CINXE.COM

Search results for: annual average daily traffic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: annual average daily traffic</title> <meta name="description" content="Search results for: annual average daily traffic"> <meta name="keywords" content="annual average daily traffic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="annual average daily traffic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="annual average daily traffic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8763</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: annual average daily traffic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8733</span> Application of Stochastic Models to Annual Extreme Streamflow Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958&ndash;2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20models" title="stochastic models">stochastic models</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA" title=" ARIMA"> ARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20streamflow" title=" extreme streamflow"> extreme streamflow</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20river" title=" Karkheh river"> Karkheh river</a> </p> <a href="https://publications.waset.org/abstracts/97759/application-of-stochastic-models-to-annual-extreme-streamflow-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8732</span> The Research on Diesel Bus Emissions in Ulaanbaatar City: Mongolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsetsegmaa%20A.">Tsetsegmaa A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayarsuren%20B."> Bayarsuren B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Altantsetseg%20Ts."> Altantsetseg Ts.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To make the best decision on reducing harmful emissions from buses, we need to have a clear understanding of the current state of their actual emissions. The emissions from city buses running on high sulfur fuel, particularly particulate matter (PM) and nitrogen oxides (NOx) from the exhaust gases of conventional diesel engines, have been studied and measured with and without diesel particulate filter (DPF) in Ulaanbaatar city. The study was conducted by using the PEMS (Portable Emissions Measurement System) and gravimetric method in real traffic conditions. The obtained data were used to determine the actual emission rates and to evaluate the effectiveness of the selected particulate filters. Actual road and daily PM emissions from city buses were determined during the warm and cold seasons. A bus with an average daily mileage of 242 km was found to emit 166.155 g of PM into the city's atmosphere on average per day, with 141.3 g in summer and 175.8 g in winter. The actual PM of the city bus is 0.6866 g/km. The concentration of NOx in the exhaust gas averages 1410.94 ppm. The use of DPF reduced the exhaust gas opacity of 24 buses by an average of 97% and filtered a total of 340.4 kg of soot from these buses over a period of six months. Retrofitting an old conventional diesel engine with cassette-type silicon carbide (SiC) DPF, despite the laboriousness of cleaning, can significantly reduce particulate matter emissions. Innovation: First comprehensive road PM and NOx emission dataset and actual road emissions from public buses have been identified. PM and NOx mathematical model equations have been estimated as a function of the bus technical speed and engine revolution with and without DPF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20diesel" title="conventional diesel">conventional diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20onboard%20measurements" title=" real-time onboard measurements"> real-time onboard measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20retrofit" title=" diesel retrofit"> diesel retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20sulphur" title=" fuel sulphur"> fuel sulphur</a> </p> <a href="https://publications.waset.org/abstracts/146106/the-research-on-diesel-bus-emissions-in-ulaanbaatar-city-mongolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8731</span> Assessment the Implications of Regional Transport and Local Emission Sources for Mitigating Particulate Matter in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruchirek%20Ratchaburi">Ruchirek Ratchaburi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Kevin.%20Hicks"> W. Kevin. Hicks</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20S.%20Malley"> Christopher S. Malley</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20D.%20Emberson"> Lisa D. Emberson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution problems in Thailand have improved over the last few decades, but in some areas, concentrations of coarse particulate matter (PM₁₀) are above health and regulatory guidelines. It is, therefore, useful to investigate how PM₁₀ varies across Thailand, what conditions cause this variation, and how could PM₁₀ concentrations be reduced. This research uses data collected by the Thailand Pollution Control Department (PCD) from 17 monitoring sites, located across 12 provinces, and obtained between 2011 and 2015 to assess PM₁₀ concentrations and the conditions that lead to different levels of pollution. This is achieved through exploration of air mass pathways using trajectory analysis, used in conjunction with the monitoring data, to understand the contribution of different months, an hour of the day and source regions to annual PM₁₀ concentrations in Thailand. A focus is placed on locations that exceed the national standard for the protection of human health. The analysis shows how this approach can be used to explore the