CINXE.COM

Isabelle Tardieux - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Isabelle Tardieux - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="j9QatDaVF+QojxRJp1AIDs4bLAzNcBFv8d9Bjyk4a7S4kgFVGZ3HyTGQohvTz5o/DDXDMghrWWE9hAQIGEBojw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="isabelle tardieux" /> <meta name="description" content="I have obtained a PhD in Population Dynamics (Univ. Pierre " /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'fa4ce7c1661bc8063b873449b7826232a942ad81'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15252,"monthly_visitors":"132 million","monthly_visitor_count":132252817,"monthly_visitor_count_in_millions":132,"user_count":279356369,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1735149664000); window.Aedu.timeDifference = new Date().getTime() - 1735149664000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-39e724c1ebcfe850f9de3021ec1520c08f680aa5708d73b067fa953c2b7242ce.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f1cb04ac25820de8b9406f3de6147d6501d0600b09a1c72114f40ff2af2f1130.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/IsabelleTardieux" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-edc84b6bc49b1e5f512e6e0963bfa2075cdf6c6956bdd6acbc82d2f2d943e6b6.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux","photo":"https://0.academia-photos.com/43579341/25718519/24407267/s65_isabelle.tardieux.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":151086,"name":"Peptides","url":"https://www.academia.edu/Documents/in/Peptides"},{"id":19156,"name":"Biophysical Chemistry","url":"https://www.academia.edu/Documents/in/Biophysical_Chemistry"},{"id":2963,"name":"Mathematical Biology","url":"https://www.academia.edu/Documents/in/Mathematical_Biology"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":15719,"name":"Mitochondria","url":"https://www.academia.edu/Documents/in/Mitochondria"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/IsabelleTardieux&quot;,&quot;location&quot;:&quot;/IsabelleTardieux&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/IsabelleTardieux&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f5c7ef97-38e7-4d41-8508-2608c7e5d3ba"></div> <div id="ProfileCheckPaperUpdate-react-component-f5c7ef97-38e7-4d41-8508-2608c7e5d3ba"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Isabelle Tardieux" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/43579341/25718519/24407267/s200_isabelle.tardieux.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Isabelle Tardieux</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Isabelle" data-follow-user-id="43579341" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="43579341"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">19</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">12</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">13</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">I have obtained a&nbsp; PhD in Population Dynamics (Univ. Pierre<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="43579341" href="https://www.academia.edu/Documents/in/Peptides"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/IsabelleTardieux&quot;,&quot;location&quot;:&quot;/IsabelleTardieux&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/IsabelleTardieux&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Peptides&quot;]}" data-trace="false" data-dom-id="Pill-react-component-1e86e14d-49b8-4fa6-a15f-309f8fee0a58"></div> <div id="Pill-react-component-1e86e14d-49b8-4fa6-a15f-309f8fee0a58"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="43579341" href="https://www.academia.edu/Documents/in/Biophysical_Chemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Biophysical Chemistry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-6dca6c51-fb4e-4ea4-8fe8-e49f0e60e4a3"></div> <div id="Pill-react-component-6dca6c51-fb4e-4ea4-8fe8-e49f0e60e4a3"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="43579341" href="https://www.academia.edu/Documents/in/Mathematical_Biology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mathematical Biology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-611d6a8f-f9d8-4920-a099-3f7df36fa99e"></div> <div id="Pill-react-component-611d6a8f-f9d8-4920-a099-3f7df36fa99e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="43579341" href="https://www.academia.edu/Documents/in/Cattle"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Cattle&quot;]}" data-trace="false" data-dom-id="Pill-react-component-44e9fd55-2998-4266-b749-42efe0d08632"></div> <div id="Pill-react-component-44e9fd55-2998-4266-b749-42efe0d08632"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="43579341" href="https://www.academia.edu/Documents/in/Mitochondria"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mitochondria&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b42d3d07-1fb6-4632-9d86-3786c6314009"></div> <div id="Pill-react-component-b42d3d07-1fb6-4632-9d86-3786c6314009"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Isabelle Tardieux</h3></div><div class="js-work-strip profile--work_container" data-work-id="29798112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29798112/Bichet_et_al_BMC_Biol_2016"><img alt="Research paper thumbnail of Bichet et al BMC Biol 2016" class="work-thumbnail" src="https://attachments.academia-assets.com/50255335/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29798112/Bichet_et_al_BMC_Biol_2016">Bichet et al BMC Biol 2016</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://cnrs.academia.edu/IsabelleTardieux">Isabelle Tardieux</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://umr-lams.academia.edu/MarionBichet">Marion Bichet</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BastienTouquet">Bastien Touquet</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VirginieGonzalez">Virginie Gonzalez</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results: By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions: This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95b8e76f968c446955c334e357a6ab4e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50255335,&quot;asset_id&quot;:29798112,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50255335/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29798112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29798112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29798112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29798112]").text(description); $(".js-view-count[data-work-id=29798112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29798112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29798112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29798112, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95b8e76f968c446955c334e357a6ab4e" } } $('.js-work-strip[data-work-id=29798112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29798112,"title":"Bichet et al BMC Biol 2016","translated_title":"","metadata":{"abstract":"Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results: By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions: This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness."},"translated_abstract":"Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results: By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions: This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness.","internal_url":"https://www.academia.edu/29798112/Bichet_et_al_BMC_Biol_2016","translated_internal_url":"","created_at":"2016-11-11T10:07:35.129-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51900292,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25857029,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":51922243,"co_author_invite_id":null,"email":"b***n@gmail.com","affiliation":"Sorbonnes Universit茅s, UPMC (P6)","display_order":1,"name":"Marion Bichet","title":"Bichet et al BMC Biol 2016"},{"id":25857030,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":52079147,"co_author_invite_id":null,"email":"b***t@ujf-grenoble.fr","display_order":2,"name":"Bastien Touquet","title":"Bichet et al BMC Biol 2016"},{"id":25857031,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":52113339,"co_author_invite_id":null,"email":"v***z@inserm.fr","display_order":3,"name":"Virginie Gonzalez","title":"Bichet et al BMC Biol 2016"},{"id":25857032,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":4,"name":"M. Meissner","title":"Bichet et al BMC Biol 2016"},{"id":25857033,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":43579341,"co_author_invite_id":null,"email":"i***x@inserm.fr","display_order":5,"name":"Isabelle Tardieux","title":"Bichet et al BMC Biol 2016"}],"downloadable_attachments":[{"id":50255335,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50255335/thumbnails/1.jpg","file_name":"Bichet_et_al.-BMC_Biol._2016.pdf","download_url":"https://www.academia.edu/attachments/50255335/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bichet_et_al_BMC_Biol_2016.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50255335/Bichet_et_al.-BMC_Biol._2016-libre.pdf?1478888538=\u0026response-content-disposition=attachment%3B+filename%3DBichet_et_al_BMC_Biol_2016.pdf\u0026Expires=1735153263\u0026Signature=grXO79M1V6CuFsq2dtIQZlSqrFI~ZAyusnvZKNWTHhw-o5nUZ-uacuky~lZUb1byQipafXKEAq~3WKQfESpBjQiea8Os7hQ5CU8fmM7r3-CO2nH9Bd5WCRqjvJYmaEfQwPbA~WZpTRpKQEMgWhERfvW36q8q~Z6cTJMKG6Tfk1B9e3-vkdpEYKKnpHIXn-qxCqMbem88ESmCwCsTjDnRV3uTJ6Bm~EaBi7LB0b8-X0Xqfuq-Nk2wm9-kZGnNp8Ssv1JCyWoRLEfQRZJForwUXpWdTz5Yquuc~aX46M1WR2ohXcITJ~CadipSoQhvLhjadfg0PpMtkVu-BPRST48GcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bichet_et_al_BMC_Biol_2016","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results: By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions: This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness.","owner":{"id":51900292,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"cnrs","created_at":"2016-08-10T02:26:10.253-07:00","display_name":"Isabelle Tardieux","url":"https://cnrs.academia.edu/IsabelleTardieux"},"attachments":[{"id":50255335,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50255335/thumbnails/1.jpg","file_name":"Bichet_et_al.-BMC_Biol._2016.pdf","download_url":"https://www.academia.edu/attachments/50255335/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bichet_et_al_BMC_Biol_2016.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50255335/Bichet_et_al.-BMC_Biol._2016-libre.pdf?1478888538=\u0026response-content-disposition=attachment%3B+filename%3DBichet_et_al_BMC_Biol_2016.pdf\u0026Expires=1735153263\u0026Signature=grXO79M1V6CuFsq2dtIQZlSqrFI~ZAyusnvZKNWTHhw-o5nUZ-uacuky~lZUb1byQipafXKEAq~3WKQfESpBjQiea8Os7hQ5CU8fmM7r3-CO2nH9Bd5WCRqjvJYmaEfQwPbA~WZpTRpKQEMgWhERfvW36q8q~Z6cTJMKG6Tfk1B9e3-vkdpEYKKnpHIXn-qxCqMbem88ESmCwCsTjDnRV3uTJ6Bm~EaBi7LB0b8-X0Xqfuq-Nk2wm9-kZGnNp8Ssv1JCyWoRLEfQRZJForwUXpWdTz5Yquuc~aX46M1WR2ohXcITJ~CadipSoQhvLhjadfg0PpMtkVu-BPRST48GcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23130480"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23130480/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion"><img alt="Research paper thumbnail of The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23130480/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion">The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/GPall">G. Pall</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://glasgow.academia.edu/JamieWhitelaw">Jamie Whitelaw</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a></span></div><div class="wp-workCard_item"><span>PLoS ONE</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This mov...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23130480"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23130480"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23130480; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23130480]").text(description); $(".js-view-count[data-work-id=23130480]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23130480; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23130480']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23130480, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23130480]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23130480,"title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion","translated_title":"","metadata":{"abstract":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS ONE"},"translated_abstract":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","internal_url":"https://www.academia.edu/23130480/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion","translated_internal_url":"","created_at":"2016-03-11T04:47:35.684-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44904654,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17128208,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":null,"co_author_invite_id":3932943,"email":"s***g@gmx.de","display_order":0,"name":"Saskia Egarter","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":17128209,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":null,"co_author_invite_id":3932944,"email":"a***n@av.abbott.com","display_order":4194304,"name":"Allison Jackson","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":17128210,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":45001552,"co_author_invite_id":3932945,"email":"j***1@research.gla.ac.uk","affiliation":"University of Glasgow","display_order":6291456,"name":"Jamie Whitelaw","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":17128211,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":null,"co_author_invite_id":3039443,"email":"j***k@emory.edu","display_order":7340032,"name":"Jennifer Black","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":17128212,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":null,"co_author_invite_id":3932946,"email":"s***b@hotmail.co.uk","display_order":7864320,"name":"David Ferguson","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":23389075,"work_id":23130480,"tagging_user_id":45001552,"tagged_user_id":35136942,"co_author_invite_id":null,"email":"m***r@cims.nyu.edu","display_order":8126464,"name":"Alex Mogilner","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":23389076,"work_id":23130480,"tagging_user_id":45001552,"tagged_user_id":43579341,"co_author_invite_id":null,"email":"i***x@inserm.fr","display_order":8257536,"name":"Isabelle Tardieux","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":23389077,"work_id":23130480,"tagging_user_id":45001552,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":8323072,"name":"M. Meissner","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"}],"downloadable_attachments":[],"slug":"The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","owner":{"id":44904654,"first_name":"G.","middle_initials":null,"last_name":"Pall","page_name":"GPall","domain_name":"independent","created_at":"2016-03-11T04:40:47.359-08:00","display_name":"G. Pall","url":"https://independent.academia.edu/GPall"},"attachments":[],"research_interests":[{"id":9658,"name":"Locomotion","url":"https://www.academia.edu/Documents/in/Locomotion"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":213897,"name":"Phenotype","url":"https://www.academia.edu/Documents/in/Phenotype"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":743643,"name":"Host Pathogen Interactions","url":"https://www.academia.edu/Documents/in/Host_Pathogen_Interactions"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217676"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217676/Oral_susceptibility_of_Aedes_albopictus_to_dengue_type_2_virus_a_study_of_infection_kinetics_using_the_polymerase_chain_reaction_for_viral_detection"><img alt="Research paper thumbnail of Oral susceptibility of Aedes albopictus to dengue type 2 virus: a study of infection kinetics, using the polymerase chain reaction for viral detection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217676/Oral_susceptibility_of_Aedes_albopictus_to_dengue_type_2_virus_a_study_of_infection_kinetics_using_the_polymerase_chain_reaction_for_viral_detection">Oral susceptibility of Aedes albopictus to dengue type 2 virus: a study of infection kinetics, using the polymerase chain reaction for viral detection</a></div><div class="wp-workCard_item"><span>Medical and Veterinary Entomology</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinet...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217676"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217676"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217676; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217676]").text(description); $(".js-view-count[data-work-id=22217676]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217676; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217676']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217676, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22217676]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217676,"title":"Oral susceptibility of Aedes albopictus to dengue type 2 virus: a study of infection kinetics, using the polymerase chain reaction for viral detection","translated_title":"","metadata":{"abstract":"Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Medical and Veterinary Entomology"},"translated_abstract":"Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.","internal_url":"https://www.academia.edu/22217676/Oral_susceptibility_of_Aedes_albopictus_to_dengue_type_2_virus_a_study_of_infection_kinetics_using_the_polymerase_chain_reaction_for_viral_detection","translated_internal_url":"","created_at":"2016-02-20T06:23:41.513-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Oral_susceptibility_of_Aedes_albopictus_to_dengue_type_2_virus_a_study_of_infection_kinetics_using_the_polymerase_chain_reaction_for_viral_detection","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[],"research_interests":[{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":7606,"name":"Medical and Veterinary Entomology","url":"https://www.academia.edu/Documents/in/Medical_and_Veterinary_Entomology"},{"id":39979,"name":"Dengue Virus","url":"https://www.academia.edu/Documents/in/Dengue_Virus"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":180459,"name":"Aedes albopictus","url":"https://www.academia.edu/Documents/in/Aedes_albopictus"},{"id":336223,"name":"Digestive System","url":"https://www.academia.edu/Documents/in/Digestive_System"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1388461,"name":"Aedes","url":"https://www.academia.edu/Documents/in/Aedes"},{"id":1901293,"name":"Salivary Glands","url":"https://www.academia.edu/Documents/in/Salivary_Glands"}],"urls":[{"id":6790235,"url":"http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2915.1992.tb00626.x"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217675"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217675/The_toxofilin_actin_PP2C_complex_of_Toxoplasma_identification_of_interacting_domains"><img alt="Research paper thumbnail of The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains" class="work-thumbnail" src="https://attachments.academia-assets.com/42870575/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217675/The_toxofilin_actin_PP2C_complex_of_Toxoplasma_identification_of_interacting_domains">The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains</a></div><div class="wp-workCard_item"><span>Biochemical Journal</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser 53 , which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure-function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G-and Factin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser 53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein-protein interactions that are important to parasite motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2bc976c4c31a52d3a6314ecf50ff8ff" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870575,&quot;asset_id&quot;:22217675,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870575/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217675"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217675"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217675; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217675]").text(description); $(".js-view-count[data-work-id=22217675]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217675; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217675']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217675, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2bc976c4c31a52d3a6314ecf50ff8ff" } } $('.js-work-strip[data-work-id=22217675]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217675,"title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains","translated_title":"","metadata":{"ai_title_tag":"Interactions of Toxofilin with Actin and PP2C in Toxoplasma","grobid_abstract":"Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser 53 , which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure-function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G-and Factin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser 53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein-protein interactions that are important to parasite motility.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Biochemical Journal","grobid_abstract_attachment_id":42870575},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217675/The_toxofilin_actin_PP2C_complex_of_Toxoplasma_identification_of_interacting_domains","translated_internal_url":"","created_at":"2016-02-20T06:23:41.028-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761826,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":1435685,"email":"a***o@upmc.fr","display_order":0,"name":"Angelita Rebollo","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"},{"id":15942406,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":134476275,"co_author_invite_id":3680388,"email":"g***n@lavoix.eu","display_order":4194304,"name":"Ga毛lle JAN","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"},{"id":15942408,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680389,"email":"v***d@takasago.com","display_order":6291456,"name":"Violaine David","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"},{"id":15942429,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":7340032,"name":"Xavier Cayla","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"},{"id":15942435,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":7864320,"name":"violaine walker","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"}],"downloadable_attachments":[{"id":42870575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870575/thumbnails/1.jpg","file_name":"The_toxofilinactinPP2C_complex_of_Toxopl20160220-31294-5q6o95.pdf","download_url":"https://www.academia.edu/attachments/42870575/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_toxofilin_actin_PP2C_complex_of_Toxo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870575/The_toxofilinactinPP2C_complex_of_Toxopl20160220-31294-5q6o95-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DThe_toxofilin_actin_PP2C_complex_of_Toxo.pdf\u0026Expires=1735153263\u0026Signature=K-eZGfZeSXFQH311jTt2T8u0JoT4-ePfxU5Es0hafL0PC-L0zobz8TMRBW7ytD1ofSzN~kcLp6NuU~69SGNNvhcTBqNU24MU4EEubx4mjpWSvHMpzXZeLzPXrt-6DFxEdyuWrgocT3VwlCj~wo4DVlFyayLZai6p8gUEsn~QWU3cHw29cGX~4nvrlNDK2pgaFDoyzMRdgnQz9H8KJiwZr8n25B~OZnsfoxx~HoyiKNJBupKnOXOJ12m3aXWouU2Z2aBQZtQD-gL4G3lw53lovaJwJYwB6JHzobNj9aCLutyyAFXf2J12~pdlbT~YR9NiliXNAV5WzrCtg4q8YkvOag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_toxofilin_actin_PP2C_complex_of_Toxoplasma_identification_of_interacting_domains","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser 53 , which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure-function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G-and Factin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser 53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein-protein interactions that are important to parasite motility.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870575/thumbnails/1.jpg","file_name":"The_toxofilinactinPP2C_complex_of_Toxopl20160220-31294-5q6o95.pdf","download_url":"https://www.academia.edu/attachments/42870575/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_toxofilin_actin_PP2C_complex_of_Toxo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870575/The_toxofilinactinPP2C_complex_of_Toxopl20160220-31294-5q6o95-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DThe_toxofilin_actin_PP2C_complex_of_Toxo.pdf\u0026Expires=1735153263\u0026Signature=K-eZGfZeSXFQH311jTt2T8u0JoT4-ePfxU5Es0hafL0PC-L0zobz8TMRBW7ytD1ofSzN~kcLp6NuU~69SGNNvhcTBqNU24MU4EEubx4mjpWSvHMpzXZeLzPXrt-6DFxEdyuWrgocT3VwlCj~wo4DVlFyayLZai6p8gUEsn~QWU3cHw29cGX~4nvrlNDK2pgaFDoyzMRdgnQz9H8KJiwZr8n25B~OZnsfoxx~HoyiKNJBupKnOXOJ12m3aXWouU2Z2aBQZtQD-gL4G3lw53lovaJwJYwB6JHzobNj9aCLutyyAFXf2J12~pdlbT~YR9NiliXNAV5WzrCtg4q8YkvOag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":176525,"name":"Biochemical","url":"https://www.academia.edu/Documents/in/Biochemical"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"}],"urls":[{"id":6790234,"url":"http://www.biochemj.org/bj/401/bj4010711.htm"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217674"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217674/Toxoplasma_gondii_motility_and_host_cell_invasiveness_are_drastically_impaired_by_jasplakinolide_a_cyclic_peptide_stabilizing_F_actin"><img alt="Research paper thumbnail of Toxoplasma gondii motility and host cell invasiveness are drastically impaired by jasplakinolide, a cyclic peptide stabilizing F-actin" class="work-thumbnail" src="https://attachments.academia-assets.com/42870576/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217674/Toxoplasma_gondii_motility_and_host_cell_invasiveness_are_drastically_impaired_by_jasplakinolide_a_cyclic_peptide_stabilizing_F_actin">Toxoplasma gondii motility and host cell invasiveness are drastically impaired by jasplakinolide, a cyclic peptide stabilizing F-actin</a></div><div class="wp-workCard_item"><span>Microbes and Infection</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Actin polymerization and actin-myosin coupling activity most likely provide the driving force tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4bce47dd6bcb22cc99299f346c810bb2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870576,&quot;asset_id&quot;:22217674,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870576/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217674"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217674"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217674; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217674]").text(description); $(".js-view-count[data-work-id=22217674]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217674; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217674']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217674, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4bce47dd6bcb22cc99299f346c810bb2" } } $('.js-work-strip[data-work-id=22217674]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217674,"title":"Toxoplasma gondii motility and host cell invasiveness are drastically impaired by jasplakinolide, a cyclic peptide stabilizing F-actin","translated_title":"","metadata":{"abstract":"Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide","ai_title_tag":"Jasplakinolide Impairs Toxoplasma gondii Motility and Invasion","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Microbes and Infection"},"translated_abstract":"Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide","internal_url":"https://www.academia.edu/22217674/Toxoplasma_gondii_motility_and_host_cell_invasiveness_are_drastically_impaired_by_jasplakinolide_a_cyclic_peptide_stabilizing_F_actin","translated_internal_url":"","created_at":"2016-02-20T06:23:40.