CINXE.COM
Search results for: annual average daily traffic
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: annual average daily traffic</title> <meta name="description" content="Search results for: annual average daily traffic"> <meta name="keywords" content="annual average daily traffic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="annual average daily traffic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="annual average daily traffic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8763</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: annual average daily traffic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8763</span> Development of K-Factor for Road Geometric Design: A Case Study of North Coast Road in Java </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Hidayat">Edwin Hidayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Redi%20Yulianto"> Redi Yulianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Disi%20Hanafiah"> Disi Hanafiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the one hand, parameters which are used for determining the number of lane on the new road construction are average annual average daily traffic (AADT) and peak hour factor (K-factor). On the other hand, the value of K-factor listed in the guidelines and manual for road planning in Indonesia is a value of adoption or adaptation from foreign guidelines or manuals. Thus, the value is less suitable for Indonesian condition due to differences in road conditions, vehicle type, and driving behavior. The purpose of this study is to provide an example on how to determine k-factor values at a road segment with particular conditions in north coast road, West Java. The methodology is started with collecting traffic volume data for 24 hours over 365 days using PLATO (Automated Traffic Counter) with the approach of video image processing. Then, the traffic volume data is divided into per hour and analyzed by comparing the peak traffic volume in the 30th hour (or other) with the AADT in the same year. The analysis has resulted that for the 30th peak hour the K-factor is 0.97. This value can be used for planning road geometry or evaluating the road capacity performance for the 4/2D interurban road. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20geometry" title="road geometry">road geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=K-factor" title=" K-factor"> K-factor</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic" title=" annual average daily traffic"> annual average daily traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=north%20coast%20road" title=" north coast road"> north coast road</a> </p> <a href="https://publications.waset.org/abstracts/95926/development-of-k-factor-for-road-geometric-design-a-case-study-of-north-coast-road-in-java" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8762</span> Identifying and Quantifying Factors Affecting Traffic Crash Severity under Heterogeneous Traffic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Vayalamkuzhi">Praveen Vayalamkuzhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Veeraragavan%20Amirthalingam"> Veeraragavan Amirthalingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on safety on highways are becoming the need of the hour as over 400 lives are lost every day in India due to road crashes. In order to evaluate the factors that lead to different levels of crash severity, it is necessary to investigate the level of safety of highways and their relation to crashes. In the present study, an attempt is made to identify the factors that contribute to road crashes and to quantify their effect on the severity of road crashes. The study was carried out on a four-lane divided rural highway in India. The variables considered in the analysis includes components of horizontal alignment of highway, viz., straight or curve section; time of day, driveway density, presence of median; median opening; gradient; operating speed; and annual average daily traffic. These variables were considered after a preliminary analysis. The major complexities in the study are the heterogeneous traffic and the speed variation between different classes of vehicles along the highway. To quantify the impact of each of these factors, statistical analyses were carried out using Logit model and also negative binomial regression. The output from the statistical models proved that the variables viz., horizontal components of the highway alignment; driveway density; time of day; operating speed as well as annual average daily traffic show significant relation with the severity of crashes viz., fatal as well as injury crashes. Further, the annual average daily traffic has significant effect on the severity compared to other variables. The contribution of highway horizontal components on crash severity is also significant. Logit models can predict crashes better than the negative binomial regression models. The results of the study will help the transport planners to look into these aspects at the planning stage itself in the case of highways operated under heterogeneous traffic flow condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20design" title="geometric design">geometric design</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20traffic" title=" heterogeneous traffic"> heterogeneous traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20crash" title=" road crash"> road crash</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20of%20safety" title=" level of safety"> level of safety</a> </p> <a href="https://publications.waset.org/abstracts/64524/identifying-and-quantifying-factors-affecting-traffic-crash-severity-under-heterogeneous-traffic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8761</span> Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyoung%20Kim">Seyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeongmin%20Kim"> Jeongmin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Ryel%20Ryu"> Kwang Ryel Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (<em>k</em>-NN) as predictive models is that it does not require any explicit model building. Instead, <em>k</em>-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up <em>k</em>-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different <em>k</em>-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=k-NN" title=" k-NN"> k-NN</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20speed%20prediction" title=" traffic speed prediction"> traffic speed prediction</a> </p> <a href="https://publications.waset.org/abstracts/43415/comparison-of-different-k-nn-models-for-speed-prediction-in-an-urban-traffic-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8760</span> Pavement Management for a Metropolitan Area: A Case Study of Montreal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Amador%20Jimenez">Luis Amador Jimenez</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shohel%20Amin"> Md. Shohel Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pavement%20management%20system" title="pavement management system">pavement management system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=backpropagation%20neural%20network" title=" backpropagation neural network"> backpropagation neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20modeling" title=" performance modeling"> performance modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20errors" title=" measurement errors"> measurement