influence of biomass burning on annual average PM₁₀ concentration and the difference in air pollution conditions between Northern and Southern Thailand. The results demonstrate the substantial contribution that open biomass burning from agriculture and forest fires in Thailand and neighboring countries make annual average PM₁₀ concentrations. The analysis of PM₁₀ measurements at monitoring sites in Northern Thailand show that in general, high concentrations tend to occur in March and that these particularly high monthly concentrations make a substantial contribution to the overall annual average concentration. In 2011, a > 75% reduction in the extent of biomass burning in Northern Thailand and in neighboring countries resulted in a substantial reduction not only in the magnitude and frequency of peak PM₁₀ concentrations but also in annual average PM₁₀ concentrations at sites across Northern Thailand. In Southern Thailand, the annual average PM₁₀ concentrations for individual years between 2011 and 2015 did not exceed the human health standard at any site. The highest peak concentrations in Southern Thailand were much lower than for Northern Thailand for all sites. The peak concentrations at sites in Southern Thailand generally occurred between June and October and were associated with air mass back trajectories that spent a substantial proportion of time over the sea, Indonesia, Malaysia, and Thailand prior to arrival at the monitoring sites. The results show that emissions reductions from biomass burning and forest fires require action on national and international scales, in both Thailand and neighboring countries, such action could contribute to ensuring compliance with Thailand air quality standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20average%20concentration" title="annual average concentration">annual average concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=long-range%20transport" title=" long-range transport"> long-range transport</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20biomass%20burning" title=" open biomass burning"> open biomass burning</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/89557/assessment-the-implications-of-regional-transport-and-local-emission-sources-for-mitigating-particulate-matter-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8730</span> Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting%20%28Grace%29%20Lin">Ting (Grace) Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20%28Cecilia%29%20Xia"> Jianhong (Cecilia) Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20Robinson"> Todd Robinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accessibility analysis, examining people&rsquo;s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom<sup>&reg;</sup> API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20accessibility" title="dynamic accessibility">dynamic accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20spot" title=" hot spot"> hot spot</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20research" title=" transport research"> transport research</a>, <a href="https://publications.waset.org/abstracts/search?q=TomTom%C2%AE%20API" title=" TomTom® API"> TomTom® API</a> </p> <a href="https://publications.waset.org/abstracts/66401/spatial-analysis-of-park-and-ride-users-dynamic-accessibility-to-train-station-a-case-study-in-perth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8729</span> Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathish%20Kumar%20Jayaraj">Sathish Kumar Jayaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20factor%20%28TFF%29" title="traffic flow factor (TFF)">traffic flow factor (TFF)</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20dynamics" title=" urban traffic dynamics"> urban traffic dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics%20principles" title=" fluid dynamics principles"> fluid dynamics principles</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20shearing%20resistance%20%28VSR%29" title=" vehicle shearing resistance (VSR)"> vehicle shearing resistance (VSR)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion%20management" title=" traffic congestion management"> traffic congestion management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20mobility" title=" sustainable urban mobility"> sustainable urban mobility</a> </p> <a href="https://publications.waset.org/abstracts/182540/urban-traffic-understanding-the-traffic-flow-factor-through-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8728</span> Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Sudan">Madhu Sudan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as &ldquo;SODHA BERS COMPLEX (SBC)&rdquo; at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clear%20sky" title="clear sky">clear sky</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight%20factor" title=" daylight factor"> daylight factor</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20window" title=" wall window"> wall window</a> </p> <a href="https://publications.waset.org/abstracts/36764/effect-of-orientation-of-the-wall-window-on-energy-saving-under-clear-sky-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8727</span> The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tebogo%20Emma%20Makaba">Tebogo Emma Makaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Barnabas%20Ndlovu%20Gatsheni"> Barnabas Ndlovu Gatsheni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter&rsquo;s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro&rsquo;s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross&mdash;validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagging%20ensemble%20methods" title="bagging