In rats exposed to 2.8 ATA O 2 the increase was 692 ؎ 73 nM (S.E., n ‫؍‬ 5) over control. Changes were not associated with alterations in concentrations of nitric oxide synthase (NOS) enzymes. Based on studies with knock-out mice lacking genes for neuronal NOS (nNOS) or endothelial NOS (eNOS), nNOS activity contributed over 90% to total • NO elevation due to hyperoxia. Immunoprecipitation studies indicated that hyperoxia doubles the amount of nNOS associated with the molecular chaperone, heat shock protein 90 (Hsp90). Both • NO elevations and the association between nNOS and Hsp90 were inhibited in rats infused with superoxide dismutase. Elevations of • NO were also inhibited by treatment with the relatively specific nNOS inhibitor, 7 nitroindazole, by the ansamycin antibiotics herbimycin and geldanamycin, by the antioxidant N-acetylcysteine, by the calcium channel blocker nimodipine, and by the N-methyl-D-aspartate inhibitor, MK 801. Hyperoxia did not alter eNOS association with Hsp90, nor did it modify nNOS or eNOS associations with calmodulin, the magnitude of eNOS tyrosine phosphorylation, or nNOS phosphorylation via calmodulin kinase. Cerebral cortex blood flow, measured by laser Doppler flow probe, increased during hyperoxia and may be causally related to elevations of steady state • NO concentration. We conclude that hyperoxia causes an increase in • NO synthesis as part of a response to oxidative stress. Mechanisms for nNOS activation include augmentation in the association with Hsp90 and intracellular entry of calcium.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Journal of Neurobiology","grobid_abstract_attachment_id":45280903},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488204/Stimulation_of_nitric_oxide_synthase_in_cerebral_cortex_due_to_elevated_partial_pressures_of_oxygen_An_oxidative_stress_response","translated_internal_url":"","created_at":"2015-07-01T04:56:20.241-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951273,"work_id":13488204,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564223,"email":"s***m@mail.med.upenn.edu","display_order":0,"name":"Stephen Thom","title":"Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response"}],"downloadable_attachments":[{"id":45280903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280903/thumbnails/1.jpg","file_name":"FAST_TRACK_Stimulation_of_Nitric_Oxide_S20160502-31897-1v6twd7.pdf","download_url":"https://www.academia.edu/attachments/45280903/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stimulation_of_nitric_oxide_synthase_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280903/FAST_TRACK_Stimulation_of_Nitric_Oxide_S20160502-31897-1v6twd7-libre.pdf?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DStimulation_of_nitric_oxide_synthase_in.pdf\u0026Expires=1732769310\u0026Signature=Rno-BNyK1OLZ4tlDxpXVtT0PtQumTfsnr~RZVawk7l~myXrvYlChfFW8W0AryXS~1HRJllxqn9OPqHsX~1d7uiRxwN8Xw9SDGKKZhZa42DT8uybd4aj8nBWFE60jjjk~Kx8NCSyEXAgDyhos15NW4nnCfprYYER3jLf0s8JnvGQCSAOD9rgLY52vo1VGXlIF6crLtvld71YD5f1SPnNszoUnjtakpG3kTGtWxnAwI85ILLBe6W3Y4ZQ66YgyxyFmLQgKJOTwXWfh1L3lCabAvXSpz0prbE8F2FxePKD7hNAZ5oTyKnQazvX4yn06nj3vhbAWxzXDQlEGZnIwzXWsCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stimulation_of_nitric_oxide_synthase_in_cerebral_cortex_due_to_elevated_partial_pressures_of_oxygen_An_oxidative_stress_response","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280903/thumbnails/1.jpg","file_name":"FAST_TRACK_Stimulation_of_Nitric_Oxide_S20160502-31897-1v6twd7.pdf","download_url":"https://www.academia.edu/attachments/45280903/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stimulation_of_nitric_oxide_synthase_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280903/FAST_TRACK_Stimulation_of_Nitric_Oxide_S20160502-31897-1v6twd7-libre.pdf?1462205511=\u0026response-content-disposition=attachment%3B+filename%3DStimulation_of_nitric_oxide_synthase_in.pdf\u0026Expires=1732769310\u0026Signature=Rno-BNyK1OLZ4tlDxpXVtT0PtQumTfsnr~RZVawk7l~myXrvYlChfFW8W0AryXS~1HRJllxqn9OPqHsX~1d7uiRxwN8Xw9SDGKKZhZa42DT8uybd4aj8nBWFE60jjjk~Kx8NCSyEXAgDyhos15NW4nnCfprYYER3jLf0s8JnvGQCSAOD9rgLY52vo1VGXlIF6crLtvld71YD5f1SPnNszoUnjtakpG3kTGtWxnAwI85ILLBe6W3Y4ZQ66YgyxyFmLQgKJOTwXWfh1L3lCabAvXSpz0prbE8F2FxePKD7hNAZ5oTyKnQazvX4yn06nj3vhbAWxzXDQlEGZnIwzXWsCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":14292,"name":"Oxidative Stress","url":"https://www.academia.edu/Documents/in/Oxidative_Stress"},{"id":25804,"name":"Neurobiology","url":"https://www.academia.edu/Documents/in/Neurobiology"},{"id":51711,"name":"Antioxidants","url":"https://www.academia.edu/Documents/in/Antioxidants"},{"id":78467,"name":"Cerebral Cortex","url":"https://www.academia.edu/Documents/in/Cerebral_Cortex"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":437728,"name":"Isoenzymes","url":"https://www.academia.edu/Documents/in/Isoenzymes"},{"id":561057,"name":"Hyperbaric