CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 197 results for author: <span class="mathjax">Roy, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Roy%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Roy, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Roy%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Roy, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12998">arXiv:2502.12998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.12998">pdf</a>, <a href="https://arxiv.org/format/2502.12998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Personalized Top-k Set Queries Over Predicted Scores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nia%2C+S+N">Sohrab Namazi Nia</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosh%2C+S">Subhodeep Ghosh</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+S+B">Senjuti Basu Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Amer-Yahia%2C+S">Sihem Amer-Yahia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12998v1-abstract-short" style="display: inline;"> This work studies the applicability of expensive external oracles such as large language models in answering top-k queries over predicted scores. Such scores are incurred by user-defined functions to answer personalized queries over multi-modal data. We propose a generic computational framework that handles arbitrary set-based scoring functions, as long as the functions could be decomposed into co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12998v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12998v1-abstract-full" style="display: none;"> This work studies the applicability of expensive external oracles such as large language models in answering top-k queries over predicted scores. Such scores are incurred by user-defined functions to answer personalized queries over multi-modal data. We propose a generic computational framework that handles arbitrary set-based scoring functions, as long as the functions could be decomposed into constructs, each of which sent to an oracle (in our case an LLM) to predict partial scores. At a given point in time, the framework assumes a set of responses and their partial predicted scores, and it maintains a collection of possible sets that are likely to be the true top-k. Since calling oracles is costly, our framework judiciously identifies the next construct, i.e., the next best question to ask the oracle so as to maximize the likelihood of identifying the true top-k. We present a principled probabilistic model that quantifies that likelihood. We study efficiency opportunities in designing algorithms. We run an evaluation with three large scale datasets, scoring functions, and baselines. Experiments indicate the efficacy of our framework, as it achieves an order of magnitude improvement over baselines in requiring LLM calls while ensuring result accuracy. Scalability experiments further indicate that our framework could be used in large-scale applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12998v1-abstract-full').style.display = 'none'; document.getElementById('2502.12998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08925">arXiv:2502.08925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08925">pdf</a>, <a href="https://arxiv.org/format/2502.08925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Quantum Software Engineering and Potential of Quantum Computing in Software Engineering Research: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mandal%2C+A+K">Ashis Kumar Mandal</a>, <a href="/search/cs?searchtype=author&amp;query=Nadim%2C+M">Md Nadim</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+C+K">Chanchal K. Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Schneider%2C+K+A">Kevin A. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08925v1-abstract-short" style="display: inline;"> Research in software engineering is essential for improving development practices, leading to reliable and secure software. Leveraging the principles of quantum physics, quantum computing has emerged as a new computational paradigm that offers significant advantages over classical computing. As quantum computing progresses rapidly, its potential applications across various fields are becoming appa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08925v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08925v1-abstract-full" style="display: none;"> Research in software engineering is essential for improving development practices, leading to reliable and secure software. Leveraging the principles of quantum physics, quantum computing has emerged as a new computational paradigm that offers significant advantages over classical computing. As quantum computing progresses rapidly, its potential applications across various fields are becoming apparent. In software engineering, many tasks involve complex computations where quantum computers can greatly speed up the development process, leading to faster and more efficient solutions. With the growing use of quantum-based applications in different fields, quantum software engineering (QSE) has emerged as a discipline focused on designing, developing, and optimizing quantum software for diverse applications. This paper aims to review the role of quantum computing in software engineering research and the latest developments in QSE. To our knowledge, this is the first comprehensive review on this topic. We begin by introducing quantum computing, exploring its fundamental concepts, and discussing its potential applications in software engineering. We also examine various QSE techniques that expedite software development. Finally, we discuss the opportunities and challenges in quantum-driven software engineering and QSE. Our study reveals that quantum machine learning (QML) and quantum optimization have substantial potential to address classical software engineering tasks, though this area is still limited. Current QSE tools and techniques lack robustness and maturity, indicating a need for more focus. One of the main challenges is that quantum computing has yet to reach its full potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08925v1-abstract-full').style.display = 'none'; document.getElementById('2502.08925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Has been accepted for publication in Automated Software Engineering Journal, Springer, 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02572">arXiv:2502.02572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02572">pdf</a>, <a href="https://arxiv.org/format/2502.02572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Algorithms and Hardness Results for the $(k,\ell)$-Cover Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Madani%2C+A">Amirali Madani</a>, <a href="/search/cs?searchtype=author&amp;query=Maheshwari%2C+A">Anil Maheshwari</a>, <a href="/search/cs?searchtype=author&amp;query=Miraftab%2C+B">Babak Miraftab</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bodhayan Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02572v1-abstract-short" style="display: inline;"> A connected graph has a $(k,\ell)$-cover if each of its edges is contained in at least $\ell$ cliques of order $k$. Motivated by recent advances in extremal combinatorics and the literature on edge modification problems, we study the algorithmic version of the $(k,\ell)$-cover problem. Given a connected graph $G$, the $(k, \ell)$-cover problem is to identify the smallest subset of non-edges of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02572v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02572v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02572v1-abstract-full" style="display: none;"> A connected graph has a $(k,\ell)$-cover if each of its edges is contained in at least $\ell$ cliques of order $k$. Motivated by recent advances in extremal combinatorics and the literature on edge modification problems, we study the algorithmic version of the $(k,\ell)$-cover problem. Given a connected graph $G$, the $(k, \ell)$-cover problem is to identify the smallest subset of non-edges of $G$ such that their addition to $G$ results in a graph with a $(k, \ell)$-cover. For every constant $k\geq3$, we show that the $(k,1)$-cover problem is $\mathbb{NP}$-complete for general graphs. Moreover, we show that for every constant $k\geq 3$, the $(k,1)$-cover problem admits no polynomial-time constant-factor approximation algorithm unless $\mathbb{P}=\mathbb{NP}$. However, we show that the $(3,1)$-cover problem can be solved in polynomial time when the input graph is chordal. For the class of trees and general values of $k$, we show that the $(k,1)$-cover problem is $\mathbb{NP}$-hard even for spiders. However, we show that for every $k\geq4$, the $(3,k-2)$-cover and the $(k,1)$-cover problems are constant-factor approximable when the input graph is a tree. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02572v1-abstract-full').style.display = 'none'; document.getElementById('2502.02572v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17944">arXiv:2501.17944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.17944">pdf</a>, <a href="https://arxiv.org/format/2501.17944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> WaterWise: Co-optimizing Carbon- and Water-Footprint Toward Environmentally Sustainable Cloud Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+Y">Yankai Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+R+B">Rohan Basu Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Kanakagiri%2C+R">Raghavendra Kanakagiri</a>, <a href="/search/cs?searchtype=author&amp;query=Tiwari%2C+D">Devesh Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17944v2-abstract-short" style="display: inline;"> The carbon and water footprint of large-scale computing systems poses serious environmental sustainability risks. In this study, we discover that, unfortunately, carbon and water sustainability are at odds with each other - and, optimizing one alone hurts the other. Toward that goal, we introduce, WaterWise, a novel job scheduler for parallel workloads that intelligently co-optimizes carbon and wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17944v2-abstract-full').style.display = 'inline'; document.getElementById('2501.17944v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17944v2-abstract-full" style="display: none;"> The carbon and water footprint of large-scale computing systems poses serious environmental sustainability risks. In this study, we discover that, unfortunately, carbon and water sustainability are at odds with each other - and, optimizing one alone hurts the other. Toward that goal, we introduce, WaterWise, a novel job scheduler for parallel workloads that intelligently co-optimizes carbon and water footprint to improve the sustainability of geographically distributed data centers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17944v2-abstract-full').style.display = 'none'; document.getElementById('2501.17944v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13965">arXiv:2501.13965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13965">pdf</a>, <a href="https://arxiv.org/format/2501.13965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> ZKLoRA: Efficient Zero-Knowledge Proofs for LoRA Verification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bidhan Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Potash%2C+P">Peter Potash</a>, <a href="/search/cs?searchtype=author&amp;query=Villagra%2C+M">Marcos Villagra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13965v1-abstract-short" style="display: inline;"> Low-Rank Adaptation (LoRA) is a widely adopted method for customizing large-scale language models. In distributed, untrusted training environments, an open source base model user may want to use LoRA weights created by an external contributor, leading to two requirements: (1) the base model user must confirm that the LoRA weights are effective when paired with the intended base model, and (2) the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13965v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13965v1-abstract-full" style="display: none;"> Low-Rank Adaptation (LoRA) is a widely adopted method for customizing large-scale language models. In distributed, untrusted training environments, an open source base model user may want to use LoRA weights created by an external contributor, leading to two requirements: (1) the base model user must confirm that the LoRA weights are effective when paired with the intended base model, and (2) the LoRA contributor must keep their proprietary weights private until compensation is assured. We present ZKLoRA, a zero-knowledge verification protocol that relies on succinct proofs and our novel Multi-Party Inference procedure to verify LoRA-base model compatibility without exposing LoRA weights. ZKLoRA produces deterministic correctness guarantees and validates each LoRA module in only 1-2 seconds on state-of-the-art large language models. This low-latency approach enables nearly real-time verification and promotes secure collaboration among geographically decentralized teams and contract-based training pipelines. The protocol ensures that the delivered LoRA module works as claimed, safeguarding the contributor&#39;s intellectual property while providing the base model user with verification of compatibility and lineage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13965v1-abstract-full').style.display = 'none'; document.getElementById('2501.13965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06506">arXiv:2501.06506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06506">pdf</a>, <a href="https://arxiv.org/ps/2501.06506">ps</a>, <a href="https://arxiv.org/format/2501.06506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Resource Allocation under the Latin Square Constraint </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kawase%2C+Y">Yasushi Kawase</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bodhayan Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Sanpui%2C+M+A">Mohammad Azharuddin Sanpui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06506v1-abstract-short" style="display: inline;"> A Latin square is an $n \times n$ matrix filled with $n$ distinct symbols, each of which appears exactly once in each row and exactly once in each column. We introduce a problem of allocating $n$ indivisible items among $n$ agents over $n$ rounds while satisfying the Latin square constraint. This constraint ensures that each agent receives no more than one item per round and receives each item at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06506v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06506v1-abstract-full" style="display: none;"> A Latin square is an $n \times n$ matrix filled with $n$ distinct symbols, each of which appears exactly once in each row and exactly once in each column. We introduce a problem of allocating $n$ indivisible items among $n$ agents over $n$ rounds while satisfying the Latin square constraint. This constraint ensures that each agent receives no more than one item per round and receives each item at most once. Each agent has an additive valuation on the item--round pairs. Real-world applications like scheduling, resource management, and experimental design require the Latin square constraint to satisfy fairness or balancedness in allocation. Our goal is to find a partial or complete allocation that maximizes the sum of the agents&#39; valuations (utilitarian social welfare) or the minimum of the agents&#39; valuations (egalitarian social welfare). For the problem of maximizing utilitarian social welfare, we prove NP-hardness even when the valuations are binary additive. We then provide $(1-1/e)$ and $(1-1/e)/4$-approximation algorithms for partial and complete settings, respectively. Additionally, we present fixed-parameter tractable (FPT) algorithms with respect to the order of Latin square and the optimum value for both partial and complete settings. For the problem of maximizing egalitarian social welfare, we establish that deciding whether the optimum value is at most $1$ or at least $2$ is NP-hard for both the partial and complete settings, even when the valuations are binary. Furthermore, we demonstrate that checking the existence of a complete allocation that satisfies each of envy-free, proportional, equitable, envy-free up to any good, proportional up to any good, or equitable up to any good is NP-hard, even when the valuations are identical. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06506v1-abstract-full').style.display = 'none'; document.getElementById('2501.06506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been accepted in AAMAS 2025 as an extended abstract</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04690">arXiv:2501.04690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04690">pdf</a>, <a href="https://arxiv.org/format/2501.04690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Comparative Analysis of Quantum and Classical Support Vector Classifiers for Software Bug Prediction: An Exploratory Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nadim%2C+M">Md Nadim</a>, <a href="/search/cs?searchtype=author&amp;query=Hassan%2C+M">Mohammad Hassan</a>, <a href="/search/cs?searchtype=author&amp;query=Mandal%2C+A+K">Ashis Kumar Mandal</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+C+K">Chanchal K. Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Schneider%2C+K+A">Kevin A. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04690v1-abstract-short" style="display: inline;"> Purpose: Quantum computing promises to transform problem-solving across various domains with rapid and practical solutions. Within Software Evolution and Maintenance, Quantum Machine Learning (QML) remains mostly an underexplored domain, particularly in addressing challenges such as detecting buggy software commits from code repositories. Methods: In this study, we investigate the practical applic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04690v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04690v1-abstract-full" style="display: none;"> Purpose: Quantum computing promises to transform problem-solving across various domains with rapid and practical solutions. Within Software Evolution and Maintenance, Quantum Machine Learning (QML) remains mostly an underexplored domain, particularly in addressing challenges such as detecting buggy software commits from code repositories. Methods: In this study, we investigate the practical application of Quantum Support Vector Classifiers (QSVC) for detecting buggy software commits across 14 open-source software projects with diverse dataset sizes encompassing 30,924 data instances. We compare the QML algorithm PQSVC (Pegasos QSVC) and QSVC against the classical Support Vector Classifier (SVC). Our technique addresses large datasets in QSVC algorithms by dividing them into smaller subsets. We propose and evaluate an aggregation method to combine predictions from these models to detect the entire test dataset. We also introduce an incremental testing methodology to overcome the difficulties of quantum feature mapping during the testing approach. Results: The study shows the effectiveness of QSVC and PQSVC in detecting buggy software commits. The aggregation technique successfully combines predictions from smaller data subsets, enhancing the overall detection accuracy for the entire test dataset. The incremental testing methodology effectively manages the challenges associated with quantum feature mapping during the testing process. Conclusion: We contribute to the advancement of QML algorithms in defect prediction, unveiling the potential for further research in this domain. The specific scenario of the Short-Term Activity Frame (STAF) highlights the early detection of buggy software commits during the initial developmental phases of software systems, particularly when dataset sizes remain insufficient to train machine learning models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04690v1-abstract-full').style.display = 'none'; document.getElementById('2501.04690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Springer Journal: Quantum Machine Intelligence (https://link.springer.com/journal/42484)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15661">arXiv:2412.15661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15661">pdf</a>, <a href="https://arxiv.org/format/2412.15661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Gender Disparities in Contributions, Leadership, and Collaboration: An Exploratory Study on Software Systems Research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cynthia%2C+S+T">Shamse Tasnim Cynthia</a>, <a href="/search/cs?searchtype=author&amp;query=Mondal%2C+S">Saikat Mondal</a>, <a href="/search/cs?searchtype=author&amp;query=Das%2C+J+K">Joy Krishan Das</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15661v1-abstract-short" style="display: inline;"> Gender diversity enhances research by bringing diverse perspectives and innovative approaches. It ensures equitable solutions that address the needs of diverse populations. However, gender disparity persists in research where women remain underrepresented, which might limit diversity and innovation. Many even leave scientific careers as their contributions often go unnoticed and undervalued. There&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15661v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15661v1-abstract-full" style="display: none;"> Gender diversity enhances research by bringing diverse perspectives and innovative approaches. It ensures equitable solutions that address the needs of diverse populations. However, gender disparity persists in research where women remain underrepresented, which might limit diversity and innovation. Many even leave scientific careers as their contributions often go unnoticed and undervalued. Therefore, understanding gender-based contributions and collaboration dynamics is crucial to addressing this gap and creating a more inclusive research environment. In this study, we analyzed 2,000 articles published over the past decade in the Journal of Systems and Software (JSS). From these, we selected 384 articles that detailed authors&#39; contributions and contained both female and male authors to investigate gender-based contributions. Our contributions are fourfold. First, we analyzed women&#39;s engagement in software systems research. Our analysis showed that only 32.74% of the total authors are women and female-led or supervised studies were fewer than those of men. Second, we investigated female authors&#39; contributions across 14 major roles. Interestingly, we found that women contributed comparably to men in most roles, with more contributions in conceptualization, writing, and reviewing articles. Third, we explored the areas of software systems research and found that female authors are more actively involved in human-centric research domains. Finally, we analyzed gender-based collaboration dynamics. Our findings revealed that female supervisors tended to collaborate locally more often than national-level collaborations. Our study highlights that females&#39; contributions to software systems research are comparable to those of men. Therefore, the barriers need to be addressed to enhance female participation and ensure equity and inclusivity in research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15661v1-abstract-full').style.display = 'none'; document.getElementById('2412.15661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06711">arXiv:2412.06711</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06711">pdf</a>, <a href="https://arxiv.org/format/2412.06711">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> MISFEAT: Feature Selection for Subgroups with Systematic Missing Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Genossar%2C+B">Bar Genossar</a>, <a href="/search/cs?searchtype=author&amp;query=On%2C+T">Thinh On</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+M+M">Md. Mouinul Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Eliav%2C+B">Ben Eliav</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+S+B">Senjuti Basu Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Gal%2C+A">Avigdor Gal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06711v1-abstract-short" style="display: inline;"> We investigate the problem of selecting features for datasets that can be naturally partitioned into subgroups (e.g., according to socio-demographic groups and age), each with its own dominant set of features. Within this subgroup-oriented framework, we address the challenge of systematic missing data, a scenario in which some feature values are missing for all tuples of a subgroup, due to flawed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06711v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06711v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06711v1-abstract-full" style="display: none;"> We investigate the problem of selecting features for datasets that can be naturally partitioned into subgroups (e.g., according to socio-demographic groups and age), each with its own dominant set of features. Within this subgroup-oriented framework, we address the challenge of systematic missing data, a scenario in which some feature values are missing for all tuples of a subgroup, due to flawed data integration, regulatory constraints, or privacy concerns. Feature selection is governed by finding mutual Information, a popular quantification of correlation, between features and a target variable. Our goal is to identify top-K feature subsets of some fixed size with the highest joint mutual information with a target variable. In the presence of systematic missing data, the closed form of mutual information could not simply be applied. We argue that in such a setting, leveraging relationships between available feature mutual information within a subgroup or across subgroups can assist inferring missing mutual information values. We propose a generalizable model based on heterogeneous graph neural network to identify interdependencies between feature-subgroup-target variable connections by modeling it as a multiplex graph, and employing information propagation between its nodes. We address two distinct scalability challenges related to training and propose principled solutions to tackle them. Through an extensive empirical evaluation, we demonstrate the efficacy of the proposed solutions both qualitatively and running time wise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06711v1-abstract-full').style.display = 'none'; document.getElementById('2412.06711v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15893">arXiv:2411.15893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15893">pdf</a>, <a href="https://arxiv.org/format/2411.15893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Distribution-aware Online Continual Learning for Urban Spatio-Temporal Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+C">Chengxin Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Tan%2C+G">Gary Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+S+B">Swagato Barman Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Ooi%2C+B+C">Beng Chin Ooi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15893v1-abstract-short" style="display: inline;"> Urban spatio-temporal (ST) forecasting is crucial for various urban applications such as intelligent scheduling and trip planning. Previous studies focus on modeling ST correlations among urban locations in offline settings, which often neglect the non-stationary nature of urban ST data, particularly, distribution shifts over time. This oversight can lead to degraded performance in real-world scen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15893v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15893v1-abstract-full" style="display: none;"> Urban spatio-temporal (ST) forecasting is crucial for various urban applications such as intelligent scheduling and trip planning. Previous studies focus on modeling ST correlations among urban locations in offline settings, which often neglect the non-stationary nature of urban ST data, particularly, distribution shifts over time. This oversight can lead to degraded performance in real-world scenarios. In this paper, we first analyze the distribution shifts in urban ST data, and then introduce DOST, a novel online continual learning framework tailored for ST data characteristics. DOST employs an adaptive ST network equipped with a variable-independent adapter to address the unique distribution shifts at each urban location dynamically. Further, to accommodate the gradual nature of these shifts, we also develop an awake-hibernate learning strategy that intermittently fine-tunes the adapter during the online phase to reduce computational overhead. This strategy integrates a streaming memory update mechanism designed for urban ST sequential data, enabling effective network adaptation to new patterns while preventing catastrophic forgetting. Experimental results confirm DOST&#39;s superiority over state-of-the-art models on four real-world datasets, providing online forecasts within an average of 0.1 seconds and achieving a 12.89% reduction in forecast errors compared to baseline models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15893v1-abstract-full').style.display = 'none'; document.getElementById('2411.15893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12351">arXiv:2411.12351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12351">pdf</a>, <a href="https://arxiv.org/format/2411.12351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Geometry">cs.CG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> Multipacking in Euclidean Plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Das%2C+A+K">Arun Kumar Das</a>, <a href="/search/cs?searchtype=author&amp;query=Das%2C+S">Sandip Das</a>, <a href="/search/cs?searchtype=author&amp;query=Islam%2C+S+S">Sk Samim Islam</a>, <a href="/search/cs?searchtype=author&amp;query=Mitra%2C+R+M">Ritam M Mitra</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bodhayan Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12351v1-abstract-short" style="display: inline;"> We initiate the study of multipacking problems for geometric point sets with respect to their Euclidean distances. We consider a set of $n$ points $P$ and define $N_s[v]$ as the subset of $P$ that includes the $s$ nearest points of $v \in P$ and the point $v$ itself. We assume that the \emph{$s$-th neighbor} of each point is unique, for every $s \in \{0, 1, 2, \dots , n-1\}$. For a natural number&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12351v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12351v1-abstract-full" style="display: none;"> We initiate the study of multipacking problems for geometric point sets with respect to their Euclidean distances. We consider a set of $n$ points $P$ and define $N_s[v]$ as the subset of $P$ that includes the $s$ nearest points of $v \in P$ and the point $v$ itself. We assume that the \emph{$s$-th neighbor} of each point is unique, for every $s \in \{0, 1, 2, \dots , n-1\}$. For a natural number $r \leq n$, an $r$-multipacking is a set $ M \subseteq P $ such that for each point $ v \in P $ and for every integer $ 1\leq s \leq r $, $|N_s[v]\cap M|\leq (s+1)/2$. The $r$-multipacking number of $ P $ is the maximum cardinality of an $r$-multipacking of $ P $ and is denoted by $ \MP_{r}(P) $. For $r=n-1$, an $r$-multipacking is called a multipacking and $r$-multipacking number is called as multipacking number. We study the problem of computing a maximum $r$-multipacking for point sets in $\mathbb{R}^2$. We show that a maximum $1$-multipacking can be computed in polynomial time but computing a maximum $2$-multipacking is NP complete. Further, we provide approximation and parameterized solutions to the $2$-multipacking problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12351v1-abstract-full').style.display = 'none'; document.getElementById('2411.12351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10890">arXiv:2411.10890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10890">pdf</a>, <a href="https://arxiv.org/format/2411.10890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> An Empirical Investigation on the Challenges in Scientific Workflow Systems Development </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Alam%2C+K">Khairul Alam</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+C">Chanchal Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Mittal%2C+K">Kartik Mittal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10890v1-abstract-short" style="display: inline;"> Scientific Workflow Systems (SWSs) are advanced software frameworks that drive modern research by orchestrating complex computational tasks and managing extensive data pipelines. These systems offer a range of essential features, including modularity, abstraction, interoperability, workflow composition tools, resource management, error handling, and comprehensive documentation. Utilizing these fra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10890v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10890v1-abstract-full" style="display: none;"> Scientific Workflow Systems (SWSs) are advanced software frameworks that drive modern research by orchestrating complex computational tasks and managing extensive data pipelines. These systems offer a range of essential features, including modularity, abstraction, interoperability, workflow composition tools, resource management, error handling, and comprehensive documentation. Utilizing these frameworks accelerates the development of scientific computing, resulting in more efficient and reproducible research outcomes. However, developing a user-friendly, efficient, and adaptable SWS poses several challenges. This study explores these challenges through an in-depth analysis of interactions on Stack Overflow (SO) and GitHub, key platforms where developers and researchers discuss and resolve issues. In particular, we leverage topic modeling (BERTopic) to understand the topics SWSs developers discuss on these