errors</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20optimization" title=" lifecycle optimization"> lifecycle optimization</a> </p> <a href="https://publications.waset.org/abstracts/35595/pavement-management-for-a-metropolitan-area-a-case-study-of-montreal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8759</span> Rainfall Analysis in the Contest of Climate Change for Jeddah Area, Western Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Subyani">Ali M. Subyani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in the greenhouse gas emission has had a severe impact on global climate change and is bound to affect the weather patterns worldwide. This climate change impacts are among the future significant effects on any society. Rainfall levels are drastically increasing with flash floods in some places and long periods of droughts in others, especially in arid regions. These extreme events are causes of interactions concerning environmental, socio-economic and cultural life and their implementation. This paper presents the detailed features of dry and wet spell durations and rainfall intensity series available (1971-2012) on daily basis for the Jeddah area, Western, Saudi Arabia. It also presents significant articles for combating the climate change impacts on this area. Results show trend changes in dry and wet spell durations and rainfall amount on daily, monthly and annual time series. Three rain seasons were proposed in this investigation: high rain, low rain, and dry seasons. It shows that the overall average dry spell durations is about 80 continuous days while the average wet spell durations is 1.39 days with an average rainfall intensity of 8.2 mm/day. Annual and seasonal autorun analyses confirm that the rainy seasons are tending to have more intense rainfall while the seasons are becoming drier. This study would help decision makers in future for water resources management and flood risk analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20rainfall" title=" daily rainfall"> daily rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20and%20wet%20spill" title=" dry and wet spill"> dry and wet spill</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeddah" title=" Jeddah"> Jeddah</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia "> Saudi Arabia </a> </p> <a href="https://publications.waset.org/abstracts/29032/rainfall-analysis-in-the-contest-of-climate-change-for-jeddah-area-western-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8758</span> Traffic Accident Risk Assessment on National Roads: A Case Study in East Aceh Regency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muksalmina">Muksalmina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation plays an important role in people's daily activities but is often marred by traffic accidents. In Indonesia, traffic accidents are the third leading cause of death after coronary heart disease and tuberculosis, according to the World Health Organization (2013). Several roads in East Aceh District are strategic access points for economic growth in the Aceh region. There were 446 traffic accidents in 2023, which is the highest case in the last five years. This study aims to analyze black spot locations on national roads in East Aceh District and evaluate road safety deficiencies in the area. The research methodology began by selecting the locations with the highest accident rates based on data from East Aceh Police from 2019-2023. Next, Average Daily Traffic (ADT) was measured by projecting population growth data. The analysis of road safety deficiencies included measurements of road geometrics, traffic signs and markings, and traffic volumes at black spot locations. The study results showed deficiencies in lane width, shoulder width, and inadequate road safety facilities at several locations. Recommendations for improvements include increasing lane and shoulder widths and adding signs and markings to improve safety. This study is expected to serve as a reference for the government and relevant stakeholders in improving traffic safety in East Aceh District. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20spot" title="black spot">black spot</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20accident" title=" traffic accident"> traffic accident</a>, <a href="https://publications.waset.org/abstracts/search?q=severity%20index" title=" severity index"> severity index</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title=" road safety"> road safety</a> </p> <a href="https://publications.waset.org/abstracts/188391/traffic-accident-risk-assessment-on-national-roads-a-case-study-in-east-aceh-regency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8757</span> Vehicle Activity Characterization Approach to Quantify On-Road Mobile Source Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Abou-Senna">Hatem Abou-Senna</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Radwan"> Essam Radwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. Other methods provided better accuracy utilizing annual average estimates. Travel demand models provided an intermediate level of detail through average daily volumes. Currently, higher accuracy can be established utilizing microscopic analyses by splitting the network links into sub-links and utilizing second-by-second trajectories to calculate emissions. The need to accurately quantify transportation-related emissions from vehicles is essential. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited access highway in Orlando, Florida. First, (at the most basic level), emissions were estimated for the entire 10-mile section 'by hand' using one average traffic volume and average speed. Then, three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NOx, PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limited%20access%20highways" title="limited access highways">limited access highways</a>, <a href="https://publications.waset.org/abstracts/search?q=MOVES" title=" MOVES"> MOVES</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20mode%20distribution%20%28OPMODE%29" title=" operating mode distribution (OPMODE)"> operating mode distribution (OPMODE)</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20emissions" title=" transportation emissions"> transportation emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20specific%20power%20%28VSP%29" title=" vehicle specific power (VSP)"> vehicle specific power (VSP)</a> </p> <a href="https://publications.waset.org/abstracts/34796/vehicle-activity-characterization-approach-to-quantify-on-road-mobile-source-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8756</span> Groundwater Recharge Estimation of Fetam Catchment in Upper Blue Nile Basin North-Western Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekonen%20G.">Mekonen G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sileshi%20M."> Sileshi M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Melkamu%20M."