Oxygenation","url":"https://www.academia.edu/Documents/in/Hyperbaric_Oxygenation"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":970066,"name":"Cerebral Blood Flow","url":"https://www.academia.edu/Documents/in/Cerebral_Blood_Flow"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488203"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488203/Nitric_Oxide_Signaling_in_the_Microcirculation"><img alt="Research paper thumbnail of Nitric Oxide Signaling in the Microcirculation" class="work-thumbnail" src="https://attachments.academia-assets.com/45280906/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488203/Nitric_Oxide_Signaling_in_the_Microcirculation">Nitric Oxide Signaling in the Microcirculation</a></div><div class="wp-workCard_item"><span>Critical Reviews™ in Biomedical Engineering</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="43c5b27dcbae3a11f7f288be1ee6bcc0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45280906,&quot;asset_id&quot;:13488203,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45280906/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488203"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488203"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488203; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488203]").text(description); $(".js-view-count[data-work-id=13488203]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488203; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488203']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488203, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "43c5b27dcbae3a11f7f288be1ee6bcc0" } } $('.js-work-strip[data-work-id=13488203]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488203,"title":"Nitric Oxide Signaling in the Microcirculation","translated_title":"","metadata":{"grobid_abstract":"Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Critical Reviews™ in Biomedical Engineering","grobid_abstract_attachment_id":45280906},"translated_abstract":null,"internal_url":"https://www.academia.edu/13488203/Nitric_Oxide_Signaling_in_the_Microcirculation","translated_internal_url":"","created_at":"2015-07-01T04:56:20.167-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951277,"work_id":13488203,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564225,"email":"b***e@drexel.edu","display_order":0,"name":"Kenneth Barbee","title":"Nitric Oxide Signaling in the Microcirculation"},{"id":1951279,"work_id":13488203,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564226,"email":"b***e@coe.drexel.edu","display_order":4194304,"name":"Kenneth Barbee","title":"Nitric Oxide Signaling in the Microcirculation"}],"downloadable_attachments":[{"id":45280906,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280906/thumbnails/1.jpg","file_name":"Nitric_Oxide_Signaling_in_the_Microcircu20160502-31897-1we9dw2.pdf","download_url":"https://www.academia.edu/attachments/45280906/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nitric_Oxide_Signaling_in_the_Microcircu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280906/Nitric_Oxide_Signaling_in_the_Microcircu20160502-31897-1we9dw2-libre.pdf?1462205512=\u0026response-content-disposition=attachment%3B+filename%3DNitric_Oxide_Signaling_in_the_Microcircu.pdf\u0026Expires=1732769310\u0026Signature=V-clzm9XVjOz8TslhM3gEBHohi3-QAKOJ9Sog6d5tUyMyZ6VvMhglB57t9QQxAx4H~aMHWQs51xe1tFn87JcRWwMLsr--ubu0DKMUUYaLXOJCXbwr0rrqbB62oqvd7rAudWcMYzH0tH0N5-cEjC3oLQiq3rksnacEB5EhCx0FNSlKjIBymyT2qkgUGp2OsAx05InNxFtk71kJq0087EkF3N720SAVNhPEsMuw9jj84~om-bnEBgeLPg7ngiL35VunpH9Aq65HIDr0fTOeyMsHm8lxCmqHnQ0sW2fK-RtJeb1ewu8zez03~BL8p-bSWpOV3UpBuu8J6c86sqSpY6hEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nitric_Oxide_Signaling_in_the_Microcirculation","translated_slug":"","page_count":44,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[{"id":45280906,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45280906/thumbnails/1.jpg","file_name":"Nitric_Oxide_Signaling_in_the_Microcircu20160502-31897-1we9dw2.pdf","download_url":"https://www.academia.edu/attachments/45280906/download_file?st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&st=MTczMjc2NTcxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nitric_Oxide_Signaling_in_the_Microcircu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45280906/Nitric_Oxide_Signaling_in_the_Microcircu20160502-31897-1we9dw2-libre.pdf?1462205512=\u0026response-content-disposition=attachment%3B+filename%3DNitric_Oxide_Signaling_in_the_Microcircu.pdf\u0026Expires=1732769310\u0026Signature=V-clzm9XVjOz8TslhM3gEBHohi3-QAKOJ9Sog6d5tUyMyZ6VvMhglB57t9QQxAx4H~aMHWQs51xe1tFn87JcRWwMLsr--ubu0DKMUUYaLXOJCXbwr0rrqbB62oqvd7rAudWcMYzH0tH0N5-cEjC3oLQiq3rksnacEB5EhCx0FNSlKjIBymyT2qkgUGp2OsAx05InNxFtk71kJq0087EkF3N720SAVNhPEsMuw9jj84~om-bnEBgeLPg7ngiL35VunpH9Aq65HIDr0fTOeyMsHm8lxCmqHnQ0sW2fK-RtJeb1ewu8zez03~BL8p-bSWpOV3UpBuu8J6c86sqSpY6hEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":8017,"name":"Microcirculation","url":"https://www.academia.edu/Documents/in/Microcirculation"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":67133,"name":"Anoxia","url":"https://www.academia.edu/Documents/in/Anoxia"},{"id":74347,"name":"Hemodynamics","url":"https://www.academia.edu/Documents/in/Hemodynamics"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":555120,"name":"Arginine","url":"https://www.academia.edu/Documents/in/Arginine"},{"id":846581,"name":"Cell