platforms. We identified 10 topics developers discuss on SO (e.g., Workflow Creation and Scheduling, Data Structures and Operations, Workflow Execution) and found that workflow execution is the most challenging. By analyzing GitHub issues, we identified 13 topics (e.g., Errors and Bug Fixing, Documentation, Dependencies) and discovered that data structures and operations is the most difficult. We also found common topics between SO and GitHub, such as data structures and operations, task management, and workflow scheduling. Additionally, we categorized each topic by type (How, Why, What, and Others). We observed that the How type consistently dominates across all topics, indicating a need for procedural guidance among developers. The dominance of the How type is also evident in domains like Chatbots and Mobile development. Our study will guide future research in proposing tools and techniques to help the community overcome the challenges developers face when developing SWSs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10890v1-abstract-full').style.display = 'none'; document.getElementById('2411.10890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> ACM </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10873">arXiv:2411.10873</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10873">pdf</a>, <a href="https://arxiv.org/format/2411.10873">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Developer Challenges on Large Language Models: A Study of Stack Overflow and OpenAI Developer Forum Posts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Alam%2C+K">Khairul Alam</a>, <a href="/search/cs?searchtype=author&amp;query=Mittal%2C+K">Kartik Mittal</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+C">Chanchal Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10873v2-abstract-short" style="display: inline;"> Large Language Models (LLMs) have gained widespread popularity due to their exceptional capabilities across various domains, including chatbots, healthcare, education, content generation, and automated support systems. However, developers encounter numerous challenges when implementing, fine-tuning, and integrating these models into real-world applications. This study investigates LLM developers&#39;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10873v2-abstract-full').style.display = 'inline'; document.getElementById('2411.10873v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10873v2-abstract-full" style="display: none;"> Large Language Models (LLMs) have gained widespread popularity due to their exceptional capabilities across various domains, including chatbots, healthcare, education, content generation, and automated support systems. However, developers encounter numerous challenges when implementing, fine-tuning, and integrating these models into real-world applications. This study investigates LLM developers&#39; challenges by analyzing community interactions on Stack Overflow and OpenAI Developer Forum, employing BERTopic modeling to identify and categorize developer discussions. Our analysis yields nine challenges on Stack Overflow (e.g., LLM Ecosystem and Challenges, API Usage, LLM Training with Frameworks) and 17 on the OpenAI Developer Forum (e.g., API Usage and Error Handling, Fine-Tuning and Dataset Management). Results indicate that developers frequently turn to Stack Overflow for implementation guidance, while OpenAI&#39;s forum focuses on troubleshooting. Notably, API and functionality issues dominate discussions on the OpenAI forum, with many posts requiring multiple responses, reflecting the complexity of LLM-related problems. We find that LLM-related queries often exhibit great difficulty, with a substantial percentage of unresolved posts (e.g., 79.03\% on Stack Overflow) and prolonged response times, particularly for complex topics like &#39;Llama Indexing and GPU Utilization&#39; and &#39;Agents and Tool Interactions&#39;. In contrast, established fields like Mobile Development and Security enjoy quicker resolutions and stronger community engagement. These findings highlight the need for improved community support and targeted resources to assist LLM developers in overcoming the evolving challenges of this rapidly growing field. This study provides insights into areas of difficulty, paving the way for future research and tool development to better support the LLM developer community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10873v2-abstract-full').style.display = 'none'; document.getElementById('2411.10873v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.2; I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22690">arXiv:2410.22690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22690">pdf</a>, <a href="https://arxiv.org/format/2410.22690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Choice Between Partial Trajectories: Disentangling Goals from Beliefs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Marklund%2C+H">Henrik Marklund</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22690v3-abstract-short" style="display: inline;"> As AI agents generate increasingly sophisticated behaviors, manually encoding human preferences to guide these agents becomes more challenging. To address this, it has been suggested that agents instead learn preferences from human choice data. This approach requires a model of choice behavior that the agent can use to interpret the data. For choices between partial trajectories of states and acti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22690v3-abstract-full').style.display = 'inline'; document.getElementById('2410.22690v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22690v3-abstract-full" style="display: none;"> As AI agents generate increasingly sophisticated behaviors, manually encoding human preferences to guide these agents becomes more challenging. To address this, it has been suggested that agents instead learn preferences from human choice data. This approach requires a model of choice behavior that the agent can use to interpret the data. For choices between partial trajectories of states and actions, previous models assume choice probabilities are determined by the partial return or the cumulative advantage. We consider an alternative model based instead on the bootstrapped return, which adds to the partial return an estimate of the future return. Benefits of the bootstrapped return model stem from its treatment of human beliefs. Unlike partial return, choices based on bootstrapped return reflect human beliefs about the environment. Further, while recovering the reward function from choices based on cumulative advantage requires that those beliefs are correct, doing so from choices based on bootstrapped return does not. To motivate the bootstrapped return model, we formulate axioms and prove an Alignment Theorem. This result formalizes how, for a general class of preferences, such models are able to disentangle goals from beliefs. This ensures recovery of an aligned reward function when learning from choices based on bootstrapped return. The bootstrapped return model also affords greater robustness to choice behavior. Even when choices are based on partial return, learning via a bootstrapped return model recovers an aligned reward function. The same holds with choices based on the cumulative advantage if the human and the agent both adhere to correct and consistent beliefs about the environment. On the other hand, if choices are based on bootstrapped return, learning via partial return or cumulative advantage models does not generally produce an aligned reward function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22690v3-abstract-full').style.display = 'none'; document.getElementById('2410.22690v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16469">arXiv:2410.16469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16469">pdf</a>, <a href="https://arxiv.org/ps/2410.16469">ps</a>, <a href="https://arxiv.org/format/2410.16469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Evaluating the Performance of a D-Wave Quantum Annealing System for Feature Subset Selection in Software Defect Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mandal%2C+A+K">Ashis Kumar Mandal</a>, <a href="/search/cs?searchtype=author&amp;query=Nadim%2C+M">Md Nadim</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+C+K">Chanchal K. Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Schneider%2C+K+A">Kevin A. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16469v1-abstract-short" style="display: inline;"> Predicting software defects early in the development process not only enhances the quality and reliability of the software but also decreases the cost of development. A wide range of machine learning techniques can be employed to create software defect prediction models, but the effectiveness and accuracy of these models are often influenced by the choice of appropriate feature subset. Since findi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16469v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16469v1-abstract-full" style="display: none;"> Predicting software defects early in the development process not only enhances the quality and reliability of the software but also decreases the cost of development. A wide range of machine learning techniques can be employed to create software defect prediction models, but the effectiveness and accuracy of these models are often influenced by the choice of appropriate feature subset. Since finding the optimal feature subset is computationally intensive, heuristic and metaheuristic approaches are commonly employed to identify near-optimal solutions within a reasonable time frame. Recently, the quantum computing paradigm quantum annealing (QA) has been deployed to find solutions to complex optimization problems. This opens up the possibility of addressing the feature subset selection problem with a QA machine. Although several strategies have been proposed for feature subset selection using a QA machine, little exploration has been done regarding the viability of a QA machine for feature subset selection in software defect prediction. This study investigates the potential of D-Wave QA system for this task, where we formulate a mutual information (MI)-based filter approach as an optimization problem and utilize a D-Wave Quantum Processing Unit (QPU) solver as a QA solver for feature subset selection. We evaluate the performance of this approach using multiple software defect datasets from the AEEM, JIRA, and NASA projects. We also utilize a D-Wave classical solver for comparative analysis. Our experimental results demonstrate that QA-based feature subset selection can enhance software defect prediction. Although the D-Wave QPU solver exhibits competitive prediction performance with the classical solver in software defect prediction, it significantly reduces the time required to identify the best feature subset compared to its classical counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16469v1-abstract-full').style.display = 'none'; document.getElementById('2410.16469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14807">arXiv:2410.14807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14807">pdf</a>, <a href="https://arxiv.org/format/2410.14807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Aligning AI Agents via Information-Directed Sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jeon%2C+H+J">Hong Jun Jeon</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14807v1-abstract-short" style="display: inline;"> The staggering feats of AI systems have brought to attention the topic of AI Alignment: aligning a &#34;superintelligent&#34; AI agent&#39;s actions with humanity&#39;s interests. Many existing frameworks/algorithms in alignment study the problem on a myopic horizon or study learning from human feedback in isolation, relying on the contrived assumption that the agent has already perfectly identified the environme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14807v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14807v1-abstract-full" style="display: none;"> The staggering feats of AI systems have brought to attention the topic of AI Alignment: aligning a &#34;superintelligent&#34; AI agent&#39;s actions with humanity&#39;s interests. Many existing frameworks/algorithms in alignment study the problem on a myopic horizon or study learning from human feedback in isolation, relying on the contrived assumption that the agent has already perfectly identified the environment. As a starting point to address these limitations, we define a class of bandit alignment problems as an extension of classic multi-armed bandit problems. A bandit alignment problem involves an agent tasked with maximizing long-run expected reward by interacting with an environment and a human, both involving details/preferences initially unknown to the agent. The reward of actions in the environment depends on both observed outcomes and human preferences. Furthermore, costs are associated with querying the human to learn preferences. Therefore, an effective agent ought to intelligently trade-off exploration (of the environment and human) and exploitation. We study these trade-offs theoretically and empirically in a toy bandit alignment problem which resembles the beta-Bernoulli bandit. We demonstrate while naive exploration algorithms which reflect current practices and even touted algorithms such as Thompson sampling both fail to provide acceptable solutions to this problem, information-directed sampling achieves favorable regret. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14807v1-abstract-full').style.display = 'none'; document.getElementById('2410.14807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09089">arXiv:2410.09089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09089">pdf</a>, <a href="https://arxiv.org/format/2410.09089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Different Cybercrimes and their Solution for Common People </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tamang%2C+S">S. Tamang</a>, <a href="/search/cs?searchtype=author&amp;query=Chandana%2C+G+S">G. S. Chandana</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B+K">B. K. Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09089v1-abstract-short" style="display: inline;"> In today&#39;s digital age, cyberspace has become integral to daily life, however it has also led to an increase in cybercriminal activities. This paper explores cybercrime trends and highlights the need for cybercrime awareness (cyberawareness) to mitigate vulnerabilities. The study also examines Indian statistics on cybercrime. We review the existing literature on cybercrime and cybersecurity, focus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09089v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09089v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09089v1-abstract-full" style="display: none;"> In today&#39;s digital age, cyberspace has become integral to daily life, however it has also led to an increase in cybercriminal activities. This paper explores cybercrime trends and highlights the need for cybercrime awareness (cyberawareness) to mitigate vulnerabilities. The study also examines Indian statistics on cybercrime. We review the existing literature on cybercrime and cybersecurity, focusing on various types of cybercrimes and their impacts. We present a list of 31 technical as well as non-technical solutions considering that a &#34;common man&#34; may not be technologically aware. Common man solutions, considering that they are not technologically updated. Expanding the list of solutions and validating their effectiveness in cyber threats can be the future scope of the research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09089v1-abstract-full').style.display = 'none'; document.getElementById('2410.09089v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10942">arXiv:2409.10942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10942">pdf</a>, <a href="https://arxiv.org/format/2409.10942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Optimizing TinyML: The Impact of Reduced Data Acquisition Rates for Time Series Classification on Microcontrollers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Samanta%2C+R">Riya Samanta</a>, <a href="/search/cs?searchtype=author&amp;query=Saha%2C+B">Bidyut Saha</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosh%2C+S+K">Soumya K. Ghosh</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+R+B">Ram Babu Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10942v1-abstract-short" style="display: inline;"> Tiny Machine Learning (TinyML) enables efficient, lowcost, and privacy preserving machine learning inference directly on microcontroller units (MCUs) connected to sensors. Optimizing models for these constrained environments is crucial. This paper investigates how reducing data acquisition rates affects TinyML models for time series classification, focusing on resource-constrained, battery