ensemble methods">bagging ensemble methods</a>, <a href="https://publications.waset.org/abstracts/search?q=confusion%20matrix" title=" confusion matrix"> confusion matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20perceptron" title=" multi-layer perceptron"> multi-layer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20traffic%20flow" title=" vehicle traffic flow"> vehicle traffic flow</a> </p> <a href="https://publications.waset.org/abstracts/36966/the-design-of-a-vehicle-traffic-flow-prediction-model-for-a-gauteng-freeway-based-on-an-ensemble-of-multi-layer-perceptron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8726</span> The Effect of User Comments on Traffic Application Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Gokasar">I. Gokasar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bakioglu"> G. Bakioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20app" title="traffic app">traffic app</a>, <a href="https://publications.waset.org/abstracts/search?q=real%E2%80%93time%20information" title=" real–time information"> real–time information</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion" title=" traffic congestion"> traffic congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dummy%20variables" title=" dummy variables"> dummy variables</a> </p> <a href="https://publications.waset.org/abstracts/52331/the-effect-of-user-comments-on-traffic-application-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8725</span> Rainfall and Temperature Characteristics of the Middle and Lower Awash Areas of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melese%20Tadesse%20Morebo">Melese Tadesse Morebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pastoral and agro-pastoral communities in East Africa, particularly in Ethiopia, are vulnerable to climate-related risks. The aim of this study is to characterize the annual, seasonal, and monthly rainfall and temperature of the middle and lower awash areas of Ethiopia. Start of season (SOS), end of season (EOS), length of growing season (LGS), number of rainy days, and probability of dry spell occurrences were analyzed using INSTAT Plus (v3.7) software. Daily rainfall and temperature data for 33 years (1990–2022) from six stations were analyzed. The result of the study revealed that the annual rainfall in the study area as a whole showed an increasing trend, but its trend was statistically non-significant. During the study period, the Kiremt rainfall at Amibara station showed statistically significant increasing trends. The trend analysis of SOS, EOS, and LGS shows up and down trends at all stations. The mean lengths of growing seasons in the study area ranged from 20 to 61 days during the study period. In the study area, the annual mean maximum temperature ranged between 34.1°C and 38.3°C over the last three decades. All stations within the research area during the study period, the annual minimum temperature exhibited a substantial impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20rainfall" title="annual rainfall">annual rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=LGS" title=" LGS"> LGS</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20temperature" title=" minimum temperature"> minimum temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Mann-Kendall%20test" title=" Mann-Kendall test"> Mann-Kendall test</a> </p> <a href="https://publications.waset.org/abstracts/190225/rainfall-and-temperature-characteristics-of-the-middle-and-lower-awash-areas-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8724</span> Detecting Trends in Annual Discharge and Precipitation in the Chott Melghir Basin in Southeastern Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Bouziane">M. T. Bouziane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benkhaled"> A. Benkhaled</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Achour"> B. Achour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, data from 30 catchments in the Chott Melghir basin in the semiarid region of southern East Algeria were analyzed to investigate changes in annual discharge, annual precipitation over the 1965-2005 period. These data were analyzed with the aid of Kendall test trend and regression analysis. The results indicate that the major variations in all catchments discharge in Chott Melghir correspond well to the precipitation. Changes in total annual discharge of Chott Melghir were lower than changes in annual precipitation. Annual precipitation decreased by 66 percent and annual discharge decreased by 4 percent. No significant trend is detected for annual discharge and precipitation at major catchments up to 95% confidence level. The decreasing trend in Chott Melghir discharge is mainly attributed to the decrease of precipitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trends" title="trends">trends</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge" title=" discharge"> discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=Kendall%20test" title=" Kendall test"> Kendall test</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Chott%20Melghir%20catchments" title=" Chott Melghir catchments"> Chott Melghir catchments</a> </p> <a href="https://publications.waset.org/abstracts/12752/detecting-trends-in-annual-discharge-and-precipitation-in-the-chott-melghir-basin-in-southeastern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8723</span> Detection of Trends and Break Points in Climatic Indices: The Case of Umbria Region in