communication","url":"https://www.academia.edu/Documents/in/Cell_communication"},{"id":982534,"name":"Erythrocytes","url":"https://www.academia.edu/Documents/in/Erythrocytes"},{"id":995532,"name":"Hyperoxia","url":"https://www.academia.edu/Documents/in/Hyperoxia"},{"id":1311261,"name":"Hemoglobins","url":"https://www.academia.edu/Documents/in/Hemoglobins"},{"id":1621878,"name":"Guanylate Cyclase","url":"https://www.academia.edu/Documents/in/Guanylate_Cyclase"},{"id":1816594,"name":"Adenosine Triphosphate","url":"https://www.academia.edu/Documents/in/Adenosine_Triphosphate"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13488202"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13488202/Elevated_plasma_viscosity_in_extreme_hemodilution_increases_perivascular_nitric_oxide_concentration_and_microvascular_perfusion"><img alt="Research paper thumbnail of Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13488202/Elevated_plasma_viscosity_in_extreme_hemodilution_increases_perivascular_nitric_oxide_concentration_and_microvascular_perfusion">Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://ucsd.academia.edu/PedroCabrales">Pedro Cabrales</a></span></div><div class="wp-workCard_item"><span>AJP: Heart and Circulatory Physiology</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 (n = 6) or Dextran 70 (n = 5) with final plasma viscosities of 1.99 +/- 0.11 and 1.33 +/- 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control (n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13488202"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13488202"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13488202; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13488202]").text(description); $(".js-view-count[data-work-id=13488202]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13488202; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13488202']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13488202, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13488202]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13488202,"title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion","translated_title":"","metadata":{"abstract":"We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 (n = 6) or Dextran 70 (n = 5) with final plasma viscosities of 1.99 +/- 0.11 and 1.33 +/- 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control (n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"AJP: Heart and Circulatory Physiology"},"translated_abstract":"We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 (n = 6) or Dextran 70 (n = 5) with final plasma viscosities of 1.99 +/- 0.11 and 1.33 +/- 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control (n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.","internal_url":"https://www.academia.edu/13488202/Elevated_plasma_viscosity_in_extreme_hemodilution_increases_perivascular_nitric_oxide_concentration_and_microvascular_perfusion","translated_internal_url":"","created_at":"2015-07-01T04:56:20.089-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32697935,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1951257,"work_id":13488202,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":392042,"email":"p***s@ucsd.edum","display_order":0,"name":"Pedro Cabrales","title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion"},{"id":1951258,"work_id":13488202,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":238984,"email":"p***s@uscd.edu","display_order":4194304,"name":"Pedro Cabrales","title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion"},{"id":1951259,"work_id":13488202,"tagging_user_id":32697935,"tagged_user_id":32744362,"co_author_invite_id":238985,"email":"p***s@ucsd.edu","affiliation":"University of California, San Diego","display_order":6291456,"name":"Pedro Cabrales","title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion"},{"id":1951285,"work_id":13488202,"tagging_user_id":32697935,"tagged_user_id":null,"co_author_invite_id":564230,"email":"a***y@bit-ibio.com","display_order":7340032,"name":"G. Amy","title":"Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion"}],"downloadable_attachments":[],"slug":"Elevated_plasma_viscosity_in_extreme_hemodilution_increases_perivascular_nitric_oxide_concentration_and_microvascular_perfusion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32697935,"first_name":"Donald","middle_initials":null,"last_name":"Buerk","page_name":"DonaldBuerk","domain_name":"drexel","created_at":"2015-07-01T04:56:10.559-07:00","display_name":"Donald