> Melkamu M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recharge estimation is important for the assessment and management of groundwater resources effectively. This study applied the soil moisture balance and Baseflow separation methods to estimate groundwater recharge in the Fetam Catchment. It is one of the major catchments understudied from the different catchments in the upper Blue Nile River basin. Surface water has been subjected to high seasonal variation; due to this, groundwater is a primary option for drinking water supply to the community. This research has been conducted to estimate groundwater recharge by using fifteen years of River flow data for the Baseflow separation and ten years of daily meteorological data for the daily soil moisture balance recharge estimating method. The recharge rate by the two methods is 170.5 and 244.9mm/year daily soil moisture and baseflow separation method, respectively, and the average recharge is 207.7mm/year. The average value of annual recharge in the catchment is almost equal to the average recharge in the country, which is 200mm/year. So, each method has its own limitations, and taking the average value is preferable rather than taking a single value. Baseflow provides overestimated result compared to the average of the two, and soil moisture balance is the list estimator. The recharge estimation in the area also should be done by other recharge estimation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge" title=" recharge"> recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=baseflow%20separation" title=" baseflow separation"> baseflow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20balance" title=" soil moisture balance"> soil moisture balance</a>, <a href="https://publications.waset.org/abstracts/search?q=Fetam%20catchment" title=" Fetam catchment"> Fetam catchment</a> </p> <a href="https://publications.waset.org/abstracts/162990/groundwater-recharge-estimation-of-fetam-catchment-in-upper-blue-nile-basin-north-western-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8755</span> Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulraaof%20H.%20Alqaili">Abdulraaof H. Alqaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanistic-empirical%20pavement%20design%20guide%20%28MEPDG%29" title="mechanistic-empirical pavement design guide (MEPDG)">mechanistic-empirical pavement design guide (MEPDG)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20characteristics" title=" traffic characteristics"> traffic characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20properties" title=" materials properties"> materials properties</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=Riyadh" title=" Riyadh"> Riyadh</a> </p> <a href="https://publications.waset.org/abstracts/63089/preparing-data-for-calibration-of-mechanistic-empirical-pavement-design-guide-in-central-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8754</span> Identify the Traffic Safety Needs among Risky Groups in Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aodai%20Abdul-Illah%20Ismail">Aodai Abdul-Illah Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though the dramatic progress that has been made in traffic safety, but still millions of peoples get killed or injured as a result of traffic crashes, besides the huge amount of economic losses due to these crashes. So traffic safety continues to be one of the most important serious issues worldwide, and it affects everyone who uses the road network system, whether you drive, walk, cycle, or push a pram. One of the most important sides that offers promise for further progress in relation to traffic safety is related to risky groups (special population groups) who may have higher potential to be involved in accidents. Traffic safety needs of risky groups are different from each other and also from the average population. Due to the various limitations between these special groups from each other and from the average population, it is not possible to address all the issues –at the same time- raising the importance ranking among the other safety issues. This paper explains a procedure used to identify the most critical traffic safety issues of five risky groups, which include younger, older and female drivers, people with disabilities and school aged children. Multi criteria used in selecting the critical issues because the single criteria is not sufficient. Highway safety professionals were surveyed to obtain the ranking of importance among the risky groups and then to develop the final ranking among issues by applying weight for each of the criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title="traffic safety">traffic safety</a>, <a href="https://publications.waset.org/abstracts/search?q=risky%20groups" title=" risky groups"> risky groups</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20drivers" title=" old drivers"> old drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20drivers" title=" young drivers"> young drivers</a> </p> <a href="https://publications.waset.org/abstracts/32880/identify-the-traffic-safety-needs-among-risky-groups-in-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8753</span> Applying Pre-Accident Observational Methods for Accident Assessment and Prediction at Intersections in Norrkoping City in Sweden</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazwan%20Al-Haji">Ghazwan Al-Haji</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeyemi%20Adedokun"> Adeyemi Adedokun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic safety at intersections is highly represented, given the fact that accidents occur randomly in time and space. It is necessary to judge whether the intersection is dangerous or not based on short-term observations, and not waiting for many years of assessing historical accident data. There are active and pro-active road infrastructure safety methods for assessing safety at intersections. This study aims to investigate the use of quantitative and qualitative pre-observational methods as the best practice for accident prediction, future black spot identification, and treatment. Historical accident data from STRADA (the Swedish Traffic Accident Data Acquisition) was used within Norrkoping city in Sweden. The ADT (Average Daily Traffic), capacity and speed were used to predict accident rates. Locations with the highest accident records and predicted accident counts were identified and hence audited qualitatively by using Street Audit. The results from these quantitative and qualitative methods were analyzed, validated and compared. The paper provides recommendations on the used methods as well as on how to reduce the accident occurrence at the chosen intersections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intersections" title="intersections">intersections</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20conflict" title=" traffic conflict"> traffic conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title=" traffic safety"> traffic safety</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20audit" title=" street audit"> street audit</a>, <a href="https://publications.waset.org/abstracts/search?q=accidents%20predictions" title=" accidents predictions"> accidents predictions</a> </p> <a href="https://publications.waset.org/abstracts/75125/applying-pre-accident-observational-methods-for-accident-assessment-and-prediction-at-intersections-in-norrkoping-city-in-sweden" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8752</span> A Hybrid Traffic Model for Smoothing Traffic Near Merges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiri%20Elisheva%20Decktor">Shiri Elisheva Decktor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Hornstein"> Sharon Hornstein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=highway%20merges" title="highway merges">highway merges</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20modeling" title="traffic