Italy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Flammini">A. Flammini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Morbidelli"> R. Morbidelli</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Saltalippi"> C. Saltalippi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase of air surface temperature at global scale is a fact, with values around 0.85 ºC since the late nineteen century, as well as a significant change in main features of rainfall regime. Nevertheless, the detected climatic changes are not equally distributed all over the world, but exhibit specific characteristics in different regions. Therefore, studying the evolution of climatic indices in different geographical areas with a prefixed standard approach becomes very useful in order to analyze the existence of climatic trend and compare results. In this work, a methodology to investigate the climatic change and its effects on a wide set of climatic indices is proposed and applied at regional scale in the case study of a Mediterranean area, Umbria region in Italy. From data of the available temperature stations, nine temperature indices have been obtained and the existence of trends has been checked by applying the non-parametric Mann-Kendall test, while the non-parametric Pettitt test and the parametric Standard Normal Homogeneity Test (SNHT) have been applied to detect the presence of break points. In addition, aimed to characterize the rainfall regime, data from 11 rainfall stations have been used and a trend analysis has been performed on cumulative annual rainfall depth, daily rainfall, rainy days, and dry periods length. The results show a general increase in any temperature indices, even if with a trend pattern dependent of indices and stations, and a general decrease of cumulative annual rainfall and average daily rainfall, with a time rainfall distribution over the year different from the past. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatic%20change" title="climatic change">climatic change</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20regime" title=" rainfall regime"> rainfall regime</a>, <a href="https://publications.waset.org/abstracts/search?q=trend%20analysis" title=" trend analysis"> trend analysis</a> </p> <a href="https://publications.waset.org/abstracts/103493/detection-of-trends-and-break-points-in-climatic-indices-the-case-of-umbria-region-in-italy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8722</span> Projection of Climate Change over the Upper Ping River Basin Using Regional Climate Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chakrit%20Chotamonsak">Chakrit Chotamonsak</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20P.%20Salath%C3%A9%20Jr"> Eric P. Salathé Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiemjai%20Kreasuwan"> Jiemjai Kreasuwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamical downscaling of the ECHAM5 global climate model is applied at 20-km horizontal resolution using the WRF regional climate model (WRF-ECHAM5), to project changes from 1990–2009 to 2045–2064 of temperature and precipitation over the Upper Ping River Basin. The analysis found that monthly changes in daily temperature and precipitation over the basin for the 2045-2064 compared to the 1990-2009 are revealed over the basin all months, with the largest warmer in December and the smallest warmer in February. The future simulated precipitation is smaller than that of the baseline value in May, July and August, while increasing of precipitation is revealed during pre-monsoon (April) and late monsoon (September and October). This means that the rainy season likely becomes longer and less intensified during the rainy season. During the cool-dry season and hot-dry season, precipitation is substantial increasing over the basin. For the annual cycle of changes in daily temperature and precipitation over the upper Ping River basin, the largest warmer in the mean temperature over the basin is 1.93 °C in December and the smallest is 0.77 °C in February. Increase in nighttime temperature (minimum temperature) is larger than that of daytime temperature (maximum temperature) during the dry season, especially in wintertime (November to February), resulted in decreasing the diurnal temperature range. The annual and seasonal changes in daily temperature and precipitation averaged over the basin. The annual mean rising are 1.43, 1.54 and 1.30 °C for mean temperature, maximum temperature and minimum temperature, respectively. The increasing of maximum temperature is larger than that of minimum temperature in all months during the dry season (November to April). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20climate%20model" title=" regional climate model"> regional climate model</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20Ping%20River%20basin" title=" upper Ping River basin"> upper Ping River basin</a>, <a href="https://publications.waset.org/abstracts/search?q=WRF" title=" WRF"> WRF</a> </p> <a href="https://publications.waset.org/abstracts/35887/projection-of-climate-change-over-the-upper-ping-river-basin-using-regional-climate-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8721</span> Robust and Real-Time Traffic Counting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossam%20M.