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42870576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870576/thumbnails/1.jpg","file_name":"s1286-4579_2899_2980066-5.pdf20160220-27428-1hwbppn","download_url":"https://www.academia.edu/attachments/42870576/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Toxoplasma_gondii_motility_and_host_cell.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870576/s1286-4579_2899_2980066-5-libre.pdf20160220-27428-1hwbppn?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DToxoplasma_gondii_motility_and_host_cell.pdf\u0026Expires=1735153263\u0026Signature=eeaWJU6V1VNENMaHBnM0vU7Os6kLs3q1zvotZFPDS8nShopM8wm84h1xGYA4IzUOuiVZ5whNhyqUfeUG6pVd4niK2ZEEKI0oe9ZASMmNVHUb8pEvPT7PVeopc0CHlL6Iy8HV8DwcxTLtGplkEhGfD4Y3aD6DA76G-VHxGDzYsVRfVLTzS11wim0-dNeX-MO88xnlK1aWx92qDFG9NrLQg5Pl-boG~a7~kGXU7336-HRjfGxqPYF46jF1gSWIYH~B9FvWF57VL32LMqRHTHZjua7VtkkiS9Bmf3~aWZRY4lvdJ-NNMLqr8ovMV~VlcwMqVmgxj151EMLsmmIyNzqFjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Toxoplasma_gondii_motility_and_host_cell_invasiveness_are_drastically_impaired_by_jasplakinolide_a_cyclic_peptide_stabilizing_F_actin","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870576/thumbnails/1.jpg","file_name":"s1286-4579_2899_2980066-5.pdf20160220-27428-1hwbppn","download_url":"https://www.academia.edu/attachments/42870576/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Toxoplasma_gondii_motility_and_host_cell.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870576/s1286-4579_2899_2980066-5-libre.pdf20160220-27428-1hwbppn?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DToxoplasma_gondii_motility_and_host_cell.pdf\u0026Expires=1735153263\u0026Signature=eeaWJU6V1VNENMaHBnM0vU7Os6kLs3q1zvotZFPDS8nShopM8wm84h1xGYA4IzUOuiVZ5whNhyqUfeUG6pVd4niK2ZEEKI0oe9ZASMmNVHUb8pEvPT7PVeopc0CHlL6Iy8HV8DwcxTLtGplkEhGfD4Y3aD6DA76G-VHxGDzYsVRfVLTzS11wim0-dNeX-MO88xnlK1aWx92qDFG9NrLQg5Pl-boG~a7~kGXU7336-HRjfGxqPYF46jF1gSWIYH~B9FvWF57VL32LMqRHTHZjua7VtkkiS9Bmf3~aWZRY4lvdJ-NNMLqr8ovMV~VlcwMqVmgxj151EMLsmmIyNzqFjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":37834,"name":"Western blotting","url":"https://www.academia.edu/Documents/in/Western_blotting"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":158399,"name":"Cyclic peptides","url":"https://www.academia.edu/Documents/in/Cyclic_peptides"},{"id":193464,"name":"Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis","url":"https://www.academia.edu/Documents/in/Sodium_Dodecyl_Sulfate-Polyacrylamide_Gel_Electrophoresis"},{"id":202433,"name":"Actin Dynamics","url":"https://www.academia.edu/Documents/in/Actin_Dynamics"},{"id":1155801,"name":"Actin Filaments","url":"https://www.academia.edu/Documents/in/Actin_Filaments"},{"id":1597877,"name":"Nucleotides","url":"https://www.academia.edu/Documents/in/Nucleotides"}],"urls":[{"id":6790233,"url":"http://www.sciencedirect.com/science/article/pii/S1286457999800665"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217673"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217673/Actin_dynamics_is_controlled_by_a_casein_kinase_II_and_phosphatase_2C_interplay_on_Toxoplasma_gondii_Toxofilin"><img alt="Research paper thumbnail of Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin" class="work-thumbnail" src="https://attachments.academia-assets.com/42870577/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217673/Actin_dynamics_is_controlled_by_a_casein_kinase_II_and_phosphatase_2C_interplay_on_Toxoplasma_gondii_Toxofilin">Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin</a></div><div class="wp-workCard_item"><span>Molecular Biology of the Cell</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Herein, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine53. The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="be9d39f8fe33fe995e38b7bb6dcd20d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870577,&quot;asset_id&quot;:22217673,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870577/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217673"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217673]").text(description); $(".js-view-count[data-work-id=22217673]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217673']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217673, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "be9d39f8fe33fe995e38b7bb6dcd20d0" } } $('.js-work-strip[data-work-id=22217673]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217673,"title":"Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin","translated_title":"","metadata":{"abstract":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Herein, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine53. The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","publication_name":"Molecular Biology of the Cell"},"translated_abstract":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Herein, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine53. The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","internal_url":"https://www.academia.edu/22217673/Actin_dynamics_is_controlled_by_a_casein_kinase_II_and_phosphatase_2C_interplay_on_Toxoplasma_gondii_Toxofilin","translated_internal_url":"","created_at":"2016-02-20T06:23:40.663-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942420,"work_id":22217673,"tagging_user_id":43579341,"tagged_user_id":43907712,"co_author_invite_id":3680391,"email":"a***a@pasteur.fr","display_order":0,"name":"Alphonse Garcia","title":"Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin"},{"id":15942428,"work_id":22217673,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":4194304,"name":"Xavier Cayla","title":"Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin"},{"id":15942434,"work_id":22217673,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":6291456,"name":"violaine walker","title":"Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin"}],"downloadable_attachments":[{"id":42870577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870577/thumbnails/1.jpg","file_name":"E02-08-0462v1.pdf","download_url":"https://www.academia.edu/attachments/42870577/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Actin_dynamics_is_controlled_by_a_casein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870577/E02-08-0462v1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DActin_dynamics_is_controlled_by_a_casein.pdf\u0026Expires=1735153263\u0026Signature=E-Dv6TfS1Fg7xb5bSP97GfgTramhQbcy8Bwn-TT-m~-bDocGZ8JME6QJZjWF33jhZv4ynw~L5auvgmGyMhfmkej3iM8CL7wjjonF-oJnBqxAX7b-rJbx2fQ84093o5Fhtv2zwXXugSTHd5VRO0WqeDbvwxvJpMr2VZ8KywMs317DPinYwOikUoUpZjB3W5N2MMb59tHfY~RepjZyuPuBYbERMeiABymg83lR~ITPHVZIR0AAe3ocZDvDEQ92zwls3xpqT7WmnyAB5PRDqPHReZNU6a55VErXTN08fMV3Uj85U2vWT~In7lsyyfHjIdJSkWdKJE1uAaViXwrHgIWPbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Actin_dynamics_is_controlled_by_a_casein_kinase_II_and_phosphatase_2C_interplay_on_Toxoplasma_gondii_Toxofilin","translated_slug":"","page_count":41,"language":"en","content_type":"Work","summary":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Herein, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine53. The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870577/thumbnails/1.jpg","file_name":"E02-08-0462v1.pdf","download_url":"https://www.academia.edu/attachments/42870577/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Actin_dynamics_is_controlled_by_a_casein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870577/E02-08-0462v1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DActin_dynamics_is_controlled_by_a_casein.pdf\u0026Expires=1735153263\u0026Signature=E-Dv6TfS1Fg7xb5bSP97GfgTramhQbcy8Bwn-TT-m~-bDocGZ8JME6QJZjWF33jhZv4ynw~L5auvgmGyMhfmkej3iM8CL7wjjonF-oJnBqxAX7b-rJbx2fQ84093o5Fhtv2zwXXugSTHd5VRO0WqeDbvwxvJpMr2VZ8KywMs317DPinYwOikUoUpZjB3W5N2MMb59tHfY~RepjZyuPuBYbERMeiABymg83lR~ITPHVZIR0AAe3ocZDvDEQ92zwls3xpqT7WmnyAB5PRDqPHReZNU6a55VErXTN08fMV3Uj85U2vWT~In7lsyyfHjIdJSkWdKJE1uAaViXwrHgIWPbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":202433,"name":"Actin Dynamics","url":"https://www.academia.edu/Documents/in/Actin_Dynamics"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217672"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217672/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion"><img alt="Research paper thumbnail of A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217672/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion">A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AlphonseGarcia">Alphonse Garcia</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217672"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217672"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217672; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217672]").text(description); $(".js-view-count[data-work-id=22217672]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217672; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217672']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217672, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22217672]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217672,"title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion","translated_title":"","metadata":{"abstract":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","internal_url":"https://www.academia.edu/22217672/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion","translated_internal_url":"","created_at":"2016-02-20T06:23:40.514-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942421,"work_id":22217672,"tagging_user_id":43579341,"tagged_user_id":43907712,"co_author_invite_id":3680391,"email":"a***a@pasteur.fr","display_order":0,"name":"Alphonse Garcia","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"},{"id":15942430,"work_id":22217672,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":4194304,"name":"Xavier Cayla","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"},{"id":15942436,"work_id":22217672,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":6291456,"name":"violaine walker","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"}],"downloadable_attachments":[],"slug":"A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":137847,"name":"Active Control","url":"https://www.academia.edu/Documents/in/Active_Control"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":420908,"name":"RNA-binding proteins","url":"https://www.academia.edu/Documents/in/RNA-binding_proteins"},{"id":422325,"name":"HeLa cells","url":"https://www.academia.edu/Documents/in/HeLa_cells"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":766014,"name":"Monoclonal Antibody","url":"https://www.academia.edu/Documents/in/Monoclonal_Antibody"},{"id":1938371,"name":"Okadaic acid","url":"https://www.academia.edu/Documents/in/Okadaic_acid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217671"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217671/Braun_2013_A_Toxoplasma_dense_granule_protein"><img alt="Research paper thumbnail of Braun-2013-A Toxoplasma dense granule protein" class="work-thumbnail" src="https://attachments.academia-assets.com/42870578/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217671/Braun_2013_A_Toxoplasma_dense_granule_protein">Braun-2013-A Toxoplasma dense granule protein</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abbreviations used: BMDM, BMderived macrophage; DG, dense granule; HFF, human foreskin fibroblast...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abbreviations used: BMDM, BMderived macrophage; DG, dense granule; HFF, human foreskin fibroblast; KIM, ki nase interacting motif; MOI, multiplicity of infection; PV, parasitophorous vacuole; PVM, PV membrane. A. Bougdour and M.A. Hakimi contributed equally to this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dd71ff2f60ba94c8385ae205e0f2b2f6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870578,&quot;asset_id&quot;:22217671,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870578/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217671"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217671"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217671; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217671]").text(description); $(".js-view-count[data-work-id=22217671]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217671; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217671']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217671, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dd71ff2f60ba94c8385ae205e0f2b2f6" } } $('.js-work-strip[data-work-id=22217671]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217671,"title":"Braun-2013-A Toxoplasma dense granule protein","translated_title":"","metadata":{"ai_title_tag":"Toxoplasma Dense Granule Protein: Role and Implications","grobid_abstract":"Abbreviations used: BMDM, BMderived macrophage; DG, dense granule; HFF, human foreskin fibroblast; KIM, ki nase interacting motif; MOI, multiplicity of infection; PV, parasitophorous vacuole; PVM, PV membrane. A. Bougdour and M.A. Hakimi contributed equally to this paper.","grobid_abstract_attachment_id":42870578},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217671/Braun_2013_A_Toxoplasma_dense_granule_protein","translated_internal_url":"","created_at":"2016-02-20T06:23:40.387-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761823,"work_id":22217671,"tagging_user_id":43579341,"tagged_user_id":332925974,"co_author_invite_id":207519,"email":"a***b@gmail.com","display_order":0,"name":"Amit Sharma","title":"Braun-2013-A Toxoplasma dense granule protein"},{"id":15942404,"work_id":22217671,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":722070,"email":"b***i@embl-grenoble.fr","display_order":4194304,"name":"H. Belrhali","title":"Braun-2013-A Toxoplasma dense granule protein"},{"id":15942414,"work_id":22217671,"tagging_user_id":43579341,"tagged_user_id":309009558,"co_author_invite_id":3680390,"email":"m***i@gmail.com","display_order":6291456,"name":"Mohamed-Ali HAKIMI","title":"Braun-2013-A Toxoplasma dense granule protein"}],"downloadable_attachments":[{"id":42870578,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870578/thumbnails/1.jpg","file_name":"Braun-2013-A_Toxoplasma_dense_granule_pr20160220-27427-oacy8e.pdf","download_url":"https://www.academia.edu/attachments/42870578/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Braun_2013_A_Toxoplasma_dense_granule_pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870578/Braun-2013-A_Toxoplasma_dense_granule_pr20160220-27427-oacy8e-libre.pdf?1455978640=\u0026response-content-disposition=attachment%3B+filename%3DBraun_2013_A_Toxoplasma_dense_granule_pr.pdf\u0026Expires=1735153263\u0026Signature=XTUQd3Am2hxmSRdq0IW9rMMFZT7KXbQlAInBb0HT2YIzxB6xcO2slhnW8nc7fkzh2rx2LJkv-2IPQZFpGJ6eT4~WOODAqcOoZo9U8FrC2A8h~0NiQtkmdyNoBBJ9uq7LFZyMA4FxrFGbymgDfsMvD8qOl2dcm4lrAScR4hVMCVPp5CC4~bfiDwdBZ~T~9uy8BYv49R~CwClq8pgnJwhvT~893UCzAyeNkNKC4Ng5LVIrEKJJTtz-4Lq9nvI5pdLHLk72IwvdgcLqoTt2BRdqcTGcapyEcRXKRswKcccVleLOak~WWBdRu388BzAha36rExWhsJ-GjeopRiMGj0WSCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Braun_2013_A_Toxoplasma_dense_granule_protein","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"Abbreviations used: BMDM, BMderived macrophage; DG, dense granule; HFF, human foreskin fibroblast; KIM, ki nase interacting motif; MOI, multiplicity of infection; PV, parasitophorous vacuole; PVM, PV membrane. A. Bougdour and M.A. Hakimi contributed equally to this paper.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870578,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870578/thumbnails/1.jpg","file_name":"Braun-2013-A_Toxoplasma_dense_granule_pr20160220-27427-oacy8e.pdf","download_url":"https://www.academia.edu/attachments/42870578/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Braun_2013_A_Toxoplasma_dense_granule_pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870578/Braun-2013-A_Toxoplasma_dense_granule_pr20160220-27427-oacy8e-libre.pdf?1455978640=\u0026response-content-disposition=attachment%3B+filename%3DBraun_2013_A_Toxoplasma_dense_granule_pr.pdf\u0026Expires=1735153263\u0026Signature=XTUQd3Am2hxmSRdq0IW9rMMFZT7KXbQlAInBb0HT2YIzxB6xcO2slhnW8nc7fkzh2rx2LJkv-2IPQZFpGJ6eT4~WOODAqcOoZo9U8FrC2A8h~0NiQtkmdyNoBBJ9uq7LFZyMA4FxrFGbymgDfsMvD8qOl2dcm4lrAScR4hVMCVPp5CC4~bfiDwdBZ~T~9uy8BYv49R~CwClq8pgnJwhvT~893UCzAyeNkNKC4Ng5LVIrEKJJTtz-4Lq9nvI5pdLHLk72IwvdgcLqoTt2BRdqcTGcapyEcRXKRswKcccVleLOak~WWBdRu388BzAha36rExWhsJ-GjeopRiMGj0WSCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217670"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217670/The_toxoplasma_host_cell_junction_is_anchored_to_the_cell_cortex_to_sustain_parasite_invasive_force"><img alt="Research paper thumbnail of The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217670/The_toxoplasma_host_cell_junction_is_anchored_to_the_cell_cortex_to_sustain_parasite_invasive_force">The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force</a></div><div class="wp-workCard_item"><span>BMC Biology</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217670"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217670"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217670; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217670]").text(description); $(".js-view-count[data-work-id=22217670]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217670; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217670']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217670, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22217670]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217670,"title":"The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force","translated_title":"","metadata":{"abstract":"BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"BMC Biology"},"translated_abstract":"BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.","internal_url":"https://www.academia.edu/22217670/The_toxoplasma_host_cell_junction_is_anchored_to_the_cell_cortex_to_sustain_parasite_invasive_force","translated_internal_url":"","created_at":"2016-02-20T06:23:40.260-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761819,"work_id":22217670,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":913140,"email":"g***s@ucl.ac.uk","display_order":0,"name":"Guillaume Charras","title":"The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force"},{"id":15942426,"work_id":22217670,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680392,"email":"v***l@inserm.fr","display_order":4194304,"name":"Vanessa Lagal","title":"The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force"}],"downloadable_attachments":[],"slug":"The_toxoplasma_host_cell_junction_is_anchored_to_the_cell_cortex_to_sustain_parasite_invasive_force","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217669"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217669/Host_Cell_Invasion_by_Apicomplexan_Parasites_The_Junction_Conundrum"><img alt="Research paper thumbnail of Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum" class="work-thumbnail" src="https://attachments.academia-assets.com/42870572/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217669/Host_Cell_Invasion_by_Apicomplexan_Parasites_The_Junction_Conundrum">Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DanielBargieri">Daniel Bargieri</a></span></div><div class="wp-workCard_item"><span>PLoS Pathogens</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2b94505e22d46e3fd1ad0c7c45c2e2db" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870572,&quot;asset_id&quot;:22217669,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870572/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217669"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217669"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217669; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217669]").text(description); $(".js-view-count[data-work-id=22217669]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217669; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217669']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217669, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2b94505e22d46e3fd1ad0c7c45c2e2db" } } $('.js-work-strip[data-work-id=22217669]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217669,"title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS Pathogens"},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217669/Host_Cell_Invasion_by_Apicomplexan_Parasites_The_Junction_Conundrum","translated_internal_url":"","created_at":"2016-02-20T06:23:40.114-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761818,"work_id":22217669,"tagging_user_id":43579341,"tagged_user_id":33080592,"co_author_invite_id":null,"email":"r***d@pasteur.fr","display_order":0,"name":"Robert M茅nard","title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum"},{"id":15942412,"work_id":22217669,"tagging_user_id":43579341,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":4194304,"name":"M. Meissner","title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum"},{"id":15942417,"work_id":22217669,"tagging_user_id":43579341,"tagged_user_id":52018496,"co_author_invite_id":1978025,"email":"d***i@gmail.com","display_order":6291456,"name":"Daniel Bargieri","title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum"},{"id":15942424,"work_id":22217669,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680392,"email":"v***l@inserm.fr","display_order":7340032,"name":"Vanessa Lagal","title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum"}],"downloadable_attachments":[{"id":42870572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870572/thumbnails/1.jpg","file_name":"Host_Cell_Invasion_by_Apicomplexan_Paras20160220-27539-a2ss4o.pdf","download_url":"https://www.academia.edu/attachments/42870572/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Host_Cell_Invasion_by_Apicomplexan_Paras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870572/Host_Cell_Invasion_by_Apicomplexan_Paras20160220-27539-a2ss4o-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DHost_Cell_Invasion_by_Apicomplexan_Paras.pdf\u0026Expires=1735153263\u0026Signature=Zdfz2Y-iVWaZJkXT7kc7jGRtDqZY6rUwDRG3iglX3lab5v34XNmQzl6-rcvBLHOBDY7l5U9dOtpzFKWTkoOT7ydyGQ3kSXJ24N9z-avW~BIk71jCeRXq2cRtPCASl00uETnn1ashArWKjkwRsHtI5MQlHOlabPCqB1yzHdbQRzjuqlnjapnx06ZUKm1eMPF7VjIzHWPtO8LczjtXQbZqVRBX2JmUqSasyKK--tS0z9FAChVzqJSDDjDNjVRJWIt2BMnlAAOjhh9gpr-XEJAe7RvxnDFV5zb~3h~O-3gV1RgAPv~MGVD4m67iolupzi2qK-NpQo1ZT~I2a7owljzj3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Host_Cell_Invasion_by_Apicomplexan_Parasites_The_Junction_Conundrum","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":null,"owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870572/thumbnails/1.jpg","file_name":"Host_Cell_Invasion_by_Apicomplexan_Paras20160220-27539-a2ss4o.pdf","download_url":"https://www.academia.edu/attachments/42870572/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Host_Cell_Invasion_by_Apicomplexan_Paras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870572/Host_Cell_Invasion_by_Apicomplexan_Paras20160220-27539-a2ss4o-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DHost_Cell_Invasion_by_Apicomplexan_Paras.pdf\u0026Expires=1735153263\u0026Signature=Zdfz2Y-iVWaZJkXT7kc7jGRtDqZY6rUwDRG3iglX3lab5v34XNmQzl6-rcvBLHOBDY7l5U9dOtpzFKWTkoOT7ydyGQ3kSXJ24N9z-avW~BIk71jCeRXq2cRtPCASl00uETnn1ashArWKjkwRsHtI5MQlHOlabPCqB1yzHdbQRzjuqlnjapnx06ZUKm1eMPF7VjIzHWPtO8LczjtXQbZqVRBX2JmUqSasyKK--tS0z9FAChVzqJSDDjDNjVRJWIt2BMnlAAOjhh9gpr-XEJAe7RvxnDFV5zb~3h~O-3gV1RgAPv~MGVD4m67iolupzi2qK-NpQo1ZT~I2a7owljzj3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217668"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217668/Apical_membrane_antigen_1_mediates_apicomplexan_parasite_attachment_but_is_dispensable_for_host_cell_invasion"><img alt="Research paper thumbnail of Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/42870581/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217668/Apical_membrane_antigen_1_mediates_apicomplexan_parasite_attachment_but_is_dispensable_for_host_cell_invasion">Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion</a></div><div class="wp-workCard_item"><span>Nature Communications</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1-rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a3be1448d3f4299d15d49988adcb6ef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870581,&quot;asset_id&quot;:22217668,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870581/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217668"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217668]").text(description); $(".js-view-count[data-work-id=22217668]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217668']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217668, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a3be1448d3f4299d15d49988adcb6ef" } } $('.js-work-strip[data-work-id=22217668]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217668,"title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion","translated_title":"","metadata":{"grobid_abstract":"Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1-rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Nature Communications","grobid_abstract_attachment_id":42870581},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217668/Apical_membrane_antigen_1_mediates_apicomplexan_parasite_attachment_but_is_dispensable_for_host_cell_invasion","translated_internal_url":"","created_at":"2016-02-20T06:23:39.979-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761817,"work_id":22217668,"tagging_user_id":43579341,"tagged_user_id":33080592,"co_author_invite_id":null,"email":"r***d@pasteur.fr","display_order":0,"name":"Robert M茅nard","title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion"},{"id":15942413,"work_id":22217668,"tagging_user_id":43579341,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":4194304,"name":"M. Meissner","title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion"},{"id":15942418,"work_id":22217668,"tagging_user_id":43579341,"tagged_user_id":52018496,"co_author_invite_id":1978025,"email":"d***i@gmail.com","display_order":6291456,"name":"Daniel Bargieri","title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion"},{"id":15942425,"work_id":22217668,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680392,"email":"v***l@inserm.fr","display_order":7340032,"name":"Vanessa Lagal","title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion"}],"downloadable_attachments":[{"id":42870581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870581/thumbnails/1.jpg","file_name":"Apical_membrane_antigen_1_mediates_apico20160220-31294-1mlwgzw.pdf","download_url":"https://www.academia.edu/attachments/42870581/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Apical_membrane_antigen_1_mediates_apico.