Buerk","url":"https://drexel.academia.edu/DonaldBuerk"},"attachments":[],"research_interests":[{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"},{"id":71421,"name":"Capillaries","url":"https://www.academia.edu/Documents/in/Capillaries"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":133362,"name":"Osmotic pressure","url":"https://www.academia.edu/Documents/in/Osmotic_pressure"},{"id":151448,"name":"American","url":"https://www.academia.edu/Documents/in/American"},{"id":162553,"name":"Skin","url":"https://www.academia.edu/Documents/in/Skin"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":389277,"name":"Blood Viscosity","url":"https://www.academia.edu/Documents/in/Blood_Viscosity"},{"id":831753,"name":"Hemodilution","url":"https://www.academia.edu/Documents/in/Hemodilution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13421673"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13421673/Temporal_Dynamics_of_Brain_Tissue_Nitric_Oxide_during_Functional_Forepaw_Stimulation_in_Rats"><img alt="Research paper thumbnail of Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13421673/Temporal_Dynamics_of_Brain_Tissue_Nitric_Oxide_during_Functional_Forepaw_Stimulation_in_Rats">Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://upenn.academia.edu/JoelGreenberg">Joel Greenberg</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://drexel.academia.edu/DonaldBuerk">Donald Buerk</a></span></div><div class="wp-workCard_item"><span>NeuroImage</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation of rat somatosensory cortex by electrical forepaw stimulation. Cortical tissue NO was measured electrochemically with rapid-responding recessed microelectrodes (tips &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;10 microm). Simultaneous blood flow measurements were made by laser-Doppler flowmetry (LDF). NO immediately increased, reaching a peak 125.5 +/- 32.8 (SE) nM above baseline (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) within 400 ms after stimulus onset, preceding any LDF changes, and then returned close to prestimulus levels after 2 s (123 signal-averaged trials, 12 rats). Blood flow began rising after a 1-s delay, reaching a peak just before electrical stimulation was ended at t = 4 s. A consistent poststimulus NO undershoot was observed as LDF returned to baseline. These findings complement our previous study (B. M. Ances et al., 2001, Neurosci. Lett. 306, 106-110) in which a transient decrease in rat somatosensory cortex tissue oxygen partial pressure was found to precede blood flow increases during functional activation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13421673"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13421673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13421673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13421673]").text(description); $(".js-view-count[data-work-id=13421673]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13421673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13421673']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13421673, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13421673]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13421673,"title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats","translated_title":"","metadata":{"abstract":"We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation of rat somatosensory cortex by electrical forepaw stimulation. Cortical tissue NO was measured electrochemically with rapid-responding recessed microelectrodes (tips \u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;10 microm). Simultaneous blood flow measurements were made by laser-Doppler flowmetry (LDF). NO immediately increased, reaching a peak 125.5 +/- 32.8 (SE) nM above baseline (P \u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) within 400 ms after stimulus onset, preceding any LDF changes, and then returned close to prestimulus levels after 2 s (123 signal-averaged trials, 12 rats). Blood flow began rising after a 1-s delay, reaching a peak just before electrical stimulation was ended at t = 4 s. A consistent poststimulus NO undershoot was observed as LDF returned to baseline. These findings complement our previous study (B. M. Ances et al., 2001, Neurosci. Lett. 306, 106-110) in which a transient decrease in rat somatosensory cortex tissue oxygen partial pressure was found to precede blood flow increases during functional activation.