CINXE.COM
Search results for: modal shift
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: modal shift</title> <meta name="description" content="Search results for: modal shift"> <meta name="keywords" content="modal shift"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="modal shift" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="modal shift"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1690</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: modal shift</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1690</span> Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar">Rakesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Electricwala"> Fatima Electricwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BRTS" title="BRTS">BRTS</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20modes" title=" private modes"> private modes</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20choice%20models" title=" mode choice models"> mode choice models</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20footprint" title=" ecological footprint"> ecological footprint</a> </p> <a href="https://publications.waset.org/abstracts/6459/impact-of-proposed-modal-shift-from-private-users-to-bus-rapid-transit-system-an-indian-city-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1689</span> Realization of Sustainable Urban Society by Personal Electric Transporter and Natural Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuichi%20Miyamoto">Yuichi Miyamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In regards to the energy sector in the modern period, two points were raised. First is a vast and growing energy demand, and second is an environmental impact associated with it. The enormous consumption of fossil fuel to the mobile unit is leading to its rapid depletion. Nuclear power is not the only problem. A modal shift that utilizes personal transporters and independent power, in order to realize a sustainable society, is very effective. The paper proposes that the world will continue to work on this. Energy of the future society, innovation in battery technology and the use of natural energy is a big key. And it is also necessary in order to save on energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20energy" title="natural energy">natural energy</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20shift" title=" modal shift"> modal shift</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20transportation" title=" personal transportation"> personal transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a> </p> <a href="https://publications.waset.org/abstracts/8079/realization-of-sustainable-urban-society-by-personal-electric-transporter-and-natural-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1688</span> An Integer Nonlinear Program Proposal for Intermodal Transportation Service Network Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laaziz%20El%20Hassan">Laaziz El Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Service Network Design Problem (SNDP) is a tactical issue in freight transportation firms. The existing formulations of the problem for intermodal rail-road transportation were not always adapted to the intermodality in terms of full asset utilization and modal shift reinforcement. The objective of the article is to propose a model having a more compliant formulation with intermodality, including constraints highlighting the imperatives of asset management, reinforcing modal shift from road to rail and reducing, by the way, road mode CO2 emissions. The model is a fixed charged, path based integer nonlinear program. Its objective is to minimize services total cost while ensuring full assets utilization to satisfy freight demand forecast. The model's main feature is that it gives as output both the train sizes and the services frequencies for a planning period. We solved the program using a commercial solver and discussed the numerical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intermodal%20transport%20network" title="intermodal transport network">intermodal transport network</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20network%20design" title=" service network design"> service network design</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20integer%20program" title=" nonlinear integer program"> nonlinear integer program</a>, <a href="https://publications.waset.org/abstracts/search?q=path-based" title=" path-based"> path-based</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20frequencies" title=" service frequencies"> service frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20shift" title=" modal shift"> modal shift</a> </p> <a href="https://publications.waset.org/abstracts/146976/an-integer-nonlinear-program-proposal-for-intermodal-transportation-service-network-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1687</span> The Complete Modal Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Andersen">Sebastian Andersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20N.%20Poulsen"> Peter N. Poulsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of basis projection in the structural dynamic analysis is frequently applied. The purpose of the method is to improve the computational efficiency, while maintaining a high solution accuracy, by projection the governing equations onto a small set of carefully selected basis vectors. The present work considers basis projection in kinematic nonlinear systems with a focus on two widely used basis vectors; the system mode shapes and their modal derivatives. Particularly the latter basis vectors are given special attention since only approximate modal derivatives have been used until now. In the present work the complete modal derivatives, derived from perturbation methods, are presented and compared to the previously applied approximate modal derivatives. The correctness of the complete modal derivatives is illustrated by use of an example of a harmonically loaded kinematic nonlinear structure modeled by beam elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basis%20projection" title="basis projection">basis