CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–44 of 44 results for author: <span class="mathjax">Khorrami, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Khorrami%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Khorrami, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Khorrami%2C+F&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Khorrami, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10931">arXiv:2502.10931</a> <span> [<a href="https://arxiv.org/pdf/2502.10931">pdf</a>, <a href="https://arxiv.org/format/2502.10931">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> D-CIPHER: Dynamic Collaborative Intelligent Agents with Planning and Heterogeneous Execution for Enhanced Reasoning in Offensive Security </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Udeshi%2C+M">Meet Udeshi</a>, <a href="/search/cs?searchtype=author&query=Shao%2C+M">Minghao Shao</a>, <a href="/search/cs?searchtype=author&query=Xi%2C+H">Haoran Xi</a>, <a href="/search/cs?searchtype=author&query=Rani%2C+N">Nanda Rani</a>, <a href="/search/cs?searchtype=author&query=Milner%2C+K">Kimberly Milner</a>, <a href="/search/cs?searchtype=author&query=Putrevu%2C+V+S+C">Venkata Sai Charan Putrevu</a>, <a href="/search/cs?searchtype=author&query=Dolan-Gavitt%2C+B">Brendan Dolan-Gavitt</a>, <a href="/search/cs?searchtype=author&query=Shukla%2C+S+K">Sandeep Kumar Shukla</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Shafique%2C+M">Muhammad Shafique</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10931v1-abstract-short" style="display: inline;"> Large Language Models (LLMs) have been used in cybersecurity in many ways, including their recent use as intelligent agent systems for autonomous security analysis. Capture the Flag (CTF) challenges serve as benchmarks for assessing the automated task-planning abilities of LLM agents across various cybersecurity skill sets. Early attempts to apply LLMs for solving CTF challenges relied on single-a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10931v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10931v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10931v1-abstract-full" style="display: none;"> Large Language Models (LLMs) have been used in cybersecurity in many ways, including their recent use as intelligent agent systems for autonomous security analysis. Capture the Flag (CTF) challenges serve as benchmarks for assessing the automated task-planning abilities of LLM agents across various cybersecurity skill sets. Early attempts to apply LLMs for solving CTF challenges relied on single-agent systems, where feedback was restricted to a single reasoning-action loop. This approach proved inadequate for handling complex CTF tasks. Drawing inspiration from real-world CTF competitions, where teams of experts collaborate, we introduce the D-CIPHER multi-agent LLM framework for collaborative CTF challenge solving. D-CIPHER integrates agents with distinct roles, enabling dynamic feedback loops to enhance reasoning on CTF challenges. It introduces the Planner-Executor agent system, consisting of a Planner agent for overall problem-solving along with multiple heterogeneous Executor agents for individual tasks, facilitating efficient allocation of responsibilities among the LLMs. Additionally, D-CIPHER incorporates an Auto-prompter agent, which improves problem-solving by exploring the challenge environment and generating a highly relevant initial prompt. We evaluate D-CIPHER on CTF benchmarks using multiple LLM models and conduct comprehensive studies to highlight the impact of our enhancements. Our results demonstrate that the multi-agent D-CIPHER system achieves a significant improvement in challenges solved, setting a state-of-the-art performance on three benchmarks: 22.0% on NYU CTF Bench, 22.5% on Cybench, and 44.0% on HackTheBox. D-CIPHER is available at https://github.com/NYU-LLM-CTF/nyuctf_agents as the nyuctf_multiagent package. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10931v1-abstract-full').style.display = 'none'; document.getElementById('2502.10931v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16619">arXiv:2501.16619</a> <span> [<a href="https://arxiv.org/pdf/2501.16619">pdf</a>, <a href="https://arxiv.org/format/2501.16619">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> SHIELD: Secure Host-Independent Extensible Logging for SATA/Network Storage Towards Ransomware Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Raz%2C+M">Md Raz</a>, <a href="/search/cs?searchtype=author&query=Charan%2C+P+V+S">P. V. Sai Charan</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16619v1-abstract-short" style="display: inline;"> As malware such as ransomware becomes sophisticated, the ability to find and neutralize it requires more robust and tamper-resistant solutions. Current methods rely on data from compromised hosts, lack hardware isolation, and cannot detect emerging threats. To address these limitations, we introduce SHIELD - a detection architecture leveraging FPGA-based open-source SATA and Network Block Device (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16619v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16619v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16619v1-abstract-full" style="display: none;"> As malware such as ransomware becomes sophisticated, the ability to find and neutralize it requires more robust and tamper-resistant solutions. Current methods rely on data from compromised hosts, lack hardware isolation, and cannot detect emerging threats. To address these limitations, we introduce SHIELD - a detection architecture leveraging FPGA-based open-source SATA and Network Block Device (NBD) technology to provide off-host, tamper-proof measurements for continuous observation of disk activity for software executing on a target device. SHIELD provides three distinct contributions: It (1) develops a framework to obtain and analyze multi-level hardware metrics at NBD, FPGA, and SATA storage levels, and shows their ability to differentiate between harmless and malicious software; (2) Broadens the functionality of an open-source FPGA-driven SATA Host Bus Adapter (HBA) to offer complete data storage capabilities through NBD without relying on the host system; (3) Provides a foundation for using the methodology and metrics in automated machine learning-assisted detection and ASIC integration for advanced mitigation capabilities in data storage devices. SHIELD analyzes 10 benign programs and 10 modern ransomware families to illustrate its capacity for real-time monitoring and use in distinguishing between ransomware and benign software. Experimental evidence shows SHIELD's robust host-independent and hardware-assisted metrics are a basis for detection, allowing to observe program execution and detect malicious activities at the storage level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16619v1-abstract-full').style.display = 'none'; document.getElementById('2501.16619v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13081">arXiv:2501.13081</a> <span> [<a href="https://arxiv.org/pdf/2501.13081">pdf</a>, <a href="https://arxiv.org/format/2501.13081">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Real-Time Multi-Modal Subcomponent-Level Measurements for Trustworthy System Monitoring and Malware Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13081v1-abstract-short" style="display: inline;"> With increasingly sophisticated cyber-adversaries able to access a wider repertoire of mechanisms to implant malware such as ransomware, CPU/GPU keyloggers, and stealthy kernel rootkits, there is an urgent need for techniques to detect and mitigate such attacks. While state of the art relies on digital and analog side channel measurements assuming trustworthiness of measurements obtained on the ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13081v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13081v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13081v1-abstract-full" style="display: none;"> With increasingly sophisticated cyber-adversaries able to access a wider repertoire of mechanisms to implant malware such as ransomware, CPU/GPU keyloggers, and stealthy kernel rootkits, there is an urgent need for techniques to detect and mitigate such attacks. While state of the art relies on digital and analog side channel measurements assuming trustworthiness of measurements obtained on the main processor, such an approach has limitations since processor-based side channel measurements are potentially untrustworthy. Sophisticated adversaries (especially in late stage cyber attacks when they have breached the computer and network security systems such as firewalls and antivirus and penetrated the computer's OS) can compromise user-space and kernel-space measurements. To address this key limitation of state of the art, we propose a "subcomponent-level" approach to collect side channel measurements so as to enable robust anomaly detection in a modern computer even when the main processor is compromised. Our proposed approach leverages the fact that modern computers are complex systems with multiple interacting subcomponents and measurements from subcomponents can be used to detect anomalies even when the main processor is no longer trustworthy. We develop mechanisms to obtain time series measurements of activity of several subcomponents and methodologies to process and fuse these measurements for anomaly detection. The subcomponents include network interface controller, GPU, CPU Hardware Performance Counters, CPU power, and keyboard. Our main hypothesis is that subcomponent measurements can enable detection of security threats without requiring a trustworthy main processor. By enabling real-time measurements from multiple subcomponents, the goal is to provide a deeper visibility into system operation, thereby yielding a powerful tool to track system operation and detect anomalies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13081v1-abstract-full').style.display = 'none'; document.getElementById('2501.13081v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 29 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10594">arXiv:2412.10594</a> <span> [<a href="https://arxiv.org/pdf/2412.10594">pdf</a>, <a href="https://arxiv.org/format/2412.10594">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Towards Unified Benchmark and Models for Multi-Modal Perceptual Metrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ghazanfari%2C+S">Sara Ghazanfari</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Flammarion%2C+N">Nicolas Flammarion</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Croce%2C+F">Francesco Croce</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10594v1-abstract-short" style="display: inline;"> Human perception of similarity across uni- and multimodal inputs is highly complex, making it challenging to develop automated metrics that accurately mimic it. General purpose vision-language models, such as CLIP and large multi-modal models (LMMs), can be applied as zero-shot perceptual metrics, and several recent works have developed models specialized in narrow perceptual tasks. However, the e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10594v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10594v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10594v1-abstract-full" style="display: none;"> Human perception of similarity across uni- and multimodal inputs is highly complex, making it challenging to develop automated metrics that accurately mimic it. General purpose vision-language models, such as CLIP and large multi-modal models (LMMs), can be applied as zero-shot perceptual metrics, and several recent works have developed models specialized in narrow perceptual tasks. However, the extent to which existing perceptual metrics align with human perception remains unclear. To investigate this question, we introduce UniSim-Bench, a benchmark encompassing 7 multi-modal perceptual similarity tasks, with a total of 25 datasets. Our evaluation reveals that while general-purpose models perform reasonably well on average, they often lag behind specialized models on individual tasks. Conversely, metrics fine-tuned for specific tasks fail to generalize well to unseen, though related, tasks. As a first step towards a unified multi-task perceptual similarity metric, we fine-tune both encoder-based and generative vision-language models on a subset of the UniSim-Bench tasks. This approach yields the highest average performance, and in some cases, even surpasses taskspecific models. Nevertheless, these models still struggle with generalization to unseen tasks, highlighting the ongoing challenge of learning a robust, unified perceptual similarity metric capable of capturing the human notion of similarity. The code and models are available at https://github.com/SaraGhazanfari/UniSim. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10594v1-abstract-full').style.display = 'none'; document.getElementById('2412.10594v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09816">arXiv:2412.09816</a> <span> [<a href="https://arxiv.org/pdf/2412.09816">pdf</a>, <a href="https://arxiv.org/format/2412.09816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Distributed Inverse Dynamics Control for Quadruped Robots using Geometric Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Khandelwal%2C+N">Nimesh Khandelwal</a>, <a href="/search/cs?searchtype=author&query=Manu%2C+A">Amritanshu Manu</a>, <a href="/search/cs?searchtype=author&query=Gupta%2C+S+S">Shakti S. Gupta</a>, <a href="/search/cs?searchtype=author&query=Kothari%2C+M">Mangal Kothari</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09816v1-abstract-short" style="display: inline;"> This paper presents a distributed inverse dynamics controller (DIDC) for quadruped robots that addresses the limitations of existing reactive controllers: simplified dynamical models, the inability to handle exact friction cone constraints, and the high computational requirements of whole-body controllers. Current methods either ignore friction constraints entirely or use linear approximations, le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09816v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09816v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09816v1-abstract-full" style="display: none;"> This paper presents a distributed inverse dynamics controller (DIDC) for quadruped robots that addresses the limitations of existing reactive controllers: simplified dynamical models, the inability to handle exact friction cone constraints, and the high computational requirements of whole-body controllers. Current methods either ignore friction constraints entirely or use linear approximations, leading to potential slip and instability, while comprehensive whole-body controllers demand significant computational resources. Our approach uses full rigid-body dynamics and enforces exact friction cone constraints through a novel geometric optimization-based solver. DIDC combines the required generalized forces corresponding to the actuated and unactuated spaces by projecting them onto the actuated space while satisfying the physical constraints and maintaining orthogonality between the base and joint tracking objectives. Experimental validation shows that our approach reduces foot slippage, improves orientation tracking, and converges at least two times faster than existing reactive controllers with generic QP-based implementations. The controller enables stable omnidirectional trotting at various speeds and consumes less power than comparable methods while running efficiently on embedded processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09816v1-abstract-full').style.display = 'none'; document.getElementById('2412.09816v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06168">arXiv:2412.06168</a> <span> [<a href="https://arxiv.org/pdf/2412.06168">pdf</a>, <a href="https://arxiv.org/format/2412.06168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Out-of-Distribution Detection with Overlap Index </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06168v1-abstract-short" style="display: inline;"> Out-of-distribution (OOD) detection is crucial for the deployment of machine learning models in the open world. While existing OOD detectors are effective in identifying OOD samples that deviate significantly from in-distribution (ID) data, they often come with trade-offs. For instance, deep OOD detectors usually suffer from high computational costs, require tuning hyperparameters, and have limite… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06168v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06168v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06168v1-abstract-full" style="display: none;"> Out-of-distribution (OOD) detection is crucial for the deployment of machine learning models in the open world. While existing OOD detectors are effective in identifying OOD samples that deviate significantly from in-distribution (ID) data, they often come with trade-offs. For instance, deep OOD detectors usually suffer from high computational costs, require tuning hyperparameters, and have limited interpretability, whereas traditional OOD detectors may have a low accuracy on large high-dimensional datasets. To address these limitations, we propose a novel effective OOD detection approach that employs an overlap index (OI)-based confidence score function to evaluate the likelihood of a given input belonging to the same distribution as the available ID samples. The proposed OI-based confidence score function is non-parametric, lightweight, and easy to interpret, hence providing strong flexibility and generality. Extensive empirical evaluations indicate that our OI-based OOD detector is competitive with state-of-the-art OOD detectors in terms of detection accuracy on a wide range of datasets while requiring less computation and memory costs. Lastly, we show that the proposed OI-based confidence score function inherits nice properties from OI (e.g., insensitivity to small distributional variations and robustness against Huber $蔚$-contamination) and is a versatile tool for estimating OI and model accuracy in specific contexts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06168v1-abstract-full').style.display = 'none'; document.getElementById('2412.06168v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17662">arXiv:2411.17662</a> <span> [<a href="https://arxiv.org/pdf/2411.17662">pdf</a>, <a href="https://arxiv.org/format/2411.17662">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> RoboPEPP: Vision-Based Robot Pose and Joint Angle Estimation through Embedding Predictive Pre-Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Goswami%2C+R+G">Raktim Gautam Goswami</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=LeCun%2C+Y">Yann LeCun</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17662v1-abstract-short" style="display: inline;"> Vision-based pose estimation of articulated robots with unknown joint angles has applications in collaborative robotics and human-robot interaction tasks. Current frameworks use neural network encoders to extract image features and downstream layers to predict joint angles and robot pose. While images of robots inherently contain rich information about the robot's physical structures, existing met… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17662v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17662v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17662v1-abstract-full" style="display: none;"> Vision-based pose estimation of articulated robots with unknown joint angles has applications in collaborative robotics and human-robot interaction tasks. Current frameworks use neural network encoders to extract image features and downstream layers to predict joint angles and robot pose. While images of robots inherently contain rich information about the robot's physical structures, existing methods often fail to leverage it fully; therefore, limiting performance under occlusions and truncations. To address this, we introduce RoboPEPP, a method that fuses information about the robot's physical model into the encoder using a masking-based self-supervised embedding-predictive architecture. Specifically, we mask the robot's joints and pre-train an encoder-predictor model to infer the joints' embeddings from surrounding unmasked regions, enhancing the encoder's understanding of the robot's physical model. The pre-trained encoder-predictor pair, along with joint angle and keypoint prediction networks, is then fine-tuned for pose and joint angle estimation. Random masking of input during fine-tuning and keypoint filtering during evaluation further improves robustness. Our method, evaluated on several datasets, achieves the best results in robot pose and joint angle estimation while being the least sensitive to occlusions and requiring the lowest execution time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17662v1-abstract-full').style.display = 'none'; document.getElementById('2411.17662v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06239">arXiv:2410.06239</a> <span> [<a href="https://arxiv.org/pdf/2410.06239">pdf</a>, <a href="https://arxiv.org/format/2410.06239">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> OrionNav: Online Planning for Robot Autonomy with Context-Aware LLM and Open-Vocabulary Semantic Scene Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Devarakonda%2C+V+N">Venkata Naren Devarakonda</a>, <a href="/search/cs?searchtype=author&query=Goswami%2C+R+G">Raktim Gautam Goswami</a>, <a href="/search/cs?searchtype=author&query=Kaypak%2C+A+U">Ali Umut Kaypak</a>, <a href="/search/cs?searchtype=author&query=Patel%2C+N">Naman Patel</a>, <a href="/search/cs?searchtype=author&query=Khorrambakht%2C+R">Rooholla Khorrambakht</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06239v2-abstract-short" style="display: inline;"> Enabling robots to autonomously navigate unknown, complex, dynamic environments and perform diverse tasks remains a fundamental challenge in developing robust autonomous physical agents. These agents must effectively perceive their surroundings while leveraging world knowledge for decision-making. Although recent approaches utilize vision-language and large language models for scene understanding… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06239v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06239v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06239v2-abstract-full" style="display: none;"> Enabling robots to autonomously navigate unknown, complex, dynamic environments and perform diverse tasks remains a fundamental challenge in developing robust autonomous physical agents. These agents must effectively perceive their surroundings while leveraging world knowledge for decision-making. Although recent approaches utilize vision-language and large language models for scene understanding and planning, they often rely on offline processing, offboard compute, make simplifying assumptions about the environment and perception, limiting real-world applicability. We present a novel framework for real-time onboard autonomous navigation in unknown environments that change over time by integrating multi-level abstraction in both perception and planning pipelines. Our system fuses data from multiple onboard sensors for localization and mapping and integrates it with open-vocabulary semantics to generate hierarchical scene graphs from continuously updated semantic object map. The LLM-based planner uses these graphs to create multi-step plans that guide low-level controllers in executing navigation tasks specified in natural language. The system's real-time operation enables the LLM to adjust its plans based on updates to the scene graph and task execution status, ensuring continuous adaptation to new situations or when the current plan cannot accomplish the task, a key advantage over static or rule-based systems. We demonstrate our system's efficacy on a quadruped navigating dynamic environments, showcasing its adaptability and robustness in diverse scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06239v2-abstract-full').style.display = 'none'; document.getElementById('2410.06239v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02080">arXiv:2410.02080</a> <span> [<a href="https://arxiv.org/pdf/2410.02080">pdf</a>, <a href="https://arxiv.org/format/2410.02080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> EMMA: Efficient Visual Alignment in Multi-Modal LLMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ghazanfari%2C+S">Sara Ghazanfari</a>, <a href="/search/cs?searchtype=author&query=Araujo%2C+A">Alexandre Araujo</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02080v1-abstract-short" style="display: inline;"> Multi-modal Large Language Models (MLLMs) have recently exhibited impressive general-purpose capabilities by leveraging vision foundation models to encode the core concepts of images into representations. These are then combined with instructions and processed by the language model to generate high-quality responses. Despite significant progress in enhancing the language component, challenges pers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02080v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02080v1-abstract-full" style="display: none;"> Multi-modal Large Language Models (MLLMs) have recently exhibited impressive general-purpose capabilities by leveraging vision foundation models to encode the core concepts of images into representations. These are then combined with instructions and processed by the language model to generate high-quality responses. Despite significant progress in enhancing the language component, challenges persist in optimally fusing visual encodings within the language model for task-specific adaptability. Recent research has focused on improving this fusion through modality adaptation modules but at the cost of significantly increased model complexity and training data needs. In this paper, we propose EMMA (Efficient Multi-Modal Adaptation), a lightweight cross-modality module designed to efficiently fuse visual and textual encodings, generating instruction-aware visual representations for the language model. Our key contributions include: (1) an efficient early fusion mechanism that integrates vision and language representations with minimal added parameters (less than 0.2% increase in model size), (2) an in-depth interpretability analysis that sheds light on the internal mechanisms of the proposed method; (3) comprehensive experiments that demonstrate notable improvements on both specialized and general benchmarks for MLLMs. Empirical results show that EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations. Our code is available at https://github.com/SaraGhazanfari/EMMA <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02080v1-abstract-full').style.display = 'none'; document.getElementById('2410.02080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00702">arXiv:2410.00702</a> <span> [<a href="https://arxiv.org/pdf/2410.00702">pdf</a>, <a href="https://arxiv.org/format/2410.00702">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> FlashMix: Fast Map-Free LiDAR Localization via Feature Mixing and Contrastive-Constrained Accelerated Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Goswami%2C+R+G">Raktim Gautam Goswami</a>, <a href="/search/cs?searchtype=author&query=Patel%2C+N">Naman Patel</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00702v1-abstract-short" style="display: inline;"> Map-free LiDAR localization systems accurately localize within known environments by predicting sensor position and orientation directly from raw point clouds, eliminating the need for large maps and descriptors. However, their long training times hinder rapid adaptation to new environments. To address this, we propose FlashMix, which uses a frozen, scene-agnostic backbone to extract local point d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00702v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00702v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00702v1-abstract-full" style="display: none;"> Map-free LiDAR localization systems accurately localize within known environments by predicting sensor position and orientation directly from raw point clouds, eliminating the need for large maps and descriptors. However, their long training times hinder rapid adaptation to new environments. To address this, we propose FlashMix, which uses a frozen, scene-agnostic backbone to extract local point descriptors, aggregated with an MLP mixer to predict sensor pose. A buffer of local descriptors is used to accelerate training by orders of magnitude, combined with metric learning or contrastive loss regularization of aggregated descriptors to improve performance and convergence. We evaluate FlashMix on various LiDAR localization benchmarks, examining different regularizations and aggregators, demonstrating its effectiveness for rapid and accurate LiDAR localization in real-world scenarios. The code is available at https://github.com/raktimgg/FlashMix. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00702v1-abstract-full').style.display = 'none'; document.getElementById('2410.00702v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16455">arXiv:2409.16455</a> <span> [<a href="https://arxiv.org/pdf/2409.16455">pdf</a>, <a href="https://arxiv.org/format/2409.16455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> MultiTalk: Introspective and Extrospective Dialogue for Human-Environment-LLM Alignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Devarakonda%2C+V+N">Venkata Naren Devarakonda</a>, <a href="/search/cs?searchtype=author&query=Kaypak%2C+A+U">Ali Umut Kaypak</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+S">Shuaihang Yuan</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Fang%2C+Y">Yi Fang</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16455v1-abstract-short" style="display: inline;"> LLMs have shown promising results in task planning due to their strong natural language understanding and reasoning capabilities. However, issues such as hallucinations, ambiguities in human instructions, environmental constraints, and limitations in the executing agent's capabilities often lead to flawed or incomplete plans. This paper proposes MultiTalk, an LLM-based task planning methodology th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16455v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16455v1-abstract-full" style="display: none;"> LLMs have shown promising results in task planning due to their strong natural language understanding and reasoning capabilities. However, issues such as hallucinations, ambiguities in human instructions, environmental constraints, and limitations in the executing agent's capabilities often lead to flawed or incomplete plans. This paper proposes MultiTalk, an LLM-based task planning methodology that addresses these issues through a framework of introspective and extrospective dialogue loops. This approach helps ground generated plans in the context of the environment and the agent's capabilities, while also resolving uncertainties and ambiguities in the given task. These loops are enabled by specialized systems designed to extract and predict task-specific states, and flag mismatches or misalignments among the human user, the LLM agent, and the environment. Effective feedback pathways between these systems and the LLM planner foster meaningful dialogue. The efficacy of this methodology is demonstrated through its application to robotic manipulation tasks. Experiments and ablations highlight the robustness and reliability of our method, and comparisons with baselines further illustrate the superiority of MultiTalk in task planning for embodied agents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16455v1-abstract-full').style.display = 'none'; document.getElementById('2409.16455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16165">arXiv:2409.16165</a> <span> [<a href="https://arxiv.org/pdf/2409.16165">pdf</a>, <a href="https://arxiv.org/format/2409.16165">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Interactive Tools Substantially Assist LM Agents in Finding Security Vulnerabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Abramovich%2C+T">Talor Abramovich</a>, <a href="/search/cs?searchtype=author&query=Udeshi%2C+M">Meet Udeshi</a>, <a href="/search/cs?searchtype=author&query=Shao%2C+M">Minghao Shao</a>, <a href="/search/cs?searchtype=author&query=Lieret%2C+K">Kilian Lieret</a>, <a href="/search/cs?searchtype=author&query=Xi%2C+H">Haoran Xi</a>, <a href="/search/cs?searchtype=author&query=Milner%2C+K">Kimberly Milner</a>, <a href="/search/cs?searchtype=author&query=Jancheska%2C+S">Sofija Jancheska</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+J">John Yang</a>, <a href="/search/cs?searchtype=author&query=Jimenez%2C+C+E">Carlos E. Jimenez</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Dolan-Gavitt%2C+B">Brendan Dolan-Gavitt</a>, <a href="/search/cs?searchtype=author&query=Shafique%2C+M">Muhammad Shafique</a>, <a href="/search/cs?searchtype=author&query=Narasimhan%2C+K">Karthik Narasimhan</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Press%2C+O">Ofir Press</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16165v2-abstract-short" style="display: inline;"> Although language model (LM) agents have demonstrated increased performance in multiple domains, including coding and web-browsing, their success in cybersecurity has been limited. We present EnIGMA, an LM agent for autonomously solving Capture The Flag (CTF) challenges. We introduce new tools and interfaces to improve the agent's ability to find and exploit security vulnerabilities, focusing on i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16165v2-abstract-full').style.display = 'inline'; document.getElementById('2409.16165v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16165v2-abstract-full" style="display: none;"> Although language model (LM) agents have demonstrated increased performance in multiple domains, including coding and web-browsing, their success in cybersecurity has been limited. We present EnIGMA, an LM agent for autonomously solving Capture The Flag (CTF) challenges. We introduce new tools and interfaces to improve the agent's ability to find and exploit security vulnerabilities, focusing on interactive terminal programs. These novel Interactive Agent Tools enable LM agents, for the first time, to run interactive utilities, such as a debugger and a server connection tool, which are essential for solving these challenges. Empirical analysis on 390 CTF challenges across four benchmarks demonstrate that these new tools and interfaces substantially improve our agent's performance, achieving state-of-the-art results on NYU CTF, Intercode-CTF, and CyBench. Finally, we analyze data leakage, developing new methods to quantify it and identifying a new phenomenon we term soliloquizing, where the model self-generates hallucinated observations without interacting with the environment. Our code and development dataset are available at https://github.com/SWE-agent/SWE-agent/tree/v0.7 and https://github.com/NYU-LLM-CTF/NYU_CTF_Bench/tree/main/development respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16165v2-abstract-full').style.display = 'none'; document.getElementById('2409.16165v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10419">arXiv:2409.10419</a> <span> [<a href="https://arxiv.org/pdf/2409.10419">pdf</a>, <a href="https://arxiv.org/format/2409.10419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> HiFi-CS: Towards Open Vocabulary Visual Grounding For Robotic Grasping Using Vision-Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bhat%2C+V">Vineet Bhat</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10419v1-abstract-short" style="display: inline;"> Robots interacting with humans through natural language can unlock numerous applications such as Referring Grasp Synthesis (RGS). Given a text query, RGS determines a stable grasp pose to manipulate the referred object in the robot's workspace. RGS comprises two steps: visual grounding and grasp pose estimation. Recent studies leverage powerful Vision-Language Models (VLMs) for visually grounding… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10419v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10419v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10419v1-abstract-full" style="display: none;"> Robots interacting with humans through natural language can unlock numerous applications such as Referring Grasp Synthesis (RGS). Given a text query, RGS determines a stable grasp pose to manipulate the referred object in the robot's workspace. RGS comprises two steps: visual grounding and grasp pose estimation. Recent studies leverage powerful Vision-Language Models (VLMs) for visually grounding free-flowing natural language in real-world robotic execution. However, comparisons in complex, cluttered environments with multiple instances of the same object are lacking. This paper introduces HiFi-CS, featuring hierarchical application of Featurewise Linear Modulation (FiLM) to fuse image and text embeddings, enhancing visual grounding for complex attribute rich text queries encountered in robotic grasping. Visual grounding associates an object in 2D/3D space with natural language input and is studied in two scenarios: Closed and Open Vocabulary. HiFi-CS features a lightweight decoder combined with a frozen VLM and outperforms competitive baselines in closed vocabulary settings while being 100x smaller in size. Our model can effectively guide open-set object detectors like GroundedSAM to enhance open-vocabulary performance. We validate our approach through real-world RGS experiments using a 7-DOF robotic arm, achieving 90.33\% visual grounding accuracy in 15 tabletop scenes. We include our codebase in the supplementary material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10419v1-abstract-full').style.display = 'none'; document.getElementById('2409.10419v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15701">arXiv:2407.15701</a> <span> [<a href="https://arxiv.org/pdf/2407.15701">pdf</a>, <a href="https://arxiv.org/format/2407.15701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Robotic Shepherding in Cluttered and Unknown Environments using Control Barrier Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hamandi%2C+M">Mahmoud Hamandi</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Tzes%2C+A">Anthony Tzes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15701v1-abstract-short" style="display: inline;"> This paper introduces a novel control methodology designed to guide a collective of robotic-sheep in a cluttered and unknown environment using robotic-dogs. The dog-agents continuously scan the environment and compute a safe trajectory to guide the sheep to their final destination. The proposed optimization-based controller guarantees that the sheep reside within a desired distance from the refere… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15701v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15701v1-abstract-full" style="display: none;"> This paper introduces a novel control methodology designed to guide a collective of robotic-sheep in a cluttered and unknown environment using robotic-dogs. The dog-agents continuously scan the environment and compute a safe trajectory to guide the sheep to their final destination. The proposed optimization-based controller guarantees that the sheep reside within a desired distance from the reference trajectory through the use of Control Barrier Functions (CBF). Additional CBF constraints are employed simultaneously to ensure inter-agent and obstacle collision avoidance. The efficacy of the proposed approach is rigorously tested in simulation, which demonstrates the successful herding of the robotic-sheep within complex and cluttered environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15701v1-abstract-full').style.display = 'none'; document.getElementById('2407.15701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12352">arXiv:2407.12352</a> <span> [<a href="https://arxiv.org/pdf/2407.12352">pdf</a>, <a href="https://arxiv.org/format/2407.12352">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> SENTAUR: Security EnhaNced Trojan Assessment Using LLMs Against Undesirable Revisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bhandari%2C+J">Jitendra Bhandari</a>, <a href="/search/cs?searchtype=author&query=Sadhukhan%2C+R">Rajat Sadhukhan</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12352v1-abstract-short" style="display: inline;"> A globally distributed IC supply chain brings risks due to untrusted third parties. The risks span inadvertent use of hardware Trojan (HT), inserted Intellectual Property (3P-IP) or Electronic Design Automation (EDA) flows. HT can introduce stealthy HT behavior, prevent an IC work as intended, or leak sensitive data via side channels. To counter HTs, rapidly examining HT scenarios is a key require… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12352v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12352v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12352v1-abstract-full" style="display: none;"> A globally distributed IC supply chain brings risks due to untrusted third parties. The risks span inadvertent use of hardware Trojan (HT), inserted Intellectual Property (3P-IP) or Electronic Design Automation (EDA) flows. HT can introduce stealthy HT behavior, prevent an IC work as intended, or leak sensitive data via side channels. To counter HTs, rapidly examining HT scenarios is a key requirement. While Trust-Hub benchmarks are a good starting point to assess defenses, they encompass a small subset of manually created HTs within the expanse of HT designs. Further, the HTs may disappear during synthesis. We propose a large language model (LLM) framework SENTAUR to generate a suite of legitimate HTs for a Register Transfer Level (RTL) design by learning its specifications, descriptions, and natural language descriptions of HT effects. Existing tools and benchmarks are limited; they need a learning period to construct an ML model to mimic the threat model and are difficult to reproduce. SENTAUR can swiftly produce HT instances by leveraging LLMs without any learning period and sanitizing the HTs facilitating their rapid assessment. Evaluation of SENTAUR involved generating effective, synthesizable, and practical HTs from TrustHub and elsewhere, investigating impacts of payloads/triggers at the RTL. While our evaluation focused on HT insertion, SENTAUR can generalize to automatically transform an RTL code to have defined functional modifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12352v1-abstract-full').style.display = 'none'; document.getElementById('2407.12352v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08260">arXiv:2407.08260</a> <span> [<a href="https://arxiv.org/pdf/2407.08260">pdf</a>, <a href="https://arxiv.org/format/2407.08260">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> SALSA: Swift Adaptive Lightweight Self-Attention for Enhanced LiDAR Place Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Goswami%2C+R+G">Raktim Gautam Goswami</a>, <a href="/search/cs?searchtype=author&query=Patel%2C+N">Naman Patel</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08260v2-abstract-short" style="display: inline;"> Large-scale LiDAR mappings and localization leverage place recognition techniques to mitigate odometry drifts, ensuring accurate mapping. These techniques utilize scene representations from LiDAR point clouds to identify previously visited