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870581/Apical_membrane_antigen_1_mediates_apico20160220-31294-1mlwgzw-libre.pdf?1455978639=\u0026response-content-disposition=attachment%3B+filename%3DApical_membrane_antigen_1_mediates_apico.pdf\u0026Expires=1735153263\u0026Signature=FAL1KzKMAjHaKp0acC2dY5ZE0YWYxV10YnoPeWlLBLavcFgyCj07e4pdvdEe2~cot5aqjzRvIabtfHo7wJOGAc7mqVKaaCmnfaHSAKaAoCeoJM65EDj5thOBBWxd7vmIV5W6zpz0Hyar5BEVIVK130rU4IH0qyBeEVYtR-vmltaFADPZMUvY7OTw~I10ZkXgBAsAgyQF2~0Ud5o8nlMj3k0BvLQuYjYpPC9zL9QoxiGLlABWxratkxhi69oPJ8AwocSjCRDwunnU2X7d9l2o3mgG5HKqU6UAZdV1Xk8km-B9WbKJKZOe-gwoJFedt-ZVrhUpGYvfxjmPIzOtNO56HQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Apical_membrane_antigen_1_mediates_apicomplexan_parasite_attachment_but_is_dispensable_for_host_cell_invasion","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1-rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870581/thumbnails/1.jpg","file_name":"Apical_membrane_antigen_1_mediates_apico20160220-31294-1mlwgzw.pdf","download_url":"https://www.academia.edu/attachments/42870581/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Apical_membrane_antigen_1_mediates_apico.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870581/Apical_membrane_antigen_1_mediates_apico20160220-31294-1mlwgzw-libre.pdf?1455978639=\u0026response-content-disposition=attachment%3B+filename%3DApical_membrane_antigen_1_mediates_apico.pdf\u0026Expires=1735153263\u0026Signature=FAL1KzKMAjHaKp0acC2dY5ZE0YWYxV10YnoPeWlLBLavcFgyCj07e4pdvdEe2~cot5aqjzRvIabtfHo7wJOGAc7mqVKaaCmnfaHSAKaAoCeoJM65EDj5thOBBWxd7vmIV5W6zpz0Hyar5BEVIVK130rU4IH0qyBeEVYtR-vmltaFADPZMUvY7OTw~I10ZkXgBAsAgyQF2~0Ud5o8nlMj3k0BvLQuYjYpPC9zL9QoxiGLlABWxratkxhi69oPJ8AwocSjCRDwunnU2X7d9l2o3mgG5HKqU6UAZdV1Xk8km-B9WbKJKZOe-gwoJFedt-ZVrhUpGYvfxjmPIzOtNO56HQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7823,"name":"Malaria","url":"https://www.academia.edu/Documents/in/Malaria"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":37798,"name":"Toxoplasmosis","url":"https://www.academia.edu/Documents/in/Toxoplasmosis"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1267800,"name":"Nature Communications","url":"https://www.academia.edu/Documents/in/Nature_Communications"},{"id":1693871,"name":"Plasmodium berghei","url":"https://www.academia.edu/Documents/in/Plasmodium_berghei"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217667"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217667/Migration_of_Apicomplexa_Across_Biological_Barriers_The_Toxoplasma_and_Plasmodium_Rides"><img alt="Research paper thumbnail of Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides" class="work-thumbnail" src="https://attachments.academia-assets.com/42870571/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217667/Migration_of_Apicomplexa_Across_Biological_Barriers_The_Toxoplasma_and_Plasmodium_Rides">Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides</a></div><div class="wp-workCard_item"><span>Traffic</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="28b4c931310e935c1c6b38112bf70435" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870571,&quot;asset_id&quot;:22217667,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870571/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217667"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217667"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217667; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217667]").text(description); $(".js-view-count[data-work-id=22217667]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217667; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217667']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217667, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "28b4c931310e935c1c6b38112bf70435" } } $('.js-work-strip[data-work-id=22217667]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217667,"title":"Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides","translated_title":"","metadata":{"grobid_abstract":"The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Traffic","grobid_abstract_attachment_id":42870571},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217667/Migration_of_Apicomplexa_Across_Biological_Barriers_The_Toxoplasma_and_Plasmodium_Rides","translated_internal_url":"","created_at":"2016-02-20T06:23:39.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761814,"work_id":22217667,"tagging_user_id":43579341,"tagged_user_id":33080592,"co_author_invite_id":null,"email":"r***d@pasteur.fr","display_order":0,"name":"Robert M茅nard","title":"Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides"}],"downloadable_attachments":[{"id":42870571,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870571/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/42870571/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Migration_of_Apicomplexa_Across_Biologic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870571/pdf-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DMigration_of_Apicomplexa_Across_Biologic.pdf\u0026Expires=1735153263\u0026Signature=YFdTgEBFXTA4Gzb4-VJ7Xf9mynNRHJkOPr2PfLWyA1ObhuoaGqfoJSxVywnbvzg50w4IKnM75~~UfhNwQXMqVWG8Rn8WH2dITEgSZIha-XLLaGbnq7oKCLxJXvHoI3-WchFgyx1CjZeAl99cdzvGfUMuim2o3~oxc8GqWzJIm0VV0hgo9DTkY2xT1YetMkO6Mc0ijLVQ3-V9q0aeJquneLVL4Kx~~N6urZlXddD1OjpDE28CT0ZBxJsCRaVxaGffksWE2krpwLGRZUXKKj~ixxhaMmcsoLvx1ldfWafZrEqEkAbJ288BWnqextHN0tNezBuY6tbADF2uhdsQYgBgYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Migration_of_Apicomplexa_Across_Biological_Barriers_The_Toxoplasma_and_Plasmodium_Rides","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870571,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870571/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/42870571/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Migration_of_Apicomplexa_Across_Biologic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870571/pdf-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DMigration_of_Apicomplexa_Across_Biologic.pdf\u0026Expires=1735153263\u0026Signature=YFdTgEBFXTA4Gzb4-VJ7Xf9mynNRHJkOPr2PfLWyA1ObhuoaGqfoJSxVywnbvzg50w4IKnM75~~UfhNwQXMqVWG8Rn8WH2dITEgSZIha-XLLaGbnq7oKCLxJXvHoI3-WchFgyx1CjZeAl99cdzvGfUMuim2o3~oxc8GqWzJIm0VV0hgo9DTkY2xT1YetMkO6Mc0ijLVQ3-V9q0aeJquneLVL4Kx~~N6urZlXddD1OjpDE28CT0ZBxJsCRaVxaGffksWE2krpwLGRZUXKKj~ixxhaMmcsoLvx1ldfWafZrEqEkAbJ288BWnqextHN0tNezBuY6tbADF2uhdsQYgBgYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7823,"name":"Malaria","url":"https://www.academia.edu/Documents/in/Malaria"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":30444,"name":"Plasmodium","url":"https://www.academia.edu/Documents/in/Plasmodium"},{"id":37798,"name":"Toxoplasmosis","url":"https://www.academia.edu/Documents/in/Toxoplasmosis"},{"id":71437,"name":"Liver","url":"https://www.academia.edu/Documents/in/Liver"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":157891,"name":"Traffic","url":"https://www.academia.edu/Documents/in/Traffic"},{"id":557543,"name":"Blood Vessels","url":"https://www.academia.edu/Documents/in/Blood_Vessels"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217666"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217666/Toxofilin_from_Toxoplasma_gondii_forms_a_ternary_complex_with_an_antiparallel_actin_dimer"><img alt="Research paper thumbnail of Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer" class="work-thumbnail" src="https://attachments.academia-assets.com/42870570/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217666/Toxofilin_from_Toxoplasma_gondii_forms_a_ternary_complex_with_an_antiparallel_actin_dimer">Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii, an apicomplexan parasite related to Plasmodium, the agent of malaria. One of the most abundantly expressed proteins of T. gondii is toxofilin, a monomeric actin-binding protein (ABP) involved in invasion. Toxofilin is found in rhoptry and presents an N-terminal signal sequence, consistent with its being secreted during invasion. We report the structure of toxofilin amino acids 69 -196 in complex with the host mammalian actin. Toxofilin presents an extended conformation and interacts with an antiparallel actin dimer, in which one of the actins is related by crystal symmetry.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e0ef312cefbc228db85a8a288940a63a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870570,&quot;asset_id&quot;:22217666,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870570/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217666"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217666"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217666; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217666]").text(description); $(".js-view-count[data-work-id=22217666]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217666; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217666']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217666, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e0ef312cefbc228db85a8a288940a63a" } } $('.js-work-strip[data-work-id=22217666]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217666,"title":"Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer","translated_title":"","metadata":{"grobid_abstract":"Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii, an apicomplexan parasite related to Plasmodium, the agent of malaria. One of the most abundantly expressed proteins of T. gondii is toxofilin, a monomeric actin-binding protein (ABP) involved in invasion. Toxofilin is found in rhoptry and presents an N-terminal signal sequence, consistent with its being secreted during invasion. We report the structure of toxofilin amino acids 69 -196 in complex with the host mammalian actin. Toxofilin presents an extended conformation and interacts with an antiparallel actin dimer, in which one of the actins is related by crystal symmetry.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences","grobid_abstract_attachment_id":42870570},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217666/Toxofilin_from_Toxoplasma_gondii_forms_a_ternary_complex_with_an_antiparallel_actin_dimer","translated_internal_url":"","created_at":"2016-02-20T06:23:39.663-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761813,"work_id":22217666,"tagging_user_id":43579341,"tagged_user_id":16816201,"co_author_invite_id":null,"email":"r***3@gmail.com","affiliation":"Instituto de Tecnolog铆a y Ciencias Aplicadas","display_order":0,"name":"Roberto Dominguez","title":"Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer"},{"id":15761824,"work_id":22217666,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":507913,"email":"s***e@surface.phys.titech.ac.jp","display_order":4194304,"name":"S. Lee","title":"Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer"}],"downloadable_attachments":[{"id":42870570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870570/thumbnails/1.jpg","file_name":"Toxofilin_from_Toxoplasma_gondii_forms_a20160220-18714-105c99u.pdf","download_url":"https://www.academia.edu/attachments/42870570/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Toxofilin_from_Toxoplasma_gondii_forms_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870570/Toxofilin_from_Toxoplasma_gondii_forms_a20160220-18714-105c99u-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DToxofilin_from_Toxoplasma_gondii_forms_a.pdf\u0026Expires=1735153263\u0026Signature=DNq1E9G07AAOnOu~BPF~ZvD2iqBMMDf80m8IEBgy6BXWMS4yrOg3hDuBd4CzHYIIz2s-iCqKmHGTZc5NGbw25rrx-nv969PBrV0TzDuig36MOQpvN~jAeeZawSFZhvmTD-bcZjcnIbe8nxVuNWgPq9kATNCVutsum6eBG3xiSmt8AsGbP2McEGgr1ZSWPg8pqVPYRQs7RXNLtX3feRBJafipUj9d3xXkHN0jC~lRKv-ygFzTD21wUTifk4aqWADow2~OLvhQlEzltjVmGBWUNPu1En5H9WE11F6iOP-veblFoPqVTWcyRaswB~bDit0nG0lyanIRUHmBfjK5lh6kew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Toxofilin_from_Toxoplasma_gondii_forms_a_ternary_complex_with_an_antiparallel_actin_dimer","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii, an apicomplexan parasite related to Plasmodium, the agent of malaria. One of the most abundantly expressed proteins of T. gondii is toxofilin, a monomeric actin-binding protein (ABP) involved in invasion. Toxofilin is found in rhoptry and presents an N-terminal signal sequence, consistent with its being secreted during invasion. We report the structure of toxofilin amino acids 69 -196 in complex with the host mammalian actin. Toxofilin presents an extended conformation and interacts with an antiparallel actin dimer, in which one of the actins is related by crystal symmetry.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870570/thumbnails/1.jpg","file_name":"Toxofilin_from_Toxoplasma_gondii_forms_a20160220-18714-105c99u.pdf","download_url":"https://www.academia.edu/attachments/42870570/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Toxofilin_from_Toxoplasma_gondii_forms_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870570/Toxofilin_from_Toxoplasma_gondii_forms_a20160220-18714-105c99u-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DToxofilin_from_Toxoplasma_gondii_forms_a.pdf\u0026Expires=1735153263\u0026Signature=DNq1E9G07AAOnOu~BPF~ZvD2iqBMMDf80m8IEBgy6BXWMS4yrOg3hDuBd4CzHYIIz2s-iCqKmHGTZc5NGbw25rrx-nv969PBrV0TzDuig36MOQpvN~jAeeZawSFZhvmTD-bcZjcnIbe8nxVuNWgPq9kATNCVutsum6eBG3xiSmt8AsGbP2McEGgr1ZSWPg8pqVPYRQs7RXNLtX3feRBJafipUj9d3xXkHN0jC~lRKv-ygFzTD21wUTifk4aqWADow2~OLvhQlEzltjVmGBWUNPu1En5H9WE11F6iOP-veblFoPqVTWcyRaswB~bDit0nG0lyanIRUHmBfjK5lh6kew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":956752,"name":"Protein Quaternary Structure","url":"https://www.academia.edu/Documents/in/Protein_Quaternary_Structure"},{"id":1809037,"name":"Dimerization","url":"https://www.academia.edu/Documents/in/Dimerization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217665"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217665/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion"><img alt="Research paper thumbnail of The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/42870573/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217665/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion">The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion</a></div><div class="wp-workCard_item"><span>PLoS ONE</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This mov...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite&#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="247f46112d9d8890f310608678227e40" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870573,&quot;asset_id&quot;:22217665,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870573/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217665"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217665"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217665; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217665]").text(description); $(".js-view-count[data-work-id=22217665]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217665; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217665']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217665, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "247f46112d9d8890f310608678227e40" } } $('.js-work-strip[data-work-id=22217665]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217665,"title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion","translated_title":"","metadata":{"grobid_abstract":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS ONE","grobid_abstract_attachment_id":42870573},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217665/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion","translated_internal_url":"","created_at":"2016-02-20T06:23:39.527-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761822,"work_id":22217665,"tagging_user_id":43579341,"tagged_user_id":35136942,"co_author_invite_id":null,"email":"m***r@cims.nyu.edu","display_order":0,"name":"Alex Mogilner","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":15942411,"work_id":22217665,"tagging_user_id":43579341,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":4194304,"name":"M. Meissner","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"}],"downloadable_attachments":[{"id":42870573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870573/thumbnails/1.jpg","file_name":"The_Toxoplasma_Acto-MyoA_Motor_Complex_I20160220-2304-13qhyh1.pdf","download_url":"https://www.academia.edu/attachments/42870573/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Toxoplasma_Acto_MyoA_Motor_Complex_I.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870573/The_Toxoplasma_Acto-MyoA_Motor_Complex_I20160220-2304-13qhyh1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DThe_Toxoplasma_Acto_MyoA_Motor_Complex_I.pdf\u0026Expires=1735153263\u0026Signature=OnC3LW-4OJgTr6~A1JooMF21~NfiRl1VS~DJWzi8HOf~d975Abp4Sm1finbL9N9qGOOnlRx2v7ZnRFQDQmBjX2WGW~QQNbdbehchrYTdZlZIwOysVg9kNvM13doknu2Hu82oYkpdLeLz5qNouX~T12tG0wuDUQkXK0yB0iIH61JAco9WpY0Klj2VLpiHMD~rR5LrbxN94sFw9Y5JdFHGJYA6Y72fRNhi7UbcsyUILfgnVjPdXNt9WRQFcEAPvkPwo~iHTP7NH5~EkrMlR2XisMHG4y81XxuWokLKcCKBao3fzAewwCWjDJ3fdDiv0SWEirHLLypzXrpu~Yh6bmbEFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870573/thumbnails/1.jpg","file_name":"The_Toxoplasma_Acto-MyoA_Motor_Complex_I20160220-2304-13qhyh1.pdf","download_url":"https://www.academia.edu/attachments/42870573/download_file?st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Toxoplasma_Acto_MyoA_Motor_Complex_I.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870573/The_Toxoplasma_Acto-MyoA_Motor_Complex_I20160220-2304-13qhyh1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DThe_Toxoplasma_Acto_MyoA_Motor_Complex_I.pdf\u0026Expires=1735153263\u0026Signature=OnC3LW-4OJgTr6~A1JooMF21~NfiRl1VS~DJWzi8HOf~d975Abp4Sm1finbL9N9qGOOnlRx2v7ZnRFQDQmBjX2WGW~QQNbdbehchrYTdZlZIwOysVg9kNvM13doknu2Hu82oYkpdLeLz5qNouX~T12tG0wuDUQkXK0yB0iIH61JAco9WpY0Klj2VLpiHMD~rR5LrbxN94sFw9Y5JdFHGJYA6Y72fRNhi7UbcsyUILfgnVjPdXNt9WRQFcEAPvkPwo~iHTP7NH5~EkrMlR2XisMHG4y81XxuWokLKcCKBao3fzAewwCWjDJ3fdDiv0SWEirHLLypzXrpu~Yh6bmbEFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":9658,"name":"Locomotion","url":"https://www.academia.edu/Documents/in/Locomotion"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":213897,"name":"Phenotype","url":"https://www.academia.edu/Documents/in/Phenotype"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":743643,"name":"Host Pathogen Interactions","url":"https://www.academia.edu/Documents/in/Host_Pathogen_Interactions"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217664/Actin_Dynamics_Is_Controlled_by_a_Casein_Kinase_II_and_Phosphatase_2C_Interplay_on_Toxoplasma_gondii_Toxofilin"><img alt="Research paper thumbnail of Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin" class="work-thumbnail" src="https://attachments.academia-assets.com/42870574/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217664/Actin_Dynamics_Is_Controlled_by_a_Casein_Kinase_II_and_Phosphatase_2C_Interplay_on_Toxoplasma_gondii_Toxofilin">Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AlphonseGarcia">Alphonse Garcia</a></span></div><div class="wp-workCard_item"><span>Molecular Biology of the Cell</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Here, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine 53 . The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7d458f428d6d1a5d4d21f246dda06649" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870574,&quot;asset_id&quot;:22217664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870574/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217664]").text(description); $(".js-view-count[data-work-id=22217664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7d458f428d6d1a5d4d21f246dda06649" } } $('.js-work-strip[data-work-id=22217664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217664,"title":"Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin","translated_title":"","metadata":{"grobid_abstract":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Here, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine 53 . The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Molecular Biology of the Cell","grobid_abstract_attachment_id":42870574},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217664/Actin_Dynamics_Is_Controlled_by_a_Casein_Kinase_II_and_Phosphatase_2C_Interplay_on_Toxoplasma_gondii_Toxofilin","translated_internal_url":"","created_at":"2016-02-20T06:23:39.373-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942422,"work_id":22217664,"tagging_user_id":43579341,"tagged_user_id":43907712,"co_author_invite_id":3680391,"email":"a***a@pasteur.fr","display_order":0,"name":"Alphonse Garcia","title":"Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin"},{"id":15942431,"work_id":22217664,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":4194304,"name":"Xavier Cayla","title":"Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin"},{"id":15942437,"work_id":22217664,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":6291456,"name":"violaine walker","title":"Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin"}],"downloadable_attachments":[{"id":42870574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870574/thumbnails/1.jpg","file_name":"E02-08-0462v1.pdf","download_url":"https://www.academia.edu/attachments/42870574/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Actin_Dynamics_Is_Controlled_by_a_Casein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870574/E02-08-0462v1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DActin_Dynamics_Is_Controlled_by_a_Casein.pdf\u0026Expires=1735153264\u0026Signature=cuQzzq4gIgHZ~old-iMs4jkrJCk8Ghg-XzpBDpMMtpl3szrObUUrPnC2tKZ13UcAyH2v7x3QIJnQFYpzow5u65ukw-9GXkUlNom0YJdnI2U-BymQII0DZ53tstEdyFLsoch5ozkkVP1dQJxfCHYQl2U67VF4~MuIFAShjGGCOjkvPCIranp5jngyy6SdvW9guIW2hUZAvBLItgB7sC5hLWhbaKKwWzyVkT1JOEUssFgjUvmm0PEeVif9PuhQjIz-wsWi897g04P4KlsByWKa5ZeAnYMLK1KJg1GYfddtqKKUjkrMwBVP9c4EpupQ0yKQvR3iuiInR7jysKFic5c8kw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Actin_Dynamics_Is_Controlled_by_a_Casein_Kinase_II_and_Phosphatase_2C_Interplay_on_Toxoplasma_gondii_Toxofilin","translated_slug":"","page_count":41,"language":"en","content_type":"Work","summary":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Here, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine 53 . The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870574/thumbnails/1.jpg","file_name":"E02-08-0462v1.pdf","download_url":"https://www.academia.edu/attachments/42870574/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Actin_Dynamics_Is_Controlled_by_a_Casein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870574/E02-08-0462v1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DActin_Dynamics_Is_Controlled_by_a_Casein.pdf\u0026Expires=1735153264\u0026Signature=cuQzzq4gIgHZ~old-iMs4jkrJCk8Ghg-XzpBDpMMtpl3szrObUUrPnC2tKZ13UcAyH2v7x3QIJnQFYpzow5u65ukw-9GXkUlNom0YJdnI2U-BymQII0DZ53tstEdyFLsoch5ozkkVP1dQJxfCHYQl2U67VF4~MuIFAShjGGCOjkvPCIranp5jngyy6SdvW9guIW2hUZAvBLItgB7sC5hLWhbaKKwWzyVkT1JOEUssFgjUvmm0PEeVif9PuhQjIz-wsWi897g04P4KlsByWKa5ZeAnYMLK1KJg1GYfddtqKKUjkrMwBVP9c4EpupQ0yKQvR3iuiInR7jysKFic5c8kw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":202433,"name":"Actin Dynamics","url":"https://www.academia.edu/Documents/in/Actin_Dynamics"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217663/SET8_Mediated_Methylations_of_Histone_H4_Lysine_20_Mark_Silent_Heterochromatic_Domains_in_Apicomplexan_Genomes"><img alt="Research paper thumbnail of SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes" class="work-thumbnail" src="https://attachments.academia-assets.com/42870568/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217663/SET8_Mediated_Methylations_of_Histone_H4_Lysine_20_Mark_Silent_Heterochromatic_Domains_in_Apicomplexan_Genomes">SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/MohamedAliHAKIMI">Mohamed-Ali HAKIMI</a></span></div><div class="wp-workCard_item"><span>Molecular and Cellular Biology</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Posttranslational histone modifications modulate chromatin-templated processes in various biologi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Posttranslational histone modifications modulate chromatin-templated processes in various biological systems. H4K20 methylation is considered to have an evolutionarily ancient role in DNA repair and genome integrity, while its function in heterochromatin function and gene expression is thought to have arisen later during evolution. Here, we identify and characterize H4K20 methylases of the Set8 family in Plasmodium and Toxoplasma, two medically important members of the protozoan phylum Apicomplexa. Remarkably, parasite Set8-related proteins display H4K20 mono-, di-, and trimethylase activities, in striking contrast to the monomethylase-restricted human Set8. Structurally, few residues forming the substrate-specific channel dictate enzyme methylation multiplicity. These enzymes are cell cycle regulated and focally enriched at pericentric and telomeric heterochromatin in both parasites. Collectively, our findings provide new insights into the evolution of Set8-mediated biochemical pathways, suggesting that the heterochromatic function of the marker is not restricted to metazoans. Thus, these lower eukaryotes have developed a diverse panel of biological stages through their high capacity to differentiate, and epigenetics only begins to emerge as a strong determinant of their biology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c5d47473ff0dc9fe73843af3ea06ba73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870568,&quot;asset_id&quot;:22217663,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870568/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217663]").text(description); $(".js-view-count[data-work-id=22217663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c5d47473ff0dc9fe73843af3ea06ba73" } } $('.js-work-strip[data-work-id=22217663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217663,"title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes","translated_title":"","metadata":{"grobid_abstract":"Posttranslational histone modifications modulate chromatin-templated processes in various biological systems. H4K20 methylation is considered to have an evolutionarily ancient role in DNA repair and genome integrity, while its function in heterochromatin function and gene expression is thought to have arisen later during evolution. Here, we identify and characterize H4K20 methylases of the Set8 family in Plasmodium and Toxoplasma, two medically important members of the protozoan phylum Apicomplexa. Remarkably, parasite Set8-related proteins display H4K20 mono-, di-, and trimethylase activities, in striking contrast to the monomethylase-restricted human Set8. Structurally, few residues forming the substrate-specific channel dictate enzyme methylation multiplicity. These enzymes are cell cycle regulated and focally enriched at pericentric and telomeric heterochromatin in both parasites. Collectively, our findings provide new insights into the evolution of Set8-mediated biochemical pathways, suggesting that the heterochromatic function of the marker is not restricted to metazoans. Thus, these lower eukaryotes have developed a diverse panel of biological stages through their high capacity to differentiate, and epigenetics only begins to emerge as a strong determinant of their biology.