modeling">traffic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SUMO" title=" SUMO"> SUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20policy" title=" driving policy"> driving policy</a> </p> <a href="https://publications.waset.org/abstracts/154241/a-hybrid-traffic-model-for-smoothing-traffic-near-merges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8751</span> Artificial Neural Network and Statistical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Berhanu%20Bekele">Tomas Berhanu Bekele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20system%20%28ITS%29" title="intelligent transport system (ITS)">intelligent transport system (ITS)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20prediction" title=" traffic flow prediction"> traffic flow prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title=" artificial neural network (ANN)"> artificial neural network (ANN)</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a> </p> <a href="https://publications.waset.org/abstracts/183194/artificial-neural-network-and-statistical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8750</span> Using Traffic Micro-Simulation to Assess the Benefits of Accelerated Pavement Construction for Reducing Traffic Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudipta%20Ghorai">Sudipta Ghorai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ossama%20Salem"> Ossama Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement maintenance, repair, and rehabilitation (MRR) processes may have considerable environmental impacts due to traffic disruptions associated with work zones. The simulation models in use to predict the emission of work zones were mostly static emission factor models (SEFD). SEFD calculates emissions based on average operation conditions e.g. average speed and type of vehicles. Although these models produce accurate results for large-scale planning studies, they are not suitable for analyzing driving conditions at the micro level such as acceleration, deceleration, idling, cruising, and queuing in a work zone. The purpose of this study is to prepare a comprehensive work zone environmental assessment (WEA) framework to calculate the emissions caused due to disrupted traffic; by integrating traffic microsimulation tools with emission models. This will help highway officials to assess the benefits of accelerated construction and opt for the most suitable TMP not only economically but also from an environmental point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20construction" title="accelerated construction">accelerated construction</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20MRR" title=" pavement MRR"> pavement MRR</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20microsimulation" title=" traffic microsimulation"> traffic microsimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=congestion" title=" congestion"> congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions "> emissions </a> </p> <a href="https://publications.waset.org/abstracts/19803/using-traffic-micro-simulation-to-assess-the-benefits-of-accelerated-pavement-construction-for-reducing-traffic-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8749</span> Assessment of the Egyptian Agricultural Foreign Trade with Common Market for Eastern and Southern Africa Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doaa%20H.%20I.%20Mahmoud">Doaa H. I. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Said%20M.%20Elsharkawy"> El-Said M. Elsharkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Z.%20Soliman"> Saad Z. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Soher%20E.%20Mustfa"> Soher E. Mustfa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The opening of new promising foreign markets is one of the objectives of Egypt’s foreign trade policies, especially for agricultural exports. This study aims at the examination of the commodity structure of the Egyptian agricultural imports and exports with the COMESA countries. In addition, estimation of the surplus/deficit of the Egyptian commodities and agricultural balance with these countries is made. Time series data covering the period 2004-2016 is used. Estimation of the growth function along with the derivation of the annual growth rates of the study’s variables is made. Some of the results of the study period display the following: (1) The average total Egyptian exports to the COMESA (Common Market for Eastern and Southern Africa) countries is estimated at 1,491 million dollars, with an annual growth rate of 14.4% (214.7 million dollars). (2) The average annual Egyptian agricultural exports to these economies is estimated at 555 million dollars, with an annual growth rate of 19.4% (107.7 million dollars). (3) The average annual value of agricultural imports from the COMESA countries is set at 289 Million Dollars, with an annual growth rate of 14.4% (41.6 million dollars). (4) The study shows that there is a continuous surplus in the agricultural balance with these economies, whilst having a deficit in the raw-materials agricultural balance, as well as the balance of input requirements with these countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COMESA" title="COMESA">COMESA</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20rates" title=" growth rates"> growth rates</a>, <a href="https://publications.waset.org/abstracts/search?q=trade%20balance" title=" trade balance"> trade balance</a> </p> <a href="https://publications.waset.org/abstracts/91811/assessment-of-the-egyptian-agricultural-foreign-trade-with-common-market-for-eastern-and-southern-africa-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8748</span> Relation Between Traffic Mix and Traffic Accidents in a Mixed Industrial Urban Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Eliane%20Hern%C3%A1ndez-Garc%C3%ADa">Michelle Eliane Hernández-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Lozano"> Angélica Lozano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traffic accidents study usually contemplates the relation between factors such as the type of vehicle, its operation, and the road infrastructure. Traffic accidents can be explained by different factors, which have a greater or lower relevance. Two zones are studied, a mixed industrial zone and the extended zone of it. The first zone has mainly residential (57%), and industrial (23%) land uses. Trucks are mainly on the roads where industries are located. Four sensors give information about traffic and speed on the main roads. The extended zone (which includes the first zone) has mainly residential (47%) and mixed residential (43%) land use, and just 3% of industrial use. The traffic mix is composed mainly of non-trucks. 