sites within a database. Local descriptors, assigned to each point within a point cloud, are aggregated to form a scene representation for the point cloud. Thes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08260v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08260v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08260v2-abstract-full" style="display: none;"> Large-scale LiDAR mappings and localization leverage place recognition techniques to mitigate odometry drifts, ensuring accurate mapping. These techniques utilize scene representations from LiDAR point clouds to identify previously visited sites within a database. Local descriptors, assigned to each point within a point cloud, are aggregated to form a scene representation for the point cloud. These descriptors are also used to re-rank the retrieved point clouds based on geometric fitness scores. We propose SALSA, a novel, lightweight, and efficient framework for LiDAR place recognition. It consists of a Sphereformer backbone that uses radial window attention to enable information aggregation for sparse distant points, an adaptive self-attention layer to pool local descriptors into tokens, and a multi-layer-perceptron Mixer layer for aggregating the tokens to generate a scene descriptor. The proposed framework outperforms existing methods on various LiDAR place recognition datasets in terms of both retrieval and metric localization while operating in real-time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08260v2-abstract-full').style.display = 'none'; document.getElementById('2407.08260v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19461">arXiv:2406.19461</a> <span> [<a href="https://arxiv.org/pdf/2406.19461">pdf</a>, <a href="https://arxiv.org/format/2406.19461">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Efficient and Distributed Large-Scale 3D Map Registration using Tomographic Features </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Unlu%2C+H+U">Halil Utku Unlu</a>, <a href="/search/cs?searchtype=author&query=Tzes%2C+A">Anthony Tzes</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19461v1-abstract-short" style="display: inline;"> A robust, resource-efficient, distributed, and minimally parameterized 3D map matching and merging algorithm is proposed. The suggested algorithm utilizes tomographic features from 2D projections of horizontal cross-sections of gravity-aligned local maps, and matches these projection slices at all possible height differences, enabling the estimation of four degrees of freedom in an efficient and p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19461v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19461v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19461v1-abstract-full" style="display: none;"> A robust, resource-efficient, distributed, and minimally parameterized 3D map matching and merging algorithm is proposed. The suggested algorithm utilizes tomographic features from 2D projections of horizontal cross-sections of gravity-aligned local maps, and matches these projection slices at all possible height differences, enabling the estimation of four degrees of freedom in an efficient and parallelizable manner. The advocated algorithm improves state-of-the-art feature extraction and registration pipelines by an order of magnitude in memory use and execution time. Experimental studies are offered to investigate the efficiency of this 3D map merging scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19461v1-abstract-full').style.display = 'none'; document.getElementById('2406.19461v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Elsevier Journal: Robotics and Autonomous Systems (RAS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05590">arXiv:2406.05590</a> <span> [<a href="https://arxiv.org/pdf/2406.05590">pdf</a>, <a href="https://arxiv.org/format/2406.05590">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> NYU CTF Bench: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Shao%2C+M">Minghao Shao</a>, <a href="/search/cs?searchtype=author&query=Jancheska%2C+S">Sofija Jancheska</a>, <a href="/search/cs?searchtype=author&query=Udeshi%2C+M">Meet Udeshi</a>, <a href="/search/cs?searchtype=author&query=Dolan-Gavitt%2C+B">Brendan Dolan-Gavitt</a>, <a href="/search/cs?searchtype=author&query=Xi%2C+H">Haoran Xi</a>, <a href="/search/cs?searchtype=author&query=Milner%2C+K">Kimberly Milner</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+B">Boyuan Chen</a>, <a href="/search/cs?searchtype=author&query=Yin%2C+M">Max Yin</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Shafique%2C+M">Muhammad Shafique</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05590v3-abstract-short" style="display: inline;"> Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database incl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05590v3-abstract-full').style.display = 'inline'; document.getElementById('2406.05590v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05590v3-abstract-full" style="display: none;"> Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized benchmark, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our benchmark dataset open source to public https://github.com/NYU-LLM-CTF/NYU_CTF_Bench along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05590v3-abstract-full').style.display = 'none'; document.getElementById('2406.05590v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14737">arXiv:2405.14737</a> <span> [<a href="https://arxiv.org/pdf/2405.14737">pdf</a>, <a href="https://arxiv.org/format/2405.14737">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> CLIPScope: Enhancing Zero-Shot OOD Detection with Bayesian Scoring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/cs?searchtype=author&query=Patel%2C+N">Naman Patel</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14737v2-abstract-short" style="display: inline;"> Detection of out-of-distribution (OOD) samples is crucial for safe real-world deployment of machine learning models. Recent advances in vision language foundation models have made them capable of detecting OOD samples without requiring in-distribution (ID) images. However, these zero-shot methods often underperform as they do not adequately consider ID class likelihoods in their detection confiden… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14737v2-abstract-full').style.display = 'inline'; document.getElementById('2405.14737v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14737v2-abstract-full" style="display: none;"> Detection of out-of-distribution (OOD) samples is crucial for safe real-world deployment of machine learning models. Recent advances in vision language foundation models have made them capable of detecting OOD samples without requiring in-distribution (ID) images. However, these zero-shot methods often underperform as they do not adequately consider ID class likelihoods in their detection confidence scoring. Hence, we introduce CLIPScope, a zero-shot OOD detection approach that normalizes the confidence score of a sample by class likelihoods, akin to a Bayesian posterior update. Furthermore, CLIPScope incorporates a novel strategy to mine OOD classes from a large lexical database. It selects class labels that are farthest and nearest to ID classes in terms of CLIP embedding distance to maximize coverage of OOD samples. We conduct extensive ablation studies and empirical evaluations, demonstrating state of the art performance of CLIPScope across various OOD detection benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14737v2-abstract-full').style.display = 'none'; document.getElementById('2405.14737v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15446">arXiv:2404.15446</a> <span> [<a href="https://arxiv.org/pdf/2404.15446">pdf</a>, <a href="https://arxiv.org/format/2404.15446">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/DSN58291.2024.00057">10.1109/DSN58291.2024.00057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OffRAMPS: An FPGA-based Intermediary for Analysis and Modification of Additive Manufacturing Control Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Blocklove%2C+J">Jason Blocklove</a>, <a href="/search/cs?searchtype=author&query=Raz%2C+M">Md Raz</a>, <a href="/search/cs?searchtype=author&query=Roy%2C+P+B">Prithwish Basu Roy</a>, <a href="/search/cs?searchtype=author&query=Pearce%2C+H">Hammond Pearce</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15446v2-abstract-short" style="display: inline;"> Cybersecurity threats in Additive Manufacturing (AM) are an increasing concern as AM adoption continues to grow. AM is now being used for parts in the aerospace, transportation, and medical domains. Threat vectors which allow for part compromise are particularly concerning, as any failure in these domains would have life-threatening consequences. A major challenge to investigation of AM part-compr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15446v2-abstract-full').style.display = 'inline'; document.getElementById('2404.15446v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15446v2-abstract-full" style="display: none;"> Cybersecurity threats in Additive Manufacturing (AM) are an increasing concern as AM adoption continues to grow. AM is now being used for parts in the aerospace, transportation, and medical domains. Threat vectors which allow for part compromise are particularly concerning, as any failure in these domains would have life-threatening consequences. A major challenge to investigation of AM part-compromises comes from the difficulty in evaluating and benchmarking both identified threat vectors as well as methods for detecting adversarial actions. In this work, we introduce a generalized platform for systematic analysis of attacks against and defenses for 3D printers. Our "OFFRAMPS" platform is based on the open-source 3D printer control board "RAMPS." OFFRAMPS allows analysis, recording, and modification of all control signals and I/O for a 3D printer. We show the efficacy of OFFRAMPS by presenting a series of case studies based on several Trojans, including ones identified in the literature, and show that OFFRAMPS can both emulate and detect these attacks, i.e., it can both change and detect arbitrary changes to the g-code print commands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15446v2-abstract-full').style.display = 'none'; document.getElementById('2404.15446v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18206">arXiv:2403.18206</a> <span> [<a href="https://arxiv.org/pdf/2403.18206">pdf</a>, <a href="https://arxiv.org/format/2403.18206">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Sailing Through Point Clouds: Safe Navigation Using Point Cloud Based Control Barrier Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Dai%2C+B">Bolun Dai</a>, <a href="/search/cs?searchtype=author&query=Khorrambakht%2C+R">Rooholla Khorrambakht</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18206v2-abstract-short" style="display: inline;"> The capability to navigate safely in an unstructured environment is crucial when deploying robotic systems in real-world scenarios. Recently, control barrier function (CBF) based approaches have been highly effective in synthesizing safety-critical controllers. In this work, we propose a novel CBF-based local planner comprised of two components: Vessel and Mariner. The Vessel is a novel scaling fa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18206v2-abstract-full').style.display = 'inline'; document.getElementById('2403.18206v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18206v2-abstract-full" style="display: none;"> The capability to navigate safely in an unstructured environment is crucial when deploying robotic systems in real-world scenarios. Recently, control barrier function (CBF) based approaches have been highly effective in synthesizing safety-critical controllers. In this work, we propose a novel CBF-based local planner comprised of two components: Vessel and Mariner. The Vessel is a novel scaling factor based CBF formulation that synthesizes CBFs using only point cloud data. The Mariner is a CBF-based preview control framework that is used to mitigate getting stuck in spurious equilibria during navigation. To demonstrate the efficacy of our proposed approach, we first compare the proposed point cloud based CBF formulation with other point cloud based CBF formulations. Then, we demonstrate the performance of our proposed approach and its integration with global planners using experimental studies on the Unitree B1 and Unitree Go2 quadruped robots in various environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18206v2-abstract-full').style.display = 'none'; document.getElementById('2403.18206v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16926">arXiv:2402.16926</a> <span> [<a href="https://arxiv.org/pdf/2402.16926">pdf</a>, <a href="https://arxiv.org/format/2402.16926">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> On the (In)feasibility of ML Backdoor Detection as an Hypothesis Testing Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pichler%2C+G">Georg Pichler</a>, <a href="/search/cs?searchtype=author&query=Romanelli%2C+M">Marco Romanelli</a>, <a href="/search/cs?searchtype=author&query=Manivannan%2C+D+P">Divya Prakash Manivannan</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16926v1-abstract-short" style="display: inline;"> We introduce a formal statistical definition for the problem of backdoor detection in machine learning systems and use it to analyze the feasibility of such problems, providing evidence for the utility and applicability of our definition. The main contributions of this work are an impossibility result and an achievability result for backdoor detection. We show a no-free-lunch theorem, proving that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16926v1-abstract-full').style.display = 'inline'; document.getElementById('2402.16926v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16926v1-abstract-full" style="display: none;"> We introduce a formal statistical definition for the problem of backdoor detection in machine learning systems and use it to analyze the feasibility of such problems, providing evidence for the utility and applicability of our definition. The main contributions of this work are an impossibility result and an achievability result for backdoor detection. We show a no-free-lunch theorem, proving that universal (adversary-unaware) backdoor detection is impossible, except for very small alphabet sizes. Thus, we argue, that backdoor detection methods need to be either