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Molecular and Cellular Biology","grobid_abstract_attachment_id":42870568},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217663/SET8_Mediated_Methylations_of_Histone_H4_Lysine_20_Mark_Silent_Heterochromatic_Domains_in_Apicomplexan_Genomes","translated_internal_url":"","created_at":"2016-02-20T06:23:39.206-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761820,"work_id":22217663,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":2550356,"email":"m***i@ujf-grenoble.fr","display_order":0,"name":"Mohamed-Ali Hakimi","title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes"},{"id":15761821,"work_id":22217663,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":301379,"email":"o***n@cea.fr","display_order":4194304,"name":"Olivier Bastien","title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes"},{"id":15942405,"work_id":22217663,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":722070,"email":"b***i@embl-grenoble.fr","display_order":6291456,"name":"H. Belrhali","title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes"},{"id":15942415,"work_id":22217663,"tagging_user_id":43579341,"tagged_user_id":309009558,"co_author_invite_id":3680390,"email":"m***i@gmail.com","display_order":7340032,"name":"Mohamed-Ali HAKIMI","title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes"}],"downloadable_attachments":[{"id":42870568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870568/thumbnails/1.jpg","file_name":"5711.pdf","download_url":"https://www.academia.edu/attachments/42870568/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SET8_Mediated_Methylations_of_Histone_H4.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870568/5711-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DSET8_Mediated_Methylations_of_Histone_H4.pdf\u0026Expires=1735153264\u0026Signature=J1ozbDLFT1lxERT0Hh5NA9oq1wBD2U~Zz~JMXQi47TqcTYkJHSpOS7cDMtwtcu-KTVRC-mTp7OtoL5iAjy5jnKispsSqo9rBSBTicqNMgfAmRWv-4WWTBR6NdYqDzeVyLYWwD67QEfH~zQY90uij6w5REbYOYDo-nnBrdduIAAOok0H4RlvcJCFPNo~n3tbF~4s1l6-GtRC9OqluKV3T6CScBLdNDT~YmUQBC-M7EhTenS4oOlgVLPkYPa5qx6lDmqknDIhPuBX9Ad3xiESegGFwY~jnTukt89XGcgOj7s0vvvd8Y3wjDM7Q4~VTKo8GNIYBpiKo2so5SwYOEfwITA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SET8_Mediated_Methylations_of_Histone_H4_Lysine_20_Mark_Silent_Heterochromatic_Domains_in_Apicomplexan_Genomes","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Posttranslational histone modifications modulate chromatin-templated processes in various biological systems. H4K20 methylation is considered to have an evolutionarily ancient role in DNA repair and genome integrity, while its function in heterochromatin function and gene expression is thought to have arisen later during evolution. Here, we identify and characterize H4K20 methylases of the Set8 family in Plasmodium and Toxoplasma, two medically important members of the protozoan phylum Apicomplexa. Remarkably, parasite Set8-related proteins display H4K20 mono-, di-, and trimethylase activities, in striking contrast to the monomethylase-restricted human Set8. Structurally, few residues forming the substrate-specific channel dictate enzyme methylation multiplicity. These enzymes are cell cycle regulated and focally enriched at pericentric and telomeric heterochromatin in both parasites. Collectively, our findings provide new insights into the evolution of Set8-mediated biochemical pathways, suggesting that the heterochromatic function of the marker is not restricted to metazoans. Thus, these lower eukaryotes have developed a diverse panel of biological stages through their high capacity to differentiate, and epigenetics only begins to emerge as a strong determinant of their biology.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870568/thumbnails/1.jpg","file_name":"5711.pdf","download_url":"https://www.academia.edu/attachments/42870568/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SET8_Mediated_Methylations_of_Histone_H4.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870568/5711-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DSET8_Mediated_Methylations_of_Histone_H4.pdf\u0026Expires=1735153264\u0026Signature=J1ozbDLFT1lxERT0Hh5NA9oq1wBD2U~Zz~JMXQi47TqcTYkJHSpOS7cDMtwtcu-KTVRC-mTp7OtoL5iAjy5jnKispsSqo9rBSBTicqNMgfAmRWv-4WWTBR6NdYqDzeVyLYWwD67QEfH~zQY90uij6w5REbYOYDo-nnBrdduIAAOok0H4RlvcJCFPNo~n3tbF~4s1l6-GtRC9OqluKV3T6CScBLdNDT~YmUQBC-M7EhTenS4oOlgVLPkYPa5qx6lDmqknDIhPuBX9Ad3xiESegGFwY~jnTukt89XGcgOj7s0vvvd8Y3wjDM7Q4~VTKo8GNIYBpiKo2so5SwYOEfwITA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2183,"name":"Cellular Biology","url":"https://www.academia.edu/Documents/in/Cellular_Biology"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":9113,"name":"Cell Cycle","url":"https://www.academia.edu/Documents/in/Cell_Cycle"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":32923,"name":"Gene Silencing","url":"https://www.academia.edu/Documents/in/Gene_Silencing"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":63067,"name":"Molecular and cellular biology","url":"https://www.academia.edu/Documents/in/Molecular_and_cellular_biology"},{"id":74780,"name":"Mutation","url":"https://www.academia.edu/Documents/in/Mutation"},{"id":87651,"name":"Methylation","url":"https://www.academia.edu/Documents/in/Methylation"},{"id":103375,"name":"Parasites","url":"https://www.academia.edu/Documents/in/Parasites"},{"id":295928,"name":"Amino Acids","url":"https://www.academia.edu/Documents/in/Amino_Acids"},{"id":317185,"name":"Histones","url":"https://www.academia.edu/Documents/in/Histones"},{"id":373650,"name":"Lysine","url":"https://www.academia.edu/Documents/in/Lysine"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1744058,"name":"Heterochromatin","url":"https://www.academia.edu/Documents/in/Heterochromatin"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217661/A_Toxoplasma_type_2C_serine_threonine_phosphatase_is_involved_in_parasite_growth_in_the_mammalian_host_cell"><img alt="Research paper thumbnail of A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell" class="work-thumbnail" src="https://attachments.academia-assets.com/42870569/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217661/A_Toxoplasma_type_2C_serine_threonine_phosphatase_is_involved_in_parasite_growth_in_the_mammalian_host_cell">A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell</a></div><div class="wp-workCard_item"><span>Microbes and Infection</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and cau...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f6db34bd702fdeaa79a1fb95c04b07f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870569,&quot;asset_id&quot;:22217661,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870569/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217661]").text(description); $(".js-view-count[data-work-id=22217661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f6db34bd702fdeaa79a1fb95c04b07f" } } $('.js-work-strip[data-work-id=22217661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217661,"title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell","translated_title":"","metadata":{"grobid_abstract":"Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Microbes and Infection","grobid_abstract_attachment_id":42870569},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217661/A_Toxoplasma_type_2C_serine_threonine_phosphatase_is_involved_in_parasite_growth_in_the_mammalian_host_cell","translated_internal_url":"","created_at":"2016-02-20T06:23:39.082-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942407,"work_id":22217661,"tagging_user_id":43579341,"tagged_user_id":134476275,"co_author_invite_id":3680388,"email":"g***n@lavoix.eu","display_order":0,"name":"Ga毛lle JAN","title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell"},{"id":15942416,"work_id":22217661,"tagging_user_id":43579341,"tagged_user_id":309009558,"co_author_invite_id":3680390,"email":"m***i@gmail.com","display_order":4194304,"name":"Mohamed-Ali HAKIMI","title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell"},{"id":15942432,"work_id":22217661,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":6291456,"name":"Xavier Cayla","title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell"},{"id":15942438,"work_id":22217661,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":7340032,"name":"violaine walker","title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell"}],"downloadable_attachments":[{"id":42870569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870569/thumbnails/1.jpg","file_name":"A_Toxoplasma_type_2C_serine-threonine_ph20160220-18718-1me2nk1.pdf","download_url":"https://www.academia.edu/attachments/42870569/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Toxoplasma_type_2C_serine_threonine_ph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870569/A_Toxoplasma_type_2C_serine-threonine_ph20160220-18718-1me2nk1-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DA_Toxoplasma_type_2C_serine_threonine_ph.pdf\u0026Expires=1735153264\u0026Signature=MV6KbCbculuH0N67CN~H73gXuaTfk~9sFWoGrOZZyJ8jdasH4DLhiRcIjmkIATZKTMYahDDc~mvp8KBHMGMvGqzy3RNY8k0hgbg7q9apIPztYjx~8G4-6xA3UiTpoqLBy~lVlkuQz4-xThgpn7FtSmu~bVNlySV2H0Sfd3ukNobhiR7Ewdl2VJ0nEDKNhUUXhpzlEhsmrsUhkRYEIQwbkgdEwf4BFBkjGGExqwWjtZWf4BL1XISMHCWleWa8a8psujkYcLz6ChWA~M4lJBHGgfxVoVMFy92eMoRTdX6-nUXxjDV0FV6~tVLQASyF2nAWZh9~ja9O8-NphqDU~oKVWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Toxoplasma_type_2C_serine_threonine_phosphatase_is_involved_in_parasite_growth_in_the_mammalian_host_cell","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870569/thumbnails/1.jpg","file_name":"A_Toxoplasma_type_2C_serine-threonine_ph20160220-18718-1me2nk1.pdf","download_url":"https://www.academia.edu/attachments/42870569/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Toxoplasma_type_2C_serine_threonine_ph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870569/A_Toxoplasma_type_2C_serine-threonine_ph20160220-18718-1me2nk1-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DA_Toxoplasma_type_2C_serine_threonine_ph.pdf\u0026Expires=1735153264\u0026Signature=MV6KbCbculuH0N67CN~H73gXuaTfk~9sFWoGrOZZyJ8jdasH4DLhiRcIjmkIATZKTMYahDDc~mvp8KBHMGMvGqzy3RNY8k0hgbg7q9apIPztYjx~8G4-6xA3UiTpoqLBy~lVlkuQz4-xThgpn7FtSmu~bVNlySV2H0Sfd3ukNobhiR7Ewdl2VJ0nEDKNhUUXhpzlEhsmrsUhkRYEIQwbkgdEwf4BFBkjGGExqwWjtZWf4BL1XISMHCWleWa8a8psujkYcLz6ChWA~M4lJBHGgfxVoVMFy92eMoRTdX6-nUXxjDV0FV6~tVLQASyF2nAWZh9~ja9O8-NphqDU~oKVWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":9113,"name":"Cell Cycle","url":"https://www.academia.edu/Documents/in/Cell_Cycle"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":38650,"name":"Cell Division","url":"https://www.academia.edu/Documents/in/Cell_Division"},{"id":57570,"name":"Cercopithecus aethiops","url":"https://www.academia.edu/Documents/in/Cercopithecus_aethiops"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":317801,"name":"Cell nucleus","url":"https://www.academia.edu/Documents/in/Cell_nucleus"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":1166930,"name":"Cytoplasm","url":"https://www.academia.edu/Documents/in/Cytoplasm"},{"id":1954130,"name":"Cell Growth","url":"https://www.academia.edu/Documents/in/Cell_Growth"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217660/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion"><img alt="Research paper thumbnail of A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217660/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion">A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion</a></div><div class="wp-workCard_item"><span>Microbes and Infection</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217660]").text(description); $(".js-view-count[data-work-id=22217660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22217660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217660,"title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion","translated_title":"","metadata":{"abstract":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Microbes and Infection"},"translated_abstract":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","internal_url":"https://www.academia.edu/22217660/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion","translated_internal_url":"","created_at":"2016-02-20T06:23:38.947-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942423,"work_id":22217660,"tagging_user_id":43579341,"tagged_user_id":43907712,"co_author_invite_id":3680391,"email":"a***a@pasteur.fr","display_order":0,"name":"Alphonse Garcia","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"},{"id":15942433,"work_id":22217660,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":4194304,"name":"Xavier Cayla","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"},{"id":15942440,"work_id":22217660,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":6291456,"name":"violaine walker","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"}],"downloadable_attachments":[],"slug":"A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":137847,"name":"Active Control","url":"https://www.academia.edu/Documents/in/Active_Control"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":420908,"name":"RNA-binding proteins","url":"https://www.academia.edu/Documents/in/RNA-binding_proteins"},{"id":422325,"name":"HeLa cells","url":"https://www.academia.edu/Documents/in/HeLa_cells"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":766014,"name":"Monoclonal Antibody","url":"https://www.academia.edu/Documents/in/Monoclonal_Antibody"},{"id":1938371,"name":"Okadaic acid","url":"https://www.academia.edu/Documents/in/Okadaic_acid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217659/Role_in_host_cell_invasion_of_Trypanosoma_cruzi_induced_cytosolic_free_Ca2_transients"><img alt="Research paper thumbnail of Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients" class="work-thumbnail" src="https://attachments.academia-assets.com/42870579/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217659/Role_in_host_cell_invasion_of_Trypanosoma_cruzi_induced_cytosolic_free_Ca2_transients">Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients</a></div><div class="wp-workCard_item"><span>Journal of Experimental Medicine</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is fac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is facilitated by disruption of host cell actin microfilaments, and involves recruitment and fusion of host lysosomes at the site of parasite entry. These findings implied the existence of transmembrane signaling mechanisms triggered by the parasites in the host cells before invasion. Here we show that infective trypomastigotes or their isolated membranes, but not the noninfective epimastigotes, induce repetitive cytosolic-free Ca 2+ transients in individual normal rat kidney fibroblasts, in a pertussis toxin-sensitive manner. Parasite entry is inhibited by buffering or depleting host cell cytosolic-free Ca 2+, or by pretreatment with Ca 2+ channel blockers or pertussis toxin. In contrast, invasion is enhanced by brief exposure of the host cells to cytochalasin D. These results indicate that a trypomastigote membrane factor triggers cytosolic-free Ca 2+ transients in host cells through a G-protein-coupled pathway. This signaling event may promote invasion through modulation of the host cell actin cytoskeleton.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="802ab8faf1cb0f87a050cd8429049a1b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870579,&quot;asset_id&quot;:22217659,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870579/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217659]").text(description); $(".js-view-count[data-work-id=22217659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "802ab8faf1cb0f87a050cd8429049a1b" } } $('.js-work-strip[data-work-id=22217659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217659,"title":"Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients","translated_title":"","metadata":{"grobid_abstract":"Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is facilitated by disruption of host cell actin microfilaments, and involves recruitment and fusion of host lysosomes at the site of parasite entry. These findings implied the existence of transmembrane signaling mechanisms triggered by the parasites in the host cells before invasion. Here we show that infective trypomastigotes or their isolated membranes, but not the noninfective epimastigotes, induce repetitive cytosolic-free Ca 2+ transients in individual normal rat kidney fibroblasts, in a pertussis toxin-sensitive manner. Parasite entry is inhibited by buffering or depleting host cell cytosolic-free Ca 2+, or by pretreatment with Ca 2+ channel blockers or pertussis toxin. In contrast, invasion is enhanced by brief exposure of the host cells to cytochalasin D. These results indicate that a trypomastigote membrane factor triggers cytosolic-free Ca 2+ transients in host cells through a G-protein-coupled pathway. This signaling event may promote invasion through modulation of the host cell actin cytoskeleton.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Journal of Experimental Medicine","grobid_abstract_attachment_id":42870579},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217659/Role_in_host_cell_invasion_of_Trypanosoma_cruzi_induced_cytosolic_free_Ca2_transients","translated_internal_url":"","created_at":"2016-02-20T06:23:38.797-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942410,"work_id":22217659,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":434352,"email":"a***n@umd.edu","display_order":0,"name":"Norma Andrews","title":"Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients"}],"downloadable_attachments":[{"id":42870579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870579/thumbnails/1.jpg","file_name":"1017.pdf","download_url":"https://www.academia.edu/attachments/42870579/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_in_host_cell_invasion_of_Trypanosom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870579/1017-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DRole_in_host_cell_invasion_of_Trypanosom.pdf\u0026Expires=1735153264\u0026Signature=F3dHPuoZWZXx8v-drDDdZ94i6jf8c1P~HEzPLf8ddhEZrivqNhCwNvNLwmj~hT9fhoNqsFPzI5BKF9AeL1UL1ZIAajTdMN0cK~IzxE9ohgPsM3pnqtZEofxLEhi899GQfUGMWsUlSksqJbGIHS9tahDDip0cMQVbgn-Z29bwk~9pSgLOA9TelmYJph9PvcA9xu54jwp~LlV3WD5F1sk~b6qw8y6PJdWR4BquJT3sA6CbQx3MK8BOrCwQL4HGnPhZs-qiG6bTRMDEtQ2Si6R1S5Q3zHEGnF5voCGUZ5Ty6qDELqWtPUzs5QHv75MT7gb5YAzIfkdlHRx22APuuDjcDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_in_host_cell_invasion_of_Trypanosoma_cruzi_induced_cytosolic_free_Ca2_transients","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is facilitated by disruption of host cell actin microfilaments, and involves recruitment and fusion of host lysosomes at the site of parasite entry. These findings implied the existence of transmembrane signaling mechanisms triggered by the parasites in the host cells before invasion. Here we show that infective trypomastigotes or their isolated membranes, but not the noninfective epimastigotes, induce repetitive cytosolic-free Ca 2+ transients in individual normal rat kidney fibroblasts, in a pertussis toxin-sensitive manner. Parasite entry is inhibited by buffering or depleting host cell cytosolic-free Ca 2+, or by pretreatment with Ca 2+ channel blockers or pertussis toxin. In contrast, invasion is enhanced by brief exposure of the host cells to cytochalasin D. These results indicate that a trypomastigote membrane factor triggers cytosolic-free Ca 2+ transients in host cells through a G-protein-coupled pathway. This signaling event may promote invasion through modulation of the host cell actin cytoskeleton.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870579/thumbnails/1.jpg","file_name":"1017.pdf","download_url":"https://www.academia.edu/attachments/42870579/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_in_host_cell_invasion_of_Trypanosom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870579/1017-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DRole_in_host_cell_invasion_of_Trypanosom.pdf\u0026Expires=1735153264\u0026Signature=F3dHPuoZWZXx8v-drDDdZ94i6jf8c1P~HEzPLf8ddhEZrivqNhCwNvNLwmj~hT9fhoNqsFPzI5BKF9AeL1UL1ZIAajTdMN0cK~IzxE9ohgPsM3pnqtZEofxLEhi899GQfUGMWsUlSksqJbGIHS9tahDDip0cMQVbgn-Z29bwk~9pSgLOA9TelmYJph9PvcA9xu54jwp~LlV3WD5F1sk~b6qw8y6PJdWR4BquJT3sA6CbQx3MK8BOrCwQL4HGnPhZs-qiG6bTRMDEtQ2Si6R1S5Q3zHEGnF5voCGUZ5Ty6qDELqWtPUzs5QHv75MT7gb5YAzIfkdlHRx22APuuDjcDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":71294,"name":"Kidney","url":"https://www.academia.edu/Documents/in/Kidney"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":202404,"name":"Actin Cytoskeleton","url":"https://www.academia.edu/Documents/in/Actin_Cytoskeleton"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":376084,"name":"Trypanosoma Cruzi","url":"https://www.academia.edu/Documents/in/Trypanosoma_Cruzi"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":554586,"name":"Experimental Medicine","url":"https://www.academia.edu/Documents/in/Experimental_Medicine"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217658"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217658/Independent_Roles_of_Apical_Membrane_Antigen_1_and_Rhoptry_Neck_Proteins_during_Host_Cell_Invasion_by_Apicomplexa"><img alt="Research paper thumbnail of Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa" class="work-thumbnail" src="https://attachments.academia-assets.com/42870580/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217658/Independent_Roles_of_Apical_Membrane_Antigen_1_and_Rhoptry_Neck_Proteins_during_Host_Cell_Invasion_by_Apicomplexa">Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DanielBargieri">Daniel Bargieri</a></span></div><div class="wp-workCard_item"><span>Cell Host &amp; Microbe</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">During invasion, apicomplexan parasites form an intimate circumferential contact with the host ce...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="22d35c950f3e88bb1bac92ef832eee37" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870580,&quot;asset_id&quot;:22217658,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870580/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217658"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217658"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217658; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217658]").text(description); $(".js-view-count[data-work-id=22217658]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217658; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217658']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217658, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "22d35c950f3e88bb1bac92ef832eee37" } } $('.js-work-strip[data-work-id=22217658]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217658,"title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa","translated_title":"","metadata":{"grobid_abstract":"During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Cell Host \u0026 Microbe","grobid_abstract_attachment_id":42870580},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217658/Independent_Roles_of_Apical_Membrane_Antigen_1_and_Rhoptry_Neck_Proteins_during_Host_Cell_Invasion_by_Apicomplexa","translated_internal_url":"","created_at":"2016-02-20T06:23:38.653-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761815,"work_id":22217658,"tagging_user_id":43579341,"tagged_user_id":33080592,"co_author_invite_id":null,"email":"r***d@pasteur.fr","display_order":0,"name":"Robert M茅nard","title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa"},{"id":15761825,"work_id":22217658,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3641905,"email":"c***x@utoronto.ca","display_order":4194304,"name":"Ce虂line Lacroix","title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa"},{"id":15942419,"work_id":22217658,"tagging_user_id":43579341,"tagged_user_id":52018496,"co_author_invite_id":1978025,"email":"d***i@gmail.com","display_order":6291456,"name":"Daniel Bargieri","title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa"},{"id":15942427,"work_id":22217658,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680392,"email":"v***l@inserm.fr","display_order":7340032,"name":"Vanessa Lagal","title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa"}],"downloadable_attachments":[{"id":42870580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870580/thumbnails/1.jpg","file_name":"Independent_Roles_of_Apical_Membrane_Ant20160220-27428-152gphx.pdf","download_url":"https://www.academia.edu/attachments/42870580/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Independent_Roles_of_Apical_Membrane_Ant.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870580/Independent_Roles_of_Apical_Membrane_Ant20160220-27428-152gphx-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DIndependent_Roles_of_Apical_Membrane_Ant.pdf\u0026Expires=1735153264\u0026Signature=Sz6W3F5DhI4~qxrmkMJQkF~b~koyYsLhry5GMiPy9rXhRgBki9Kc1Mo9rWJFDY6vy8qFaHQ4I-XMNGUH50PJ-4g68Rw6LO9MxYk3ohd0b6MY6e9z3iAtr9ehb8G3ZPSfH-snN0K0HLjuy~i6d7OgkXZOa6aaYtMbo17rWd8BOjJGcb~HaZ1UIIbBGQ8pfjOU-Ywknre9jlCtdcVNgIGDqMY3fZZ~141G7ZbC510uKsHBhLS935aGzfvhneGuoEoImGoz~EIQ0SnfMip1bmWMIb6odKyzfPZ0kQ2sGImX~1azDv-3wYLtieqqrBBMESL8pyxs5Fbutg6BQDzNnb2FgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Independent_Roles_of_Apical_Membrane_Antigen_1_and_Rhoptry_Neck_Proteins_during_Host_Cell_Invasion_by_Apicomplexa","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870580/thumbnails/1.jpg","file_name":"Independent_Roles_of_Apical_Membrane_Ant20160220-27428-152gphx.pdf","download_url":"https://www.academia.edu/attachments/42870580/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Independent_Roles_of_Apical_Membrane_Ant.