projection</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20nonlinearities" title=" kinematic nonlinearities"> kinematic nonlinearities</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20derivatives" title=" modal derivatives"> modal derivatives</a> </p> <a href="https://publications.waset.org/abstracts/92260/the-complete-modal-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1686</span> Travel Delay and Modal Split Analysis: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Sathish">H. S. Sathish</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Jagadeesh"> H. S. Jagadeesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Skanda%20Kumar"> Skanda Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Journey time and delay study is used to evaluate the quality of service, the travel time and study can also be used to evaluate the quality of traffic movement along the route and to determine the location types and extent of traffic delays. Components of delay are boarding and alighting, issue of tickets, other causes and distance between each stops. This study investigates the total journey time required to travel along the stretch and the influence the delays. The route starts from Kempegowda Bus Station to Yelahanka Satellite Station of Bangalore City. The length of the stretch is 16.5 km. Modal split analysis has been done for this stretch. This stretch has elevated highway connecting to Bangalore International Airport and the extension of metro transit stretch. From the regression analysis of total journey time it is affected by delay due to boarding and alighting moderately, Delay due to issue of tickets affects the journey time to a higher extent. Some of the delay factors affecting significantly the journey time are evident from F-test at 10 percent level of confidence. Along this stretch work trips are more prevalent as indicated by O-D study. Modal shift analysis indicates about 70 percent of commuters are ready to shift from current system to Metro Rail System. Metro Rail System carries maximum number of trips compared to private mode. Hence Metro is a highly viable choice of mode for Bangalore Metropolitan City. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay" title="delay">delay</a>, <a href="https://publications.waset.org/abstracts/search?q=journey%20time" title=" journey time"> journey time</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20choice" title=" modal choice"> modal choice</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a> </p> <a href="https://publications.waset.org/abstracts/12472/travel-delay-and-modal-split-analysis-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1685</span> Variations of the Modal Characteristics of the Feeding Stage with Different Preloaded Linear Guide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Run%20Chen"> Yong-Run Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Cheng%20Shih"> Wei-Cheng Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Lin"> Chun-Wei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed to assess the variations of the modal characteristics of the feeding stage with different linear guide modulus. The dynamic characteristics of the feeding stage were characterized in terms of the modal stiffness, modal frequency and modal damping, which are assessed from the vibration tests. According to the experimental measurements, the actual preload of the linear guide modulus was found to deviate from the rated values as setting in factory. This may be due to the assemblage errors of guide modules. For the stage with linear guides, the dynamic stiffness was affected to change by the preload set on the rolling balls. The variation of the dynamic stiffness at first and second modes is 20.8 and 10.5%, respectively when the linear guide preload is adjusted from medium and high amount. But the modal damping ratio is reduced by 8.97 and 9.65%, respectively. For high-frequency mode, the modal stiffness increases by 171.2% and the damping ratio reduced by 34.4%. Current results demonstrate the importance in the determining the preloaded amount of linear guide modulus in practical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20stiffness" title="contact stiffness">contact stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20stage" title=" feeding stage"> feeding stage</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20guides" title=" linear guides"> linear guides</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20characteristics" title=" modal characteristics"> modal characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-load" title=" pre-load"> pre-load</a> </p> <a href="https://publications.waset.org/abstracts/51628/variations-of-the-modal-characteristics-of-the-feeding-stage-with-different-preloaded-linear-guide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1684</span> Modal Density Influence on Modal Complexity Quantification in Dynamic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Iezzi">Fabrizio Iezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Valente"> Claudio Valente</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20mode%20shapes" title="complex mode shapes">complex mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20systems%20identification" title=" dynamic systems identification"> dynamic systems identification</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20density" title=" modal density"> modal density</a>, <a href="https://publications.waset.org/abstracts/search?q=non-proportional%20damping" title=" non-proportional damping"> non-proportional damping</a> </p> <a href="https://publications.waset.org/abstracts/52803/modal-density-influence-on-modal-complexity-quantification-in-dynamic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1683</span> An Alternative Proof for the Topological Entropy of the Motzkin Shift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alsharari">Fahad Alsharari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20Md.%20Noorani"> Mohd Salmi Md. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Motzkin shift is a mathematical model for constraints on genetic sequences. In terms of the theory of symbolic dynamics, the Motzkin shift is nonsofic, and therefore, we cannot use the Perron-Frobenius theory to calculate its topological entropy. The Motzkin shift M(M,N) which comes from language theory, is defined to be the shift system over an alphabet A that consists of N negative symbols, N positive symbols and M neutral symbols. For an x in the full shift AZ, x is in M(M,N) if and only if every finite block appearing in x has a non-zero reduced form. Therefore, the constraint for x cannot be bounded in length. K. Inoue has shown that the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this paper, we find a new method of calculating the topological entropy of the Motzkin shift M(M,N) without any measure theoretical discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Motzkin%20shift" title=" Motzkin shift"> Motzkin shift</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=theory" title=" theory "> theory </a> </p> <a href="https://publications.waset.org/abstracts/21271/an-alternative-proof-for-the-topological-entropy-of-the-motzkin-shift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1682</span> Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doyoung%20Kim">Doyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20assurance%20criterion" title="modal assurance criterion">modal assurance criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shape" title=" mode shape"> mode shape</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20deflection%20shape" title=" operating deflection shape"> operating deflection shape</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/52251/pseudo-modal-operating-deflection-shape-based-estimation-technique-of-mode-shape-using-time-history-modal-assurance-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1681</span> Experimental Modal Analysis of Reinforced Concrete Square Slabs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ahmed">M. S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Mohammad"> F. A. Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title="natural frequencies">natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shapes" title=" mode shapes"> mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20slabs" title=" RC slabs"> RC slabs</a> </p> <a href="https://publications.waset.org/abstracts/16946/experimental-modal-analysis-of-reinforced-concrete-square-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1680</span> A Semantic Analysis of Modal Verbs in Barak Obama’s 2012 Presidential Campaign Speech</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kais%20A.%20Kadhim">Kais A. Kadhim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a semantic analysis of the English modals in Obama’s speech. The main objective of this study is to analyze selected modal auxiliaries identified in selected speeches of Obama’s campaign based on Coates’ (1983) semantic clusters. A total of fifteen speeches of Obama’s campaign were selected as the primary data and the modal auxiliaries selected for analysis include will, would, can, could, should, must, ought, shall, may and might. All the modal auxiliaries taken from the speeches of Barack Obama were analyzed based on the framework of Coates’ semantic clusters. Such analytical framework was carried out to examine how modal auxiliaries are used in the context of persuading people in Obama’s campaign speeches. The findings reveal that modals of intention, prediction, futurity and modals of possibility, ability, permission are mostly used in Obama’s campaign speeches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modals" title="modals">modals</a>, <a href="https://publications.waset.org/abstracts/search?q=meaning" title=" meaning"> meaning</a>, <a href="https://publications.waset.org/abstracts/search?q=persuasion" title=" persuasion"> persuasion</a>, <a href="https://publications.waset.org/abstracts/search?q=speech" title=" speech"> speech</a> </p> <a href="https://publications.waset.org/abstracts/13912/a-semantic-analysis-of-modal-verbs-in-barak-obamas-2012-presidential-campaign-speech" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1679</span> Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20%C5%BBur">Paweł Żur</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicja%20%C5%BBur"> Alicja Żur</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Baier"> Andrzej Baier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20bushing" title=" composite bushing"> composite bushing</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-material" title=" multi-material"> multi-material</a> </p> <a href="https://publications.waset.org/abstracts/168441/numerical-modal-analysis-of-a-multi-material-3d-printed-composite-bushing-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1678</span> Structural Damage Detection Using Sensors Optimally Located</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20Riveros">Carlos Alberto Riveros</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Fabi%C3%A1n%20Garc%C3%ADa"> Edwin Fabián García</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Enrique%20Rivero"> Javier Enrique Rivero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20sensor%20placement" title="optimum sensor placement">optimum sensor placement</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20detection" title=" structural damage detection"> structural damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20identification" title=" modal identification"> modal identification</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-like%20structures." title=" beam-like structures. "> beam-like structures. </a> </p> <a href="https://publications.waset.org/abstracts/15240/structural-damage-detection-using-sensors-optimally-located" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1677</span> Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raad%20Hassan">Ali Raad Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=involute" title="involute">involute</a>, <a href="https://publications.waset.org/abstracts/search?q=trochoid" title=" trochoid"> trochoid</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20shift%20factor" title=" profile shift factor"> profile shift factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/88687/pressure-angle-and-profile-shift-factor-effects-on-the-natural-frequency-of-spur-tooth-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1676</span> Application of Modal Analysis for Commissioning of a Ball Screw System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Tran">T. D. Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Schlegel"> H. Schlegel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Neugebauer"> R. Neugebauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ball screws are an important component in machine tools. In mechatronic systems and machine tools, a ball screw has to work usually at a high speed. Otherwise the axial compliance of the ball screw, in combination with the inertia of the slide, the motor, the coupling and the screw, will cause an oscillation resonance, which limits the systems bandwidth and consequently influences performance of the motion controller. In this paper, the modal analysis method by measuring and analysing the vibrating parameters of the ball screw system to determine the dynamic characteristic of existing structures is used. On the one hand, the results of this study were obtained by the theoretical analysis and the modal testing of a ball screw system test station with the help of an impact hammer, respectively using excitation by motor. The experimental study showed oscillating forms of the ball screw for each frequency and obtained eigenfrequencies of the ball screw system. On the other hand, in this research a simulation with the help of the numerical modal analysis in order to analyse the oscillation and to find the eigenfrequencies of the ball screw system is used. Furthermore, the model order reduction by modal reduction and also according to Guyan is carried out. On the basis of these results a secure and also rapid commissioning of the control loops with regard to operating in their optimal function is targeted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title="modal analysis">modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20screw" title=" ball screw"> ball screw</a>, <a href="https://publications.waset.org/abstracts/search?q=controller%20system" title=" controller system"> controller system</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20tools" title=" machine tools"> machine tools</a> </p> <a href="https://publications.waset.org/abstracts/22744/application-of-modal-analysis-for-commissioning-of-a-ball-screw-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1675</span> Basic Modal Displacements (BMD) for Optimizing the Buildings Subjected to Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Sadegh%20Naseralavi">Seyed Sadegh Naseralavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Khatibinia"> Mohsen Khatibinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structural optimizations through meta-heuristic algorithms, analyses of structures are performed for many times. For this reason, performing the analyses in a time saving way is precious. The importance of the point is more accentuated in time-history analyses which take much time. To this aim, peak picking methods also known as spectrum analyses are generally utilized. However, such methods do not have the required accuracy either done by square root of sum of squares (SRSS) or complete quadratic combination (CQC) rules. The paper presents an efficient technique for evaluating the dynamic responses during the optimization process with high speed and accuracy. In the method, first by using a static equivalent of the earthquake, an initial design is obtained. Then, the displacements in the modal coordinates are achieved. The displacements are herein called basic modal displacements (MBD). For each new design of the structure, the responses can be derived by well scaling each of the MBD along the time and amplitude and superposing them together using the corresponding modal matrices. To illustrate the efficiency of the method, an optimization problems is studied. The results show that the proposed approach is a suitable replacement for the conventional time history and spectrum analyses in such problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20modal%20displacements" title="basic modal displacements">basic modal displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum"> spectrum</a> </p> <a href="https://publications.waset.org/abstracts/29240/basic-modal-displacements-bmd-for-optimizing-the-buildings-subjected-to-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1674</span> Experimental Modal Analysis of Kursuncular Minaret</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunus%20Dere">Yunus Dere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minarets are tower like structures where the call to prayer of Muslims is performed. They have a symbolic meaning and sacred place among Muslims. Being tall and slender, they are prone to damage under earthquakes and strong winds. Kursuncular stone minaret was built around thirty years ago in Konya/TURKEY. Its core and helical stairs are made of reinforced concrete. Its stone spire was damaged during a light earthquake. Its spire is later replaced with a light material covered with lead sheets. In this study, the natural frequencies and mode shapes of Kursuncular minaret is obtained experimentally and analytically. First an ambient vibration test is carried out using a data acquisition system with accelerometers located at four locations along the height of the minaret. The collected vibration data is evaluated by operational modal analysis techniques. For the analytical part of the study, the dimensions of the minaret are accurately measured and a detailed 3D solid finite element model of the minaret is generated. The moduli of elasticity of the stone and concrete are approximated using the compressive strengths obtained by Windsor Pin tests. Finite element modal analysis of the minaret is carried out to get the modal parameters. Experimental and analytical results are then compared and found in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20modal%20analysis" title="experimental modal analysis">experimental modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20minaret" title=" stone minaret"> stone minaret</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modal%20analysis" title=" finite element modal analysis"> finite element modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=minarets" title=" minarets"> minarets</a> </p> <a href="https://publications.waset.org/abstracts/30455/experimental-modal-analysis-of-kursuncular-minaret" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1673</span> Cancellation of Transducer Effects from Frequency Response Functions: Experimental Case Study on the Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zamani">P. Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Taleshi%20Anbouhi"> A. Taleshi Anbouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Ashory"> M. R. Ashory</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohajerzadeh"> S. Mohajerzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Khatibi"> M. M. Khatibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis is a developing science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this paper, eliminating the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect by using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerometer%20mass" title="accelerometer mass">accelerometer mass</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20function" title=" frequency response function"> frequency response function</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/29375/cancellation-of-transducer-effects-from-frequency-response-functions-experimental-case-study-on-the-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1672</span> Modal FDTD Method for Wave Propagation Modeling Customized for Parallel Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Samadiyeh">H. Samadiyeh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khajavi"> R. Khajavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new FD-based procedure, modal finite difference method (MFDM), is proposed for seismic wave propagation modeling, in which simulation is dealt with in the modal space. The method employs eigenvalues of a characteristic matrix formed by appropriate time-space FD stencils. Since MFD runs for different modes are totally independent of each other, MFDM can easily be parallelized while considerable simplicity in parallel-algorithm is also achieved. There is no requirement to any domain-decomposition procedure and inter-core data exchange. More important is the possibility to skip processing of less-significant modes, which enables one to adjust the procedure up to the level of accuracy needed. Thus, in addition to considerable ease of parallel programming, computation and storage costs are significantly reduced. The method is qualified for its efficiency by some numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finite%20Difference%20Method" title="Finite Difference Method">Finite Difference Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Graphics%20Processing%20Unit%20%28GPU%29" title=" Graphics Processing Unit (GPU)"> Graphics Processing Unit (GPU)</a>, <a href="https://publications.waset.org/abstracts/search?q=Message%20Passing%20Interface%20%28MPI%29" title=" Message Passing Interface (MPI)"> Message Passing Interface (MPI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Modal" title=" Modal"> Modal</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20propagation" title=" Wave propagation"> Wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/46212/modal-fdtd-method-for-wave-propagation-modeling-customized-for-parallel-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1671</span> Theoretical Modal Analysis of Freely and Simply Supported RC Slabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ahmed">M. S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Mohammad"> F. A. Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the dynamic behavior of reinforced concrete (RC) slabs. Therefore, the theoretical modal analysis was performed using two different types of boundary conditions. Modal analysis method is the most important dynamic analyses. The analysis would be modal case when there is no external force on the structure. By using this method in this paper, the effects of freely and simply supported boundary conditions on the frequencies and mode shapes of RC square slabs are studied. ANSYS software was employed to derive the finite element model to determine the natural frequencies and mode shapes of the slabs. Then, the obtained results through numerical analysis (finite element analysis) would be compared with an exact solution. The main goal of the research study is to predict how the boundary conditions change the behavior of the slab structures prior to performing experimental modal analysis. Based on the results, it is concluded that simply support boundary condition has obvious influence to increase the natural frequencies and change the shape of mode when it is compared with freely supported boundary condition of slabs. This means that such support conditions have direct influence on the dynamic behavior of the slabs. Thus, it is suggested to use free-free boundary condition in experimental modal analysis to precisely reflect the properties of the structure. By using free-free boundary conditions, the influence of poorly defined supports is interrupted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title="natural frequencies">natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shapes" title=" mode shapes"> mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20software" title=" ANSYS software"> ANSYS software</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20slabs" title=" RC slabs"> RC slabs</a> </p> <a href="https://publications.waset.org/abstracts/17461/theoretical-modal-analysis-of-freely-and-simply-supported-rc-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1670</span> A Simple Approach to Reliability Assessment of Structures via Anomaly Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rims%20Janeliukstis">Rims Janeliukstis</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniss%20Mironovs"> Deniss Mironovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrejs%20Kovalovs"> Andrejs Kovalovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operational%20modal%20analysis" title="operational modal analysis">operational modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title=" reliability assessment"> reliability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=mahalanobis%20squared%20distance" title=" mahalanobis squared distance"> mahalanobis squared distance</a> </p> <a href="https://publications.waset.org/abstracts/148382/a-simple-approach-to-reliability-assessment-of-structures-via-anomaly-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1669</span> Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Guo">N. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Xu"> C. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20C.%20Yang"> Z. C. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20updating" title="model updating">model updating</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20parameter" title=" modal parameter"> modal parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinate%20modal%20assurance%20criterion" title=" coordinate modal assurance criterion"> coordinate modal assurance criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20genetic%2Fpattern%20search" title=" hybrid genetic/pattern search"> hybrid genetic/pattern search</a> </p> <a href="https://publications.waset.org/abstracts/98650/model-updating-based-on-modal-parameters-using-hybrid-pattern-search-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1668</span> Modal Analysis of Power System with a Microgrid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Yildirim">Burak Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhsin%20Tunay%20Gen%C3%A7o%C4%9Flu"> Muhsin Tunay Gençoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A microgrid (MG) is a small power grid composed of localized medium or low level power generation, storage systems, and loads. In this paper, the effects of a MG on power systems voltage stability are shown. The MG model, designed to demonstrate the effects of the MG, was applied to the IEEE 14 bus power system which is widely used in power system stability studies. Eigenvalue and modal analysis methods were used in simulation studies. In the study results, it is seen that MGs affect system voltage stability positively by increasing system voltage instability limit value for buses of a power system in which MG are placed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20analysis" title="eigenvalue analysis">eigenvalue analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20stability" title=" voltage stability"> voltage stability</a> </p> <a href="https://publications.waset.org/abstracts/76026/modal-analysis-of-power-system-with-a-microgrid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1667</span> Intermodal Strategies for Redistribution of Agrifood Products in the EU: The Case of Vegetable Supply Chain from Southeast of Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20P%C3%A9rez-Mesa">Juan C. Pérez-Mesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Galdeano-G%C3%B3mez"> Emilio Galdeano-Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jer%C3%B3nimo%20De%20Burgos-Jim%C3%A9nez"> Jerónimo De Burgos-Jiménez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20F.%20Bienvenido-B%C3%A1rcena"> José F. Bienvenido-Bárcena</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20F.%20Jim%C3%A9nez-Guerrero"> José F. Jiménez-Guerrero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental cost and transport congestion on roads resulting from product distribution in Europe have to lead to the creation of various programs and studies seeking to reduce these negative impacts. In this regard, apart from other institutions, the European Commission (EC) has designed plans in recent years promoting a more sustainable transportation model in an attempt to ultimately shift traffic from the road to the sea by using intermodality to achieve a model rebalancing. This issue proves especially relevant in supply chains from peripheral areas of the continent, where the supply of certain agrifood products is high. In such cases, the most difficult challenge is managing perishable goods. This study focuses on new approaches that strengthen the modal shift, as well as the reduction of externalities. This problem is analyzed by attempting to promote intermodal system (truck and short sea shipping) for transport, taking as point of reference highly perishable products (vegetables) exported from southeast Spain, which is the leading supplier to Europe. Methodologically, this paper seeks to contribute to the literature by proposing a different and complementary approach to establish a comparison between intermodal and the “only road” alternative. For this purpose, the multicriteria decision is utilized in a p-median model (P-M) adapted to the transport of perishables and to a means of shipping selection problem, which must consider different variables: transit cost, including externalities, time, and frequency (including agile response time). This scheme avoids bias in decision-making processes. By observing the results, it can be seen that the influence of the externalities as drivers of the modal shift is reduced when transit time is introduced as a decision variable. These findings confirm that the general strategies, those of the EC, based on environmental benefits lose their capacity for implementation when they are applied to complex circumstances. In general, the different estimations reveal that, in the case of perishables, intermodality would be a secondary and viable option only for very specific destinations (for example, Hamburg and nearby locations, the area of influence of London, Paris, and the Netherlands). Based on this framework, the general outlook on this subject should be modified. Perhaps the government should promote specific business strategies based on new trends in the supply chain, not only on the reduction of externalities, and find new approaches that strengthen the modal shift. A possible option is to redefine ports, conceptualizing them as digitalized redistribution and coordination centers and not only as areas of cargo exchange. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20externalities" title="environmental externalities">environmental externalities</a>, <a href="https://publications.waset.org/abstracts/search?q=intermodal%20transport" title=" intermodal transport"> intermodal transport</a>, <a href="https://publications.waset.org/abstracts/search?q=perishable%20food" title=" perishable food"> perishable food</a>, <a href="https://publications.waset.org/abstracts/search?q=transit%20time" title=" transit time"> transit time</a> </p> <a href="https://publications.waset.org/abstracts/148707/intermodal-strategies-for-redistribution-of-agrifood-products-in-the-eu-the-case-of-vegetable-supply-chain-from-southeast-of-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1666</span> Damage Identification Using Experimental Modal Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niladri%20Sekhar%20Barma">Niladri Sekhar Barma</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Dhandole"> Satish Dhandole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20identification" title="damage identification">damage identification</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20quantification" title=" damage quantification"> damage quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection%20using%20modal%20analysis" title=" damage detection using modal analysis"> damage detection using modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20identification" title=" structural damage identification"> structural damage identification</a> </p> <a href="https://publications.waset.org/abstracts/150078/damage-identification-using-experimental-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1665</span> The Use of Corpora in Improving Modal Verb Treatment in English as Foreign Language Textbooks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lexi%20Li">Lexi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20H.%20K.%20Pang"> Vanessa H. K. Pang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to demonstrate how native and learner corpora can be used to enhance modal verb treatment in EFL textbooks in mainland China. It contributes to a corpus-informed and learner-centered design of grammar presentation in EFL textbooks that enhances the authenticity and appropriateness of textbook language for target learners. The linguistic focus is will, would, can, could, may, might, shall, should, must. The native corpus is the spoken component of BNC2014 (hereafter BNCS2014). The spoken part is chosen because pedagogical purpose of the textbooks is communication-oriented. Using the standard query option of CQPweb, 5% of each of the nine modals was sampled from BNCS2014. The learner corpus is the POS-tagged Ten-thousand English Compositions of Chinese Learners (TECCL). All the essays under the 'secondary school' section were selected. A series of five secondary coursebooks comprise the textbook corpus. All the data in both the learner and the textbook corpora are retrieved through the concordance functions of WordSmith Tools (version, 5.0). Data analysis was divided into two parts. The first part compared the patterns of modal verbs in the textbook corpus and BNC2014 with respect to distributional features, semantic functions, and co-occurring constructions to examine whether the textbooks reflect the authentic use of English. Secondly, the learner corpus was analyzed in terms of the use (distributional features, semantic functions, and co-occurring constructions) and the misuse (syntactic errors, e.g., she can sings*.) of the nine modal verbs to uncover potential difficulties that confront learners. The analysis of distribution indicates several discrepancies between the textbook corpus and BNCS2014. The first four most frequent modal verbs in BNCS2014 are can, would, will, could, while can, will, should, could are the top four in the textbooks. Most strikingly, there is an unusually high proportion of can (41.1%) in the textbooks. The results on different meanings shows that will, would and must are the most problematic. For example, for will, the textbooks contain 20% more occurrences of 'volition' and 20% less of 'prediction' than those in BNCS2014. Regarding co-occurring structures, the textbooks over-represented the structure 'modal +do' across the nine modal verbs. Another major finding is that the structure of 'modal +have done' that frequently co-occur with could, would, should, and must is underused in textbooks. Besides, these four modal verbs are the most difficult for learners, as the error analysis shows. This study demonstrates how the synergy of native and learner corpora can be harnessed to improve EFL textbook presentation of modal verbs in a way that textbooks can provide not only authentic language used in natural discourse but also appropriate design tailed for the needs of target learners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=English%20as%20Foreign%20Language" title="English as Foreign Language">English as Foreign Language</a>, <a href="https://publications.waset.org/abstracts/search?q=EFL%20textbooks" title=" EFL textbooks"> EFL textbooks</a>, <a href="https://publications.waset.org/abstracts/search?q=learner%20corpus" title=" learner corpus"> learner corpus</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20verbs" title=" modal verbs"> modal verbs</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20corpus" title=" native corpus"> native corpus</a> </p> <a href="https://publications.waset.org/abstracts/109495/the-use-of-corpora-in-improving-modal-verb-treatment-in-english-as-foreign-language-textbooks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1664</span> Modal Analysis of Small Frames using High Order Timoshenko Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chadi%20Azoury">Chadi Azoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Assad%20Kallassy"> Assad Kallassy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Rahme"> Pierre Rahme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the modal analysis of small frames. Firstly, we construct the 3D model using H8 elements and find the natural frequencies of the frame focusing our attention on the