explicitly, or implicitly adversary-aware. However, our work does not imply that backdoor detection cannot work in specific scenarios, as evidenced by successful backdoor detection methods in the scientific literature. Furthermore, we connect our definition to the probably approximately correct (PAC) learnability of the out-of-distribution detection problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16926v1-abstract-full').style.display = 'none'; document.getElementById('2402.16926v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08546">arXiv:2402.08546</a> <span> [<a href="https://arxiv.org/pdf/2402.08546">pdf</a>, <a href="https://arxiv.org/format/2402.08546">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Grounding LLMs For Robot Task Planning Using Closed-loop State Feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bhat%2C+V">Vineet Bhat</a>, <a href="/search/cs?searchtype=author&query=Kaypak%2C+A+U">Ali Umut Kaypak</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08546v2-abstract-short" style="display: inline;"> Planning algorithms decompose complex problems into intermediate steps that can be sequentially executed by robots to complete tasks. Recent works have employed Large Language Models (LLMs) for task planning, using natural language to generate robot policies in both simulation and real-world environments. LLMs like GPT-4 have shown promising results in generalizing to unseen tasks, but their appli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08546v2-abstract-full').style.display = 'inline'; document.getElementById('2402.08546v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08546v2-abstract-full" style="display: none;"> Planning algorithms decompose complex problems into intermediate steps that can be sequentially executed by robots to complete tasks. Recent works have employed Large Language Models (LLMs) for task planning, using natural language to generate robot policies in both simulation and real-world environments. LLMs like GPT-4 have shown promising results in generalizing to unseen tasks, but their applicability is limited due to hallucinations caused by insufficient grounding in the robot environment. The robustness of LLMs in task planning can be enhanced with environmental state information and feedback. In this paper, we introduce a novel approach to task planning that utilizes two separate LLMs for high-level planning and low-level control, improving task-related success rates and goal condition recall. Our algorithm, \textit{BrainBody-LLM}, draws inspiration from the human neural system, emulating its brain-body architecture by dividing planning across two LLMs in a structured, hierarchical manner. BrainBody-LLM implements a closed-loop feedback mechanism, enabling learning from simulator errors to resolve execution errors in complex settings. We demonstrate the successful application of BrainBody-LLM in the VirtualHome simulation environment, achieving a 29\% improvement in task-oriented success rates over competitive baselines with the GPT-4 backend. Additionally, we evaluate our algorithm on seven complex tasks using a realistic physics simulator and the Franka Research 3 robotic arm, comparing it with various state-of-the-art LLMs. Our results show advancements in the reasoning capabilities of recent LLMs, which enable them to learn from raw simulator/controller errors to correct plans, making them highly effective in robotic task planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08546v2-abstract-full').style.display = 'none'; document.getElementById('2402.08546v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work has been submitted to Autonomous Robots</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14033">arXiv:2401.14033</a> <span> [<a href="https://arxiv.org/pdf/2401.14033">pdf</a>, <a href="https://arxiv.org/ps/2401.14033">ps</a>, <a href="https://arxiv.org/format/2401.14033">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted Activations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pauli%2C+P">Patricia Pauli</a>, <a href="/search/cs?searchtype=author&query=Havens%2C+A">Aaron Havens</a>, <a href="/search/cs?searchtype=author&query=Araujo%2C+A">Alexandre Araujo</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Allg%C3%B6wer%2C+F">Frank Allg枚wer</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+B">Bin Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14033v1-abstract-short" style="display: inline;"> Recently, semidefinite programming (SDP) techniques have shown great promise in providing accurate Lipschitz bounds for neural networks. Specifically, the LipSDP approach (Fazlyab et al., 2019) has received much attention and provides the least conservative Lipschitz upper bounds that can be computed with polynomial time guarantees. However, one main restriction of LipSDP is that its formulation r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14033v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14033v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14033v1-abstract-full" style="display: none;"> Recently, semidefinite programming (SDP) techniques have shown great promise in providing accurate Lipschitz bounds for neural networks. Specifically, the LipSDP approach (Fazlyab et al., 2019) has received much attention and provides the least conservative Lipschitz upper bounds that can be computed with polynomial time guarantees. However, one main restriction of LipSDP is that its formulation requires the activation functions to be slope-restricted on $[0,1]$, preventing its further use for more general activation functions such as GroupSort, MaxMin, and Householder. One can rewrite MaxMin activations for example as residual ReLU networks. However, a direct application of LipSDP to the resultant residual ReLU networks is conservative and even fails in recovering the well-known fact that the MaxMin activation is 1-Lipschitz. Our paper bridges this gap and extends LipSDP beyond slope-restricted activation functions. To this end, we provide novel quadratic constraints for GroupSort, MaxMin, and Householder activations via leveraging their underlying properties such as sum preservation. Our proposed analysis is general and provides a unified approach for estimating $\ell_2$ and $\ell_\infty$ Lipschitz bounds for a rich class of neural network architectures, including non-residual and residual neural networks and implicit models, with GroupSort, MaxMin, and Householder activations. Finally, we illustrate the utility of our approach with a variety of experiments and show that our proposed SDPs generate less conservative Lipschitz bounds in comparison to existing approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14033v1-abstract-full').style.display = 'none'; document.getElementById('2401.14033v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted as a conference paper at ICLR 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18274">arXiv:2310.18274</a> <span> [<a href="https://arxiv.org/pdf/2310.18274">pdf</a>, <a href="https://arxiv.org/format/2310.18274">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> LipSim: A Provably Robust Perceptual Similarity Metric </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ghazanfari%2C+S">Sara Ghazanfari</a>, <a href="/search/cs?searchtype=author&query=Araujo%2C+A">Alexandre Araujo</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18274v2-abstract-short" style="display: inline;"> Recent years have seen growing interest in developing and applying perceptual similarity metrics. Research has shown the superiority of perceptual metrics over pixel-wise metrics in aligning with human perception and serving as a proxy for the human visual system. On the other hand, as perceptual metrics rely on neural networks, there is a growing concern regarding their resilience, given the esta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18274v2-abstract-full').style.display = 'inline'; document.getElementById('2310.18274v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18274v2-abstract-full" style="display: none;"> Recent years have seen growing interest in developing and applying perceptual similarity metrics. Research has shown the superiority of perceptual metrics over pixel-wise metrics in aligning with human perception and serving as a proxy for the human visual system. On the other hand, as perceptual metrics rely on neural networks, there is a growing concern regarding their resilience, given the established vulnerability of neural networks to adversarial attacks. It is indeed logical to infer that perceptual metrics may inherit both the strengths and shortcomings of neural networks. In this work, we demonstrate the vulnerability of state-of-the-art perceptual similarity metrics based on an ensemble of ViT-based feature extractors to adversarial attacks. We then propose a framework to train a robust perceptual similarity metric called LipSim (Lipschitz Similarity Metric) with provable guarantees. By leveraging 1-Lipschitz neural networks as the backbone, LipSim provides guarded areas around each data point and certificates for all perturbations within an $\ell_2$ ball. Finally, a comprehensive set of experiments shows the performance of LipSim in terms of natural and certified scores and on the image retrieval application. The code is available at https://github.com/SaraGhazanfari/LipSim. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18274v2-abstract-full').style.display = 'none'; document.getElementById('2310.18274v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.17226">arXiv:2309.17226</a> <span> [<a href="https://arxiv.org/pdf/2309.17226">pdf</a>, <a href="https://arxiv.org/format/2309.17226">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Differentiable Optimization Based Time-Varying Control Barrier Functions for Dynamic Obstacle Avoidance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Dai%2C+B">Bolun Dai</a>, <a href="/search/cs?searchtype=author&query=Khorrambakht%2C+R">Rooholla Khorrambakht</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.17226v3-abstract-short" style="display: inline;"> Control barrier functions (CBFs) provide a simple yet effective way for safe control synthesis. Recently, work has been done using differentiable optimization (diffOpt) based methods to systematically construct CBFs for static obstacle avoidance tasks between geometric shapes. In this work, we extend the application of diffOpt CBFs to perform dynamic obstacle avoidance tasks. We show that by using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17226v3-abstract-full').style.display = 'inline'; document.getElementById('2309.17226v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.17226v3-abstract-full" style="display: none;"> Control barrier functions (CBFs) provide a simple yet effective way for safe control synthesis. Recently, work has been done using differentiable optimization (diffOpt) based methods to systematically construct CBFs for static obstacle avoidance tasks between geometric shapes. In this work, we extend the application of diffOpt CBFs to perform dynamic obstacle avoidance tasks. We show that by using the time-varying CBF (TVCBF) formulation, we can perform obstacle avoidance for dynamic geometric obstacles. Additionally, we show how to extend the TVCBF constraint to consider measurement noise and actuation limits. To demonstrate the efficacy of our proposed approach, we first compare its performance with a model predictive control based method and a circular CBF based method on a simulated dynamic obstacle avoidance task. Then, we demonstrate the performance of our proposed approach in experimental studies using a 7-degree-of-freedom Franka Research 3 robotic manipulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17226v3-abstract-full').style.display = 'none'; document.getElementById('2309.17226v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07709">arXiv:2309.07709</a> <span> [<a href="https://arxiv.org/pdf/2309.07709">pdf</a>, <a href="https://arxiv.org/format/2309.07709">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Safe Aerial Manipulator Maneuvering and Force Exertion via Control Barrier Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chaikalis%2C+D">Dimitris Chaikalis</a>, <a href="/search/cs?searchtype=author&query=Goncalves%2C+V">Vinicius Goncalves</a>, <a href="/search/cs?searchtype=author&query=Evangeliou%2C+N">Nikolaos Evangeliou</a>, <a href="/search/cs?searchtype=author&query=Tzes%2C+A">Anthony Tzes</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07709v3-abstract-short" style="display: inline;"> This article introduces a safe control strategy for application of forces to an external object using a dexterous robotic arm mounted on an unmanned Aerial Vehicle (UAV). A hybrid force-motion controller has been developed for this purpose. This controller employs a Control Barrier Function (CBF) constraint within an optimization framework based on Quadratic Programming (QP). The objective is to e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07709v3-abstract-full').style.display = 'inline'; document.getElementById('2309.07709v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07709v3-abstract-full" style="display: none;"> This article introduces a safe control strategy for application of forces to an external object using a dexterous robotic arm mounted on an unmanned Aerial Vehicle (UAV). A hybrid force-motion controller has been developed for this purpose. This controller employs a Control Barrier Function (CBF) constraint within an optimization framework based on Quadratic Programming (QP). The objective is to enforce a predefined relationship between the end-effector's approach motion and its alignment with the surface, thereby ensuring safe operational dynamics. No compliance model for the environment is necessary to implement the controller, provided end-effector force feedback exists. Furthermore, the paper provides formal results, like guarantees of feasibility for the optimization problem, continuity of the controller input as a function of the configuration, and Lyapunov stability. In addition, it presents experimental results in various situations to demonstrate its practical applicability on an aerial manipulator platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07709v3-abstract-full').style.display = 'none'; document.getElementById('2309.07709v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15157">arXiv:2307.15157</a> <span> [<a href="https://arxiv.org/pdf/2307.15157">pdf</a>, <a href="https://arxiv.org/format/2307.15157">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> R-LPIPS: An Adversarially Robust Perceptual Similarity Metric </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ghazanfari%2C+S">Sara Ghazanfari</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Araujo%2C+A">Alexandre Araujo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15157v2-abstract-short" style="display: inline;"> Similarity metrics have played a significant role in computer vision to capture the underlying semantics of images. In recent years, advanced similarity metrics, such as the Learned Perceptual Image Patch Similarity (LPIPS), have emerged. These metrics leverage deep features extracted from trained neural networks and have demonstrated a remarkable ability to closely align with human perception whe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15157v2-abstract-full').style.display = 'inline'; document.getElementById('2307.15157v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15157v2-abstract-full" style="display: none;"> Similarity metrics have played a significant role in computer vision to capture the underlying semantics of images. In recent years, advanced similarity metrics, such as the Learned Perceptual Image Patch Similarity (LPIPS), have emerged. These metrics leverage deep features extracted from trained neural networks and have demonstrated a remarkable ability to closely align with human perception when evaluating relative image similarity. However, it is now well-known that neural networks are susceptible to adversarial examples, i.e., small perturbations invisible to humans crafted to deliberately mislead the model. Consequently, the LPIPS metric is also sensitive to such adversarial examples. This susceptibility introduces significant security concerns, especially considering the widespread adoption of LPIPS in large-scale applications. In this paper, we propose the Robust Learned Perceptual Image Patch Similarity (R-LPIPS) metric, a new metric that leverages adversarially trained deep features. Through a comprehensive set of experiments, we demonstrate the superiority of R-LPIPS compared to the classical LPIPS metric. The code is available at https://github.com/SaraGhazanfari/R-LPIPS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15157v2-abstract-full').style.display = 'none'; document.getElementById('2307.15157v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05422">arXiv:2307.05422</a> <span> [<a href="https://arxiv.org/pdf/2307.05422">pdf</a>, <a href="https://arxiv.org/format/2307.05422">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Differential Analysis of Triggers and Benign Features for Black-Box DNN Backdoor Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05422v2-abstract-short" style="display: inline;"> This paper proposes a data-efficient detection method for deep neural networks against backdoor attacks under a black-box scenario. The proposed approach is motivated by the intuition that features corresponding to triggers have a higher influence in determining the backdoored network output than any other benign features. To quantitatively measure the effects of triggers and benign features on de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05422v2-abstract-full').style.display = 'inline'; document.getElementById('2307.05422v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05422v2-abstract-full" style="display: none;"> This paper proposes a data-efficient detection method for deep neural networks against backdoor attacks under a black-box scenario. The proposed approach is motivated by the intuition that features corresponding to triggers have a higher influence in determining the backdoored network output than any other benign features. To quantitatively measure the effects of triggers and benign features on determining the backdoored network output, we introduce five metrics. To calculate the five-metric values for a given input, we first generate several synthetic samples by injecting the input's partial contents into clean validation samples. Then, the five metrics are computed by using the output labels of the corresponding synthetic samples. One contribution of this work is the use of a tiny clean validation dataset. Having the computed five metrics, five novelty detectors are trained from the validation dataset. A meta novelty detector fuses the output of the five trained novelty detectors to generate a meta confidence score. During online testing, our method determines if online samples are poisoned or not via assessing their meta confidence scores output by the meta novelty detector. We show the efficacy of our methodology through a broad range of backdoor attacks, including ablation studies and comparison to existing approaches. Our methodology is promising since the proposed five metrics quantify the inherent differences between clean and poisoned samples. Additionally, our detection method can be incrementally improved by appending more metrics that may be proposed to address future advanced attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05422v2-abstract-full').style.display = 'none'; document.getElementById('2307.05422v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in the IEEE Transactions on Information Forensics and Security</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Information Forensics and Security 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09949">arXiv:2306.09949</a> <span> [<a href="https://arxiv.org/pdf/2306.09949">pdf</a>, <a href="https://arxiv.org/format/2306.09949">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Towards Better Certified Segmentation via Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Laousy%2C+O">Othmane Laousy</a>, <a href="/search/cs?searchtype=author&query=Araujo%2C+A">Alexandre Araujo</a>, <a href="/search/cs?searchtype=author&query=Chassagnon%2C+G">Guillaume Chassagnon</a>, <a href="/search/cs?searchtype=author&query=Revel%2C+M">Marie-Pierre Revel</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Vakalopoulou%2C+M">Maria Vakalopoulou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09949v1-abstract-short" style="display: inline;"> The robustness of image segmentation has been an important research topic in the past few years as segmentation models have reached production-level accuracy. However, like classification models, segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving. Recently, randomized smoothing has been prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09949v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09949v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09949v1-abstract-full" style="display: none;"> The robustness of image segmentation has been an important research topic in the past few years as segmentation models have reached production-level accuracy. However, like classification models, segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving. Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees. However, this method exhibits a trade-off between the amount of added noise and the level of certification achieved. In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models. Our experiments show that combining randomized smoothing and diffusion models significantly improves certified robustness, with results indicating a mean improvement of 21 points in accuracy compared to previous state-of-the-art methods on Pascal-Context and Cityscapes public datasets. Our method is independent of the selected segmentation model and does not need any additional specialized training procedure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09949v1-abstract-full').style.display = 'none'; document.getElementById('2306.09949v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06902">arXiv:2305.06902</a> <span> [<a href="https://arxiv.org/pdf/2305.06902">pdf</a>, <a href="https://arxiv.org/format/2305.06902">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3699674">10.1145/3699674 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> REMaQE: Reverse Engineering Math Equations from Executables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Udeshi%2C+M">Meet Udeshi</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Pearce%2C+H">Hammond Pearce</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06902v2-abstract-short" style="display: inline;"> Cybersecurity attacks on embedded devices for industrial control systems and cyber-physical systems may cause catastrophic physical damage as well as economic loss. This could be achieved by infecting device binaries with malware that modifies the physical characteristics of the system operation. Mitigating such attacks benefits from reverse engineering tools that recover sufficient semantic knowl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06902v2-abstract-full').style.display = 'inline'; document.getElementById('2305.06902v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06902v2-abstract-full" style="display: none;"> Cybersecurity attacks on embedded devices for industrial control systems and cyber-physical systems may cause catastrophic physical damage as well as economic loss. This could be achieved by infecting device binaries with malware that modifies the physical characteristics of the system operation. Mitigating such attacks benefits from reverse engineering tools that recover sufficient semantic knowledge in terms of mathematical equations of the implemented algorithm. Conventional reverse engineering tools can decompile binaries to low-level code, but offer little semantic insight. This paper proposes the REMaQE automated framework for reverse engineering of math equations from binary executables. Improving over state-of-the-art, REMaQE handles equation parameters accessed via registers, the stack, global memory, or pointers, and can reverse engineer object-oriented implementations such as C++ classes. Using REMaQE, we discovered a bug in the Linux kernel thermal monitoring tool "tmon". To evaluate REMaQE, we generate a dataset of 25,096 binaries with math equations implemented in C and Simulink. REMaQE successfully recovers a semantically matching equation for all 25,096 binaries. REMaQE executes in 0.48 seconds on average and in up to 2 seconds for complex equations. Real-time execution enables integration in an interactive math-oriented reverse engineering workflow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06902v2-abstract-full').style.display = 'none'; document.getElementById('2305.06902v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> C.3; D.2.5 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Transactions on Cyber-Physical Systems, Volume 8, Issue 4 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08586">arXiv:2304.08586</a> <span> [<a href="https://arxiv.org/pdf/2304.08586">pdf</a>, <a href="https://arxiv.org/format/2304.08586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LRA.2023.3295654">10.1109/LRA.2023.3295654 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Safe Navigation and Obstacle Avoidance Using Differentiable Optimization Based Control Barrier Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Dai%2C+B">Bolun Dai</a>, <a href="/search/cs?searchtype=author&query=Khorrambakht%2C+R">Rooholla Khorrambakht</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Gon%C3%A7alves%2C+V">Vin铆cius Gon莽alves</a>, <a href="/search/cs?searchtype=author&query=Tzes%2C+A">Anthony Tzes</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08586v3-abstract-short" style="display: inline;"> Control barrier functions (CBFs) have been widely applied to safety-critical robotic applications. However, the construction of control barrier functions for robotic systems remains a challenging task. Recently, collision detection using differentiable optimization has provided a way to compute the minimum uniform scaling factor that results in an intersection between two convex shapes and to also… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08586v3-abstract-full').style.display = 'inline'; document.getElementById('2304.08586v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08586v3-abstract-full" style="display: none;"> Control barrier functions (CBFs) have been widely applied to safety-critical robotic applications. However, the construction of control barrier functions for robotic systems remains a challenging task. Recently, collision detection using differentiable optimization has provided a way to compute the minimum uniform scaling factor that results in an intersection between two convex shapes and to also compute the Jacobian of the scaling factor. In this letter, we propose a framework that uses this scaling factor, with an offset, to systematically define a CBF for obstacle avoidance tasks. We provide theoretical analyses of the continuity and continuous differentiability of the proposed CBF. We empirically evaluate the proposed CBF's behavior and show that the resulting optimal control problem is computationally efficient, which makes it applicable for real-time robotic control. We validate our approach, first using a 2D mobile robot example, then on the Franka-Emika Research 3 (FR3) robot manipulator both in simulation and experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08586v3-abstract-full').style.display = 'none'; document.getElementById('2304.08586v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08701">arXiv:2212.08701</a> <span> [<a href="https://arxiv.org/pdf/2212.08701">pdf</a>, <a href="https://arxiv.org/format/2212.08701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> An Upper Bound for the Distribution Overlap Index and Its Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08701v3-abstract-short" style="display: inline;"> This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions without requiring any knowledge of the distribution models. The computation of our bound is time-efficient and memory-efficient and only requires finite samples. The proposed bound shows its value in one-class classification and domain shift analysis. Specifically, in one-class classifica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08701v3-abstract-full').style.display = 'inline'; document.getElementById('2212.08701v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08701v3-abstract-full" style="display: none;"> This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions without requiring any knowledge of the distribution models. The computation of our bound is time-efficient and memory-efficient and only requires finite samples. The proposed bound shows its value in one-class classification and domain shift analysis. Specifically, in one-class classification, we build a novel one-class classifier by converting the bound into a confidence score function. Unlike most one-class classifiers, the training process is not needed for our classifier. Additionally, the experimental results show that our classifier can be accurate with only a small number of in-class samples and outperform many state-of-the-art methods on various datasets in different one-class classification scenarios. In domain shift analysis, we propose a theorem based on our bound. The theorem is useful in detecting the existence of domain shift and inferring data information. The detection and inference processes are both computation-efficient and memory-efficient. Our work shows significant promise toward broadening the applications of overlap-based metrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08701v3-abstract-full').style.display = 'none'; document.getElementById('2212.08701v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06322">arXiv:2212.06322</a> <span> [<a href="https://arxiv.org/pdf/2212.06322">pdf</a>, <a href="https://arxiv.org/format/2212.06322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Privacy-Preserving Collaborative Learning through Feature Extraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Sarmadi%2C+A">Alireza Sarmadi</a>, <a href="/search/cs?