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870580/Independent_Roles_of_Apical_Membrane_Ant20160220-27428-152gphx-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DIndependent_Roles_of_Apical_Membrane_Ant.pdf\u0026Expires=1735153264\u0026Signature=Sz6W3F5DhI4~qxrmkMJQkF~b~koyYsLhry5GMiPy9rXhRgBki9Kc1Mo9rWJFDY6vy8qFaHQ4I-XMNGUH50PJ-4g68Rw6LO9MxYk3ohd0b6MY6e9z3iAtr9ehb8G3ZPSfH-snN0K0HLjuy~i6d7OgkXZOa6aaYtMbo17rWd8BOjJGcb~HaZ1UIIbBGQ8pfjOU-Ywknre9jlCtdcVNgIGDqMY3fZZ~141G7ZbC510uKsHBhLS935aGzfvhneGuoEoImGoz~EIQ0SnfMip1bmWMIb6odKyzfPZ0kQ2sGImX~1azDv-3wYLtieqqrBBMESL8pyxs5Fbutg6BQDzNnb2FgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":7823,"name":"Malaria","url":"https://www.academia.edu/Documents/in/Malaria"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":96081,"name":"Anopheles","url":"https://www.academia.edu/Documents/in/Anopheles"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":432593,"name":"Hepatocytes","url":"https://www.academia.edu/Documents/in/Hepatocytes"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":982534,"name":"Erythrocytes","url":"https://www.academia.edu/Documents/in/Erythrocytes"},{"id":1693871,"name":"Plasmodium berghei","url":"https://www.academia.edu/Documents/in/Plasmodium_berghei"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4647971" id="papers"><div class="js-work-strip profile--work_container" data-work-id="29798112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29798112/Bichet_et_al_BMC_Biol_2016"><img alt="Research paper thumbnail of Bichet et al BMC Biol 2016" class="work-thumbnail" src="https://attachments.academia-assets.com/50255335/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29798112/Bichet_et_al_BMC_Biol_2016">Bichet et al BMC Biol 2016</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://cnrs.academia.edu/IsabelleTardieux">Isabelle Tardieux</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://umr-lams.academia.edu/MarionBichet">Marion Bichet</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BastienTouquet">Bastien Touquet</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VirginieGonzalez">Virginie Gonzalez</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results: By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions: This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95b8e76f968c446955c334e357a6ab4e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50255335,&quot;asset_id&quot;:29798112,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50255335/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29798112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29798112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29798112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29798112]").text(description); $(".js-view-count[data-work-id=29798112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29798112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29798112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29798112, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95b8e76f968c446955c334e357a6ab4e" } } $('.js-work-strip[data-work-id=29798112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29798112,"title":"Bichet et al BMC Biol 2016","translated_title":"","metadata":{"abstract":"Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results: By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions: This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness."},"translated_abstract":"Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results: By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions: This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness.","internal_url":"https://www.academia.edu/29798112/Bichet_et_al_BMC_Biol_2016","translated_internal_url":"","created_at":"2016-11-11T10:07:35.129-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51900292,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25857029,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":51922243,"co_author_invite_id":null,"email":"b***n@gmail.com","affiliation":"Sorbonnes Universit茅s, UPMC (P6)","display_order":1,"name":"Marion Bichet","title":"Bichet et al BMC Biol 2016"},{"id":25857030,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":52079147,"co_author_invite_id":null,"email":"b***t@ujf-grenoble.fr","display_order":2,"name":"Bastien Touquet","title":"Bichet et al BMC Biol 2016"},{"id":25857031,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":52113339,"co_author_invite_id":null,"email":"v***z@inserm.fr","display_order":3,"name":"Virginie Gonzalez","title":"Bichet et al BMC Biol 2016"},{"id":25857032,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":4,"name":"M. Meissner","title":"Bichet et al BMC Biol 2016"},{"id":25857033,"work_id":29798112,"tagging_user_id":51900292,"tagged_user_id":43579341,"co_author_invite_id":null,"email":"i***x@inserm.fr","display_order":5,"name":"Isabelle Tardieux","title":"Bichet et al BMC Biol 2016"}],"downloadable_attachments":[{"id":50255335,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50255335/thumbnails/1.jpg","file_name":"Bichet_et_al.-BMC_Biol._2016.pdf","download_url":"https://www.academia.edu/attachments/50255335/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bichet_et_al_BMC_Biol_2016.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50255335/Bichet_et_al.-BMC_Biol._2016-libre.pdf?1478888538=\u0026response-content-disposition=attachment%3B+filename%3DBichet_et_al_BMC_Biol_2016.pdf\u0026Expires=1735153263\u0026Signature=grXO79M1V6CuFsq2dtIQZlSqrFI~ZAyusnvZKNWTHhw-o5nUZ-uacuky~lZUb1byQipafXKEAq~3WKQfESpBjQiea8Os7hQ5CU8fmM7r3-CO2nH9Bd5WCRqjvJYmaEfQwPbA~WZpTRpKQEMgWhERfvW36q8q~Z6cTJMKG6Tfk1B9e3-vkdpEYKKnpHIXn-qxCqMbem88ESmCwCsTjDnRV3uTJ6Bm~EaBi7LB0b8-X0Xqfuq-Nk2wm9-kZGnNp8Ssv1JCyWoRLEfQRZJForwUXpWdTz5Yquuc~aX46M1WR2ohXcITJ~CadipSoQhvLhjadfg0PpMtkVu-BPRST48GcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bichet_et_al_BMC_Biol_2016","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Background: The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results: By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions: This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness.","owner":{"id":51900292,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"cnrs","created_at":"2016-08-10T02:26:10.253-07:00","display_name":"Isabelle Tardieux","url":"https://cnrs.academia.edu/IsabelleTardieux"},"attachments":[{"id":50255335,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50255335/thumbnails/1.jpg","file_name":"Bichet_et_al.-BMC_Biol._2016.pdf","download_url":"https://www.academia.edu/attachments/50255335/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bichet_et_al_BMC_Biol_2016.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50255335/Bichet_et_al.-BMC_Biol._2016-libre.pdf?1478888538=\u0026response-content-disposition=attachment%3B+filename%3DBichet_et_al_BMC_Biol_2016.pdf\u0026Expires=1735153263\u0026Signature=grXO79M1V6CuFsq2dtIQZlSqrFI~ZAyusnvZKNWTHhw-o5nUZ-uacuky~lZUb1byQipafXKEAq~3WKQfESpBjQiea8Os7hQ5CU8fmM7r3-CO2nH9Bd5WCRqjvJYmaEfQwPbA~WZpTRpKQEMgWhERfvW36q8q~Z6cTJMKG6Tfk1B9e3-vkdpEYKKnpHIXn-qxCqMbem88ESmCwCsTjDnRV3uTJ6Bm~EaBi7LB0b8-X0Xqfuq-Nk2wm9-kZGnNp8Ssv1JCyWoRLEfQRZJForwUXpWdTz5Yquuc~aX46M1WR2ohXcITJ~CadipSoQhvLhjadfg0PpMtkVu-BPRST48GcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23130480"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23130480/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion"><img alt="Research paper thumbnail of The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23130480/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion">The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/GPall">G. Pall</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://glasgow.academia.edu/JamieWhitelaw">Jamie Whitelaw</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a></span></div><div class="wp-workCard_item"><span>PLoS ONE</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This mov...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23130480"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23130480"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23130480; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23130480]").text(description); $(".js-view-count[data-work-id=23130480]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23130480; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23130480']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23130480, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=23130480]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23130480,"title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion","translated_title":"","metadata":{"abstract":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS ONE"},"translated_abstract":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","internal_url":"https://www.academia.edu/23130480/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion","translated_internal_url":"","created_at":"2016-03-11T04:47:35.684-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44904654,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17128208,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":null,"co_author_invite_id":3932943,"email":"s***g@gmx.de","display_order":0,"name":"Saskia Egarter","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":17128209,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":null,"co_author_invite_id":3932944,"email":"a***n@av.abbott.com","display_order":4194304,"name":"Allison Jackson","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":17128210,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":45001552,"co_author_invite_id":3932945,"email":"j***1@research.gla.ac.uk","affiliation":"University of Glasgow","display_order":6291456,"name":"Jamie Whitelaw","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":17128211,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":null,"co_author_invite_id":3039443,"email":"j***k@emory.edu","display_order":7340032,"name":"Jennifer Black","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":17128212,"work_id":23130480,"tagging_user_id":44904654,"tagged_user_id":null,"co_author_invite_id":3932946,"email":"s***b@hotmail.co.uk","display_order":7864320,"name":"David Ferguson","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":23389075,"work_id":23130480,"tagging_user_id":45001552,"tagged_user_id":35136942,"co_author_invite_id":null,"email":"m***r@cims.nyu.edu","display_order":8126464,"name":"Alex Mogilner","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":23389076,"work_id":23130480,"tagging_user_id":45001552,"tagged_user_id":43579341,"co_author_invite_id":null,"email":"i***x@inserm.fr","display_order":8257536,"name":"Isabelle Tardieux","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":23389077,"work_id":23130480,"tagging_user_id":45001552,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":8323072,"name":"M. Meissner","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"}],"downloadable_attachments":[],"slug":"The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","owner":{"id":44904654,"first_name":"G.","middle_initials":null,"last_name":"Pall","page_name":"GPall","domain_name":"independent","created_at":"2016-03-11T04:40:47.359-08:00","display_name":"G. Pall","url":"https://independent.academia.edu/GPall"},"attachments":[],"research_interests":[{"id":9658,"name":"Locomotion","url":"https://www.academia.edu/Documents/in/Locomotion"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":213897,"name":"Phenotype","url":"https://www.academia.edu/Documents/in/Phenotype"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":743643,"name":"Host Pathogen Interactions","url":"https://www.academia.edu/Documents/in/Host_Pathogen_Interactions"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217676"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217676/Oral_susceptibility_of_Aedes_albopictus_to_dengue_type_2_virus_a_study_of_infection_kinetics_using_the_polymerase_chain_reaction_for_viral_detection"><img alt="Research paper thumbnail of Oral susceptibility of Aedes albopictus to dengue type 2 virus: a study of infection kinetics, using the polymerase chain reaction for viral detection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217676/Oral_susceptibility_of_Aedes_albopictus_to_dengue_type_2_virus_a_study_of_infection_kinetics_using_the_polymerase_chain_reaction_for_viral_detection">Oral susceptibility of Aedes albopictus to dengue type 2 virus: a study of infection kinetics, using the polymerase chain reaction for viral detection</a></div><div class="wp-workCard_item"><span>Medical and Veterinary Entomology</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinet...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217676"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217676"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217676; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217676]").text(description); $(".js-view-count[data-work-id=22217676]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217676; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217676']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217676, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22217676]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217676,"title":"Oral susceptibility of Aedes albopictus to dengue type 2 virus: a study of infection kinetics, using the polymerase chain reaction for viral detection","translated_title":"","metadata":{"abstract":"Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Medical and Veterinary Entomology"},"translated_abstract":"Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.","internal_url":"https://www.academia.edu/22217676/Oral_susceptibility_of_Aedes_albopictus_to_dengue_type_2_virus_a_study_of_infection_kinetics_using_the_polymerase_chain_reaction_for_viral_detection","translated_internal_url":"","created_at":"2016-02-20T06:23:41.513-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Oral_susceptibility_of_Aedes_albopictus_to_dengue_type_2_virus_a_study_of_infection_kinetics_using_the_polymerase_chain_reaction_for_viral_detection","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[],"research_interests":[{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":7606,"name":"Medical and Veterinary Entomology","url":"https://www.academia.edu/Documents/in/Medical_and_Veterinary_Entomology"},{"id":39979,"name":"Dengue Virus","url":"https://www.academia.edu/Documents/in/Dengue_Virus"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":180459,"name":"Aedes albopictus","url":"https://www.academia.edu/Documents/in/Aedes_albopictus"},{"id":336223,"name":"Digestive System","url":"https://www.academia.edu/Documents/in/Digestive_System"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1388461,"name":"Aedes","url":"https://www.academia.edu/Documents/in/Aedes"},{"id":1901293,"name":"Salivary Glands","url":"https://www.academia.edu/Documents/in/Salivary_Glands"}],"urls":[{"id":6790235,"url":"http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2915.1992.tb00626.x"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217675"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217675/The_toxofilin_actin_PP2C_complex_of_Toxoplasma_identification_of_interacting_domains"><img alt="Research paper thumbnail of The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains" class="work-thumbnail" src="https://attachments.academia-assets.com/42870575/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217675/The_toxofilin_actin_PP2C_complex_of_Toxoplasma_identification_of_interacting_domains">The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains</a></div><div class="wp-workCard_item"><span>Biochemical Journal</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser 53 , which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure-function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G-and Factin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser 53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein-protein interactions that are important to parasite motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2bc976c4c31a52d3a6314ecf50ff8ff" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870575,&quot;asset_id&quot;:22217675,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870575/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217675"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217675"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217675; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217675]").text(description); $(".js-view-count[data-work-id=22217675]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217675; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217675']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217675, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2bc976c4c31a52d3a6314ecf50ff8ff" } } $('.js-work-strip[data-work-id=22217675]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217675,"title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains","translated_title":"","metadata":{"ai_title_tag":"Interactions of Toxofilin with Actin and PP2C in Toxoplasma","grobid_abstract":"Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser 53 , which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure-function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G-and Factin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser 53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein-protein interactions that are important to parasite motility.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Biochemical Journal","grobid_abstract_attachment_id":42870575},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217675/The_toxofilin_actin_PP2C_complex_of_Toxoplasma_identification_of_interacting_domains","translated_internal_url":"","created_at":"2016-02-20T06:23:41.028-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761826,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":1435685,"email":"a***o@upmc.fr","display_order":0,"name":"Angelita Rebollo","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"},{"id":15942406,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":134476275,"co_author_invite_id":3680388,"email":"g***n@lavoix.eu","display_order":4194304,"name":"Ga毛lle JAN","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"},{"id":15942408,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680389,"email":"v***d@takasago.com","display_order":6291456,"name":"Violaine David","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"},{"id":15942429,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":7340032,"name":"Xavier Cayla","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"},{"id":15942435,"work_id":22217675,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":7864320,"name":"violaine walker","title":"The toxofilin鈥揳ctin鈥揚P2C complex of Toxoplasma: identification of interacting domains"}],"downloadable_attachments":[{"id":42870575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870575/thumbnails/1.jpg","file_name":"The_toxofilinactinPP2C_complex_of_Toxopl20160220-31294-5q6o95.pdf","download_url":"https://www.academia.edu/attachments/42870575/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_toxofilin_actin_PP2C_complex_of_Toxo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870575/The_toxofilinactinPP2C_complex_of_Toxopl20160220-31294-5q6o95-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DThe_toxofilin_actin_PP2C_complex_of_Toxo.pdf\u0026Expires=1735153263\u0026Signature=K-eZGfZeSXFQH311jTt2T8u0JoT4-ePfxU5Es0hafL0PC-L0zobz8TMRBW7ytD1ofSzN~kcLp6NuU~69SGNNvhcTBqNU24MU4EEubx4mjpWSvHMpzXZeLzPXrt-6DFxEdyuWrgocT3VwlCj~wo4DVlFyayLZai6p8gUEsn~QWU3cHw29cGX~4nvrlNDK2pgaFDoyzMRdgnQz9H8KJiwZr8n25B~OZnsfoxx~HoyiKNJBupKnOXOJ12m3aXWouU2Z2aBQZtQD-gL4G3lw53lovaJwJYwB6JHzobNj9aCLutyyAFXf2J12~pdlbT~YR9NiliXNAV5WzrCtg4q8YkvOag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_toxofilin_actin_PP2C_complex_of_Toxoplasma_identification_of_interacting_domains","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser 53 , which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure-function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G-and Factin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser 53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein-protein interactions that are important to parasite motility.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870575/thumbnails/1.jpg","file_name":"The_toxofilinactinPP2C_complex_of_Toxopl20160220-31294-5q6o95.pdf","download_url":"https://www.academia.edu/attachments/42870575/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_toxofilin_actin_PP2C_complex_of_Toxo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870575/The_toxofilinactinPP2C_complex_of_Toxopl20160220-31294-5q6o95-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DThe_toxofilin_actin_PP2C_complex_of_Toxo.pdf\u0026Expires=1735153263\u0026Signature=K-eZGfZeSXFQH311jTt2T8u0JoT4-ePfxU5Es0hafL0PC-L0zobz8TMRBW7ytD1ofSzN~kcLp6NuU~69SGNNvhcTBqNU24MU4EEubx4mjpWSvHMpzXZeLzPXrt-6DFxEdyuWrgocT3VwlCj~wo4DVlFyayLZai6p8gUEsn~QWU3cHw29cGX~4nvrlNDK2pgaFDoyzMRdgnQz9H8KJiwZr8n25B~OZnsfoxx~HoyiKNJBupKnOXOJ12m3aXWouU2Z2aBQZtQD-gL4G3lw53lovaJwJYwB6JHzobNj9aCLutyyAFXf2J12~pdlbT~YR9NiliXNAV5WzrCtg4q8YkvOag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":176525,"name":"Biochemical","url":"https://www.academia.edu/Documents/in/Biochemical"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"}],"urls":[{"id":6790234,"url":"http://www.biochemj.org/bj/401/bj4010711.htm"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217674"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217674/Toxoplasma_gondii_motility_and_host_cell_invasiveness_are_drastically_impaired_by_jasplakinolide_a_cyclic_peptide_stabilizing_F_actin"><img alt="Research paper thumbnail of Toxoplasma gondii motility and host cell invasiveness are drastically impaired by jasplakinolide, a cyclic peptide stabilizing F-actin" class="work-thumbnail" src="https://attachments.academia-assets.com/42870576/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217674/Toxoplasma_gondii_motility_and_host_cell_invasiveness_are_drastically_impaired_by_jasplakinolide_a_cyclic_peptide_stabilizing_F_actin">Toxoplasma gondii motility and host cell invasiveness are drastically impaired by jasplakinolide, a cyclic peptide stabilizing F-actin</a></div><div class="wp-workCard_item"><span>Microbes and Infection</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Actin polymerization and actin-myosin coupling activity most likely provide the driving force tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4bce47dd6bcb22cc99299f346c810bb2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870576,&quot;asset_id&quot;:22217674,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870576/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217674"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217674"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217674; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217674]").text(description); $(".js-view-count[data-work-id=22217674]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217674; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217674']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217674, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4bce47dd6bcb22cc99299f346c810bb2" } } $('.js-work-strip[data-work-id=22217674]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217674,"title":"Toxoplasma gondii motility and host cell invasiveness are drastically impaired by jasplakinolide, a cyclic peptide stabilizing F-actin","translated_title":"","metadata":{"abstract":"Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide","ai_title_tag":"Jasplakinolide Impairs Toxoplasma gondii Motility and Invasion","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Microbes and Infection"},"translated_abstract":"Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide","internal_url":"https://www.academia.edu/22217674/Toxoplasma_gondii_motility_and_host_cell_invasiveness_are_drastically_impaired_by_jasplakinolide_a_cyclic_peptide_stabilizing_F_actin","translated_internal_url":"","created_at":"2016-02-20T06:23:40.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42870576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870576/thumbnails/1.jpg","file_name":"s1286-4579_2899_2980066-5.pdf20160220-27428-1hwbppn","download_url":"https://www.academia.edu/attachments/42870576/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Toxoplasma_gondii_motility_and_host_cell.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870576/s1286-4579_2899_2980066-5-libre.pdf20160220-27428-1hwbppn?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DToxoplasma_gondii_motility_and_host_cell.pdf\u0026Expires=1735153263\u0026Signature=eeaWJU6V1VNENMaHBnM0vU7Os6kLs3q1zvotZFPDS8nShopM8wm84h1xGYA4IzUOuiVZ5whNhyqUfeUG6pVd4niK2ZEEKI0oe9ZASMmNVHUb8pEvPT7PVeopc0CHlL6Iy8HV8DwcxTLtGplkEhGfD4Y3aD6DA76G-VHxGDzYsVRfVLTzS11wim0-dNeX-MO88xnlK1aWx92qDFG9NrLQg5Pl-boG~a7~kGXU7336-HRjfGxqPYF46jF1gSWIYH~B9FvWF57VL32LMqRHTHZjua7VtkkiS9Bmf3~aWZRY4lvdJ-NNMLqr8ovMV~VlcwMqVmgxj151EMLsmmIyNzqFjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Toxoplasma_gondii_motility_and_host_cell_invasiveness_are_drastically_impaired_by_jasplakinolide_a_cyclic_peptide_stabilizing_F_actin","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870576/thumbnails/1.jpg","file_name":"s1286-4579_2899_2980066-5.pdf20160220-27428-1hwbppn","download_url":"https://www.academia.edu/attachments/42870576/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Toxoplasma_gondii_motility_and_host_cell.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870576/s1286-4579_2899_2980066-5-libre.pdf20160220-27428-1hwbppn?