%20Moftah">Hossam M. Moftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboul%20Ella%20Hassanien"> Aboul Ella Hassanien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20counting" title="traffic counting">traffic counting</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/43835/robust-and-real-time-traffic-counting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8720</span> Congestion Mitigation on an Urban Arterial through Infrastructure Intervention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Attiq%20Ur%20Rahman%20Dogar">Attiq Ur Rahman Dogar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohaib%20Ishaq"> Sohaib Ishaq </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pakistan had experienced rapid motorization in the last decade. Due to the soft leasing schemes of banks and increase in average household income, even the middle class can now afford cars. The public transit system is inadequate and sparse. Due to these reasons, traffic demand on urban arterials has increased manifold. Poor urban transit planning and aging transportation systems have resulted in traffic congestion. The focus of this study is to improve traffic flow on a section of N-5 passing through the Rawalpindi downtown. Present efforts aim to carry out the analysis of traffic conditions on this section and to investigate the impact of traffic signal co-ordination on travel time. In addition to signal co-ordination, we also examined the effect of different infrastructure improvements on the travel time. After the economic analysis of alternatives and discussions, the improvement plan for Rawalpindi downtown urban arterial section is proposed for implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signal%20coordination" title="signal coordination">signal coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20intervention" title=" infrastructure intervention"> infrastructure intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20improvement" title=" infrastructure improvement"> infrastructure improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20length" title=" cycle length"> cycle length</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption%20cost" title=" fuel consumption cost"> fuel consumption cost</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20time%20cost" title=" travel time cost"> travel time cost</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title=" economic analysis"> economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20time" title=" travel time"> travel time</a>, <a href="https://publications.waset.org/abstracts/search?q=Rawalpindi" title=" Rawalpindi"> Rawalpindi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20signals" title=" traffic signals"> traffic signals</a> </p> <a href="https://publications.waset.org/abstracts/28309/congestion-mitigation-on-an-urban-arterial-through-infrastructure-intervention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8719</span> The Kidney-Spine Traffic System: Future Cities, Ensuring World Class Civic Amenities in Urban India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Srivastava">Abhishek Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeevesh%20Nandan"> Jeevesh Nandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was taken to analyse the alternative source of traffic system for effective and more convenient traffic flow by reducing points of conflicts as well as angle of conflict and keeping in view to minimize the problem of unnecessarily long waiting time, delays, congestion, traffic jam and geometric delays due to intersection between circular and straight lanes. It is a twin kidney-spine type structure system with special allowance for Highway users for quicker passes. Thus reduction in number and intensity of accidents, significance reduction in traffic jam, conservation of valuable time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20system" title="traffic system">traffic system</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20reduction%20of%20vehicles" title=" collision reduction of vehicles"> collision reduction of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20flow%20of%20vehicles" title=" smooth flow of vehicles"> smooth flow of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20jam" title=" traffic jam"> traffic jam</a> </p> <a href="https://publications.waset.org/abstracts/15808/the-kidney-spine-traffic-system-future-cities-ensuring-world-class-civic-amenities-in-urban-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8718</span> Closed Loop Traffic Control System Using PLC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinmay%20Shah">Chinmay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project is all about development of a close loop traffic light control system using PLC (Programmable Logic Controller). This project is divided into two parts which are hardware and software. The hardware part for this project is a model of four way junction of a traffic light. Three indicator lamps (Red, Yellow and Green) are installed at each lane for represents as traffic light signal. This traffic control model is a replica of actuated traffic control. Actuated traffic control system is a close loop traffic control system which controls the timing of the indicator lamps depending on the fluidity of traffic for a particular lane. To make it autonomous, in each lane three IR sensors are placed which helps to sense the percentage of traffic present on any particular lane. The IR Sensors and Indicator lamps are connected to LG PLC XGB series. The PLC controls every signal which is coming from the inputs (IR Sensors) to software and display to the outputs (Indicator lamps). Default timing for the indicator lamps is 30 seconds for each lane. But depending on the percentage of traffic present, if the traffic is nearly 30-35%, green lamp will be on for 10 seconds, for 65-70% traffic it will be 20 seconds, for full 100% traffic it will be on for full 30 seconds. The software part that operates with LG PLC is “XG 5000” Programmer. Using this software, the ladder logic diagram is