modes in the XY plane. Secondly, we construct the 2D model (plane stress model) using Q4 elements. We concluded that the results of both models are very close to each other’s. Then we formulate the stiffness matrix and the mass matrix of the 3-noded Timoshenko beam that is well suited for thick and short beams like in our case. Finally, we model the corners where the horizontal and vertical bar meet with a special matrix. The results of our new model (3-noded Timoshenko beam for the horizontal and vertical bars and a special element for the corners based on the Q4 elements) are very satisfying when performing the modal analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corner%20element" title="corner element">corner element</a>, <a href="https://publications.waset.org/abstracts/search?q=high-order%20Timoshenko%20beam" title=" high-order Timoshenko beam"> high-order Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Guyan%20reduction" title=" Guyan reduction"> Guyan reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis%20of%20frames" title=" modal analysis of frames"> modal analysis of frames</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20link" title="rigid link">rigid link</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20locking" title=" shear locking"> shear locking</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20short%20beams" title=" and short beams"> and short beams</a> </p> <a href="https://publications.waset.org/abstracts/24752/modal-analysis-of-small-frames-using-high-order-timoshenko-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1663</span> 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Suk%20Oh">Sung-Suk Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Keun%20Kang"> Bong-Keun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Park"> Sang-Wook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Jin%20Joo"> Hui-Jin Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Ryul%20Choi"> Jong-Ryul Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jun%20Lee"> Seong-Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Woo%20Sohn"> Jeong-Woo Sohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging%20phantom" title="imaging phantom">imaging phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%20%28Magnetic%20Resonance%20Imaging%29" title=" MRI (Magnetic Resonance Imaging)"> MRI (Magnetic Resonance Imaging)</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%20%2F%20CT%20%28Positron%20Emission%20Tomography%20%2F%20Computed%20Tomography%29" title=" PET / CT (Positron Emission Tomography / Computed Tomography)"> PET / CT (Positron Emission Tomography / Computed Tomography)</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing "> 3D printing </a> </p> <a href="https://publications.waset.org/abstracts/62972/3d-printed-multi-modal-phantom-using-computed-tomography-and-3d-x-ray-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1662</span> The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Raki">Morteza Raki</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Zabihollah"> Abolghasem Zabihollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Askari"> Omid Askari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/48812/the-cracks-propagation-monitoring-of-a-cantilever-beam-using-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1661</span> Damage Identification in Reinforced Concrete Beams Using Modal Parameters and Their Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al-Ghalib">Ali Al-Ghalib</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Mohammad"> Fouad Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification of damage in reinforced concrete structures subjected to incremental cracking performance exploiting vibration data is recognized as a challenging topic in the published and heavily cited literature. Therefore, this paper attempts to shine light on the extent of dynamic methods when applied to reinforced concrete beams simulated with various scenarios of defects. For this purpose, three different reinforced concrete beams are tested through the course of the study. The three beams are loaded statically to failure in incremental successive load cycles and later rehabilitated. After each static load stage, the beams are tested under free-free support condition using experimental modal analysis. The beams were all of the same length and cross-sectional area (2.0x0.14x0.09)m, but they were different in concrete compressive strength and the type of damage presented. The experimental modal parameters as damage identification parameters were showed computationally expensive, time consuming and require substantial inputs and considerable expertise. Nonetheless, they were proved plausible for the condition monitoring of the current case study as well as structural changes in the course of progressive loads. It was accentuated that a satisfactory localization and quantification for structural changes (Level 2 and Level 3 of damage identification problem) can only be achieved reasonably through considering frequencies and mode shapes of a system in a proper analytical model. A convenient post analysis process for various datasets of vibration measurements for the three beams is conducted in order to extract, check and correlate the basic modal parameters; namely, natural frequency, modal damping and mode shapes. The results of the extracted modal parameters and their combination are utilized and discussed in this research as quantification parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20modal%20analysis" title="experimental modal analysis">experimental modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20identification" title=" damage identification"> damage identification</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a> </p> <a href="https://publications.waset.org/abstracts/59519/damage-identification-in-reinforced-concrete-beams-using-modal-parameters-and-their-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=56">56</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=57">57</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modal%20shift&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>