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DToxoplasma_gondii_motility_and_host_cell.pdf\u0026Expires=1735153263\u0026Signature=eeaWJU6V1VNENMaHBnM0vU7Os6kLs3q1zvotZFPDS8nShopM8wm84h1xGYA4IzUOuiVZ5whNhyqUfeUG6pVd4niK2ZEEKI0oe9ZASMmNVHUb8pEvPT7PVeopc0CHlL6Iy8HV8DwcxTLtGplkEhGfD4Y3aD6DA76G-VHxGDzYsVRfVLTzS11wim0-dNeX-MO88xnlK1aWx92qDFG9NrLQg5Pl-boG~a7~kGXU7336-HRjfGxqPYF46jF1gSWIYH~B9FvWF57VL32LMqRHTHZjua7VtkkiS9Bmf3~aWZRY4lvdJ-NNMLqr8ovMV~VlcwMqVmgxj151EMLsmmIyNzqFjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":37834,"name":"Western blotting","url":"https://www.academia.edu/Documents/in/Western_blotting"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":158399,"name":"Cyclic peptides","url":"https://www.academia.edu/Documents/in/Cyclic_peptides"},{"id":193464,"name":"Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis","url":"https://www.academia.edu/Documents/in/Sodium_Dodecyl_Sulfate-Polyacrylamide_Gel_Electrophoresis"},{"id":202433,"name":"Actin Dynamics","url":"https://www.academia.edu/Documents/in/Actin_Dynamics"},{"id":1155801,"name":"Actin Filaments","url":"https://www.academia.edu/Documents/in/Actin_Filaments"},{"id":1597877,"name":"Nucleotides","url":"https://www.academia.edu/Documents/in/Nucleotides"}],"urls":[{"id":6790233,"url":"http://www.sciencedirect.com/science/article/pii/S1286457999800665"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217673"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217673/Actin_dynamics_is_controlled_by_a_casein_kinase_II_and_phosphatase_2C_interplay_on_Toxoplasma_gondii_Toxofilin"><img alt="Research paper thumbnail of Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin" class="work-thumbnail" src="https://attachments.academia-assets.com/42870577/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217673/Actin_dynamics_is_controlled_by_a_casein_kinase_II_and_phosphatase_2C_interplay_on_Toxoplasma_gondii_Toxofilin">Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin</a></div><div class="wp-workCard_item"><span>Molecular Biology of the Cell</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Herein, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine53. The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="be9d39f8fe33fe995e38b7bb6dcd20d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870577,&quot;asset_id&quot;:22217673,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870577/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217673"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217673]").text(description); $(".js-view-count[data-work-id=22217673]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217673']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217673, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "be9d39f8fe33fe995e38b7bb6dcd20d0" } } $('.js-work-strip[data-work-id=22217673]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217673,"title":"Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin","translated_title":"","metadata":{"abstract":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Herein, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine53. The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","publication_name":"Molecular Biology of the Cell"},"translated_abstract":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Herein, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine53. The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","internal_url":"https://www.academia.edu/22217673/Actin_dynamics_is_controlled_by_a_casein_kinase_II_and_phosphatase_2C_interplay_on_Toxoplasma_gondii_Toxofilin","translated_internal_url":"","created_at":"2016-02-20T06:23:40.663-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942420,"work_id":22217673,"tagging_user_id":43579341,"tagged_user_id":43907712,"co_author_invite_id":3680391,"email":"a***a@pasteur.fr","display_order":0,"name":"Alphonse Garcia","title":"Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin"},{"id":15942428,"work_id":22217673,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":4194304,"name":"Xavier Cayla","title":"Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin"},{"id":15942434,"work_id":22217673,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":6291456,"name":"violaine walker","title":"Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin"}],"downloadable_attachments":[{"id":42870577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870577/thumbnails/1.jpg","file_name":"E02-08-0462v1.pdf","download_url":"https://www.academia.edu/attachments/42870577/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Actin_dynamics_is_controlled_by_a_casein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870577/E02-08-0462v1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DActin_dynamics_is_controlled_by_a_casein.pdf\u0026Expires=1735153263\u0026Signature=E-Dv6TfS1Fg7xb5bSP97GfgTramhQbcy8Bwn-TT-m~-bDocGZ8JME6QJZjWF33jhZv4ynw~L5auvgmGyMhfmkej3iM8CL7wjjonF-oJnBqxAX7b-rJbx2fQ84093o5Fhtv2zwXXugSTHd5VRO0WqeDbvwxvJpMr2VZ8KywMs317DPinYwOikUoUpZjB3W5N2MMb59tHfY~RepjZyuPuBYbERMeiABymg83lR~ITPHVZIR0AAe3ocZDvDEQ92zwls3xpqT7WmnyAB5PRDqPHReZNU6a55VErXTN08fMV3Uj85U2vWT~In7lsyyfHjIdJSkWdKJE1uAaViXwrHgIWPbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Actin_dynamics_is_controlled_by_a_casein_kinase_II_and_phosphatase_2C_interplay_on_Toxoplasma_gondii_Toxofilin","translated_slug":"","page_count":41,"language":"en","content_type":"Work","summary":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Herein, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine53. The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870577/thumbnails/1.jpg","file_name":"E02-08-0462v1.pdf","download_url":"https://www.academia.edu/attachments/42870577/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Actin_dynamics_is_controlled_by_a_casein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870577/E02-08-0462v1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DActin_dynamics_is_controlled_by_a_casein.pdf\u0026Expires=1735153263\u0026Signature=E-Dv6TfS1Fg7xb5bSP97GfgTramhQbcy8Bwn-TT-m~-bDocGZ8JME6QJZjWF33jhZv4ynw~L5auvgmGyMhfmkej3iM8CL7wjjonF-oJnBqxAX7b-rJbx2fQ84093o5Fhtv2zwXXugSTHd5VRO0WqeDbvwxvJpMr2VZ8KywMs317DPinYwOikUoUpZjB3W5N2MMb59tHfY~RepjZyuPuBYbERMeiABymg83lR~ITPHVZIR0AAe3ocZDvDEQ92zwls3xpqT7WmnyAB5PRDqPHReZNU6a55VErXTN08fMV3Uj85U2vWT~In7lsyyfHjIdJSkWdKJE1uAaViXwrHgIWPbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":202433,"name":"Actin Dynamics","url":"https://www.academia.edu/Documents/in/Actin_Dynamics"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217672"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217672/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion"><img alt="Research paper thumbnail of A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217672/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion">A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AlphonseGarcia">Alphonse Garcia</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217672"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217672"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217672; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217672]").text(description); $(".js-view-count[data-work-id=22217672]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217672; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217672']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217672, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22217672]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217672,"title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion","translated_title":"","metadata":{"abstract":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","internal_url":"https://www.academia.edu/22217672/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion","translated_internal_url":"","created_at":"2016-02-20T06:23:40.514-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942421,"work_id":22217672,"tagging_user_id":43579341,"tagged_user_id":43907712,"co_author_invite_id":3680391,"email":"a***a@pasteur.fr","display_order":0,"name":"Alphonse Garcia","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"},{"id":15942430,"work_id":22217672,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":4194304,"name":"Xavier Cayla","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"},{"id":15942436,"work_id":22217672,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":6291456,"name":"violaine walker","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"}],"downloadable_attachments":[],"slug":"A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":137847,"name":"Active Control","url":"https://www.academia.edu/Documents/in/Active_Control"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":420908,"name":"RNA-binding proteins","url":"https://www.academia.edu/Documents/in/RNA-binding_proteins"},{"id":422325,"name":"HeLa cells","url":"https://www.academia.edu/Documents/in/HeLa_cells"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":766014,"name":"Monoclonal Antibody","url":"https://www.academia.edu/Documents/in/Monoclonal_Antibody"},{"id":1938371,"name":"Okadaic acid","url":"https://www.academia.edu/Documents/in/Okadaic_acid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217671"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217671/Braun_2013_A_Toxoplasma_dense_granule_protein"><img alt="Research paper thumbnail of Braun-2013-A Toxoplasma dense granule protein" class="work-thumbnail" src="https://attachments.academia-assets.com/42870578/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217671/Braun_2013_A_Toxoplasma_dense_granule_protein">Braun-2013-A Toxoplasma dense granule protein</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abbreviations used: BMDM, BMderived macrophage; DG, dense granule; HFF, human foreskin fibroblast...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abbreviations used: BMDM, BMderived macrophage; DG, dense granule; HFF, human foreskin fibroblast; KIM, ki nase interacting motif; MOI, multiplicity of infection; PV, parasitophorous vacuole; PVM, PV membrane. A. Bougdour and M.A. Hakimi contributed equally to this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dd71ff2f60ba94c8385ae205e0f2b2f6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870578,&quot;asset_id&quot;:22217671,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870578/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217671"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217671"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217671; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217671]").text(description); $(".js-view-count[data-work-id=22217671]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217671; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217671']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217671, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dd71ff2f60ba94c8385ae205e0f2b2f6" } } $('.js-work-strip[data-work-id=22217671]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217671,"title":"Braun-2013-A Toxoplasma dense granule protein","translated_title":"","metadata":{"ai_title_tag":"Toxoplasma Dense Granule Protein: Role and Implications","grobid_abstract":"Abbreviations used: BMDM, BMderived macrophage; DG, dense granule; HFF, human foreskin fibroblast; KIM, ki nase interacting motif; MOI, multiplicity of infection; PV, parasitophorous vacuole; PVM, PV membrane. A. Bougdour and M.A. Hakimi contributed equally to this paper.","grobid_abstract_attachment_id":42870578},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217671/Braun_2013_A_Toxoplasma_dense_granule_protein","translated_internal_url":"","created_at":"2016-02-20T06:23:40.387-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761823,"work_id":22217671,"tagging_user_id":43579341,"tagged_user_id":332925974,"co_author_invite_id":207519,"email":"a***b@gmail.com","display_order":0,"name":"Amit Sharma","title":"Braun-2013-A Toxoplasma dense granule protein"},{"id":15942404,"work_id":22217671,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":722070,"email":"b***i@embl-grenoble.fr","display_order":4194304,"name":"H. Belrhali","title":"Braun-2013-A Toxoplasma dense granule protein"},{"id":15942414,"work_id":22217671,"tagging_user_id":43579341,"tagged_user_id":309009558,"co_author_invite_id":3680390,"email":"m***i@gmail.com","display_order":6291456,"name":"Mohamed-Ali HAKIMI","title":"Braun-2013-A Toxoplasma dense granule protein"}],"downloadable_attachments":[{"id":42870578,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870578/thumbnails/1.jpg","file_name":"Braun-2013-A_Toxoplasma_dense_granule_pr20160220-27427-oacy8e.pdf","download_url":"https://www.academia.edu/attachments/42870578/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Braun_2013_A_Toxoplasma_dense_granule_pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870578/Braun-2013-A_Toxoplasma_dense_granule_pr20160220-27427-oacy8e-libre.pdf?1455978640=\u0026response-content-disposition=attachment%3B+filename%3DBraun_2013_A_Toxoplasma_dense_granule_pr.pdf\u0026Expires=1735153263\u0026Signature=XTUQd3Am2hxmSRdq0IW9rMMFZT7KXbQlAInBb0HT2YIzxB6xcO2slhnW8nc7fkzh2rx2LJkv-2IPQZFpGJ6eT4~WOODAqcOoZo9U8FrC2A8h~0NiQtkmdyNoBBJ9uq7LFZyMA4FxrFGbymgDfsMvD8qOl2dcm4lrAScR4hVMCVPp5CC4~bfiDwdBZ~T~9uy8BYv49R~CwClq8pgnJwhvT~893UCzAyeNkNKC4Ng5LVIrEKJJTtz-4Lq9nvI5pdLHLk72IwvdgcLqoTt2BRdqcTGcapyEcRXKRswKcccVleLOak~WWBdRu388BzAha36rExWhsJ-GjeopRiMGj0WSCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Braun_2013_A_Toxoplasma_dense_granule_protein","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"Abbreviations used: BMDM, BMderived macrophage; DG, dense granule; HFF, human foreskin fibroblast; KIM, ki nase interacting motif; MOI, multiplicity of infection; PV, parasitophorous vacuole; PVM, PV membrane. A. Bougdour and M.A. Hakimi contributed equally to this paper.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870578,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870578/thumbnails/1.jpg","file_name":"Braun-2013-A_Toxoplasma_dense_granule_pr20160220-27427-oacy8e.pdf","download_url":"https://www.academia.edu/attachments/42870578/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Braun_2013_A_Toxoplasma_dense_granule_pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870578/Braun-2013-A_Toxoplasma_dense_granule_pr20160220-27427-oacy8e-libre.pdf?1455978640=\u0026response-content-disposition=attachment%3B+filename%3DBraun_2013_A_Toxoplasma_dense_granule_pr.pdf\u0026Expires=1735153263\u0026Signature=XTUQd3Am2hxmSRdq0IW9rMMFZT7KXbQlAInBb0HT2YIzxB6xcO2slhnW8nc7fkzh2rx2LJkv-2IPQZFpGJ6eT4~WOODAqcOoZo9U8FrC2A8h~0NiQtkmdyNoBBJ9uq7LFZyMA4FxrFGbymgDfsMvD8qOl2dcm4lrAScR4hVMCVPp5CC4~bfiDwdBZ~T~9uy8BYv49R~CwClq8pgnJwhvT~893UCzAyeNkNKC4Ng5LVIrEKJJTtz-4Lq9nvI5pdLHLk72IwvdgcLqoTt2BRdqcTGcapyEcRXKRswKcccVleLOak~WWBdRu388BzAha36rExWhsJ-GjeopRiMGj0WSCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217670"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217670/The_toxoplasma_host_cell_junction_is_anchored_to_the_cell_cortex_to_sustain_parasite_invasive_force"><img alt="Research paper thumbnail of The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217670/The_toxoplasma_host_cell_junction_is_anchored_to_the_cell_cortex_to_sustain_parasite_invasive_force">The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force</a></div><div class="wp-workCard_item"><span>BMC Biology</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217670"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217670"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217670; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217670]").text(description); $(".js-view-count[data-work-id=22217670]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217670; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217670']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217670, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22217670]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217670,"title":"The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force","translated_title":"","metadata":{"abstract":"BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"BMC Biology"},"translated_abstract":"BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.","internal_url":"https://www.academia.edu/22217670/The_toxoplasma_host_cell_junction_is_anchored_to_the_cell_cortex_to_sustain_parasite_invasive_force","translated_internal_url":"","created_at":"2016-02-20T06:23:40.260-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761819,"work_id":22217670,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":913140,"email":"g***s@ucl.ac.uk","display_order":0,"name":"Guillaume Charras","title":"The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force"},{"id":15942426,"work_id":22217670,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680392,"email":"v***l@inserm.fr","display_order":4194304,"name":"Vanessa Lagal","title":"The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force"}],"downloadable_attachments":[],"slug":"The_toxoplasma_host_cell_junction_is_anchored_to_the_cell_cortex_to_sustain_parasite_invasive_force","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"BackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217669"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217669/Host_Cell_Invasion_by_Apicomplexan_Parasites_The_Junction_Conundrum"><img alt="Research paper thumbnail of Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum" class="work-thumbnail" src="https://attachments.academia-assets.com/42870572/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217669/Host_Cell_Invasion_by_Apicomplexan_Parasites_The_Junction_Conundrum">Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DanielBargieri">Daniel Bargieri</a></span></div><div class="wp-workCard_item"><span>PLoS Pathogens</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2b94505e22d46e3fd1ad0c7c45c2e2db" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870572,&quot;asset_id&quot;:22217669,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870572/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217669"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217669"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217669; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217669]").text(description); $(".js-view-count[data-work-id=22217669]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217669; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217669']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217669, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2b94505e22d46e3fd1ad0c7c45c2e2db" } } $('.js-work-strip[data-work-id=22217669]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217669,"title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS Pathogens"},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217669/Host_Cell_Invasion_by_Apicomplexan_Parasites_The_Junction_Conundrum","translated_internal_url":"","created_at":"2016-02-20T06:23:40.114-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761818,"work_id":22217669,"tagging_user_id":43579341,"tagged_user_id":33080592,"co_author_invite_id":null,"email":"r***d@pasteur.fr","display_order":0,"name":"Robert M茅nard","title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum"},{"id":15942412,"work_id":22217669,"tagging_user_id":43579341,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":4194304,"name":"M. Meissner","title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum"},{"id":15942417,"work_id":22217669,"tagging_user_id":43579341,"tagged_user_id":52018496,"co_author_invite_id":1978025,"email":"d***i@gmail.com","display_order":6291456,"name":"Daniel Bargieri","title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum"},{"id":15942424,"work_id":22217669,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680392,"email":"v***l@inserm.fr","display_order":7340032,"name":"Vanessa Lagal","title":"Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum"}],"downloadable_attachments":[{"id":42870572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870572/thumbnails/1.jpg","file_name":"Host_Cell_Invasion_by_Apicomplexan_Paras20160220-27539-a2ss4o.pdf","download_url":"https://www.academia.edu/attachments/42870572/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Host_Cell_Invasion_by_Apicomplexan_Paras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870572/Host_Cell_Invasion_by_Apicomplexan_Paras20160220-27539-a2ss4o-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DHost_Cell_Invasion_by_Apicomplexan_Paras.pdf\u0026Expires=1735153263\u0026Signature=Zdfz2Y-iVWaZJkXT7kc7jGRtDqZY6rUwDRG3iglX3lab5v34XNmQzl6-rcvBLHOBDY7l5U9dOtpzFKWTkoOT7ydyGQ3kSXJ24N9z-avW~BIk71jCeRXq2cRtPCASl00uETnn1ashArWKjkwRsHtI5MQlHOlabPCqB1yzHdbQRzjuqlnjapnx06ZUKm1eMPF7VjIzHWPtO8LczjtXQbZqVRBX2JmUqSasyKK--tS0z9FAChVzqJSDDjDNjVRJWIt2BMnlAAOjhh9gpr-XEJAe7RvxnDFV5zb~3h~O-3gV1RgAPv~MGVD4m67iolupzi2qK-NpQo1ZT~I2a7owljzj3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Host_Cell_Invasion_by_Apicomplexan_Parasites_The_Junction_Conundrum","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":null,"owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870572/thumbnails/1.jpg","file_name":"Host_Cell_Invasion_by_Apicomplexan_Paras20160220-27539-a2ss4o.pdf","download_url":"https://www.academia.edu/attachments/42870572/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Host_Cell_Invasion_by_Apicomplexan_Paras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870572/Host_Cell_Invasion_by_Apicomplexan_Paras20160220-27539-a2ss4o-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DHost_Cell_Invasion_by_Apicomplexan_Paras.pdf\u0026Expires=1735153263\u0026Signature=Zdfz2Y-iVWaZJkXT7kc7jGRtDqZY6rUwDRG3iglX3lab5v34XNmQzl6-rcvBLHOBDY7l5U9dOtpzFKWTkoOT7ydyGQ3kSXJ24N9z-avW~BIk71jCeRXq2cRtPCASl00uETnn1ashArWKjkwRsHtI5MQlHOlabPCqB1yzHdbQRzjuqlnjapnx06ZUKm1eMPF7VjIzHWPtO8LczjtXQbZqVRBX2JmUqSasyKK--tS0z9FAChVzqJSDDjDNjVRJWIt2BMnlAAOjhh9gpr-XEJAe7RvxnDFV5zb~3h~O-3gV1RgAPv~MGVD4m67iolupzi2qK-NpQo1ZT~I2a7owljzj3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217668"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217668/Apical_membrane_antigen_1_mediates_apicomplexan_parasite_attachment_but_is_dispensable_for_host_cell_invasion"><img alt="Research paper thumbnail of Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/42870581/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217668/Apical_membrane_antigen_1_mediates_apicomplexan_parasite_attachment_but_is_dispensable_for_host_cell_invasion">Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion</a></div><div class="wp-workCard_item"><span>Nature Communications</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1-rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a3be1448d3f4299d15d49988adcb6ef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870581,&quot;asset_id&quot;:22217668,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870581/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217668"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217668]").text(description); $(".js-view-count[data-work-id=22217668]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217668']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217668, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a3be1448d3f4299d15d49988adcb6ef" } } $('.js-work-strip[data-work-id=22217668]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217668,"title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion","translated_title":"","metadata":{"grobid_abstract":"Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1-rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Nature Communications","grobid_abstract_attachment_id":42870581},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217668/Apical_membrane_antigen_1_mediates_apicomplexan_parasite_attachment_but_is_dispensable_for_host_cell_invasion","translated_internal_url":"","created_at":"2016-02-20T06:23:39.979-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761817,"work_id":22217668,"tagging_user_id":43579341,"tagged_user_id":33080592,"co_author_invite_id":null,"email":"r***d@pasteur.fr","display_order":0,"name":"Robert M茅nard","title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion"},{"id":15942413,"work_id":22217668,"tagging_user_id":43579341,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":4194304,"name":"M. Meissner","title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion"},{"id":15942418,"work_id":22217668,"tagging_user_id":43579341,"tagged_user_id":52018496,"co_author_invite_id":1978025,"email":"d***i@gmail.com","display_order":6291456,"name":"Daniel Bargieri","title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion"},{"id":15942425,"work_id":22217668,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680392,"email":"v***l@inserm.fr","display_order":7340032,"name":"Vanessa Lagal","title":"Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion"}],"downloadable_attachments":[{"id":42870581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870581/thumbnails/1.jpg","file_name":"Apical_membrane_antigen_1_mediates_apico20160220-31294-1mlwgzw.pdf","download_url":"https://www.academia.edu/attachments/42870581/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Apical_membrane_antigen_1_mediates_apico.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870581/Apical_membrane_antigen_1_mediates_apico20160220-31294-1mlwgzw-libre.pdf?1455978639=\u0026response-content-disposition=attachment%3B+filename%3DApical_membrane_antigen_1_mediates_apico.pdf\u0026Expires=1735153263\u0026Signature=FAL1KzKMAjHaKp0acC2dY5ZE0YWYxV10YnoPeWlLBLavcFgyCj07e4pdvdEe2~cot5aqjzRvIabtfHo7wJOGAc7mqVKaaCmnfaHSAKaAoCeoJM65EDj5thOBBWxd7vmIV5W6zpz0Hyar5BEVIVK130rU4IH0qyBeEVYtR-vmltaFADPZMUvY7OTw~I10ZkXgBAsAgyQF2~0Ud5o8nlMj3k0BvLQuYjYpPC9zL9QoxiGLlABWxratkxhi69oPJ8AwocSjCRDwunnU2X7d9l2o3mgG5HKqU6UAZdV1Xk8km-B9WbKJKZOe-gwoJFedt-ZVrhUpGYvfxjmPIzOtNO56HQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Apical_membrane_antigen_1_mediates_apicomplexan_parasite_attachment_but_is_dispensable_for_host_cell_invasion","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1-rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870581/thumbnails/1.jpg","file_name":"Apical_membrane_antigen_1_mediates_apico20160220-31294-1mlwgzw.pdf","download_url":"https://www.academia.edu/attachments/42870581/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Apical_membrane_antigen_1_mediates_apico.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870581/Apical_membrane_antigen_1_mediates_apico20160220-31294-1mlwgzw-libre.pdf?1455978639=\u0026response-content-disposition=attachment%3B+filename%3DApical_membrane_antigen_1_mediates_apico.pdf\u0026Expires=1735153263\u0026Signature=FAL1KzKMAjHaKp0acC2dY5ZE0YWYxV10YnoPeWlLBLavcFgyCj07e4pdvdEe2~cot5aqjzRvIabtfHo7wJOGAc7mqVKaaCmnfaHSAKaAoCeoJM65EDj5thOBBWxd7vmIV5W6zpz0Hyar5BEVIVK130rU4IH0qyBeEVYtR-vmltaFADPZMUvY7OTw~I10ZkXgBAsAgyQF2~0Ud5o8nlMj3k0BvLQuYjYpPC9zL9QoxiGLlABWxratkxhi69oPJ8AwocSjCRDwunnU2X7d9l2o3mgG5HKqU6UAZdV1Xk8km-B9WbKJKZOe-gwoJFedt-ZVrhUpGYvfxjmPIzOtNO56HQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7823,"name":"Malaria","url":"https://www.academia.edu/Documents/in/Malaria"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":37798,"name":"Toxoplasmosis","url":"https://www.academia.edu/Documents/in/Toxoplasmosis"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1267800,"name":"Nature Communications","url":"https://www.academia.edu/Documents/in/Nature_Communications"},{"id":1693871,"name":"Plasmodium berghei","url":"https://www.academia.edu/Documents/in/Plasmodium_berghei"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217667"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217667/Migration_of_Apicomplexa_Across_Biological_Barriers_The_Toxoplasma_and_Plasmodium_Rides"><img alt="Research paper thumbnail of Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides" class="work-thumbnail" src="https://attachments.academia-assets.com/42870571/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217667/Migration_of_Apicomplexa_Across_Biological_Barriers_The_Toxoplasma_and_Plasmodium_Rides">Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides</a></div><div class="wp-workCard_item"><span>Traffic</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="28b4c931310e935c1c6b38112bf70435" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870571,&quot;asset_id&quot;:22217667,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870571/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217667"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217667"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217667; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217667]").text(description); $(".js-view-count[data-work-id=22217667]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217667; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217667']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217667, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "28b4c931310e935c1c6b38112bf70435" } } $('.js-work-strip[data-work-id=22217667]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217667,"title":"Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides","translated_title":"","metadata":{"grobid_abstract":"The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Traffic","grobid_abstract_attachment_id":42870571},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217667/Migration_of_Apicomplexa_Across_Biological_Barriers_The_Toxoplasma_and_Plasmodium_Rides","translated_internal_url":"","created_at":"2016-02-20T06:23:39.