39 traffic and speed sensors are located on main roads. The traffic mix in a mixed land use zone, could be related to traffic accidents. To understand this relation, it is required to identify the elements of the traffic mix which are linked to traffic accidents. Models that attempt to explain what factors are related to traffic accidents have faced multiple methodological problems for obtaining robust databases. Poisson regression models are used to explain the accidents. The objective of the Poisson analysis is to estimate a vector to provide an estimate of the natural logarithm of the mean number of accidents per period; this estimate is achieved by standard maximum likelihood procedures. For the estimation of the relation between traffic accidents and the traffic mix, the database is integrated of eight variables, with 17,520 observations and six vectors. In the model, the dependent variable is the occurrence or non-occurrence of accidents, and the vectors that seek to explain it, correspond to the vehicle classes: C1, C2, C3, C4, C5, and C6, respectively, standing for car, microbus, and van, bus, unitary trucks (2 to 6 axles), articulated trucks (3 to 6 axles) and bi-articulated trucks (5 to 9 axles); in addition, there is a vector for the average speed of the traffic mix. A Poisson model is applied, using a logarithmic link function and a Poisson family. For the first zone, the Poisson model shows a positive relation among traffic accidents and C6, average speed, C3, C2, and C1 (in a decreasing order). The analysis of the coefficient shows a high relation with bi-articulated truck and bus (C6 and the C3), indicating an important participation of freight trucks. For the expanded zone, the Poisson model shows a positive relation among traffic accidents and speed average, biarticulated truck (C6), and microbus and vans (C2). The coefficients obtained in both Poisson models shows a higher relation among freight trucks and traffic accidents in the first industrial zone than in the expanded zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freight%20transport" title="freight transport">freight transport</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20zone" title=" industrial zone"> industrial zone</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20accidents" title=" traffic accidents"> traffic accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20mix" title=" traffic mix"> traffic mix</a>, <a href="https://publications.waset.org/abstracts/search?q=trucks" title=" trucks"> trucks</a> </p> <a href="https://publications.waset.org/abstracts/147496/relation-between-traffic-mix-and-traffic-accidents-in-a-mixed-industrial-urban-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8747</span> Corporate Governance and Corporate Sustainability: Evidence from a Developing Country</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edmund%20Gyimah">Edmund Gyimah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using data from 146 annual reports of listed firms in Ghana for the period 2013-2020, this study presents indicative findings which inspire practical actions and future research. Firms which prepared and presented sustainability reports were excluded from this study for a coverage of corporate sustainability disclosures centred on annual reports. Also, corporate sustainability disclosures of the firms on corporate websites were not included in the study considering the tendency of updates which cannot easily be traced. The corporate sustainability disclosures in the annual reports since the commencement of the G4 Guidelines in 2013 have been below average for all the dimensions of sustainability and the general sustainability disclosures. Few traditional elements of the board composition such as board size and board independence could affect the corporate sustainability disclosures in the annual reports as well as the age of the firm, firm size, and industry classification of the firm. Sustainability disclosures are greater in sustainability reports than in annual reports, however, firms without sustainability reports should have a considerable amount of sustainability disclosures in their annual reports. Also, because of the essence of sustainability, this study suggests to firms to have sustainability committee perhaps, they could make a difference in disclosing the enough sustainability information even when they do not present sustainability information in stand-alone reports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disclosures" title="disclosures">disclosures</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=board" title=" board"> board</a>, <a href="https://publications.waset.org/abstracts/search?q=reports" title=" reports"> reports</a> </p> <a href="https://publications.waset.org/abstracts/148733/corporate-governance-and-corporate-sustainability-evidence-from-a-developing-country" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8746</span> Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Rashid%20Sarand">Hamed Rashid Sarand</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Sel%C3%A7uk%20%C3%96%C4%9F%C3%BCt"> Kemal Selçuk Öğüt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20speed%20difference" title="maximum speed difference">maximum speed difference</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20traffic%20microwave%20sensor" title=" remote traffic microwave sensor"> remote traffic microwave sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20differentiation" title=" speed differentiation"> speed differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow "> traffic flow </a> </p> <a href="https://publications.waset.org/abstracts/36794/empirical-investigations-on-speed-differentiations-of-traffic-flow-a-case-study-on-a-basic-freeway-segment-of-o-2-in-istanbul" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8745</span> Heavy Vehicle Traffic Estimation Using Automatic Traffic Recorders/Weigh-In-Motion Data: Current Practice and Proposed Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faizan%20Rehman%20Qureshi">Muhammad Faizan Rehman Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Kaisy"> Ahmed Al-Kaisy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate estimation of traffic loads is critical for pavement and bridge design, among other transportation applications. Given the disproportional impact of heavier axle loads on pavement and bridge structures, truck and heavy vehicle traffic is expected to be a major determinant of traffic load estimation. Further, heavy vehicle traffic is also a major input in transportation planning and economic studies. The traditional method for estimating heavy vehicle traffic primarily relies on AADT estimation using Monthly Day of the Week (MDOW) adjustment factors as well as the percent heavy vehicles observed using statewide data collection programs. The MDOW factors are developed using daily and seasonal (or monthly) variation patterns for total traffic, consisting predominantly of passenger cars and other smaller vehicles. Therefore, while using these factors may yield reasonable estimates for total traffic (AADT), such estimates may involve a great deal of approximation when applied to heavy vehicle traffic. This research aims at assessing the approximation involved in estimating heavy vehicle traffic using MDOW adjustment factors for total traffic (conventional approach) along with three other methods of using MDOW adjustment factors for total trucks (class 5-13), combination-unit trucks (class 8-13), as well as adjustment factors for each vehicle class separately. Results clearly indicate that the conventional method was outperformed by the other three methods by a large margin. Further, using the most detailed and data intensive method (class-specific adjustment factors) does not necessarily yield a more accurate estimation of heavy vehicle traffic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20loads" title="traffic loads">traffic loads</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicles" title=" heavy vehicles"> heavy vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20traffic" title=" truck traffic"> truck traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=adjustment%20factors" title=" adjustment factors"> adjustment factors</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20data%20collection" title=" traffic data collection"> traffic data collection</a> </p> <a href="https://publications.waset.org/abstracts/192471/heavy-vehicle-traffic-estimation-using-automatic-traffic-recordersweigh-in-motion-data-current-practice-and-proposed-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8744</span> Seasonal Variation of the Unattached Fraction and Equilibrium Factor of ²²²Rn, ²²⁰Rn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Jakhu">Rajan Jakhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Mehra"> Rohit Mehra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radon (²²²Rn) and its decay products are the major sources of natural radiation exposure to general population. The activity concentrations of radon, thoron gasses, and their unattached and attached short-lived progeny in indoor environment of the Jaipur and Ajmer districts of Rajasthan had been calculated via passive measurements using the Pinhole cup dosimeter, deposition based progeny sensors (DRPS/DTPS) and wire mesh capped (DRPS/DTPS) progeny sensors. The results of this study revealed that radon and thoron concentrations (CRn, CTn) are highest in the winter season. The variation of the radon and its decay products are observed to vary seasonally, but these environmental parameters seem not to be affecting the thoron and its decay product concentrations in a regular manner. The average values of the radon and its decay products are maximum in winter and minimum in summer. The equilibrium factor for radon is observed to be 0.50, 0.47 and 0.49 in winter, rainy and summer seasons. The annual average value of the unattached fraction of the radon progeny comes out to be 0.34. On the other hand, the average value of thoron (²²⁰Rn) concentration and its equilibrium factor in the studied area comes to be 74, 39, 45 Bq m⁻³ and 0.07, 0.11, 0.07 respectively for the winter, rainy and summer seasons with the annual average value of the unattached fraction of about 0.18. The annual average radiological dose from exposure to indoor radon and thoron progeny comes out to be 0.88 and 0.78 mSv. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20factor" title="equilibrium factor">equilibrium factor</a>, <a href="https://publications.waset.org/abstracts/search?q=radon" title=" radon"> radon</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20variation" title=" seasonal variation"> seasonal variation</a>, <a href="https://publications.waset.org/abstracts/search?q=thoron" title=" thoron"> thoron</a>, <a href="https://publications.waset.org/abstracts/search?q=unattached%20fraction" title=" unattached fraction"> unattached fraction</a> </p> <a href="https://publications.waset.org/abstracts/73360/seasonal-variation-of-the-unattached-fraction-and-equilibrium-factor-of-222rn-22rn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8743</span> Model for Calculating Traffic Mass and Deceleration Delays Based on Traffic Field Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Canqi">Liu Canqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeng%20Junsheng"> Zeng Junsheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study identifies two typical bottlenecks that occur when a vehicle cannot change lanes: car following and car stopping. The ideas of traffic field and traffic mass are presented in this work. When there are other vehicles in front of the target vehicle within a particular distance, a force is created that affects the target vehicle's driving speed. The characteristics of the driver and the vehicle collectively determine the traffic mass; the driving speed of the vehicle and external variables have no bearing on this. From a physical level, this study examines the vehicle's bottleneck when following a car, identifies the outside factors that have an impact on how it drives, takes into account that the vehicle will transform kinetic energy into potential energy during deceleration, and builds a calculation model for traffic mass. The energy-time conversion coefficient is created from an economic standpoint utilizing the social average wage level and the average cost of motor fuel. Vissim simulation program measures the vehicle's deceleration distance and delays under the Wiedemann car-following model. The difference between the measured value of deceleration delay acquired by simulation and the theoretical value calculated by the model is compared using the conversion calculation model of traffic mass and deceleration delay. The experimental data demonstrate that the model is reliable since the error rate between the theoretical calculation value of the deceleration delay obtained by the model and the measured value of simulation results is less than 10%. The article's conclusion is that the traffic field has an impact on moving cars on the road and that physical and socioeconomic factors should be taken into account while studying vehicle-following behavior. The deceleration delay value of a vehicle's driving and traffic mass have a socioeconomic relationship that can be utilized to calculate the energy-time conversion coefficient when dealing with the bottleneck of cars stopping and starting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20field" title="traffic field">traffic field</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20economics" title=" social economics"> social economics</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20mass" title=" traffic mass"> traffic mass</a>, <a href="https://publications.waset.org/abstracts/search?q=bottleneck" title=" bottleneck"> bottleneck</a>, <a href="https://publications.waset.org/abstracts/search?q=deceleration%20delay" title=" deceleration delay"> deceleration delay</a> </p> <a href="https://publications.waset.org/abstracts/174256/model-for-calculating-traffic-mass-and-deceleration-delays-based-on-traffic-field-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8742</span> Perception of Risk toward Traffic Violence among Road Users in Makassar, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulasmi%20Sudirman">Sulasmi Sudirman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmadanty%20Mujah%20Hartika"> Rachmadanty Mujah Hartika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic violence is currently a big issue in Indonesia. However, the road users perceived risk that is caused by traffic violence is low. The lack of safety driving awareness is one of the factors that road users committed to traffic violence. There are several lists of common traffic violence in Indonesia such as lack of physical fitness, not wearing helmet, unfasten seatbelt, breaking through the traffic light, not holding a driving license, and some more violence. This research sought to explore the perception of road users toward traffic violence. The participants were road users in Makassar, Indonesia who were using cars and motorbikes. The method of the research was a qualitative approach by using a personal interview to collect data. The research showed that there three main ideas of perceiving traffic violence which are motives, environment that supported traffic violence, and reinforcement. The road users committed traffic violence had particular motive, for example, rushing. The road users committed to traffic violence when other road users