operate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10942v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10942v1-abstract-full" style="display: none;"> Tiny Machine Learning (TinyML) enables efficient, lowcost, and privacy preserving machine learning inference directly on microcontroller units (MCUs) connected to sensors. Optimizing models for these constrained environments is crucial. This paper investigates how reducing data acquisition rates affects TinyML models for time series classification, focusing on resource-constrained, battery operated IoT devices. By lowering data sampling frequency, we aim to reduce computational demands RAM usage, energy consumption, latency, and MAC operations by approximately fourfold while maintaining similar classification accuracies. Our experiments with six benchmark datasets (UCIHAR, WISDM, PAMAP2, MHEALTH, MITBIH, and PTB) showed that reducing data acquisition rates significantly cut energy consumption and computational load, with minimal accuracy loss. For example, a 75\% reduction in acquisition rate for MITBIH and PTB datasets led to a 60\% decrease in RAM usage, 75\% reduction in MAC operations, 74\% decrease in latency, and 70\% reduction in energy consumption, without accuracy loss. These results offer valuable insights for deploying efficient TinyML models in constrained environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10942v1-abstract-full').style.display = 'none'; document.getElementById('2409.10942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05824">arXiv:2409.05824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05824">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3674805.3686689">10.1145/3674805.3686689 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Are Large Language Models a Threat to Programming Platforms? An Exploratory Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Billah%2C+M+M">Md Mustakim Billah</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+P+R">Palash Ranjan Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Codabux%2C+Z">Zadia Codabux</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05824v1-abstract-short" style="display: inline;"> Competitive programming platforms like LeetCode, Codeforces, and HackerRank evaluate programming skills, often used by recruiters for screening. With the rise of advanced Large Language Models (LLMs) such as ChatGPT, Gemini, and Meta AI, their problem-solving ability on these platforms needs assessment. This study explores LLMs&#39; ability to tackle diverse programming challenges across platforms wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05824v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05824v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05824v1-abstract-full" style="display: none;"> Competitive programming platforms like LeetCode, Codeforces, and HackerRank evaluate programming skills, often used by recruiters for screening. With the rise of advanced Large Language Models (LLMs) such as ChatGPT, Gemini, and Meta AI, their problem-solving ability on these platforms needs assessment. This study explores LLMs&#39; ability to tackle diverse programming challenges across platforms with varying difficulty, offering insights into their real-time and offline performance and comparing them with human programmers. We tested 98 problems from LeetCode, 126 from Codeforces, covering 15 categories. Nine online contests from Codeforces and LeetCode were conducted, along with two certification tests on HackerRank, to assess real-time performance. Prompts and feedback mechanisms were used to guide LLMs, and correlations were explored across different scenarios. LLMs, like ChatGPT (71.43% success on LeetCode), excelled in LeetCode and HackerRank certifications but struggled in virtual contests, particularly on Codeforces. They performed better than users in LeetCode archives, excelling in time and memory efficiency but underperforming in harder Codeforces contests. While not immediately threatening, LLMs performance on these platforms is concerning, and future improvements will need addressing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05824v1-abstract-full').style.display = 'none'; document.getElementById('2409.05824v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in ESEM 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02085">arXiv:2409.02085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02085">pdf</a>, <a href="https://arxiv.org/format/2409.02085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> EcoLife: Carbon-Aware Serverless Function Scheduling for Sustainable Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+Y">Yankai Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+R+B">Rohan Basu Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+B">Baolin Li</a>, <a href="/search/cs?searchtype=author&amp;query=Tiwari%2C+D">Devesh Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02085v3-abstract-short" style="display: inline;"> This work introduces ECOLIFE, the first carbon-aware serverless function scheduler to co-optimize carbon footprint and performance. ECOLIFE builds on the key insight of intelligently exploiting multi-generation hardware to achieve high performance and lower carbon footprint. ECOLIFE designs multiple novel extensions to Particle Swarm Optimization (PSO) in the context of serverless execution enviro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02085v3-abstract-full').style.display = 'inline'; document.getElementById('2409.02085v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02085v3-abstract-full" style="display: none;"> This work introduces ECOLIFE, the first carbon-aware serverless function scheduler to co-optimize carbon footprint and performance. ECOLIFE builds on the key insight of intelligently exploiting multi-generation hardware to achieve high performance and lower carbon footprint. ECOLIFE designs multiple novel extensions to Particle Swarm Optimization (PSO) in the context of serverless execution environment to achieve high performance while effectively reducing the carbon footprint. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02085v3-abstract-full').style.display = 'none'; document.getElementById('2409.02085v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00093">arXiv:2409.00093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00093">pdf</a>, <a href="https://arxiv.org/format/2409.00093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Towards Sustainable Personalized On-Device Human Activity Recognition with TinyML and Cloud-Enabled Auto Deployment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saha%2C+B">Bidyut Saha</a>, <a href="/search/cs?searchtype=author&amp;query=Samanta%2C+R">Riya Samanta</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosh%2C+S+K">Soumya K Ghosh</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+R+B">Ram Babu Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00093v1-abstract-short" style="display: inline;"> Human activity recognition (HAR) holds immense potential for transforming health and fitness monitoring, yet challenges persist in achieving personalized outcomes and sustainability for on-device continuous inferences. This work introduces a wrist-worn smart band designed to address these challenges through a novel combination of on-device TinyML-driven computing and cloud-enabled auto-deployment.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00093v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00093v1-abstract-full" style="display: none;"> Human activity recognition (HAR) holds immense potential for transforming health and fitness monitoring, yet challenges persist in achieving personalized outcomes and sustainability for on-device continuous inferences. This work introduces a wrist-worn smart band designed to address these challenges through a novel combination of on-device TinyML-driven computing and cloud-enabled auto-deployment. Leveraging inertial measurement unit (IMU) sensors and a customized 1D Convolutional Neural Network (CNN) for personalized HAR, users can tailor activity classes to their unique movement styles with minimal calibration. By utilising TinyML for local computations, the smart band reduces the necessity for constant data transmission and radio communication, which in turn lowers power consumption and reduces carbon footprint. This method also enhances the privacy and security of user data by limiting its transmission. Through transfer learning and fine-tuning on user-specific data, the system achieves a 37\% increase in accuracy over generalized models in personalized settings. Evaluation using three benchmark datasets, WISDM, PAMAP2, and the BandX demonstrates its effectiveness across various activity domains. Additionally, this work presents a cloud-supported framework for the automatic deployment of TinyML models to remote wearables, enabling seamless customization and on-device inference, even with limited target data. By combining personalized HAR with sustainable strategies for on-device continuous inferences, this system represents a promising step towards fostering healthier and more sustainable societies worldwide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00093v1-abstract-full').style.display = 'none'; document.getElementById('2409.00093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16535">arXiv:2408.16535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16535">pdf</a>, <a href="https://arxiv.org/format/2408.16535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> TinyTNAS: GPU-Free, Time-Bound, Hardware-Aware Neural Architecture Search for TinyML Time Series Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saha%2C+B">Bidyut Saha</a>, <a href="/search/cs?searchtype=author&amp;query=Samanta%2C+R">Riya Samanta</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosh%2C+S+K">Soumya K. Ghosh</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+R+B">Ram Babu Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16535v1-abstract-short" style="display: inline;"> In this work, we present TinyTNAS, a novel hardware-aware multi-objective Neural Architecture Search (NAS) tool specifically designed for TinyML time series classification. Unlike traditional NAS methods that rely on GPU capabilities, TinyTNAS operates efficiently on CPUs, making it accessible for a broader range of applications. Users can define constraints on RAM, FLASH, and MAC operations to di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16535v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16535v1-abstract-full" style="display: none;"> In this work, we present TinyTNAS, a novel hardware-aware multi-objective Neural Architecture Search (NAS) tool specifically designed for TinyML time series classification. Unlike traditional NAS methods that rely on GPU capabilities, TinyTNAS operates efficiently on CPUs, making it accessible for a broader range of applications. Users can define constraints on RAM, FLASH, and MAC operations to discover optimal neural network architectures within these parameters. Additionally, the tool allows for time-bound searches, ensuring the best possible model is found within a user-specified duration. By experimenting with benchmark dataset UCI HAR, PAMAP2, WISDM, MIT BIH, and PTB Diagnostic ECG Databas TinyTNAS demonstrates state-of-the-art accuracy with significant reductions in RAM, FLASH, MAC usage, and latency. For example, on the UCI HAR dataset, TinyTNAS achieves a 12x reduction in RAM usage, a 144x reduction in MAC operations, and a 78x reduction in FLASH memory while maintaining superior accuracy and reducing latency by 149x. Similarly, on the PAMAP2 and WISDM datasets, it achieves a 6x reduction in RAM usage, a 40x reduction in MAC operations, an 83x reduction in FLASH, and a 67x reduction in latency, all while maintaining superior accuracy. Notably, the search process completes within 10 minutes in a CPU environment. These results highlight TinyTNAS&#39;s capability to optimize neural network architectures effectively for resource-constrained TinyML applications, ensuring both efficiency and high performance. The code for TinyTNAS is available at the GitHub repository and can be accessed at https://github.com/BidyutSaha/TinyTNAS.git. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16535v1-abstract-full').style.display = 'none'; document.getElementById('2408.16535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15411">arXiv:2408.15411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15411">pdf</a>, <a href="https://arxiv.org/format/2408.15411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> AUTOGENICS: Automated Generation of Context-Aware Inline Comments for Code Snippets on Programming Q&amp;A Sites Using LLM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bappon%2C+S+D">Suborno Deb Bappon</a>, <a href="/search/cs?searchtype=author&amp;query=Mondal%2C+S">Saikat Mondal</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15411v1-abstract-short" style="display: inline;"> Inline comments in the source code facilitate easy comprehension, reusability, and enhanced readability. However, code snippets in answers on Q&amp;A sites like Stack Overflow (SO) often lack comments because answerers volunteer their time and often skip comments or explanations due to time constraints. Existing studies show that these online code examples are difficult to read and understand, making&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15411v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15411v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15411v1-abstract-full" style="display: none;"> Inline comments in the source code facilitate easy comprehension, reusability, and enhanced readability. However, code snippets in answers on Q&amp;A sites like Stack Overflow (SO) often lack comments because answerers volunteer their time and often skip comments or explanations due to time constraints. Existing studies show that these online code examples are difficult to read and understand, making it difficult for developers (especially novices) to use them correctly and leading to misuse. Given these challenges, we introduced AUTOGENICS, a tool designed to integrate with SO to generate effective inline comments for code snippets in SO answers exploiting large language models (LLMs). Our contributions are threefold. First, we randomly select 400 answer code snippets from SO and generate inline comments for them using LLMs. We then manually evaluate these comments&#39; effectiveness using four key metrics: accuracy, adequacy, conciseness, and usefulness. Overall, LLMs demonstrate promising effectiveness in generating inline comments for SO answer code snippets. Second, we surveyed 14 active SO users to perceive the effectiveness of these inline comments. The survey results are consistent with our previous manual evaluation. However, according to our evaluation, LLMs-generated comments are less effective for shorter code snippets and sometimes produce noisy comments. Third, to address the gaps, we introduced AUTOGENICS, which extracts additional context from question texts and generates context-aware inline comments. It also optimizes comments by removing noise (e.g., comments in import statements and variable declarations). We evaluate the effectiveness of AUTOGENICS-generated comments using the same four metrics that outperform those of standard LLMs. AUTOGENICS might (a) enhance code comprehension, (b) save time, and improve developers&#39; ability to learn and reuse code more accurately. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15411v1-abstract-full').style.display = 'none'; document.getElementById('2408.15411v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for presentation in the research track at the IEEE International Conference on Source Code Analysis &amp; Manipulation (SCAM 2025)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02930">arXiv:2408.02930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02930">pdf</a>, <a href="https://arxiv.org/format/2408.02930">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> The Need for a Big World Simulator: A Scientific Challenge for Continual Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kumar%2C+S">Saurabh Kumar</a>, <a href="/search/cs?searchtype=author&amp;query=Jeon%2C+H+J">Hong Jun Jeon</a>, <a href="/search/cs?searchtype=author&amp;query=Lewandowski%2C+A">Alex Lewandowski</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02930v1-abstract-short" style="display: inline;"> The &#34;small agent, big world&#34; frame offers a conceptual view that motivates the need for continual learning. The idea is that a small agent operating in a much bigger world cannot store all information that the world has to offer. To perform well, the agent must be carefully designed to ingest, retain, and eject the right information. To enable the development of performant continual learning agent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02930v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02930v1-abstract-full" style="display: none;"> The &#34;small agent, big world&#34; frame offers a conceptual view that motivates the need for continual learning. The idea is that a small agent operating in a much bigger world cannot store all information that the world has to offer. To perform well, the agent must be carefully designed to ingest, retain, and eject the right information. To enable the development of performant continual learning agents, a number of synthetic environments have been proposed. However, these benchmarks suffer from limitations, including unnatural distribution shifts and a lack of fidelity to the &#34;small agent, big world&#34; framing. This paper aims to formalize two desiderata for the design of future simulated environments. These two criteria aim to reflect the objectives and complexity of continual learning in practical settings while enabling rapid prototyping of algorithms on a smaller scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02930v1-abstract-full').style.display = 'none'; document.getElementById('2408.02930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to the Finding the Frame Workshop at RLC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12288">arXiv:2407.12288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12288">pdf</a>, <a href="https://arxiv.org/format/2407.12288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Information-Theoretic Foundations for Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jeon%2C+H+J">Hong Jun Jeon</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12288v3-abstract-short" style="display: inline;"> The staggering progress of machine learning in the past decade has been a sight to behold. In retrospect, it is both remarkable and unsettling that these milestones were achievable with little to no rigorous theory to guide experimentation. Despite this fact, practitioners have been able to guide their future experimentation via observations from previous large-scale empirical investigations. Howe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12288v3-abstract-full').style.display = 'inline'; document.getElementById('2407.12288v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12288v3-abstract-full" style="display: none;"> The staggering progress of machine learning in the past decade has been a sight to behold. In retrospect, it is both remarkable and unsettling that these milestones were achievable with little to no rigorous theory to guide experimentation. Despite this fact, practitioners have been able to guide their future experimentation via observations from previous large-scale empirical investigations. However, alluding to Plato&#39;s Allegory of the cave, it is likely that the observations which form the field&#39;s notion of reality are but shadows representing fragments of that reality. In this work, we propose a theoretical framework which attempts to answer what exists outside of the cave. To the theorist, we provide a framework which is mathematically rigorous and leaves open many interesting ideas for future exploration. To the practitioner, we provide a framework whose results are very intuitive, general, and which will help form principles to guide future investigations. Concretely, we provide a theoretical framework rooted in Bayesian statistics and Shannon&#39;s information theory which is general enough to unify the analysis of many phenomena in machine learning. Our framework characterizes the performance of an optimal Bayesian learner, which considers the fundamental limits of information. Throughout this work, we derive very general theoretical results and apply them to derive insights specific to settings ranging from data which is independently and identically distributed under an unknown distribution, to data which is sequential, to data which exhibits hierarchical structure amenable to meta-learning. We conclude with a section dedicated to characterizing the performance of misspecified algorithms. These results are exciting and particularly relevant as we strive to overcome increasingly difficult machine learning challenges in this endlessly complex world. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12288v3-abstract-full').style.display = 'none'; document.getElementById('2407.12288v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12185">arXiv:2407.12185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12185">pdf</a>, <a href="https://arxiv.org/format/2407.12185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Satisficing Exploration for Deep Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Arumugam%2C+D">Dilip Arumugam</a>, <a href="/search/cs?searchtype=author&amp;query=Kumar%2C+S">Saurabh Kumar</a>, <a href="/search/cs?searchtype=author&amp;query=Gummadi%2C+R">Ramki Gummadi</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12185v1-abstract-short" style="display: inline;"> A default assumption in the design of reinforcement-learning algorithms is that a decision-making agent always explores to learn optimal behavior. In sufficiently complex environments that approach the vastness and scale of the real world, however, attaining optimal performance may in fact be an entirely intractable endeavor and an agent may seldom find itself in a position to complete the requisi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12185v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12185v1-abstract-full" style="display: none;"> A default assumption in the design of reinforcement-learning algorithms is that a decision-making agent always explores to learn optimal behavior. In sufficiently complex environments that approach the vastness and scale of the real world, however, attaining optimal performance may in fact be an entirely intractable endeavor and an agent may seldom find itself in a position to complete the requisite exploration for identifying an optimal policy. Recent work has leveraged tools from information theory to design agents that deliberately forgo optimal solutions in favor of sufficiently-satisfying or satisficing solutions, obtained through lossy compression. Notably, such agents may employ fundamentally different exploratory decisions to learn satisficing behaviors more efficiently than optimal ones that are more data intensive. While supported by a rigorous corroborating theory, the underlying algorithm relies on model-based planning, drastically limiting the compatibility of these ideas with function approximation and high-dimensional observations. In this work, we remedy this issue by extending an agent that directly represents uncertainty over the optimal value function allowing it to both bypass the need for model-based planning and to learn satisficing policies. We provide simple yet illustrative experiments that demonstrate how our algorithm enables deep reinforcement-learning agents to achieve satisficing behaviors. In keeping with previous work on this setting for multi-armed bandits, we additionally find that our algorithm is capable of synthesizing optimal behaviors, when feasible, more efficiently than its non-information-theoretic counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12185v1-abstract-full').style.display = 'none'; document.getElementById('2407.12185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to the Finding the Frame Workshop at RLC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12178">arXiv:2407.12178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12178">pdf</a>, <a href="https://arxiv.org/format/2407.12178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Exploration Unbound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Arumugam%2C+D">Dilip Arumugam</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+W">Wanqiao Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12178v1-abstract-short" style="display: inline;"> A sequential decision-making agent balances between exploring to gain new knowledge about an environment and exploiting current knowledge to maximize immediate reward. For environments studied in the traditional literature, optimal decisions gravitate over time toward exploitation as the agent accumulates sufficient knowledge and the benefits of further exploration vanish. What if, however, the en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12178v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12178v1-abstract-full" style="display: none;"> A sequential decision-making agent balances between exploring to gain new knowledge about an environment and exploiting current knowledge to maximize immediate reward. For environments studied in the traditional literature, optimal decisions gravitate over time toward exploitation as the agent accumulates sufficient knowledge and the benefits of further exploration vanish. What if, however, the environment offers an unlimited amount of useful knowledge and there is large benefit to further exploration no matter how much the agent has learned? We offer a simple, quintessential example of such a complex environment. In this environment, rewards are unbounded and an agent can always increase the rate at which rewards accumulate by exploring to learn more. Consequently, an optimal agent forever maintains a propensity to explore. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12178v1-abstract-full').style.display = 'none'; document.getElementById('2407.12178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to the Finding the Frame Workshop at RLC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10023">arXiv:2407.10023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10023">pdf</a>, <a href="https://arxiv.org/format/2407.10023">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Reproducibility of Issues Reported in Stack Overflow Questions: Challenges, Impact &amp; Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mondal%2C+S">Saikat Mondal</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10023v1-abstract-short" style="display: inline;"> Software developers often submit questions to technical Q&amp;A sites like Stack Overflow (SO) to resolve code-level problems. In practice, they include example code snippets with questions to explain the programming issues. Existing research suggests that users attempt to reproduce the reported issues using given code snippets when answering questions. Unfortunately, such code snippets could not alwa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10023v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10023v1-abstract-full" style="display: none;"> Software developers often submit questions to technical Q&amp;A sites like Stack Overflow (SO) to resolve code-level problems. In practice, they include example code snippets with questions to explain the programming issues. Existing research suggests that users attempt to reproduce the reported issues using given code snippets when answering questions. Unfortunately, such code snippets could not always reproduce the issues due to several unmet challenges that prevent questions from receiving appropriate and prompt solutions. One previous study investigated reproducibility challenges and produced a catalog. However, how the practitioners perceive this challenge catalog is unknown. Practitioners&#39; perspectives are inevitable in validating these challenges and estimating their severity. This study first surveyed 53 practitioners to understand their perspectives on reproducibility challenges. We attempt to (a) see whether they agree with these challenges, (b) determine the impact of each challenge on answering questions, and (c) identify the need for tools to promote reproducibility. Survey results show that - (a) about 90% of the participants agree with the challenges, (b) &#34;missing an important part of code&#34; most severely hurt reproducibility, and (c) participants strongly recommend introducing automated tool support to promote reproducibility. Second, we extract \emph{nine} code-based features (e.g., LOC, compilability) and build five Machine Learning (ML) models to predict issue reproducibility. Early detection might help users improve code snippets and their reproducibility. Our models achieve 84.5% precision, 83.0% recall, 82.8% F1-score, and 82.8% overall accuracy, which are highly promising. Third, we systematically interpret the ML model and explain how code snippets with reproducible issues differ from those with irreproducible issues. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10023v1-abstract-full').style.display = 'none'; document.getElementById('2407.10023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Journal of Systems and Software. arXiv admin note: text overlap with arXiv:2112.10056</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02177">arXiv:2407.02177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02177">pdf</a>, <a href="https://arxiv.org/format/2407.02177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Discrete Mathematics">cs.DM</span> </div> </div> <p class="title is-5 mathjax"> Minsum Problem for Discrete and Weighted Set Flow on Dynamic Path Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Manna%2C+B">Bubai Manna</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bodhayan Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Suppakitpaisarn%2C+V">Vorapong Suppakitpaisarn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02177v1-abstract-short" style="display: inline;"> In this research, we examine the minsum flow problem in dynamic path networks where flows are represented as discrete and weighted sets. The minsum flow problem has been widely studied for its relevance in finding evacuation routes during emergencies such as earthquakes. However, previous approaches often assume that individuals are separable and identical, which does not adequately account for th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02177v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02177v1-abstract-full" style="display: none;"> In this research, we examine the minsum flow problem in dynamic path networks where flows are represented as discrete and weighted sets. The minsum flow problem has been widely studied for its relevance in finding evacuation routes during emergencies such as earthquakes. However, previous approaches often assume that individuals are separable and identical, which does not adequately account for the fact that some groups of people, such as families, need to move together and that some groups may be more important than others. To address these limitations, we modify the minsum flow problem to support flows represented as discrete and weighted sets. We also propose a 2-approximation pseudo-polynomial time algorithm to solve this modified problem for path networks with uniform capacity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02177v1-abstract-full').style.display = 'none'; document.getElementById('2407.02177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01456">arXiv:2407.01456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01456">pdf</a>, <a href="https://arxiv.org/format/2407.01456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Information-Theoretic Foundations for Neural Scaling Laws </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jeon%2C+H+J">Hong Jun Jeon</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01456v1-abstract-short" style="display: inline;"> Neural scaling laws aim to characterize how out-of-sample error behaves as a function of model and training dataset size. Such scaling laws guide allocation of a computational resources between model and data processing to minimize error. However, existing theoretical support for neural scaling laws lacks rigor and clarity, entangling the roles of information and optimization. In this work, we dev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01456v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01456v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01456v1-abstract-full" style="display: none;"> Neural scaling laws aim to characterize how out-of-sample error behaves as a function of model and training dataset size. Such scaling laws guide allocation of a computational resources between model and data processing to minimize error. However, existing theoretical support for neural scaling laws lacks rigor and clarity, entangling the roles of information and optimization. In this work, we develop rigorous information-theoretic foundations for neural scaling laws. This allows us to characterize scaling laws for data generated by a two-layer neural network of infinite width. We observe that the optimal relation between data and model size is linear, up to logarithmic factors, corroborating large-scale empirical investigations. Concise yet general results of the kind we establish may bring clarity to this topic and inform future investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01456v1-abstract-full').style.display = 'none'; document.getElementById('2407.01456v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2212.01365</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16209">arXiv:2406.16209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16209">pdf</a>, <a href="https://arxiv.org/format/2406.16209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Geometry">cs.CG</span> </div> </div> <p