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761814,"work_id":22217667,"tagging_user_id":43579341,"tagged_user_id":33080592,"co_author_invite_id":null,"email":"r***d@pasteur.fr","display_order":0,"name":"Robert M茅nard","title":"Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides"}],"downloadable_attachments":[{"id":42870571,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870571/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/42870571/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Migration_of_Apicomplexa_Across_Biologic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870571/pdf-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DMigration_of_Apicomplexa_Across_Biologic.pdf\u0026Expires=1735153263\u0026Signature=YFdTgEBFXTA4Gzb4-VJ7Xf9mynNRHJkOPr2PfLWyA1ObhuoaGqfoJSxVywnbvzg50w4IKnM75~~UfhNwQXMqVWG8Rn8WH2dITEgSZIha-XLLaGbnq7oKCLxJXvHoI3-WchFgyx1CjZeAl99cdzvGfUMuim2o3~oxc8GqWzJIm0VV0hgo9DTkY2xT1YetMkO6Mc0ijLVQ3-V9q0aeJquneLVL4Kx~~N6urZlXddD1OjpDE28CT0ZBxJsCRaVxaGffksWE2krpwLGRZUXKKj~ixxhaMmcsoLvx1ldfWafZrEqEkAbJ288BWnqextHN0tNezBuY6tbADF2uhdsQYgBgYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Migration_of_Apicomplexa_Across_Biological_Barriers_The_Toxoplasma_and_Plasmodium_Rides","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870571,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870571/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/42870571/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Migration_of_Apicomplexa_Across_Biologic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870571/pdf-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DMigration_of_Apicomplexa_Across_Biologic.pdf\u0026Expires=1735153263\u0026Signature=YFdTgEBFXTA4Gzb4-VJ7Xf9mynNRHJkOPr2PfLWyA1ObhuoaGqfoJSxVywnbvzg50w4IKnM75~~UfhNwQXMqVWG8Rn8WH2dITEgSZIha-XLLaGbnq7oKCLxJXvHoI3-WchFgyx1CjZeAl99cdzvGfUMuim2o3~oxc8GqWzJIm0VV0hgo9DTkY2xT1YetMkO6Mc0ijLVQ3-V9q0aeJquneLVL4Kx~~N6urZlXddD1OjpDE28CT0ZBxJsCRaVxaGffksWE2krpwLGRZUXKKj~ixxhaMmcsoLvx1ldfWafZrEqEkAbJ288BWnqextHN0tNezBuY6tbADF2uhdsQYgBgYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7823,"name":"Malaria","url":"https://www.academia.edu/Documents/in/Malaria"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":30444,"name":"Plasmodium","url":"https://www.academia.edu/Documents/in/Plasmodium"},{"id":37798,"name":"Toxoplasmosis","url":"https://www.academia.edu/Documents/in/Toxoplasmosis"},{"id":71437,"name":"Liver","url":"https://www.academia.edu/Documents/in/Liver"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":157891,"name":"Traffic","url":"https://www.academia.edu/Documents/in/Traffic"},{"id":557543,"name":"Blood Vessels","url":"https://www.academia.edu/Documents/in/Blood_Vessels"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217666"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217666/Toxofilin_from_Toxoplasma_gondii_forms_a_ternary_complex_with_an_antiparallel_actin_dimer"><img alt="Research paper thumbnail of Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer" class="work-thumbnail" src="https://attachments.academia-assets.com/42870570/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217666/Toxofilin_from_Toxoplasma_gondii_forms_a_ternary_complex_with_an_antiparallel_actin_dimer">Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii, an apicomplexan parasite related to Plasmodium, the agent of malaria. One of the most abundantly expressed proteins of T. gondii is toxofilin, a monomeric actin-binding protein (ABP) involved in invasion. Toxofilin is found in rhoptry and presents an N-terminal signal sequence, consistent with its being secreted during invasion. We report the structure of toxofilin amino acids 69 -196 in complex with the host mammalian actin. Toxofilin presents an extended conformation and interacts with an antiparallel actin dimer, in which one of the actins is related by crystal symmetry.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e0ef312cefbc228db85a8a288940a63a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870570,&quot;asset_id&quot;:22217666,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870570/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217666"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217666"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217666; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217666]").text(description); $(".js-view-count[data-work-id=22217666]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217666; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217666']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217666, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e0ef312cefbc228db85a8a288940a63a" } } $('.js-work-strip[data-work-id=22217666]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217666,"title":"Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer","translated_title":"","metadata":{"grobid_abstract":"Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii, an apicomplexan parasite related to Plasmodium, the agent of malaria. One of the most abundantly expressed proteins of T. gondii is toxofilin, a monomeric actin-binding protein (ABP) involved in invasion. Toxofilin is found in rhoptry and presents an N-terminal signal sequence, consistent with its being secreted during invasion. We report the structure of toxofilin amino acids 69 -196 in complex with the host mammalian actin. Toxofilin presents an extended conformation and interacts with an antiparallel actin dimer, in which one of the actins is related by crystal symmetry.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences","grobid_abstract_attachment_id":42870570},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217666/Toxofilin_from_Toxoplasma_gondii_forms_a_ternary_complex_with_an_antiparallel_actin_dimer","translated_internal_url":"","created_at":"2016-02-20T06:23:39.663-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761813,"work_id":22217666,"tagging_user_id":43579341,"tagged_user_id":16816201,"co_author_invite_id":null,"email":"r***3@gmail.com","affiliation":"Instituto de Tecnolog铆a y Ciencias Aplicadas","display_order":0,"name":"Roberto Dominguez","title":"Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer"},{"id":15761824,"work_id":22217666,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":507913,"email":"s***e@surface.phys.titech.ac.jp","display_order":4194304,"name":"S. Lee","title":"Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer"}],"downloadable_attachments":[{"id":42870570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870570/thumbnails/1.jpg","file_name":"Toxofilin_from_Toxoplasma_gondii_forms_a20160220-18714-105c99u.pdf","download_url":"https://www.academia.edu/attachments/42870570/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Toxofilin_from_Toxoplasma_gondii_forms_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870570/Toxofilin_from_Toxoplasma_gondii_forms_a20160220-18714-105c99u-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DToxofilin_from_Toxoplasma_gondii_forms_a.pdf\u0026Expires=1735153263\u0026Signature=DNq1E9G07AAOnOu~BPF~ZvD2iqBMMDf80m8IEBgy6BXWMS4yrOg3hDuBd4CzHYIIz2s-iCqKmHGTZc5NGbw25rrx-nv969PBrV0TzDuig36MOQpvN~jAeeZawSFZhvmTD-bcZjcnIbe8nxVuNWgPq9kATNCVutsum6eBG3xiSmt8AsGbP2McEGgr1ZSWPg8pqVPYRQs7RXNLtX3feRBJafipUj9d3xXkHN0jC~lRKv-ygFzTD21wUTifk4aqWADow2~OLvhQlEzltjVmGBWUNPu1En5H9WE11F6iOP-veblFoPqVTWcyRaswB~bDit0nG0lyanIRUHmBfjK5lh6kew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Toxofilin_from_Toxoplasma_gondii_forms_a_ternary_complex_with_an_antiparallel_actin_dimer","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii, an apicomplexan parasite related to Plasmodium, the agent of malaria. One of the most abundantly expressed proteins of T. gondii is toxofilin, a monomeric actin-binding protein (ABP) involved in invasion. Toxofilin is found in rhoptry and presents an N-terminal signal sequence, consistent with its being secreted during invasion. We report the structure of toxofilin amino acids 69 -196 in complex with the host mammalian actin. Toxofilin presents an extended conformation and interacts with an antiparallel actin dimer, in which one of the actins is related by crystal symmetry.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870570/thumbnails/1.jpg","file_name":"Toxofilin_from_Toxoplasma_gondii_forms_a20160220-18714-105c99u.pdf","download_url":"https://www.academia.edu/attachments/42870570/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Toxofilin_from_Toxoplasma_gondii_forms_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870570/Toxofilin_from_Toxoplasma_gondii_forms_a20160220-18714-105c99u-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DToxofilin_from_Toxoplasma_gondii_forms_a.pdf\u0026Expires=1735153263\u0026Signature=DNq1E9G07AAOnOu~BPF~ZvD2iqBMMDf80m8IEBgy6BXWMS4yrOg3hDuBd4CzHYIIz2s-iCqKmHGTZc5NGbw25rrx-nv969PBrV0TzDuig36MOQpvN~jAeeZawSFZhvmTD-bcZjcnIbe8nxVuNWgPq9kATNCVutsum6eBG3xiSmt8AsGbP2McEGgr1ZSWPg8pqVPYRQs7RXNLtX3feRBJafipUj9d3xXkHN0jC~lRKv-ygFzTD21wUTifk4aqWADow2~OLvhQlEzltjVmGBWUNPu1En5H9WE11F6iOP-veblFoPqVTWcyRaswB~bDit0nG0lyanIRUHmBfjK5lh6kew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":956752,"name":"Protein Quaternary Structure","url":"https://www.academia.edu/Documents/in/Protein_Quaternary_Structure"},{"id":1809037,"name":"Dimerization","url":"https://www.academia.edu/Documents/in/Dimerization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217665"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217665/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion"><img alt="Research paper thumbnail of The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/42870573/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217665/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion">The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion</a></div><div class="wp-workCard_item"><span>PLoS ONE</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This mov...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite&#39;s own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="247f46112d9d8890f310608678227e40" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870573,&quot;asset_id&quot;:22217665,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870573/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217665"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217665"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217665; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217665]").text(description); $(".js-view-count[data-work-id=22217665]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217665; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217665']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217665, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "247f46112d9d8890f310608678227e40" } } $('.js-work-strip[data-work-id=22217665]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217665,"title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion","translated_title":"","metadata":{"grobid_abstract":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS ONE","grobid_abstract_attachment_id":42870573},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217665/The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion","translated_internal_url":"","created_at":"2016-02-20T06:23:39.527-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761822,"work_id":22217665,"tagging_user_id":43579341,"tagged_user_id":35136942,"co_author_invite_id":null,"email":"m***r@cims.nyu.edu","display_order":0,"name":"Alex Mogilner","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"},{"id":15942411,"work_id":22217665,"tagging_user_id":43579341,"tagged_user_id":33143843,"co_author_invite_id":null,"email":"m***r@glasgow.ac.uk","display_order":4194304,"name":"M. Meissner","title":"The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion"}],"downloadable_attachments":[{"id":42870573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870573/thumbnails/1.jpg","file_name":"The_Toxoplasma_Acto-MyoA_Motor_Complex_I20160220-2304-13qhyh1.pdf","download_url":"https://www.academia.edu/attachments/42870573/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Toxoplasma_Acto_MyoA_Motor_Complex_I.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870573/The_Toxoplasma_Acto-MyoA_Motor_Complex_I20160220-2304-13qhyh1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DThe_Toxoplasma_Acto_MyoA_Motor_Complex_I.pdf\u0026Expires=1735153263\u0026Signature=OnC3LW-4OJgTr6~A1JooMF21~NfiRl1VS~DJWzi8HOf~d975Abp4Sm1finbL9N9qGOOnlRx2v7ZnRFQDQmBjX2WGW~QQNbdbehchrYTdZlZIwOysVg9kNvM13doknu2Hu82oYkpdLeLz5qNouX~T12tG0wuDUQkXK0yB0iIH61JAco9WpY0Klj2VLpiHMD~rR5LrbxN94sFw9Y5JdFHGJYA6Y72fRNhi7UbcsyUILfgnVjPdXNt9WRQFcEAPvkPwo~iHTP7NH5~EkrMlR2XisMHG4y81XxuWokLKcCKBao3fzAewwCWjDJ3fdDiv0SWEirHLLypzXrpu~Yh6bmbEFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Toxoplasma_Acto_MyoA_Motor_Complex_Is_Important_but_Not_Essential_for_Gliding_Motility_and_Host_Cell_Invasion","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870573/thumbnails/1.jpg","file_name":"The_Toxoplasma_Acto-MyoA_Motor_Complex_I20160220-2304-13qhyh1.pdf","download_url":"https://www.academia.edu/attachments/42870573/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Toxoplasma_Acto_MyoA_Motor_Complex_I.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870573/The_Toxoplasma_Acto-MyoA_Motor_Complex_I20160220-2304-13qhyh1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DThe_Toxoplasma_Acto_MyoA_Motor_Complex_I.pdf\u0026Expires=1735153263\u0026Signature=OnC3LW-4OJgTr6~A1JooMF21~NfiRl1VS~DJWzi8HOf~d975Abp4Sm1finbL9N9qGOOnlRx2v7ZnRFQDQmBjX2WGW~QQNbdbehchrYTdZlZIwOysVg9kNvM13doknu2Hu82oYkpdLeLz5qNouX~T12tG0wuDUQkXK0yB0iIH61JAco9WpY0Klj2VLpiHMD~rR5LrbxN94sFw9Y5JdFHGJYA6Y72fRNhi7UbcsyUILfgnVjPdXNt9WRQFcEAPvkPwo~iHTP7NH5~EkrMlR2XisMHG4y81XxuWokLKcCKBao3fzAewwCWjDJ3fdDiv0SWEirHLLypzXrpu~Yh6bmbEFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":9658,"name":"Locomotion","url":"https://www.academia.edu/Documents/in/Locomotion"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":213897,"name":"Phenotype","url":"https://www.academia.edu/Documents/in/Phenotype"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"},{"id":743643,"name":"Host Pathogen Interactions","url":"https://www.academia.edu/Documents/in/Host_Pathogen_Interactions"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217664/Actin_Dynamics_Is_Controlled_by_a_Casein_Kinase_II_and_Phosphatase_2C_Interplay_on_Toxoplasma_gondii_Toxofilin"><img alt="Research paper thumbnail of Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin" class="work-thumbnail" src="https://attachments.academia-assets.com/42870574/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217664/Actin_Dynamics_Is_Controlled_by_a_Casein_Kinase_II_and_Phosphatase_2C_Interplay_on_Toxoplasma_gondii_Toxofilin">Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AlphonseGarcia">Alphonse Garcia</a></span></div><div class="wp-workCard_item"><span>Molecular Biology of the Cell</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Here, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine 53 . The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7d458f428d6d1a5d4d21f246dda06649" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870574,&quot;asset_id&quot;:22217664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870574/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217664]").text(description); $(".js-view-count[data-work-id=22217664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7d458f428d6d1a5d4d21f246dda06649" } } $('.js-work-strip[data-work-id=22217664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217664,"title":"Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin","translated_title":"","metadata":{"grobid_abstract":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Here, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine 53 . The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Molecular Biology of the Cell","grobid_abstract_attachment_id":42870574},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217664/Actin_Dynamics_Is_Controlled_by_a_Casein_Kinase_II_and_Phosphatase_2C_Interplay_on_Toxoplasma_gondii_Toxofilin","translated_internal_url":"","created_at":"2016-02-20T06:23:39.373-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942422,"work_id":22217664,"tagging_user_id":43579341,"tagged_user_id":43907712,"co_author_invite_id":3680391,"email":"a***a@pasteur.fr","display_order":0,"name":"Alphonse Garcia","title":"Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin"},{"id":15942431,"work_id":22217664,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":4194304,"name":"Xavier Cayla","title":"Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin"},{"id":15942437,"work_id":22217664,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":6291456,"name":"violaine walker","title":"Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay on Toxoplasma gondii Toxofilin"}],"downloadable_attachments":[{"id":42870574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870574/thumbnails/1.jpg","file_name":"E02-08-0462v1.pdf","download_url":"https://www.academia.edu/attachments/42870574/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Actin_Dynamics_Is_Controlled_by_a_Casein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870574/E02-08-0462v1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DActin_Dynamics_Is_Controlled_by_a_Casein.pdf\u0026Expires=1735153264\u0026Signature=cuQzzq4gIgHZ~old-iMs4jkrJCk8Ghg-XzpBDpMMtpl3szrObUUrPnC2tKZ13UcAyH2v7x3QIJnQFYpzow5u65ukw-9GXkUlNom0YJdnI2U-BymQII0DZ53tstEdyFLsoch5ozkkVP1dQJxfCHYQl2U67VF4~MuIFAShjGGCOjkvPCIranp5jngyy6SdvW9guIW2hUZAvBLItgB7sC5hLWhbaKKwWzyVkT1JOEUssFgjUvmm0PEeVif9PuhQjIz-wsWi897g04P4KlsByWKa5ZeAnYMLK1KJg1GYfddtqKKUjkrMwBVP9c4EpupQ0yKQvR3iuiInR7jysKFic5c8kw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Actin_Dynamics_Is_Controlled_by_a_Casein_Kinase_II_and_Phosphatase_2C_Interplay_on_Toxoplasma_gondii_Toxofilin","translated_slug":"","page_count":41,"language":"en","content_type":"Work","summary":"Actin polymerization in Apicomplexa protozoa is central to parasite motility and host cell invasion. Toxofilin has been characterized as a protein that sequesters actin monomers and caps actin filaments in Toxoplasma gondii. Here, we show that Toxofilin properties in vivo as in vitro depend on its phosphorylation. We identify a novel parasitic type 2C phosphatase that binds the Toxofilin/G-actin complex and a casein kinase II-like activity in the cytosol, both of which modulate the phosphorylation status of Toxofilin serine 53 . The interplay of these two molecules controls Toxofilin binding of G-actin as well as actin dynamics in vivo. Such functional interactions should play a major role in actin sequestration, a central feature of actin dynamics in Apicomplexa that underlies the spectacular speed and nature of parasite gliding motility.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870574/thumbnails/1.jpg","file_name":"E02-08-0462v1.pdf","download_url":"https://www.academia.edu/attachments/42870574/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Actin_Dynamics_Is_Controlled_by_a_Casein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870574/E02-08-0462v1-libre.pdf?1455978638=\u0026response-content-disposition=attachment%3B+filename%3DActin_Dynamics_Is_Controlled_by_a_Casein.pdf\u0026Expires=1735153264\u0026Signature=cuQzzq4gIgHZ~old-iMs4jkrJCk8Ghg-XzpBDpMMtpl3szrObUUrPnC2tKZ13UcAyH2v7x3QIJnQFYpzow5u65ukw-9GXkUlNom0YJdnI2U-BymQII0DZ53tstEdyFLsoch5ozkkVP1dQJxfCHYQl2U67VF4~MuIFAShjGGCOjkvPCIranp5jngyy6SdvW9guIW2hUZAvBLItgB7sC5hLWhbaKKwWzyVkT1JOEUssFgjUvmm0PEeVif9PuhQjIz-wsWi897g04P4KlsByWKa5ZeAnYMLK1KJg1GYfddtqKKUjkrMwBVP9c4EpupQ0yKQvR3iuiInR7jysKFic5c8kw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":202433,"name":"Actin Dynamics","url":"https://www.academia.edu/Documents/in/Actin_Dynamics"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217663/SET8_Mediated_Methylations_of_Histone_H4_Lysine_20_Mark_Silent_Heterochromatic_Domains_in_Apicomplexan_Genomes"><img alt="Research paper thumbnail of SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes" class="work-thumbnail" src="https://attachments.academia-assets.com/42870568/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217663/SET8_Mediated_Methylations_of_Histone_H4_Lysine_20_Mark_Silent_Heterochromatic_Domains_in_Apicomplexan_Genomes">SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/MohamedAliHAKIMI">Mohamed-Ali HAKIMI</a></span></div><div class="wp-workCard_item"><span>Molecular and Cellular Biology</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Posttranslational histone modifications modulate chromatin-templated processes in various biologi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Posttranslational histone modifications modulate chromatin-templated processes in various biological systems. H4K20 methylation is considered to have an evolutionarily ancient role in DNA repair and genome integrity, while its function in heterochromatin function and gene expression is thought to have arisen later during evolution. Here, we identify and characterize H4K20 methylases of the Set8 family in Plasmodium and Toxoplasma, two medically important members of the protozoan phylum Apicomplexa. Remarkably, parasite Set8-related proteins display H4K20 mono-, di-, and trimethylase activities, in striking contrast to the monomethylase-restricted human Set8. Structurally, few residues forming the substrate-specific channel dictate enzyme methylation multiplicity. These enzymes are cell cycle regulated and focally enriched at pericentric and telomeric heterochromatin in both parasites. Collectively, our findings provide new insights into the evolution of Set8-mediated biochemical pathways, suggesting that the heterochromatic function of the marker is not restricted to metazoans. Thus, these lower eukaryotes have developed a diverse panel of biological stages through their high capacity to differentiate, and epigenetics only begins to emerge as a strong determinant of their biology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c5d47473ff0dc9fe73843af3ea06ba73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870568,&quot;asset_id&quot;:22217663,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870568/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217663]").text(description); $(".js-view-count[data-work-id=22217663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c5d47473ff0dc9fe73843af3ea06ba73" } } $('.js-work-strip[data-work-id=22217663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217663,"title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes","translated_title":"","metadata":{"grobid_abstract":"Posttranslational histone modifications modulate chromatin-templated processes in various biological systems. H4K20 methylation is considered to have an evolutionarily ancient role in DNA repair and genome integrity, while its function in heterochromatin function and gene expression is thought to have arisen later during evolution. Here, we identify and characterize H4K20 methylases of the Set8 family in Plasmodium and Toxoplasma, two medically important members of the protozoan phylum Apicomplexa. Remarkably, parasite Set8-related proteins display H4K20 mono-, di-, and trimethylase activities, in striking contrast to the monomethylase-restricted human Set8. Structurally, few residues forming the substrate-specific channel dictate enzyme methylation multiplicity. These enzymes are cell cycle regulated and focally enriched at pericentric and telomeric heterochromatin in both parasites. Collectively, our findings provide new insights into the evolution of Set8-mediated biochemical pathways, suggesting that the heterochromatic function of the marker is not restricted to metazoans. Thus, these lower eukaryotes have developed a diverse panel of biological stages through their high capacity to differentiate, and epigenetics only begins to emerge as a strong determinant of their biology.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Molecular and Cellular Biology","grobid_abstract_attachment_id":42870568},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217663/SET8_Mediated_Methylations_of_Histone_H4_Lysine_20_Mark_Silent_Heterochromatic_Domains_in_Apicomplexan_Genomes","translated_internal_url":"","created_at":"2016-02-20T06:23:39.206-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761820,"work_id":22217663,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":2550356,"email":"m***i@ujf-grenoble.fr","display_order":0,"name":"Mohamed-Ali Hakimi","title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes"},{"id":15761821,"work_id":22217663,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":301379,"email":"o***n@cea.fr","display_order":4194304,"name":"Olivier Bastien","title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes"},{"id":15942405,"work_id":22217663,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":722070,"email":"b***i@embl-grenoble.fr","display_order":6291456,"name":"H. Belrhali","title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes"},{"id":15942415,"work_id":22217663,"tagging_user_id":43579341,"tagged_user_id":309009558,"co_author_invite_id":3680390,"email":"m***i@gmail.com","display_order":7340032,"name":"Mohamed-Ali HAKIMI","title":"SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes"}],"downloadable_attachments":[{"id":42870568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870568/thumbnails/1.jpg","file_name":"5711.pdf","download_url":"https://www.academia.edu/attachments/42870568/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SET8_Mediated_Methylations_of_Histone_H4.