and significant other did the same. The road users committed traffic violence when the police were not there to give a ticket. It can be concluded that the perception of road users toward traffic violence determined by internal aspect, the social aspect, and regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perception" title="perception">perception</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20users" title=" road users"> road users</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=violence" title=" violence"> violence</a> </p> <a href="https://publications.waset.org/abstracts/105587/perception-of-risk-toward-traffic-violence-among-road-users-in-makassar-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8741</span> Peculiarities of Snow Cover in Belarus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleh%20Meshyk">Aleh Meshyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasiya%20Vouchak"> Anastasiya Vouchak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the average snow covers Belarus for 75 days in the south-west and 125 days in the north-east. During the cold season snowpack often destroys due to thaws, especially at the beginning and end of winter. Over 50% of thawing days have a positive mean daily temperature, which results in complete snow melting. For instance, in December 10% of thaws occur at 4 С mean daily temperature. Stable snowpack lying for over a month forms in the north-east in the first decade of December but in the south-west in the third decade of December. The cover disappears in March: in the north-east in the last decade but in the south-west in the first decade. This research takes into account that precipitation falling during a cold season could be not only liquid and solid but also a mixed type (about 10-15 % a year). Another important feature of snow cover is its density. In Belarus, the density of freshly fallen snow ranges from 0.08-0.12 g/cm³ in the north-east to 0.12-0.17 g/cm³ in the south-west. Over time, snow settles under its weight and after melting and refreezing. Averaged annual density of snow at the end of January is 0.23-0.28 g/сm³, in February – 0.25-0.30 g/сm³, in March – 0.29-0.36 g/сm³. Sometimes it can be over 0.50 g/сm³ if the snow melts too fast. The density of melting snow saturated with water can reach 0.80 g/сm³. Average maximum of snow depth is 15-33 cm: minimum is in Brest, maximum is in Lyntupy. Maximum registered snow depth ranges within 40-72 cm. The water content in snowpack, as well as its depth and density, reaches its maximum in the second half of February – beginning of March. Spatial distribution of the amount of liquid in snow corresponds to the trend described above, i.e. it increases in the direction from south-west to north-east and on the highlands. Average annual value of maximum water content in snow ranges from 35 mm in the south-west to 80-100 mm in the north-east. The water content in snow is over 80 mm on the central Belarusian highland. In certain years it exceeds 2-3 times the average annual values. Moderate water content in snow (80-95 mm) is characteristic of western highlands. Maximum water content in snow varies over the country from 107 mm (Brest) to 207 mm (Novogrudok). Maximum water content in snow varies significantly in time (in years), which is confirmed by high variation coefficient (Cv). Maximums (0.62-0.69) are in the south and south-west of Belarus. Minimums (0.42-0.46) are in central and north-eastern Belarus where snow cover is more stable. Since 1987 most gauge stations in Belarus have observed a trend to a decrease in water content in snow. It is confirmed by the research. The biggest snow cover forms on the highlands in central and north-eastern Belarus. Novogrudok, Minsk, Volkovysk, and Sventayny highlands are a natural orographic barrier which prevents snow-bringing air masses from penetrating inside the country. The research is based on data from gauge stations in Belarus registered from 1944 to 2014. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=depth" title=" depth"> depth</a>, <a href="https://publications.waset.org/abstracts/search?q=snow" title=" snow"> snow</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content%20in%20snow" title=" water content in snow"> water content in snow</a> </p> <a href="https://publications.waset.org/abstracts/89269/peculiarities-of-snow-cover-in-belarus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8740</span> Implementation of Traffic Engineering Using MPLS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20H.%20Shukla">Vishal H. Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20B.%20Deshmukh"> Sanjay B. Deshmukh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic engineering, at its center, is the ability of moving traffic approximately so that traffic from a congested link is moved onto the unused capacity on another link. Traffic Engineering ensures the best possible use of the resources. Now to support traffic engineering in the today’s network, Multiprotocol Label Switching (MPLS) is being used which is very helpful for reliable packets delivery in an ongoing internet services. Here a topology is been implemented on GNS3 to focus on the analysis of the communication take place from one site to other through the ISP. The comparison is made between the IP network & MPLS network based on Bandwidth & Jitter which are one of the performance parameters using JPERF simulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNS3" title="GNS3">GNS3</a>, <a href="https://publications.waset.org/abstracts/search?q=JPERF" title=" JPERF"> JPERF</a>, <a href="https://publications.waset.org/abstracts/search?q=MPLS" title=" MPLS"> MPLS</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20engineering" title=" traffic engineering"> traffic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=VMware" title=" VMware"> VMware</a> </p> <a href="https://publications.waset.org/abstracts/23898/implementation-of-traffic-engineering-using-mpls-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8739</span> Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Borhani">Mohammad Borhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Jamshidzaei"> Ahmad Jamshidzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Koohsari"> Mehdi Koohsari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The Intergovernmental Panel on Climate Change reported global warming in 2001. The average global temperature has shown an increasing trend since 1861. In the 20th century, this increase has been between (0/2 ± 0/6) °C. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20precipitation" title=" extreme precipitation"> extreme precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=trend%20analysis" title=" trend analysis"> trend analysis</a> </p> <a href="https://publications.waset.org/abstracts/182335/exploration-of-classic-models-of-precipitation-in-iran-a-case-study-of-sistan-and-baluchestan-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8738</span> Road Traffic Noise Mapping for Riyadh City Using GIS and Lima</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20A.%20Alsaif">Khalid A. Alsaif</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosaad%20A.