class="title is-5 mathjax"> Covering Simple Orthogonal Polygons with Rectangles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Roy%2C+A+B">Aniket Basu Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16209v1-abstract-short" style="display: inline;"> We study the problem of Covering Orthogonal Polygons with Rectangles. For polynomial-time algorithms, the best-known approximation factor is $O(\sqrt{\log n})$ when the input polygon may have holes [Kumar and Ramesh, STOC &#39;99, SICOMP &#39;03], and there is a $2$-factor approximation algorithm known when the polygon is hole-free [Franzblau, SIDMA &#39;89]. Arguably, an easier problem is the Boundary Cover&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16209v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16209v1-abstract-full" style="display: none;"> We study the problem of Covering Orthogonal Polygons with Rectangles. For polynomial-time algorithms, the best-known approximation factor is $O(\sqrt{\log n})$ when the input polygon may have holes [Kumar and Ramesh, STOC &#39;99, SICOMP &#39;03], and there is a $2$-factor approximation algorithm known when the polygon is hole-free [Franzblau, SIDMA &#39;89]. Arguably, an easier problem is the Boundary Cover problem where we are interested in covering only the boundary of the polygon in contrast to the original problem where we are interested in covering the interior of the polygon, hence it is also referred as the Interior Cover problem. For the Boundary Cover problem, a $4$-factor approximation algorithm is known to exist and it is APX-hard when the polygon has holes [Berman and DasGupta, Algorithmica &#39;94]. In this work, we investigate how effective is local search algorithm for the above covering problems on simple polygons. We prove that a simple local search algorithm yields a PTAS for the Boundary Cover problem when the polygon is simple. Our proof relies on the existence of planar supports on appropriate hypergraphs defined on the Boundary Cover problem instance. On the other hand, we construct instances where support graphs for the Interior Cover problem have arbitrarily large bicliques, thus implying that the same local search technique cannot yield a PTAS for this problem. We also show large locality gap for its dual problem, namely the Maximum Antirectangle problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16209v1-abstract-full').style.display = 'none'; document.getElementById('2406.16209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08188">arXiv:2406.08188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08188">pdf</a>, <a href="https://arxiv.org/format/2406.08188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3641234.3671085">10.1145/3641234.3671085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Attention-Based Learning for Fluid State Interpolation and Editing in a Time-Continuous Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bruno Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08188v1-abstract-short" style="display: inline;"> In this work, we introduce FluidsFormer: a transformer-based approach for fluid interpolation within a continuous-time framework. By combining the capabilities of PITT and a residual neural network (RNN), we analytically predict the physical properties of the fluid state. This enables us to interpolate substep frames between simulated keyframes, enhancing the temporal smoothness and sharpness of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08188v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08188v1-abstract-full" style="display: none;"> In this work, we introduce FluidsFormer: a transformer-based approach for fluid interpolation within a continuous-time framework. By combining the capabilities of PITT and a residual neural network (RNN), we analytically predict the physical properties of the fluid state. This enables us to interpolate substep frames between simulated keyframes, enhancing the temporal smoothness and sharpness of animations. We demonstrate promising results for smoke interpolation and conduct initial experiments on liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08188v1-abstract-full').style.display = 'none'; document.getElementById('2406.08188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, submitted and accepted to SIGGRAPH</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16329">arXiv:2404.16329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16329">pdf</a>, <a href="https://arxiv.org/format/2404.16329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Geometry">cs.CG</span> </div> </div> <p class="title is-5 mathjax"> On Approximating the Dynamic and Discrete Network Flow Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Manna%2C+B">Bubai Manna</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bodhayan Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Suppakitpaisarn%2C+V">Vorapong Suppakitpaisarn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16329v1-abstract-short" style="display: inline;"> We examine the dynamic network flow problem under the assumption that the flow consists of discrete units. The dynamic network flow problem is commonly addressed in the context of developing evacuation plans, where the flow is typically treated as a continuous quantity. However, real-world scenarios often involve moving groups, such as families, as single units. We demonstrate that solving the dyn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16329v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16329v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16329v1-abstract-full" style="display: none;"> We examine the dynamic network flow problem under the assumption that the flow consists of discrete units. The dynamic network flow problem is commonly addressed in the context of developing evacuation plans, where the flow is typically treated as a continuous quantity. However, real-world scenarios often involve moving groups, such as families, as single units. We demonstrate that solving the dynamic flow problem with this consideration is APX-hard. Conversely, we present a PTAS for instances where the base graph is a path with a constant number of nodes. We introduce a `ready time&#39; constraint to the minsum bin packing problem, meaning certain items cannot be placed in specific bins, develop a PTAS for this modified problem, and apply our algorithms to the discrete and dynamic flow problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16329v1-abstract-full').style.display = 'none'; document.getElementById('2404.16329v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15487">arXiv:2404.15487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15487">pdf</a>, <a href="https://arxiv.org/format/2404.15487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Geometry">cs.CG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Minimum Consistent Subset in Trees and Interval Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Banik%2C+A">Aritra Banik</a>, <a href="/search/cs?searchtype=author&amp;query=Das%2C+S">Sayani Das</a>, <a href="/search/cs?searchtype=author&amp;query=Maheshwari%2C+A">Anil Maheshwari</a>, <a href="/search/cs?searchtype=author&amp;query=Manna%2C+B">Bubai Manna</a>, <a href="/search/cs?searchtype=author&amp;query=Nandy%2C+S+C">Subhas C Nandy</a>, <a href="/search/cs?searchtype=author&amp;query=M%2C+K+P+K">Krishna Priya K M</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bodhayan Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+S">Sasanka Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Sahu%2C+A">Abhishek Sahu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15487v1-abstract-short" style="display: inline;"> In the Minimum Consistent Subset (MCS) problem, we are presented with a connected simple undirected graph $G=(V,E)$, consisting of a vertex set $V$ of size $n$ and an edge set $E$. Each vertex in $V$ is assigned a color from the set $\{1,2,\ldots, c\}$. The objective is to determine a subset $V&#39; \subseteq V$ with minimum possible cardinality, such that for every vertex $v \in V$, at least one of i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15487v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15487v1-abstract-full" style="display: none;"> In the Minimum Consistent Subset (MCS) problem, we are presented with a connected simple undirected graph $G=(V,E)$, consisting of a vertex set $V$ of size $n$ and an edge set $E$. Each vertex in $V$ is assigned a color from the set $\{1,2,\ldots, c\}$. The objective is to determine a subset $V&#39; \subseteq V$ with minimum possible cardinality, such that for every vertex $v \in V$, at least one of its nearest neighbors in $V&#39;$ (measured in terms of the hop distance) shares the same color as $v$. The decision problem, indicating whether there exists a subset $V&#39;$ of cardinality at most $l$ for some positive integer $l$, is known to be NP-complete even for planar graphs. In this paper, we establish that the MCS problem for trees, when the number of colors $c$ is considered an input parameter, is NP-complete. We propose a fixed-parameter tractable (FPT) algorithm for MCS on trees running in $O(2^{6c}n^6)$ time, significantly improving the currently best-known algorithm whose running time is $O(2^{4c}n^{2c+3})$. In an effort to comprehensively understand the computational complexity of the MCS problem across different graph classes, we extend our investigation to interval graphs. We show that it remains NP-complete for interval graphs, thus enriching graph classes where MCS remains intractable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15487v1-abstract-full').style.display = 'none'; document.getElementById('2404.15487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15446">arXiv:2404.15446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15446">pdf</a>, <a href="https://arxiv.org/format/2404.15446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/DSN58291.2024.00057">10.1109/DSN58291.2024.00057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OffRAMPS: An FPGA-based Intermediary for Analysis and Modification of Additive Manufacturing Control Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Blocklove%2C+J">Jason Blocklove</a>, <a href="/search/cs?searchtype=author&amp;query=Raz%2C+M">Md Raz</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+P+B">Prithwish Basu Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Pearce%2C+H">Hammond Pearce</a>, <a href="/search/cs?searchtype=author&amp;query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&amp;query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&amp;query=Karri%2C+R">Ramesh Karri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15446v2-abstract-short" style="display: inline;"> Cybersecurity threats in Additive Manufacturing (AM) are an increasing concern as AM adoption continues to grow. AM is now being used for parts in the aerospace, transportation, and medical domains. Threat vectors which allow for part compromise are particularly concerning, as any failure in these domains would have life-threatening consequences. A major challenge to investigation of AM part-compr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15446v2-abstract-full').style.display = 'inline'; document.getElementById('2404.15446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15446v2-abstract-full" style="display: none;"> Cybersecurity threats in Additive Manufacturing (AM) are an increasing concern as AM adoption continues to grow. AM is now being used for parts in the aerospace, transportation, and medical domains. Threat vectors which allow for part compromise are particularly concerning, as any failure in these domains would have life-threatening consequences. A major challenge to investigation of AM part-compromises comes from the difficulty in evaluating and benchmarking both identified threat vectors as well as methods for detecting adversarial actions. In this work, we introduce a generalized platform for systematic analysis of attacks against and defenses for 3D printers. Our &#34;OFFRAMPS&#34; platform is based on the open-source 3D printer control board &#34;RAMPS.&#34; OFFRAMPS allows analysis, recording, and modification of all control signals and I/O for a 3D printer. We show the efficacy of OFFRAMPS by presenting a series of case studies based on several Trojans, including ones identified in the literature, and show that OFFRAMPS can both emulate and detect these attacks, i.e., it can both change and detect arbitrary changes to the g-code print commands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15446v2-abstract-full').style.display = 'none'; document.getElementById('2404.15446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00396">arXiv:2402.00396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00396">pdf</a>, <a href="https://arxiv.org/format/2402.00396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Efficient Exploration for LLMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dwaracherla%2C+V">Vikranth Dwaracherla</a>, <a href="/search/cs?searchtype=author&amp;query=Asghari%2C+S+M">Seyed Mohammad Asghari</a>, <a href="/search/cs?searchtype=author&amp;query=Hao%2C+B">Botao Hao</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00396v2-abstract-short" style="display: inline;"> We present evidence of substantial benefit from efficient exploration in gathering human feedback to improve large language models. In our experiments, an agent sequentially generates queries while fitting a reward model to the feedback received. Our best-performing agent generates queries using double Thompson sampling, with uncertainty represented by an epistemic neural network. Our results demo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00396v2-abstract-full').style.display = 'inline'; document.getElementById('2402.00396v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00396v2-abstract-full" style="display: none;"> We present evidence of substantial benefit from efficient exploration in gathering human feedback to improve large language models. In our experiments, an agent sequentially generates queries while fitting a reward model to the feedback received. Our best-performing agent generates queries using double Thompson sampling, with uncertainty represented by an epistemic neural network. Our results demonstrate that efficient exploration enables high levels of performance with far fewer queries. Further, both uncertainty estimation and the choice of exploration scheme play critical roles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00396v2-abstract-full').style.display = 'none'; document.getElementById('2402.00396v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at ICML 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15530">arXiv:2401.15530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15530">pdf</a>, <a href="https://arxiv.org/ps/2401.15530">ps</a>, <a href="https://arxiv.org/format/2401.15530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> An Information-Theoretic Analysis of In-Context Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jeon%2C+H+J">Hong Jun Jeon</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+J+D">Jason D. Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Lei%2C+Q">Qi Lei</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15530v1-abstract-short" style="display: inline;"> Previous theoretical results pertaining to meta-learning on sequences build on contrived assumptions and are somewhat convoluted. We introduce new information-theoretic tools that lead to an elegant and very general decomposition of error into three components: irreducible error, meta-learning error, and intra-task error. These tools unify analyses across many meta-learning challenges. To illustra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15530v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15530v1-abstract-full" style="display: none;"> Previous theoretical results pertaining to meta-learning on sequences build on contrived assumptions and are somewhat convoluted. We introduce new information-theoretic tools that lead to an elegant and very general decomposition of error into three components: irreducible error, meta-learning error, and intra-task error. These tools unify analyses across many meta-learning challenges. To illustrate, we apply them to establish new results about in-context learning with transformers. Our theoretical results characterizes how error decays in both the number of training sequences and sequence lengths. Our results are very general; for example, they avoid contrived mixing time assumptions made by all prior results that establish decay of error with sequence length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15530v1-abstract-full').style.display = 'none'; document.getElementById('2401.15530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13239">arXiv:2401.13239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13239">pdf</a>, <a href="https://arxiv.org/format/2401.13239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Crowdsourcing Via Self-Supervised Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kagrecha%2C+A">Anmol Kagrecha</a>, <a href="/search/cs?searchtype=author&amp;query=Marklund%2C+H">Henrik Marklund</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Jeon%2C+H+J">Hong Jun Jeon</a>, <a href="/search/cs?searchtype=author&amp;query=Zeckhauser%2C+R">Richard Zeckhauser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13239v2-abstract-short" style="display: inline;"> Common crowdsourcing systems average estimates of a latent quantity of interest provided by many crowdworkers to produce a group estimate. We develop a new approach -- predict-each-worker -- that leverages self-supervised learning and a novel aggregation scheme. This approach adapts weights assigned to crowdworkers based on estimates they provided for previous quantities. When skills vary across c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13239v2-abstract-full').style.display = 'inline'; document.getElementById('2401.13239v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13239v2-abstract-full" style="display: none;"> Common crowdsourcing systems average estimates of a latent quantity of interest provided by many crowdworkers to produce a group estimate. We develop a new approach -- predict-each-worker -- that leverages self-supervised learning and a novel aggregation scheme. This approach adapts weights assigned to crowdworkers based on estimates they provided for previous quantities. When skills vary across crowdworkers or their estimates correlate, the weighted sum offers a more accurate group estimate than the average. Existing algorithms such as expectation maximization can, at least in principle, produce similarly accurate group estimates. However, their computational requirements become onerous when complex models, such as neural networks, are required to express relationships among crowdworkers. Predict-each-worker accommodates such complexity as well as many other practical challenges. We analyze the efficacy of predict-each-worker through theoretical and computational studies. Among other things, we establish asymptotic optimality as the number of engagements per crowdworker grows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13239v2-abstract-full').style.display = 'none'; document.getElementById('2401.13239v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04318">arXiv:2401.04318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04318">pdf</a>, <a href="https://arxiv.org/ps/2401.04318">ps</a>, <a href="https://arxiv.org/format/2401.04318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Contiguous Allocation of Indivisible Items on a Path </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kawase%2C+Y">Yasushi Kawase</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Bodhayan Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Sanpui%2C+M+A">Mohammad Azharuddin Sanpui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04318v2-abstract-short" style="display: inline;"> We study the problem of allocating indivisible items on a path among agents. The objective is to find a fair and efficient allocation in which each agent&#39;s bundle forms a contiguous block on the line. We say that an instance is \emph{$(a, b)$-sparse} if each agent values at most $a$ items positively and each item is valued positively by at most $b$ agents. We demonstrate that, even when the valuat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04318v2-abstract-full').style.display = 'inline'; document.getElementById('2401.04318v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04318v2-abstract-full" style="display: none;"> We study the problem of allocating indivisible items on a path among agents. The objective is to find a fair and efficient allocation in which each agent&#39;s bundle forms a contiguous block on the line. We say that an instance is \emph{$(a, b)$-sparse} if each agent values at most $a$ items positively and each item is valued positively by at most $b$ agents. We demonstrate that, even when the valuations are binary additive, deciding whether every item can be allocated to an agent who wants it is NP-complete for the $(4,3)$-sparse instances. Consequently, we provide two fixed-parameter tractable (FPT) algorithms for maximizing utilitarian social welfare, with respect to the number of agents and the number of items. Additionally, we present a $2$-approximation algorithm for the special case when the valuations are binary additive, and the maximum utility is equal to the number of items. Also, we provide a $1/a$-approximation algorithm for the $(a,b)$-sparse instances. Furthermore, we establish that deciding whether the maximum egalitarian social welfare is at least $2$ or at most $1$ is NP-complete for the $(6,3)$-sparse instances, even when the valuations are binary additive. We present a $1/a$-approximation algorithm for maximizing egalitarian social welfare for the $(a,b)$-sparse instances. Besides, we give two FPT algorithms for maximizing egalitarian social welfare in terms of the number of agents and the number of items. We also explore the case where the order of the blocks of items allocated to the agents is predetermined. In this case, we show that both maximum utilitarian social welfare and egalitarian social welfare can be computed in polynomial time. However, we determine that checking the existence of an EF1 allocation is NP-complete, even when the valuations are binary additive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04318v2-abstract-full').style.display = 'none'; document.getElementById('2401.04318v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A preliminary version was accepted at AAMAS 2024 as an extended abstract</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01057">arXiv:2312.01057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01057">pdf</a>, <a href="https://arxiv.org/format/2312.01057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> RLHF and IIA: Perverse Incentives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xu%2C+W">Wanqiao Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+S">Shi Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+X">Xiuyuan Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Lam%2C+G">Grace Lam</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+Z">Zheng Wen</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01057v3-abstract-short" style="display: inline;"> Existing algorithms for reinforcement learning from human feedback (RLHF) can incentivize responses at odds with preferences because they are based on models that assume independence of irrelevant alternatives (IIA). The perverse incentives induced by IIA hinder innovations on query formats and learning algorithms. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01057v3-abstract-full" style="display: none;"> Existing algorithms for reinforcement learning from human feedback (RLHF) can incentivize responses at odds with preferences because they are based on models that assume independence of irrelevant alternatives (IIA). The perverse incentives induced by IIA hinder innovations on query formats and learning algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01057v3-abstract-full').style.display = 'none'; document.getElementById('2312.01057v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04581">arXiv:2311.04581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04581">pdf</a>, <a href="https://arxiv.org/format/2311.04581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> KiD: A Hardware Design Framework Targeting Unified NTT Multiplication for CRYSTALS-Kyber and CRYSTALS-Dilithium on FPGA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mandal%2C+S">Suraj Mandal</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+D+B">Debapriya Basu Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04581v1-abstract-short" style="display: inline;"> Large-degree polynomial multiplication is an integral component of post-quantum secure lattice-based cryptographic algorithms like CRYSTALS-Kyber and Dilithium. The computational complexity of large-degree polynomial multiplication can be reduced significantly through Number Theoretic Transformation (NTT). In this paper, we aim to develop a unified and shared NTT architecture that can support poly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04581v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04581v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04581v1-abstract-full" style="display: none;"> Large-degree polynomial multiplication is an integral component of post-quantum secure lattice-based cryptographic algorithms like CRYSTALS-Kyber and Dilithium. The computational complexity of large-degree polynomial multiplication can be reduced significantly through Number Theoretic Transformation (NTT). In this paper, we aim to develop a unified and shared NTT architecture that can support polynomial multiplication for both CRYSTALS-Kyber and Dilithium. More specifically, in this paper, we have proposed three different unified architectures for NTT multiplication in CRYSTALS-Kyber and Dilithium with varying numbers of configurable radix-2 butterfly units. Additionally, the developed implementation is coupled with a conflict-free memory mapping scheme that allows the architecture to be fully pipelined. We have validated our implementation on Artix-7, Zynq-7000 and Zynq Ultrascale+ FPGAs. Our standalone implementations for NTT multiplication for CRYSTALS-Kyber and Dilithium perform better than the existing works, and our unified architecture shows excellent area and timing performance compared to both standalone and existing unified implementations. This architecture can potentially be used for compact and efficient implementation for CRYSTALS-Kyber and Dilithium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04581v1-abstract-full').style.display = 'none'; document.getElementById('2311.04581v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07786">arXiv:2310.07786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07786">pdf</a>, <a href="https://arxiv.org/format/2310.07786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Non-Stationary Contextual Bandit Learning via Neural Predictive Ensemble Sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Z">Zheqing Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yueyang Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Kuang%2C+X">Xu Kuang</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07786v2-abstract-short" style="display: inline;"> Real-world applications of contextual bandits often exhibit non-stationarity due to seasonality, serendipity, and evolving social trends. While a number of non-stationary contextual bandit learning algorithms have been proposed in the literature, they excessively explore due to a lack of prioritization for information of enduring value, or are designed in ways that do not scale in modern applicati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07786v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07786v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07786v2-abstract-full" style="display: none;"> Real-world applications of contextual bandits often exhibit non-stationarity due to seasonality, serendipity, and evolving social trends. While a number of non-stationary contextual bandit learning algorithms have been proposed in the literature, they excessively explore due to a lack of prioritization for information of enduring value, or are designed in ways that do not scale in modern applications with high-dimensional user-specific features and large action set, or both. In this paper, we introduce a novel non-stationary contextual bandit algorithm that addresses these concerns. It combines a scalable, deep-neural-network-based architecture with a carefully designed exploration mechanism that strategically prioritizes collecting information with the most lasting value in a non-stationary environment. Through empirical evaluations on two real-world recommendation datasets, which exhibit pronounced non-stationarity, we demonstrate that our approach significantly outperforms the state-of-the-art baselines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07786v2-abstract-full').style.display = 'none'; document.getElementById('2310.07786v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07291">arXiv:2309.07291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07291">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Reusability Challenges of Scientific Workflows: A Case Study for Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Alam%2C+K">Khairul Alam</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Serebrenik%2C+A">Alexander Serebrenik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07291v1-abstract-short" style="display: inline;"> Scientific workflow has become essential in software engineering because it provides a structured approach to designing, executing, and analyzing scientific experiments. Software developers and researchers have developed hundreds of scientific workflow management systems so scientists in various domains can benefit from them by automating repetitive tasks, enhancing collaboration, and ensuring the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07291v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07291v1-abstract-full" style="display: none;"> Scientific workflow has become essential in software engineering because it provides a structured approach to designing, executing, and analyzing scientific experiments. Software developers and researchers have developed hundreds of scientific workflow management systems so scientists in various domains can benefit from them by automating repetitive tasks, enhancing collaboration, and ensuring the reproducibility of their results. However, even for expert users, workflow creation is a complex task due to the dramatic growth of tools and data heterogeneity. Thus, scientists attempt to reuse existing workflows shared in workflow repositories. Unfortunately, several challenges prevent scientists from reusing those workflows. In this study, we thus first attempted to identify those reusability challenges. We also offered an action list and evidence-based guidelines to promote the reusability of scientific workflows. Our intensive manual investigation examined the reusability of existing workflows and exposed several challenges. The challenges preventing reusability include tool upgrading, tool support unavailability, design flaws, incomplete workflows, failure to load a workflow, etc. Such challenges and our action list offered guidelines to future workflow composers to create better workflows with enhanced reusability. In the future, we plan to develop a recommender system using reusable workflows that can assist scientists in creating effective and error-free workflows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07291v1-abstract-full').style.display = 'none'; document.getElementById('2309.07291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in APSEC 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06424">arXiv:2309.06424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.06424">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the potential of large language models in generating semantic and cross-language clones </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Roy%2C+P+R">Palash R. Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Alam%2C+A+I">Ajmain I. Alam</a>, <a href="/search/cs?searchtype=author&amp;query=Al-omari%2C+F">Farouq Al-omari</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+C+K">Chanchal K. Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Schneider%2C+K+A">Kevin A. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06424v1-abstract-short" style="display: inline;"> Semantic and Cross-language code clone generation may be useful for code reuse, code comprehension, refactoring and benchmarking. OpenAI&#39;s GPT model has potential in such clone generation as GPT is used for text generation. When developers copy/paste codes from Stack Overflow (SO) or within a system, there might be inconsistent changes leading to unexpected behaviours. Similarly, if someone posses&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06424v1-abstract-full').style.display = 'inline'; document.getElementById('2309.06424v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06424v1-abstract-full" style="display: none;"> Semantic and Cross-language code clone generation may be useful for code reuse, code comprehension, refactoring and benchmarking. OpenAI&#39;s GPT model has potential in such clone generation as GPT is used for text generation. When developers copy/paste codes from Stack Overflow (SO) or within a system, there might be inconsistent changes leading to unexpected behaviours. Similarly, if someone possesses a code snippet in a particular programming language but seeks equivalent functionality in a different language, a semantic cross-language code clone generation approach could provide valuable assistance. In this study, using SemanticCloneBench as a vehicle, we evaluated how well the GPT-3 model could help generate semantic and cross-language clone variants for a given fragment.We have comprised a diverse set of code fragments and assessed GPT-3s performance in generating code variants.Through extensive experimentation and analysis, where 9 judges spent 158 hours to validate, we investigate the model&#39;s ability to produce accurate and semantically correct variants. Our findings shed light on GPT-3&#39;s strengths in code generation, offering insights into the potential applications and challenges of using advanced language models in software development. Our quantitative analysis yields compelling results. In the realm of semantic clones, GPT-3 attains an impressive accuracy of 62.14% and 0.55 BLEU score, achieved through few-shot prompt engineering. Furthermore, the model shines in transcending linguistic confines, boasting an exceptional 91.25% accuracy in generating cross-language clones <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06424v1-abstract-full').style.display = 'none'; document.getElementById('2309.06424v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in IWSC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05550">arXiv:2309.05550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05550">pdf</a>, <a href="https://arxiv.org/format/2309.05550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Multiplierless Design of High-Speed Very Large Constant Multiplications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Aksoy%2C+L">Levent Aksoy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+D+B">Debapriya Basu Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Imran%2C+M">Malik Imran</a>, <a href="/search/cs?searchtype=author&amp;query=Pagliarini%2C+S">Samuel Pagliarini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05550v2-abstract-short" style="display: inline;"> In cryptographic algorithms, the constants to be multiplied by a variable can be very large due to security requirements. Thus, the hardware complexity of such algorithms heavily depends on the design architecture handling large constants. In this paper, we introduce an electronic design automation tool, called LEIGER, which can automatically generate the realizations of very large constant multip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05550v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05550v2-abstract-full" style="display: none;"> In cryptographic algorithms, the constants to be multiplied by a variable can be very large due to security requirements. Thus, the hardware complexity of such algorithms heavily depends on the design architecture handling large constants. In this paper, we introduce an electronic design automation tool, called LEIGER, which can automatically generate the realizations of very large constant multiplications for low-complexity and high-speed applications, targeting the ASIC design platform. LEIGER can utilize the shift-adds architecture and use 3-input operations, i.e., carry-save adders (CSAs), where the number of CSAs is reduced using a prominent optimization algorithm. It can also generate constant multiplications under a hybrid design architecture, where 2-and 3-input operations are used at different stages. Moreover, it can describe constant multiplications under a design architecture using compressor trees. As a case study, high-speed Montgomery multiplication, which is a fundamental operation in cryptographic algorithms, is designed with its constant multiplication block realized under the proposed architectures. Experimental results indicate that LEIGER enables a designer to explore the trade-off between area and delay of the very large constant and Montgomery multiplications and leads to designs with area-delay product, latency, and energy consumption values significantly better than those obtained by a recently proposed algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05550v2-abstract-full').style.display = 'none'; document.getElementById('2309.05550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13963">arXiv:2308.13963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13963">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> GPTCloneBench: A comprehensive benchmark of semantic clones and cross-language clones using GPT-3 model and SemanticCloneBench </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Alam%2C+A+I">Ajmain Inqiad Alam</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+P+R">Palash Ranjan Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Al-omari%2C+F">Farouq Al-omari</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+C+K">Chanchal Kumar Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Banani Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Schneider%2C+K">Kevin Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13963v2-abstract-short" style="display: inline;"> With the emergence of Machine Learning, there has been a surge in leveraging its capabilities for problem-solving across various domains. In the code clone realm, the identification of type-4 or semantic clones has emerged as a crucial yet challenging task. Researchers aim to utilize Machine Learning to tackle this challenge, often relying on the BigCloneBench dataset. However, it&#39;s worth noting t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13963v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13963v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13963v2-abstract-full" style="display: none;"> With the emergence of Machine Learning, there has been a surge in leveraging its capabilities for problem-solving across various domains. In the code clone realm, the identification of type-4 or semantic clones has emerged as a crucial yet challenging task. Researchers aim to utilize Machine Learning to tackle this challenge, often relying on the BigCloneBench dataset. However, it&#39;s worth noting that BigCloneBench, originally not designed for semantic clone detection, presents several limitations that hinder its suitability as a comprehensive training dataset for this specific purpose. Furthermore, CLCDSA dataset suffers from a lack of reusable examples aligning with real-world software systems, rendering it inadequate for cross-language clone detection approaches. In this work, we present a comprehensive semantic clone and cross-language clone benchmark, GPTCloneBench by exploiting SemanticCloneBench and OpenAI&#39;s GPT-3 model. In particular, using code fragments from SemanticCloneBench as sample inputs along with appropriate prompt engineering for GPT-3 model, we generate semantic and cross-language clones for these specific fragments and then conduct a combination of extensive manual analysis, tool-assisted filtering, functionality testing and automated validation in building the benchmark. From 79,928 clone pairs of GPT-3 output, we created a benchmark with 37,149 true semantic clone pairs, 19,288 false semantic pairs(Type-1/Type-2), and 20,770 cross-language clones across four languages (Java, C, C#, and Python). Our benchmark is 15-fold larger than SemanticCloneBench, has more functional code examples for software systems and programming language support than CLCDSA, and overcomes BigCloneBench&#39;s qualities, quantification, and language variety limitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13963v2-abstract-full').style.display = 'none'; document.getElementById('2308.13963v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in 39th IEEE International Conference on Software Maintenance and Evolution(ICSME 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11958">arXiv:2308.11958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11958">pdf</a>, <a href="https://arxiv.org/format/2308.11958">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Maintaining Plasticity in Continual Learning via Regenerative Regularization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kumar%2C+S">Saurabh Kumar</a>, <a href="/search/cs?searchtype=author&amp;query=Marklund%2C+H">Henrik Marklund</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11958v3-abstract-short" style="display: inline;"> In continual learning, plasticity refers to the ability of an agent to quickly adapt to new information. Neural networks are known to lose plasticity when processing non-stationary data streams. In this paper, we propose L2 Init, a simple approach for maintaining plasticity by incorporating in the loss function L2 regularization toward initial parameters. This is very similar to standard L2 regula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11958v3-abstract-full').style.display = 'inline'; document.getElementById('2308.11958v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11958v3-abstract-full" style="display: none;"> In continual learning, plasticity refers to the ability of an agent to quickly adapt to new information. Neural networks are known to lose plasticity when processing non-stationary data streams. In this paper, we propose L2 Init, a simple approach for maintaining plasticity by incorporating in the loss function L2 regularization toward initial parameters. This is very similar to standard L2 regularization (L2), the only difference being that L2 regularizes toward the origin. L2 Init is simple to implement and requires selecting only a single hyper-parameter. The motivation for this method is the same as that of methods that reset neurons or parameter values. Intuitively, when recent losses are insensitive to particular parameters, these parameters should drift toward their initial values. This prepares parameters to adapt quickly to new tasks. On problems representative of different types of nonstationarity in continual supervised learning, we demonstrate that L2 Init most consistently mitigates plasticity loss compared to previously proposed approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11958v3-abstract-full').style.display = 'none'; document.getElementById('2308.11958v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14185">arXiv:2307.14185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14185">pdf</a>, <a href="https://arxiv.org/format/2307.14185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=McSpadden%2C+D">Diana McSpadden</a>, <a href="/search/cs?searchtype=author&amp;query=Goldenberg%2C+S">Steven Goldenberg</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+B">Binata Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Schram%2C+M">Malachi Schram</a>, <a href="/search/cs?searchtype=author&amp;query=Goodall%2C+J+L">Jonathan L. Goodall</a>, <a href="/search/cs?searchtype=author&amp;query=Richter%2C+H">Heather Richter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14185v1-abstract-short" style="display: inline;"> Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14185v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14185v1-abstract-full" style="display: none;"> Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). This investigation underscores the importance of using a model architecture that supports the communication of prediction uncertainty and the effective integration of relevant, multi-modal features. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14185v1-abstract-full').style.display = 'none'; document.getElementById('2307.14185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11046">arXiv:2307.11046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11046">pdf</a>, <a href="https://arxiv.org/format/2307.11046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A Definition of Continual Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Abel%2C+D">David Abel</a>, <a href="/search/cs?searchtype=author&amp;query=Barreto%2C+A">Andr茅 Barreto</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Precup%2C+D">Doina Precup</a>, <a href="/search/cs?searchtype=author&amp;query=van+Hasselt%2C+H">Hado van Hasselt</a>, <a href="/search/cs?searchtype=author&amp;query=Singh%2C+S">Satinder Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11046v2-abstract-short" style="display: inline;"> In a standard view of the reinforcement learning problem, an agent&#39;s goal is to efficiently identify a policy that maximizes long-term reward. However, this perspective is based on a restricted view of learning as finding a solution, rather than treating learning as endless adaptation. In contrast, continual reinforcement learning refers to the setting in which the best agents never stop learning.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11046v2-abstract-full').style.display = 'inline'; document.getElementById('2307.11046v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11046v2-abstract-full" style="display: none;"> In a standard view of the reinforcement learning problem, an agent&#39;s goal is to efficiently identify a policy that maximizes long-term reward. However, this perspective is based on a restricted view of learning as finding a solution, rather than treating learning as endless adaptation. In contrast, continual reinforcement learning refers to the setting in which the best agents never stop learning. Despite the importance of continual reinforcement learning, the community lacks a simple definition of the problem that highlights its commitments and makes its primary concepts precise and clear. To this end, this paper is dedicated to carefully defining the continual reinforcement learning problem. We formalize the notion of agents that &#34;never stop learning&#34; through a new mathematical language for analyzing and cataloging agents. Using this new language, we define a continual learning agent as one that can be understood as carrying out an implicit search process indefinitely, and continual reinforcement learning as the setting in which the best agents are all continual learning agents. We provide two motivating examples, illustrating that traditional views of multi-task reinforcement learning and continual supervised learning are special cases of our definition. Collectively, these definitions and perspectives formalize many intuitive concepts at the heart of learning, and open new research pathways surrounding continual learning agents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11046v2-abstract-full').style.display = 'none'; document.getElementById('2307.11046v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11044">arXiv:2307.11044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11044">pdf</a>, <a href="https://arxiv.org/format/2307.11044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> On the Convergence of Bounded Agents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Abel%2C+D">David Abel</a>, <a href="/search/cs?searchtype=author&amp;query=Barreto%2C+A">Andr茅 Barreto</a>, <a href="/search/cs?searchtype=author&amp;query=van+Hasselt%2C+H">Hado van Hasselt</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Roy%2C+B">Benjamin Van Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Precup%2C+D">Doina Precup</a>, <a href="/search/cs?searchtype=author&amp;query=Singh%2C+S">Satinder Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11044v1-abstract-short" style="display: inline;"> When has an agent converged? Standard models of the reinforcement learning problem give rise to a straightforward definition of convergence: An agent converges when its behavior or performance in each environment state stops changing. However, as we shift the focus of our learning problem from the environment&#39;s state to the agent&#39;s state, the concept of an agent&#39;s convergence becomes significantly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11044v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11044v1-abstract-full" style="display: none;"> When has an agent converged? Standard models of the reinforcement learning problem give rise to a straightforward definition of convergence: An agent converges when its behavior or performance in each environment state stops changing. However, as we shift the focus of our learning problem from the environment&#39;s state to the agent&#39;s state, the concept of an agent&#39;s convergence becomes significantly less clear. In this paper, we propose two complementary accounts of agent convergence in a framing of the reinforcement learning problem that centers around bounded agents. The first view says that a bounded agent has converged when the minimal number of states needed to describe the agent&#39;s future behavior cannot decrease. The second view says that a bounded agent has converged just when the agent&#39;s performance only changes if the agent&#39;s internal state changes. We establish basic properties of these two definitions, show that they accommodate typical views of convergence in standard settings, and prove several facts about their nature and relationship. We take these perspectives, definitions, and analysis to bring clarity to a central idea of the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11044v1-abstract-full').style.display = 'none'; document.getElementById('2307.11044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Roy%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10