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"NeuroImage"},"translated_abstract":"We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation of rat somatosensory cortex by electrical forepaw stimulation. Cortical tissue NO was measured electrochemically with rapid-responding recessed microelectrodes (tips \u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;10 microm). Simultaneous blood flow measurements were made by laser-Doppler flowmetry (LDF). NO immediately increased, reaching a peak 125.5 +/- 32.8 (SE) nM above baseline (P \u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) within 400 ms after stimulus onset, preceding any LDF changes, and then returned close to prestimulus levels after 2 s (123 signal-averaged trials, 12 rats). Blood flow began rising after a 1-s delay, reaching a peak just before electrical stimulation was ended at t = 4 s. A consistent poststimulus NO undershoot was observed as LDF returned to baseline. These findings complement our previous study (B. M. Ances et al., 2001, Neurosci. Lett. 306, 106-110) in which a transient decrease in rat somatosensory cortex tissue oxygen partial pressure was found to precede blood flow increases during functional activation.","internal_url":"https://www.academia.edu/13421673/Temporal_Dynamics_of_Brain_Tissue_Nitric_Oxide_during_Functional_Forepaw_Stimulation_in_Rats","translated_internal_url":"","created_at":"2015-06-29T07:58:18.161-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32638922,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1828911,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":32500251,"co_author_invite_id":null,"email":"d***e@mail.med.upenn.edu","display_order":0,"name":"John Detre","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1828952,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":319414,"email":"a***b@neuro.wustl.edu","display_order":4194304,"name":"Beau Ances","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1828974,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":540267,"email":"b***s@wust1.edu","display_order":6291456,"name":"Beau Ances","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1828993,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":48721395,"co_author_invite_id":319415,"email":"b***s@wustl.edu","display_order":7340032,"name":"Beau Ances","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1829006,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":null,"co_author_invite_id":540276,"email":"b***s@uphs.upenn.edu","display_order":7864320,"name":"B. Ances","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"},{"id":1829065,"work_id":13421673,"tagging_user_id":32638922,"tagged_user_id":32697935,"co_author_invite_id":540285,"email":"b***k@seas.upenn.edu","affiliation":"Drexel University","display_order":8126464,"name":"Donald Buerk","title":"Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats"}],"downloadable_attachments":[],"slug":"Temporal_Dynamics_of_Brain_Tissue_Nitric_Oxide_during_Functional_Forepaw_Stimulation_in_Rats","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32638922,"first_name":"Joel","middle_initials":null,"last_name":"Greenberg","page_name":"JoelGreenberg","domain_name":"upenn","created_at":"2015-06-29T07:56:13.703-07:00","display_name":"Joel Greenberg","url":"https://upenn.academia.edu/JoelGreenberg"},"attachments":[],"research_interests":[{"id":445,"name":"Computer Graphics","url":"https://www.academia.edu/Documents/in/Computer_Graphics"},{"id":28501,"name":"Temporal dynamics","url":"https://www.academia.edu/Documents/in/Temporal_dynamics"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":103260,"name":"Neuroimage","url":"https://www.academia.edu/Documents/in/Neuroimage"},{"id":104621,"name":"Data Display","url":"https://www.academia.edu/Documents/in/Data_Display"},{"id":184907,"name":"Microelectrodes","url":"https://www.academia.edu/Documents/in/Microelectrodes"},{"id":277717,"name":"Somatosensory Cortex","url":"https://www.academia.edu/Documents/in/Somatosensory_Cortex"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":382388,"name":"Nitric Oxide Synthase","url":"https://www.academia.edu/Documents/in/Nitric_Oxide_Synthase"},{"id":426588,"name":"Blood Flow","url":"https://www.academia.edu/Documents/in/Blood_Flow"},{"id":970066,"name":"Cerebral Blood Flow","url":"https://www.academia.edu/Documents/in/Cerebral_Blood_Flow"},{"id":1157501,"name":"Blood Flow Velocity","url":"https://www.academia.edu/Documents/in/Blood_Flow_Velocity"},{"id":1193624,"name":"Oxygen Consumption","url":"https://www.academia.edu/Documents/in/Oxygen_Consumption"},{"id":1665885,"name":"Laser Doppler Flowmetry","url":"https://www.academia.edu/Documents/in/Laser_Doppler_Flowmetry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "9f899f71f29d22bf11580bacb74173b4d45a5e7859d7cf410373064d3a3d0bbf", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="V150IuzPDNV5lnh4pIt5nrQjPdI+XaMNAgl5JL+UpIpH7/4y2Jy1nLiR86QLtrv1+ytmchYpeUVbWhLFuQ3OJA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://drexel.academia.edu/DonaldBuerk" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="YXyfgcAget5lckdjFtDF/wR+O/RHjROnQK/l7Cn3TIhxzRWR9HPDl6R1zL+57QeUS3ZgVG/5ye8Z/I4NL24mJg==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10