%20Foda"> Mosaad A. Foda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary objective of this study is to develop the first round of road traffic noise maps for Riyadh City using Geographical Information Systems (GIS) and software LimA 7810 predictor. The road traffic data were measured or estimated as accurate as possible in order to obtain reliable noise maps. Meanwhile, the attributes of the roads and buildings are automatically exported from GIS. The simulation results at some chosen locations are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The results show that the average error between the predicted and measured noise levels is below 3.0 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20pollution" title="noise pollution">noise pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic%20noise" title=" road traffic noise"> road traffic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=LimA%20predictor" title=" LimA predictor"> LimA predictor</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/24998/road-traffic-noise-mapping-for-riyadh-city-using-gis-and-lima" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8737</span> Proposed Alternative System for Existing Traffic Signal System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alluri%20Swaroopa">Alluri Swaroopa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20N.%20Prasad"> L. V. N. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridges" title="bridges">bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=junctions" title=" junctions"> junctions</a>, <a href="https://publications.waset.org/abstracts/search?q=ramps" title=" ramps"> ramps</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20control" title=" urban traffic control"> urban traffic control</a> </p> <a href="https://publications.waset.org/abstracts/27580/proposed-alternative-system-for-existing-traffic-signal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8736</span> Classification of IoT Traffic Security Attacks Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anum%20Ali">Anum Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashaf%20ad%20Dooja"> Kashaf ad Dooja</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Saleem"> Asif Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20security" title=" traffic security"> traffic security</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/146890/classification-of-iot-traffic-security-attacks-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8735</span> Statistical Analysis of Extreme Flow (Regions of Chlef)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouthiba%20Amina">Bouthiba Amina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimation of the statistics bound to the precipitation represents a vast domain, which puts numerous challenges to meteorologists and hydrologists. Sometimes, it is necessary, to approach in value the extreme events for sites where there is little, or no datum, as well as their periods of return. The search for a model of the frequency of the heights of daily rains dresses a big importance in operational hydrology: It establishes a basis for predicting the frequency and intensity of floods by estimating the amount of precipitation in past years. The most known and the most common approach is the statistical approach, It consists in looking for a law of probability that fits best the values observed by the random variable " daily maximal rain " after a comparison of various laws of probability and methods of estimation by means of tests of adequacy. Therefore, a frequent analysis of the annual series of daily maximal rains was realized on the data of 54 pluviometric stations of the pond of high and average. This choice was concerned with five laws usually applied to the study and the analysis of frequent maximal daily rains. The chosen period is from 1970 to 2013. It was of use to the forecast of quantiles. The used laws are the law generalized by extremes to three components, those of the extreme values to two components (Gumbel and log-normal) in two parameters, the law Pearson typifies III and Log-Pearson III in three parameters. In Algeria, Gumbel's law has been used for a long time to estimate the quantiles of maximum flows. However, and we will check and choose the most reliable law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=return%20period" title="return period">return period</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20flow" title=" extreme flow"> extreme flow</a>, <a href="https://publications.waset.org/abstracts/search?q=statistics%20laws" title=" statistics laws"> statistics laws</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel" title=" Gumbel"> Gumbel</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a> </p> <a href="https://publications.waset.org/abstracts/168612/statistical-analysis-of-extreme-flow-regions-of-chlef" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8734</span> Quantitative Analysis of Potential Rainwater Harvesting and Supply to a Rural Community at Northeast of Amazon Region, Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Y.%20H.%20Konagano">N. Y. H. Konagano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Riverside population of Brazilian amazon suffers drinking water scarcity, seeking alternative water resources such as well and rivers, ordinary polluted. Although Amazon Region holds high annual river inflow and enough available of underground water, human activities have compromised the conservation of water resources. In addition, decentralized rural households make difficult to access of potable water. Main objective is to analyze quantitatively the potential of rainwater harvesting to human consumption at Marupaúba community, located in northeast of Amazon region, Brazil. Methods such as historical rainfall data series of municipality of Tomé-Açu at Pará state were obtained from Hydrological Information System of National Water Agency (ANA). Besides, Rippl method was used to calculate, mainly, volume of the reservoir based on difference of water demand and volume available through rainwater using as references two houses (CA I and CA II) as model of rainwater catchment and supply. Results presented that, from years 1984 to 2017, average annual precipitation was 2.607 mm, average maximum precipitation peak was 474 mm on March and average minimum peak on September was 44 mm. All months, of a year, surplus volume of water have presented in relation to demand, considering catchment area (CA) I = 134.4m² and demand volume =0.72 m³/month; and, CA II = 81.84 m² and demand volume = 0.48 m³/month. Based on results, it is concluded that it is feasible to use rainwater for the supply of the rural community Marupaúba, since the access of drinking water is a human right and the lack of this resource compromises health and daily life of human beings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amazon%20Region" title="Amazon Region">Amazon Region</a>, <a href="https://publications.waset.org/abstracts/search?q=rainwater%20harvesting" title=" rainwater harvesting"> rainwater harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=rainwater%20resource" title=" rainwater resource"> rainwater resource</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20community" title=" rural community"> rural community</a> </p> <a href="https://publications.waset.org/abstracts/88695/quantitative-analysis-of-potential-rainwater-harvesting-and-supply-to-a-rural-community-at-northeast-of-amazon-region-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=292">292</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=293">293</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>