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06322v1-abstract-short" style="display: inline;"> We propose a framework in which multiple entities collaborate to build a machine learning model while preserving privacy of their data. The approach utilizes feature embeddings from shared/per-entity feature extractors transforming data into a feature space for cooperation between entities. We propose two specific methods and compare them with a baseline method. In Shared Feature Extractor (SFE) L… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06322v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06322v1-abstract-full" style="display: none;"> We propose a framework in which multiple entities collaborate to build a machine learning model while preserving privacy of their data. The approach utilizes feature embeddings from shared/per-entity feature extractors transforming data into a feature space for cooperation between entities. We propose two specific methods and compare them with a baseline method. In Shared Feature Extractor (SFE) Learning, the entities use a shared feature extractor to compute feature embeddings of samples. In Locally Trained Feature Extractor (LTFE) Learning, each entity uses a separate feature extractor and models are trained using concatenated features from all entities. As a baseline, in Cooperatively Trained Feature Extractor (CTFE) Learning, the entities train models by sharing raw data. Secure multi-party algorithms are utilized to train models without revealing data or features in plain text. We investigate the trade-offs among SFE, LTFE, and CTFE in regard to performance, privacy leakage (using an off-the-shelf membership inference attack), and computational cost. LTFE provides the most privacy, followed by SFE, and then CTFE. Computational cost is lowest for SFE and the relative speed of CTFE and LTFE depends on network architecture. CTFE and LTFE provide the best accuracy. We use MNIST, a synthetic dataset, and a credit card fraud detection dataset for evaluations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06322v1-abstract-full').style.display = 'none'; document.getElementById('2212.06322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04571">arXiv:2210.04571</a> <span> [<a href="https://arxiv.org/pdf/2210.04571">pdf</a>, <a href="https://arxiv.org/format/2210.04571">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Modular Multi-Copter Structure Control for Cooperative Aerial Cargo Transportation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chaikalis%2C+D">Dimitris Chaikalis</a>, <a href="/search/cs?searchtype=author&query=Evangeliou%2C+N">Nikolaos Evangeliou</a>, <a href="/search/cs?searchtype=author&query=Tzes%2C+A">Anthony Tzes</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04571v1-abstract-short" style="display: inline;"> The control problem of a multi-copter swarm, mechanically coupled through a modular lattice structure of connecting rods, is considered in this article. The system's structural elasticity is considered in deriving the system's dynamics. The devised controller is robust against the induced flexibilities, while an inherent adaptation scheme allows for the control of asymmetrical configurations and t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04571v1-abstract-full').style.display = 'inline'; document.getElementById('2210.04571v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04571v1-abstract-full" style="display: none;"> The control problem of a multi-copter swarm, mechanically coupled through a modular lattice structure of connecting rods, is considered in this article. The system's structural elasticity is considered in deriving the system's dynamics. The devised controller is robust against the induced flexibilities, while an inherent adaptation scheme allows for the control of asymmetrical configurations and the transportation of unknown payloads. Certain optimization metrics are introduced for solving the individual agent thrust allocation problem while achieving maximum system flight time, resulting in a platform-independent control implementation. Experimental studies are offered to illustrate the efficiency of the suggested controller under typical flight conditions, increased rod elasticities and payload transportation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04571v1-abstract-full').style.display = 'none'; document.getElementById('2210.04571v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05429">arXiv:2205.05429</a> <span> [<a href="https://arxiv.org/pdf/2205.05429">pdf</a>, <a href="https://arxiv.org/format/2205.05429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Learning a Better Control Barrier Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Dai%2C+B">Bolun Dai</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05429v2-abstract-short" style="display: inline;"> Control barrier functions (CBFs) are widely used in safety-critical controllers. However, constructing a valid CBF is challenging, especially under nonlinear or non-convex constraints and for high relative degree systems. Meanwhile, finding a conservative CBF that only recovers a portion of the true safe set is usually possible. In this work, starting from a "conservative" handcrafted CBF (HCBF),… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05429v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05429v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05429v2-abstract-full" style="display: none;"> Control barrier functions (CBFs) are widely used in safety-critical controllers. However, constructing a valid CBF is challenging, especially under nonlinear or non-convex constraints and for high relative degree systems. Meanwhile, finding a conservative CBF that only recovers a portion of the true safe set is usually possible. In this work, starting from a "conservative" handcrafted CBF (HCBF), we develop a method to find a CBF that recovers a reasonably larger portion of the safe set. Since the learned CBF controller is not guaranteed to be safe during training iterations, we use a model predictive controller (MPC) to ensure safety during training. Using the collected trajectory data containing safe and unsafe interactions, we train a neural network to estimate the difference between the HCBF and a CBF that recovers a closer solution to the true safe set. With our proposed approach, we can generate safe controllers that are less conservative and computationally more efficient. We validate our approach on two systems: a second-order integrator and a ball-on-beam. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05429v2-abstract-full').style.display = 'none'; document.getElementById('2205.05429v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at 61st IEEE Conference on Decision and Control (CDC) 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01142">arXiv:2202.01142</a> <span> [<a href="https://arxiv.org/pdf/2202.01142">pdf</a>, <a href="https://arxiv.org/format/2202.01142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Pop Quiz! Can a Large Language Model Help With Reverse Engineering? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pearce%2C+H">Hammond Pearce</a>, <a href="/search/cs?searchtype=author&query=Tan%2C+B">Benjamin Tan</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Dolan-Gavitt%2C+B">Brendan Dolan-Gavitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01142v1-abstract-short" style="display: inline;"> Large language models (such as OpenAI's Codex) have demonstrated impressive zero-shot multi-task capabilities in the software domain, including code explanation. In this work, we examine if this ability can be used to help with reverse engineering. Specifically, we investigate prompting Codex to identify the purpose, capabilities, and important variable names or values from code, even when the cod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01142v1-abstract-full').style.display = 'inline'; document.getElementById('2202.01142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01142v1-abstract-full" style="display: none;"> Large language models (such as OpenAI's Codex) have demonstrated impressive zero-shot multi-task capabilities in the software domain, including code explanation. In this work, we examine if this ability can be used to help with reverse engineering. Specifically, we investigate prompting Codex to identify the purpose, capabilities, and important variable names or values from code, even when the code is produced through decompilation. Alongside an examination of the model's responses in answering open-ended questions, we devise a true/false quiz framework to characterize the performance of the language model. We present an extensive quantitative analysis of the measured performance of the language model on a set of program purpose identification and information extraction tasks: of the 136,260 questions we posed, it answered 72,754 correctly. A key takeaway is that while promising, LLMs are not yet ready for zero-shot reverse engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01142v1-abstract-full').style.display = 'none'; document.getElementById('2202.01142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 19 figures. Linked dataset: https://doi.org/10.5281/zenodo.5949075</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04114">arXiv:2112.04114</a> <span> [<a href="https://arxiv.org/pdf/2112.04114">pdf</a>, <a href="https://arxiv.org/format/2112.04114">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> ESAFE: Enterprise Security and Forensics at Scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=McShea%2C+B">Bernard McShea</a>, <a href="/search/cs?searchtype=author&query=Wright%2C+K">Kevin Wright</a>, <a href="/search/cs?searchtype=author&query=Lam%2C+D">Denley Lam</a>, <a href="/search/cs?searchtype=author&query=Schmidt%2C+S">Steve Schmidt</a>, <a href="/search/cs?searchtype=author&query=Choromanska%2C+A">Anna Choromanska</a>, <a href="/search/cs?searchtype=author&query=Bisla%2C+D">Devansh Bisla</a>, <a href="/search/cs?searchtype=author&query=Fang%2C+S">Shihong Fang</a>, <a href="/search/cs?searchtype=author&query=Sarmadi%2C+A">Alireza Sarmadi</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04114v1-abstract-short" style="display: inline;"> Securing enterprise networks presents challenges in terms of both their size and distributed structure. Data required to detect and characterize malicious activities may be diffused and may be located across network and endpoint devices. Further, cyber-relevant data routinely exceeds total available storage, bandwidth, and analysis capability, often by several orders of magnitude. Real-time detect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04114v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04114v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04114v1-abstract-full" style="display: none;"> Securing enterprise networks presents challenges in terms of both their size and distributed structure. Data required to detect and characterize malicious activities may be diffused and may be located across network and endpoint devices. Further, cyber-relevant data routinely exceeds total available storage, bandwidth, and analysis capability, often by several orders of magnitude. Real-time detection of threats within or across very large enterprise networks is not simply an issue of scale, but also a challenge due to the variable nature of malicious activities and their presentations. The system seeks to develop a hierarchy of cyber reasoning layers to detect malicious behavior, characterize novel attack vectors and present an analyst with a contextualized human-readable output from a series of machine learning models. We developed machine learning algorithms for scalable throughput and improved recall for our Multi-Resolution Joint Optimization for Enterprise Security and Forensics (ESAFE) solution. This Paper will provide an overview of ESAFE's Machine Learning Modules, Attack Ontologies, and Automated Smart Alert generation which provide multi-layer reasoning over cross-correlated sensors for analyst consumption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04114v1-abstract-full').style.display = 'none'; document.getElementById('2112.04114v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.07931">arXiv:2107.07931</a> <span> [<a href="https://arxiv.org/pdf/2107.07931">pdf</a>, <a href="https://arxiv.org/format/2107.07931">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Learning Locomotion Controllers for Walking Using Deep FBSDE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Dai%2C+B">Bolun Dai</a>, <a href="/search/cs?searchtype=author&query=Surabhi%2C+V+R">Virinchi Roy Surabhi</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.07931v1-abstract-short" style="display: inline;"> In this paper, we propose a deep forward-backward stochastic differential equation (FBSDE) based control algorithm for locomotion tasks. We also include state constraints in the FBSDE formulation to impose stable walking solutions or other constraints that one may want to consider (e.g., energy). Our approach utilizes a deep neural network (i.e., LSTM) to solve, in general, high-dimensional Hamilt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07931v1-abstract-full').style.display = 'inline'; document.getElementById('2107.07931v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.07931v1-abstract-full" style="display: none;"> In this paper, we propose a deep forward-backward stochastic differential equation (FBSDE) based control algorithm for locomotion tasks. We also include state constraints in the FBSDE formulation to impose stable walking solutions or other constraints that one may want to consider (e.g., energy). Our approach utilizes a deep neural network (i.e., LSTM) to solve, in general, high-dimensional Hamilton-Jacobi-Bellman (HJB) equation resulting from the stated optimal control problem. As compared to traditional methods, our proposed method provides a higher computational efficiency in real-time; thus yielding higher frequency implementation of the closed-loop controllers. The efficacy of our approach is shown on a linear inverted pendulum model (LIPM) for walking. Even though we are deploying a simplified model of walking, the methodology is applicable to generalized and complex models for walking and other control/optimization tasks in robotic systems. Simulation studies have been provided to show the effectiveness of the proposed methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07931v1-abstract-full').style.display = 'none'; document.getElementById('2107.07931v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IROS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04065">arXiv:2011.04065</a> <span> [<a href="https://arxiv.org/pdf/2011.04065">pdf</a>, <a href="https://arxiv.org/format/2011.04065">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Bait and Switch: Online Training Data Poisoning of Autonomous Driving Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Patel%2C+N">Naman Patel</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04065v2-abstract-short" style="display: inline;"> We show that by controlling parts of a physical environment in which a pre-trained deep neural network (DNN) is being fine-tuned online, an adversary can launch subtle data poisoning attacks that degrade the performance of the system. While the attack can be applied in general to any perception task, we consider a DNN based traffic light classifier for an autonomous car that has been trained in on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04065v2-abstract-full').style.display = 'inline'; document.getElementById('2011.04065v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04065v2-abstract-full" style="display: none;"> We show that by controlling parts of a physical environment in which a pre-trained deep neural network (DNN) is being fine-tuned online, an adversary can launch subtle data poisoning attacks that degrade the performance of the system. While the attack can be applied in general to any perception task, we consider a DNN based traffic light classifier for an autonomous car that has been trained in one city and is being fine-tuned online in another city. We show that by injecting environmental perturbations that do not modify the traffic lights themselves or ground-truth labels, the adversary can cause the deep network to learn spurious concepts during the online learning phase. The attacker can leverage the introduced spurious concepts in the environment to cause the model's accuracy to degrade during operation; therefore, causing the system to malfunction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04065v2-abstract-full').style.display = 'none'; document.getElementById('2011.04065v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the NeurIPS 2020 Workshop on Dataset Curation and Security</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02526">arXiv:2011.02526</a> <span> [<a href="https://arxiv.org/pdf/2011.02526">pdf</a>, <a href="https://arxiv.org/format/2011.02526">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ACCESS.2022.3141077">10.1109/ACCESS.2022.3141077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting Backdoors in Neural Networks Using Novel Feature-Based Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/cs?searchtype=author&query=Veldanda%2C+A+K">Akshaj Kumar Veldanda</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02526v1-abstract-short" style="display: inline;"> This paper proposes a new defense against neural network backdooring attacks that are maliciously trained to mispredict in the presence of attacker-chosen triggers. Our defense is based on the intuition that the feature extraction layers of a backdoored network embed new features to detect the presence of a trigger and the subsequent classification layers learn to mispredict when triggers are dete… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02526v1-abstract-full').style.display = 'inline'; document.getElementById('2011.02526v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02526v1-abstract-full" style="display: none;"> This paper proposes a new defense against neural network backdooring attacks that are maliciously trained to mispredict in the presence of attacker-chosen triggers. Our defense is based on the intuition that the feature extraction layers of a backdoored network embed new features to detect the presence of a trigger and the subsequent classification layers learn to mispredict when triggers are detected. Therefore, to detect backdoors, the proposed defense uses two synergistic anomaly detectors trained on clean validation data: the first is a novelty detector that checks for anomalous features, while the second detects anomalous mappings from features to outputs by comparing with a separate classifier trained on validation data. The approach is evaluated on a wide range of backdoored networks (with multiple variations of triggers) that successfully evade state-of-the-art defenses. Additionally, we evaluate the robustness of our approach on imperceptible perturbations, scalability on large-scale datasets, and effectiveness under domain shift. This paper also shows that the defense can be further improved using data augmentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02526v1-abstract-full').style.display = 'none'; document.getElementById('2011.02526v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Access 10 (2022): 5545-5558 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02997">arXiv:2004.02997</a> <span> [<a href="https://arxiv.org/pdf/2004.02997">pdf</a>, <a href="https://arxiv.org/format/2004.02997">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ACCESS.2020.2989735">10.1109/ACCESS.2020.2989735 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hardware Trojan Detection Using Controlled Circuit Aging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Surabhi%2C+V+R">Virinchi Roy Surabhi</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Amrouch%2C+H">Hussam Amrouch</a>, <a href="/search/cs?searchtype=author&query=Basu%2C+K">Kanad Basu</a>, <a href="/search/cs?searchtype=author&query=Henkel%2C+J">J枚rg Henkel</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02997v3-abstract-short" style="display: inline;"> This paper reports a novel approach that uses transistor aging in an integrated circuit (IC) to detect hardware Trojans. When a transistor is aged, it results in delays along several paths of the IC. This increase in delay results in timing violations that reveal as timing errors at the output of the IC during its operation. We present experiments using aging-aware standard cell libraries to illus… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02997v3-abstract-full').style.display = 'inline'; document.getElementById('2004.02997v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02997v3-abstract-full" style="display: none;"> This paper reports a novel approach that uses transistor aging in an integrated circuit (IC) to detect hardware Trojans. When a transistor is aged, it results in delays along several paths of the IC. This increase in delay results in timing violations that reveal as timing errors at the output of the IC during its operation. We present experiments using aging-aware standard cell libraries to illustrate the usefulness of the technique in detecting hardware Trojans. Combining IC aging with over-clocking produces a pattern of bit errors at the IC output by the induced timing violations. We use machine learning to learn the bit error distribution at the output of a clean IC. We differentiate the divergence in the pattern of bit errors because of a Trojan in the IC from this baseline distribution. We simulate the golden IC and show robustness to IC-to-IC manufacturing variations. The approach is effective and can detect a Trojan even if we place it far off the critical paths. Results on benchmarks from the Trust-hub show a detection accuracy of $\geq$99%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02997v3-abstract-full').style.display = 'none'; document.getElementById('2004.02997v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 34 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.08313">arXiv:2002.08313</a> <span> [<a href="https://arxiv.org/pdf/2002.08313">pdf</a>, <a href="https://arxiv.org/format/2002.08313">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3474369.3486874">10.1145/3474369.3486874 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NNoculation: Catching BadNets in the Wild </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Veldanda%2C+A+K">Akshaj Kumar Veldanda</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+K">Kang Liu</a>, <a href="/search/cs?searchtype=author&query=Tan%2C+B">Benjamin Tan</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a>, <a href="/search/cs?searchtype=author&query=Karri%2C+R">Ramesh Karri</a>, <a href="/search/cs?searchtype=author&query=Dolan-Gavitt%2C+B">Brendan Dolan-Gavitt</a>, <a href="/search/cs?searchtype=author&query=Garg%2C+S">Siddharth Garg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.08313v2-abstract-short" style="display: inline;"> This paper proposes a novel two-stage defense (NNoculation) against backdoored neural networks (BadNets) that, repairs a BadNet both pre-deployment and online in response to backdoored test inputs encountered in the field. In the pre-deployment stage, NNoculation retrains the BadNet with random perturbations of clean validation inputs to partially reduce the adversarial impact of a backdoor. Post-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08313v2-abstract-full').style.display = 'inline'; document.getElementById('2002.08313v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.08313v2-abstract-full" style="display: none;"> This paper proposes a novel two-stage defense (NNoculation) against backdoored neural networks (BadNets) that, repairs a BadNet both pre-deployment and online in response to backdoored test inputs encountered in the field. In the pre-deployment stage, NNoculation retrains the BadNet with random perturbations of clean validation inputs to partially reduce the adversarial impact of a backdoor. Post-deployment, NNoculation detects and quarantines backdoored test inputs by recording disagreements between the original and pre-deployment patched networks. A CycleGAN is then trained to learn transformations between clean validation and quarantined inputs; i.e., it learns to add triggers to clean validation images. Backdoored validation images along with their correct labels are used to further retrain the pre-deployment patched network, yielding our final defense. Empirical evaluation on a comprehensive suite of backdoor attacks show that NNoculation outperforms all state-of-the-art defenses that make restrictive assumptions and only work on specific backdoor attacks, or fail on adaptive attacks. In contrast, NNoculation makes minimal assumptions and provides an effective defense, even under settings where existing defenses are ineffective due to attackers circumventing their restrictive assumptions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08313v2-abstract-full').style.display = 'none'; document.getElementById('2002.08313v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.04539">arXiv:1811.04539</a> <span> [<a href="https://arxiv.org/pdf/1811.04539">pdf</a>, <a href="https://arxiv.org/format/1811.04539">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Adversarial Learning-Based On-Line Anomaly Monitoring for Assured Autonomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Patel%2C+N">Naman Patel</a>, <a href="/search/cs?searchtype=author&query=Saridena%2C+A+N">Apoorva Nandini Saridena</a>, <a href="/search/cs?searchtype=author&query=Choromanska%2C+A">Anna Choromanska</a>, <a href="/search/cs?searchtype=author&query=Krishnamurthy%2C+P">Prashanth Krishnamurthy</a>, <a href="/search/cs?searchtype=author&query=Khorrami%2C+F">Farshad Khorrami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.04539v1-abstract-short" style="display: inline;"> The paper proposes an on-line monitoring framework for continuous real-time safety/security in learning-based control systems (specifically application to a unmanned ground vehicle). We monitor validity of mappings from sensor inputs to actuator commands, controller-focused anomaly detection (CFAM), and from actuator commands to sensor inputs, system-focused anomaly detection (SFAM). CFAM is an im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04539v1-abstract-full').style.display = 'inline'; document.getElementById('1811.04539v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.04539v1-abstract-full" style="display: none;"> The paper proposes an on-line monitoring framework for continuous real-time safety/security in learning-based control systems (specifically application to a unmanned ground vehicle). We monitor validity of mappings from sensor inputs to actuator commands, controller-focused anomaly detection (CFAM), and from actuator commands to sensor inputs, system-focused anomaly detection (SFAM). CFAM is an image conditioned energy based generative adversarial network (EBGAN) in which the energy based discriminator distinguishes between proper and anomalous actuator commands. SFAM is based on an action condition video prediction framework to detect anomalies between predicted and observed temporal evolution of sensor data. We demonstrate the effectiveness of the approach on our autonomous ground vehicle for indoor environments and on Udacity dataset for outdoor environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04539v1-abstract-full').style.display = 'none'; document.getElementById('1811.04539v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018)</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>