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870568/5711-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DSET8_Mediated_Methylations_of_Histone_H4.pdf\u0026Expires=1735153264\u0026Signature=J1ozbDLFT1lxERT0Hh5NA9oq1wBD2U~Zz~JMXQi47TqcTYkJHSpOS7cDMtwtcu-KTVRC-mTp7OtoL5iAjy5jnKispsSqo9rBSBTicqNMgfAmRWv-4WWTBR6NdYqDzeVyLYWwD67QEfH~zQY90uij6w5REbYOYDo-nnBrdduIAAOok0H4RlvcJCFPNo~n3tbF~4s1l6-GtRC9OqluKV3T6CScBLdNDT~YmUQBC-M7EhTenS4oOlgVLPkYPa5qx6lDmqknDIhPuBX9Ad3xiESegGFwY~jnTukt89XGcgOj7s0vvvd8Y3wjDM7Q4~VTKo8GNIYBpiKo2so5SwYOEfwITA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SET8_Mediated_Methylations_of_Histone_H4_Lysine_20_Mark_Silent_Heterochromatic_Domains_in_Apicomplexan_Genomes","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Posttranslational histone modifications modulate chromatin-templated processes in various biological systems. H4K20 methylation is considered to have an evolutionarily ancient role in DNA repair and genome integrity, while its function in heterochromatin function and gene expression is thought to have arisen later during evolution. Here, we identify and characterize H4K20 methylases of the Set8 family in Plasmodium and Toxoplasma, two medically important members of the protozoan phylum Apicomplexa. Remarkably, parasite Set8-related proteins display H4K20 mono-, di-, and trimethylase activities, in striking contrast to the monomethylase-restricted human Set8. Structurally, few residues forming the substrate-specific channel dictate enzyme methylation multiplicity. These enzymes are cell cycle regulated and focally enriched at pericentric and telomeric heterochromatin in both parasites. Collectively, our findings provide new insights into the evolution of Set8-mediated biochemical pathways, suggesting that the heterochromatic function of the marker is not restricted to metazoans. Thus, these lower eukaryotes have developed a diverse panel of biological stages through their high capacity to differentiate, and epigenetics only begins to emerge as a strong determinant of their biology.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870568/thumbnails/1.jpg","file_name":"5711.pdf","download_url":"https://www.academia.edu/attachments/42870568/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SET8_Mediated_Methylations_of_Histone_H4.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870568/5711-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DSET8_Mediated_Methylations_of_Histone_H4.pdf\u0026Expires=1735153264\u0026Signature=J1ozbDLFT1lxERT0Hh5NA9oq1wBD2U~Zz~JMXQi47TqcTYkJHSpOS7cDMtwtcu-KTVRC-mTp7OtoL5iAjy5jnKispsSqo9rBSBTicqNMgfAmRWv-4WWTBR6NdYqDzeVyLYWwD67QEfH~zQY90uij6w5REbYOYDo-nnBrdduIAAOok0H4RlvcJCFPNo~n3tbF~4s1l6-GtRC9OqluKV3T6CScBLdNDT~YmUQBC-M7EhTenS4oOlgVLPkYPa5qx6lDmqknDIhPuBX9Ad3xiESegGFwY~jnTukt89XGcgOj7s0vvvd8Y3wjDM7Q4~VTKo8GNIYBpiKo2so5SwYOEfwITA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2183,"name":"Cellular Biology","url":"https://www.academia.edu/Documents/in/Cellular_Biology"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":9113,"name":"Cell Cycle","url":"https://www.academia.edu/Documents/in/Cell_Cycle"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":32923,"name":"Gene Silencing","url":"https://www.academia.edu/Documents/in/Gene_Silencing"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":63067,"name":"Molecular and cellular biology","url":"https://www.academia.edu/Documents/in/Molecular_and_cellular_biology"},{"id":74780,"name":"Mutation","url":"https://www.academia.edu/Documents/in/Mutation"},{"id":87651,"name":"Methylation","url":"https://www.academia.edu/Documents/in/Methylation"},{"id":103375,"name":"Parasites","url":"https://www.academia.edu/Documents/in/Parasites"},{"id":295928,"name":"Amino Acids","url":"https://www.academia.edu/Documents/in/Amino_Acids"},{"id":317185,"name":"Histones","url":"https://www.academia.edu/Documents/in/Histones"},{"id":373650,"name":"Lysine","url":"https://www.academia.edu/Documents/in/Lysine"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1744058,"name":"Heterochromatin","url":"https://www.academia.edu/Documents/in/Heterochromatin"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217661/A_Toxoplasma_type_2C_serine_threonine_phosphatase_is_involved_in_parasite_growth_in_the_mammalian_host_cell"><img alt="Research paper thumbnail of A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell" class="work-thumbnail" src="https://attachments.academia-assets.com/42870569/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217661/A_Toxoplasma_type_2C_serine_threonine_phosphatase_is_involved_in_parasite_growth_in_the_mammalian_host_cell">A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell</a></div><div class="wp-workCard_item"><span>Microbes and Infection</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and cau...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f6db34bd702fdeaa79a1fb95c04b07f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870569,&quot;asset_id&quot;:22217661,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870569/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217661]").text(description); $(".js-view-count[data-work-id=22217661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f6db34bd702fdeaa79a1fb95c04b07f" } } $('.js-work-strip[data-work-id=22217661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217661,"title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell","translated_title":"","metadata":{"grobid_abstract":"Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Microbes and Infection","grobid_abstract_attachment_id":42870569},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217661/A_Toxoplasma_type_2C_serine_threonine_phosphatase_is_involved_in_parasite_growth_in_the_mammalian_host_cell","translated_internal_url":"","created_at":"2016-02-20T06:23:39.082-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942407,"work_id":22217661,"tagging_user_id":43579341,"tagged_user_id":134476275,"co_author_invite_id":3680388,"email":"g***n@lavoix.eu","display_order":0,"name":"Ga毛lle JAN","title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell"},{"id":15942416,"work_id":22217661,"tagging_user_id":43579341,"tagged_user_id":309009558,"co_author_invite_id":3680390,"email":"m***i@gmail.com","display_order":4194304,"name":"Mohamed-Ali HAKIMI","title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell"},{"id":15942432,"work_id":22217661,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":6291456,"name":"Xavier Cayla","title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell"},{"id":15942438,"work_id":22217661,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":7340032,"name":"violaine walker","title":"A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell"}],"downloadable_attachments":[{"id":42870569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870569/thumbnails/1.jpg","file_name":"A_Toxoplasma_type_2C_serine-threonine_ph20160220-18718-1me2nk1.pdf","download_url":"https://www.academia.edu/attachments/42870569/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Toxoplasma_type_2C_serine_threonine_ph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870569/A_Toxoplasma_type_2C_serine-threonine_ph20160220-18718-1me2nk1-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DA_Toxoplasma_type_2C_serine_threonine_ph.pdf\u0026Expires=1735153264\u0026Signature=MV6KbCbculuH0N67CN~H73gXuaTfk~9sFWoGrOZZyJ8jdasH4DLhiRcIjmkIATZKTMYahDDc~mvp8KBHMGMvGqzy3RNY8k0hgbg7q9apIPztYjx~8G4-6xA3UiTpoqLBy~lVlkuQz4-xThgpn7FtSmu~bVNlySV2H0Sfd3ukNobhiR7Ewdl2VJ0nEDKNhUUXhpzlEhsmrsUhkRYEIQwbkgdEwf4BFBkjGGExqwWjtZWf4BL1XISMHCWleWa8a8psujkYcLz6ChWA~M4lJBHGgfxVoVMFy92eMoRTdX6-nUXxjDV0FV6~tVLQASyF2nAWZh9~ja9O8-NphqDU~oKVWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Toxoplasma_type_2C_serine_threonine_phosphatase_is_involved_in_parasite_growth_in_the_mammalian_host_cell","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870569/thumbnails/1.jpg","file_name":"A_Toxoplasma_type_2C_serine-threonine_ph20160220-18718-1me2nk1.pdf","download_url":"https://www.academia.edu/attachments/42870569/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Toxoplasma_type_2C_serine_threonine_ph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870569/A_Toxoplasma_type_2C_serine-threonine_ph20160220-18718-1me2nk1-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DA_Toxoplasma_type_2C_serine_threonine_ph.pdf\u0026Expires=1735153264\u0026Signature=MV6KbCbculuH0N67CN~H73gXuaTfk~9sFWoGrOZZyJ8jdasH4DLhiRcIjmkIATZKTMYahDDc~mvp8KBHMGMvGqzy3RNY8k0hgbg7q9apIPztYjx~8G4-6xA3UiTpoqLBy~lVlkuQz4-xThgpn7FtSmu~bVNlySV2H0Sfd3ukNobhiR7Ewdl2VJ0nEDKNhUUXhpzlEhsmrsUhkRYEIQwbkgdEwf4BFBkjGGExqwWjtZWf4BL1XISMHCWleWa8a8psujkYcLz6ChWA~M4lJBHGgfxVoVMFy92eMoRTdX6-nUXxjDV0FV6~tVLQASyF2nAWZh9~ja9O8-NphqDU~oKVWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":9113,"name":"Cell Cycle","url":"https://www.academia.edu/Documents/in/Cell_Cycle"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":38650,"name":"Cell Division","url":"https://www.academia.edu/Documents/in/Cell_Division"},{"id":57570,"name":"Cercopithecus aethiops","url":"https://www.academia.edu/Documents/in/Cercopithecus_aethiops"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":317801,"name":"Cell nucleus","url":"https://www.academia.edu/Documents/in/Cell_nucleus"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":1166930,"name":"Cytoplasm","url":"https://www.academia.edu/Documents/in/Cytoplasm"},{"id":1954130,"name":"Cell Growth","url":"https://www.academia.edu/Documents/in/Cell_Growth"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217660/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion"><img alt="Research paper thumbnail of A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217660/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion">A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion</a></div><div class="wp-workCard_item"><span>Microbes and Infection</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217660]").text(description); $(".js-view-count[data-work-id=22217660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22217660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217660,"title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion","translated_title":"","metadata":{"abstract":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Microbes and Infection"},"translated_abstract":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","internal_url":"https://www.academia.edu/22217660/A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion","translated_internal_url":"","created_at":"2016-02-20T06:23:38.947-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942423,"work_id":22217660,"tagging_user_id":43579341,"tagged_user_id":43907712,"co_author_invite_id":3680391,"email":"a***a@pasteur.fr","display_order":0,"name":"Alphonse Garcia","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"},{"id":15942433,"work_id":22217660,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680393,"email":"c***e@neuf.fr","display_order":4194304,"name":"Xavier Cayla","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"},{"id":15942440,"work_id":22217660,"tagging_user_id":43579341,"tagged_user_id":43874037,"co_author_invite_id":3680394,"email":"v***r@gmail.com","display_order":6291456,"name":"violaine walker","title":"A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion"}],"downloadable_attachments":[],"slug":"A_role_for_Toxoplasma_gondii_type_1_ser_thr_protein_phosphatase_in_host_cell_invasion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":37801,"name":"Toxoplasma gondii","url":"https://www.academia.edu/Documents/in/Toxoplasma_gondii"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":137847,"name":"Active Control","url":"https://www.academia.edu/Documents/in/Active_Control"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":420908,"name":"RNA-binding proteins","url":"https://www.academia.edu/Documents/in/RNA-binding_proteins"},{"id":422325,"name":"HeLa cells","url":"https://www.academia.edu/Documents/in/HeLa_cells"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":766014,"name":"Monoclonal Antibody","url":"https://www.academia.edu/Documents/in/Monoclonal_Antibody"},{"id":1938371,"name":"Okadaic acid","url":"https://www.academia.edu/Documents/in/Okadaic_acid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217659/Role_in_host_cell_invasion_of_Trypanosoma_cruzi_induced_cytosolic_free_Ca2_transients"><img alt="Research paper thumbnail of Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients" class="work-thumbnail" src="https://attachments.academia-assets.com/42870579/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217659/Role_in_host_cell_invasion_of_Trypanosoma_cruzi_induced_cytosolic_free_Ca2_transients">Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients</a></div><div class="wp-workCard_item"><span>Journal of Experimental Medicine</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is fac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is facilitated by disruption of host cell actin microfilaments, and involves recruitment and fusion of host lysosomes at the site of parasite entry. These findings implied the existence of transmembrane signaling mechanisms triggered by the parasites in the host cells before invasion. Here we show that infective trypomastigotes or their isolated membranes, but not the noninfective epimastigotes, induce repetitive cytosolic-free Ca 2+ transients in individual normal rat kidney fibroblasts, in a pertussis toxin-sensitive manner. Parasite entry is inhibited by buffering or depleting host cell cytosolic-free Ca 2+, or by pretreatment with Ca 2+ channel blockers or pertussis toxin. In contrast, invasion is enhanced by brief exposure of the host cells to cytochalasin D. These results indicate that a trypomastigote membrane factor triggers cytosolic-free Ca 2+ transients in host cells through a G-protein-coupled pathway. This signaling event may promote invasion through modulation of the host cell actin cytoskeleton.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="802ab8faf1cb0f87a050cd8429049a1b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870579,&quot;asset_id&quot;:22217659,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870579/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217659]").text(description); $(".js-view-count[data-work-id=22217659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "802ab8faf1cb0f87a050cd8429049a1b" } } $('.js-work-strip[data-work-id=22217659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217659,"title":"Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients","translated_title":"","metadata":{"grobid_abstract":"Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is facilitated by disruption of host cell actin microfilaments, and involves recruitment and fusion of host lysosomes at the site of parasite entry. These findings implied the existence of transmembrane signaling mechanisms triggered by the parasites in the host cells before invasion. Here we show that infective trypomastigotes or their isolated membranes, but not the noninfective epimastigotes, induce repetitive cytosolic-free Ca 2+ transients in individual normal rat kidney fibroblasts, in a pertussis toxin-sensitive manner. Parasite entry is inhibited by buffering or depleting host cell cytosolic-free Ca 2+, or by pretreatment with Ca 2+ channel blockers or pertussis toxin. In contrast, invasion is enhanced by brief exposure of the host cells to cytochalasin D. These results indicate that a trypomastigote membrane factor triggers cytosolic-free Ca 2+ transients in host cells through a G-protein-coupled pathway. This signaling event may promote invasion through modulation of the host cell actin cytoskeleton.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Journal of Experimental Medicine","grobid_abstract_attachment_id":42870579},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217659/Role_in_host_cell_invasion_of_Trypanosoma_cruzi_induced_cytosolic_free_Ca2_transients","translated_internal_url":"","created_at":"2016-02-20T06:23:38.797-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15942410,"work_id":22217659,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":434352,"email":"a***n@umd.edu","display_order":0,"name":"Norma Andrews","title":"Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients"}],"downloadable_attachments":[{"id":42870579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870579/thumbnails/1.jpg","file_name":"1017.pdf","download_url":"https://www.academia.edu/attachments/42870579/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_in_host_cell_invasion_of_Trypanosom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870579/1017-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DRole_in_host_cell_invasion_of_Trypanosom.pdf\u0026Expires=1735153264\u0026Signature=F3dHPuoZWZXx8v-drDDdZ94i6jf8c1P~HEzPLf8ddhEZrivqNhCwNvNLwmj~hT9fhoNqsFPzI5BKF9AeL1UL1ZIAajTdMN0cK~IzxE9ohgPsM3pnqtZEofxLEhi899GQfUGMWsUlSksqJbGIHS9tahDDip0cMQVbgn-Z29bwk~9pSgLOA9TelmYJph9PvcA9xu54jwp~LlV3WD5F1sk~b6qw8y6PJdWR4BquJT3sA6CbQx3MK8BOrCwQL4HGnPhZs-qiG6bTRMDEtQ2Si6R1S5Q3zHEGnF5voCGUZ5Ty6qDELqWtPUzs5QHv75MT7gb5YAzIfkdlHRx22APuuDjcDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_in_host_cell_invasion_of_Trypanosoma_cruzi_induced_cytosolic_free_Ca2_transients","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is facilitated by disruption of host cell actin microfilaments, and involves recruitment and fusion of host lysosomes at the site of parasite entry. These findings implied the existence of transmembrane signaling mechanisms triggered by the parasites in the host cells before invasion. Here we show that infective trypomastigotes or their isolated membranes, but not the noninfective epimastigotes, induce repetitive cytosolic-free Ca 2+ transients in individual normal rat kidney fibroblasts, in a pertussis toxin-sensitive manner. Parasite entry is inhibited by buffering or depleting host cell cytosolic-free Ca 2+, or by pretreatment with Ca 2+ channel blockers or pertussis toxin. In contrast, invasion is enhanced by brief exposure of the host cells to cytochalasin D. These results indicate that a trypomastigote membrane factor triggers cytosolic-free Ca 2+ transients in host cells through a G-protein-coupled pathway. This signaling event may promote invasion through modulation of the host cell actin cytoskeleton.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870579/thumbnails/1.jpg","file_name":"1017.pdf","download_url":"https://www.academia.edu/attachments/42870579/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_in_host_cell_invasion_of_Trypanosom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870579/1017-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DRole_in_host_cell_invasion_of_Trypanosom.pdf\u0026Expires=1735153264\u0026Signature=F3dHPuoZWZXx8v-drDDdZ94i6jf8c1P~HEzPLf8ddhEZrivqNhCwNvNLwmj~hT9fhoNqsFPzI5BKF9AeL1UL1ZIAajTdMN0cK~IzxE9ohgPsM3pnqtZEofxLEhi899GQfUGMWsUlSksqJbGIHS9tahDDip0cMQVbgn-Z29bwk~9pSgLOA9TelmYJph9PvcA9xu54jwp~LlV3WD5F1sk~b6qw8y6PJdWR4BquJT3sA6CbQx3MK8BOrCwQL4HGnPhZs-qiG6bTRMDEtQ2Si6R1S5Q3zHEGnF5voCGUZ5Ty6qDELqWtPUzs5QHv75MT7gb5YAzIfkdlHRx22APuuDjcDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":71294,"name":"Kidney","url":"https://www.academia.edu/Documents/in/Kidney"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":202404,"name":"Actin Cytoskeleton","url":"https://www.academia.edu/Documents/in/Actin_Cytoskeleton"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":376084,"name":"Trypanosoma Cruzi","url":"https://www.academia.edu/Documents/in/Trypanosoma_Cruzi"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":554586,"name":"Experimental Medicine","url":"https://www.academia.edu/Documents/in/Experimental_Medicine"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22217658"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22217658/Independent_Roles_of_Apical_Membrane_Antigen_1_and_Rhoptry_Neck_Proteins_during_Host_Cell_Invasion_by_Apicomplexa"><img alt="Research paper thumbnail of Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa" class="work-thumbnail" src="https://attachments.academia-assets.com/42870580/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22217658/Independent_Roles_of_Apical_Membrane_Antigen_1_and_Rhoptry_Neck_Proteins_during_Host_Cell_Invasion_by_Apicomplexa">Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IsabelleTardieux">Isabelle Tardieux</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DanielBargieri">Daniel Bargieri</a></span></div><div class="wp-workCard_item"><span>Cell Host &amp; Microbe</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">During invasion, apicomplexan parasites form an intimate circumferential contact with the host ce...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="22d35c950f3e88bb1bac92ef832eee37" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42870580,&quot;asset_id&quot;:22217658,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42870580/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22217658"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22217658"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22217658; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22217658]").text(description); $(".js-view-count[data-work-id=22217658]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22217658; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22217658']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22217658, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "22d35c950f3e88bb1bac92ef832eee37" } } $('.js-work-strip[data-work-id=22217658]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22217658,"title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa","translated_title":"","metadata":{"grobid_abstract":"During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Cell Host \u0026 Microbe","grobid_abstract_attachment_id":42870580},"translated_abstract":null,"internal_url":"https://www.academia.edu/22217658/Independent_Roles_of_Apical_Membrane_Antigen_1_and_Rhoptry_Neck_Proteins_during_Host_Cell_Invasion_by_Apicomplexa","translated_internal_url":"","created_at":"2016-02-20T06:23:38.653-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43579341,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15761815,"work_id":22217658,"tagging_user_id":43579341,"tagged_user_id":33080592,"co_author_invite_id":null,"email":"r***d@pasteur.fr","display_order":0,"name":"Robert M茅nard","title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa"},{"id":15761825,"work_id":22217658,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3641905,"email":"c***x@utoronto.ca","display_order":4194304,"name":"Ce虂line Lacroix","title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa"},{"id":15942419,"work_id":22217658,"tagging_user_id":43579341,"tagged_user_id":52018496,"co_author_invite_id":1978025,"email":"d***i@gmail.com","display_order":6291456,"name":"Daniel Bargieri","title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa"},{"id":15942427,"work_id":22217658,"tagging_user_id":43579341,"tagged_user_id":null,"co_author_invite_id":3680392,"email":"v***l@inserm.fr","display_order":7340032,"name":"Vanessa Lagal","title":"Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa"}],"downloadable_attachments":[{"id":42870580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870580/thumbnails/1.jpg","file_name":"Independent_Roles_of_Apical_Membrane_Ant20160220-27428-152gphx.pdf","download_url":"https://www.academia.edu/attachments/42870580/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Independent_Roles_of_Apical_Membrane_Ant.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870580/Independent_Roles_of_Apical_Membrane_Ant20160220-27428-152gphx-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DIndependent_Roles_of_Apical_Membrane_Ant.pdf\u0026Expires=1735153264\u0026Signature=Sz6W3F5DhI4~qxrmkMJQkF~b~koyYsLhry5GMiPy9rXhRgBki9Kc1Mo9rWJFDY6vy8qFaHQ4I-XMNGUH50PJ-4g68Rw6LO9MxYk3ohd0b6MY6e9z3iAtr9ehb8G3ZPSfH-snN0K0HLjuy~i6d7OgkXZOa6aaYtMbo17rWd8BOjJGcb~HaZ1UIIbBGQ8pfjOU-Ywknre9jlCtdcVNgIGDqMY3fZZ~141G7ZbC510uKsHBhLS935aGzfvhneGuoEoImGoz~EIQ0SnfMip1bmWMIb6odKyzfPZ0kQ2sGImX~1azDv-3wYLtieqqrBBMESL8pyxs5Fbutg6BQDzNnb2FgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Independent_Roles_of_Apical_Membrane_Antigen_1_and_Rhoptry_Neck_Proteins_during_Host_Cell_Invasion_by_Apicomplexa","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.","owner":{"id":43579341,"first_name":"Isabelle","middle_initials":null,"last_name":"Tardieux","page_name":"IsabelleTardieux","domain_name":"independent","created_at":"2016-02-20T06:23:18.600-08:00","display_name":"Isabelle Tardieux","url":"https://independent.academia.edu/IsabelleTardieux"},"attachments":[{"id":42870580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42870580/thumbnails/1.jpg","file_name":"Independent_Roles_of_Apical_Membrane_Ant20160220-27428-152gphx.pdf","download_url":"https://www.academia.edu/attachments/42870580/download_file?st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&st=MTczNTE0OTY2NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Independent_Roles_of_Apical_Membrane_Ant.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42870580/Independent_Roles_of_Apical_Membrane_Ant20160220-27428-152gphx-libre.pdf?1455978637=\u0026response-content-disposition=attachment%3B+filename%3DIndependent_Roles_of_Apical_Membrane_Ant.pdf\u0026Expires=1735153264\u0026Signature=Sz6W3F5DhI4~qxrmkMJQkF~b~koyYsLhry5GMiPy9rXhRgBki9Kc1Mo9rWJFDY6vy8qFaHQ4I-XMNGUH50PJ-4g68Rw6LO9MxYk3ohd0b6MY6e9z3iAtr9ehb8G3ZPSfH-snN0K0HLjuy~i6d7OgkXZOa6aaYtMbo17rWd8BOjJGcb~HaZ1UIIbBGQ8pfjOU-Ywknre9jlCtdcVNgIGDqMY3fZZ~141G7ZbC510uKsHBhLS935aGzfvhneGuoEoImGoz~EIQ0SnfMip1bmWMIb6odKyzfPZ0kQ2sGImX~1azDv-3wYLtieqqrBBMESL8pyxs5Fbutg6BQDzNnb2FgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":7823,"name":"Malaria","url":"https://www.academia.edu/Documents/in/Malaria"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":96081,"name":"Anopheles","url":"https://www.academia.edu/Documents/in/Anopheles"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":432593,"name":"Hepatocytes","url":"https://www.academia.edu/Documents/in/Hepatocytes"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":982534,"name":"Erythrocytes","url":"https://www.academia.edu/Documents/in/Erythrocytes"},{"id":1693871,"name":"Plasmodium berghei","url":"https://www.academia.edu/Documents/in/Plasmodium_berghei"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "7d5a4d1e0fb158af1a24f5bc42b252f840f99da6db645e3dcd471902dea1bab9", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="iR1w12UJoSw92DPoGdZD3Ox3zPURZk/PcGaKPH/J526+W2s2SgFxASTHhbptSdHtLlkjy9R9B8G8Pc+7TrHkVQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/IsabelleTardieux" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="M/FpmXB/4dRXkmCX9hAjgUzZ1OlSfUWVow0//bmdU1gEt3J4X3cx+U6N1sWCj7Gwjvc715dmDZtvVnp6iOVQYw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10