programmed to control the traffic light base on the flow chart. At the end of this project, the traffic light system is actuated successfully by PLC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=close%20loop" title="close loop">close loop</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20sensor" title=" IR sensor"> IR sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20control%20system" title=" light control system "> light control system </a> </p> <a href="https://publications.waset.org/abstracts/13631/closed-loop-traffic-control-system-using-plc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8717</span> Distributed Actor System for Traffic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang">Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoxian%20Dai"> Zhuoxian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang"> Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zeng"> Zhenyu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actor%20system" title="actor system">actor system</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/128664/distributed-actor-system-for-traffic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8716</span> Traffic Light Detection Using Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaishnavi%20Shivde">Vaishnavi Shivde</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrishti%20Sinha"> Shrishti Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Trapti%20Mishra"> Trapti Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20light%20detection" title="traffic light detection">traffic light detection</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/137254/traffic-light-detection-using-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8715</span> Design Components and Reliability Aspects of Municipal Waste Water and SEIG Based Micro Hydro Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Saket">R. K. Saket</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents design aspects and probabilistic approach for generation reliability evaluation of an alternative resource: municipal waste water based micro hydro power generation system. Annual and daily flow duration curves have been obtained for design, installation, development, scientific analysis and reliability evaluation of the MHPP. The hydro potential of the waste water flowing through sewage system of the BHU campus has been determined to produce annual flow duration and daily flow duration curves by ordering the recorded water flows from maximum to minimum values. Design pressure, the roughness of the pipe’s interior surface, method of joining, weight, ease of installation, accessibility to the sewage system, design life, maintenance, weather conditions, availability of material, related cost and likelihood of structural damage have been considered for design of a particular penstock for reliable operation of the MHPP. A MHPGS based on MWW and SEIG is designed, developed, and practically implemented to provide reliable electric energy to suitable load in the campus of the Banaras Hindu University, Varanasi, (UP), India. Generation reliability evaluation of the developed MHPP using Gaussian distribution approach, safety factor concept, peak load consideration and Simpson 1/3rd rule has presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self%20excited%20induction%20generator" title="self excited induction generator">self excited induction generator</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20and%20daily%20flow%20duration%20curve" title=" annual and daily flow duration curve"> annual and daily flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20system" title=" sewage system"> sewage system</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20waste%20water" title=" municipal waste water"> municipal waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20evaluation" title=" reliability evaluation"> reliability evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20distribution" title=" Gaussian distribution"> Gaussian distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%201%2F3rd%20rule" title=" Simpson 1/3rd rule"> Simpson 1/3rd rule</a> </p> <a href="https://publications.waset.org/abstracts/14381/design-components-and-reliability-aspects-of-municipal-waste-water-and-seig-based-micro-hydro-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8714</span> Analysis and Prediction of Fine Particulate Matter in the Air Environment for 2007-2020 in Bangkok Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phawichsak%20Prapassornpitaya">Phawichsak Prapassornpitaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanida%20Jinsart"> Wanida Jinsart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daily monitoring PM₁₀ and PM₂.₅ data from 2007 to 2017 were analyzed to provide baseline data for prediction of the air pollution in Bangkok in the period of 2018 -2020. Two statistical models, Autoregressive Integrated Moving Average model (ARIMA) were used to evaluate the trends of pollutions. The prediction concentrations were tested by root means square error (RMSE) and index of agreement (IOA). This evaluation of the traffic PM₂.₅ and PM₁₀ were studied in association with the regulatory control and emission standard changes. The emission factors of particulate matter from diesel vehicles were decreased when applied higher number of euro standard. The trends of ambient air pollutions were expected to decrease. However, the Bangkok smog episode in February 2018 with temperature inversion caused high concentration of PM₂.₅ in the air environment of Bangkok. The impact of traffic pollutants was depended upon the emission sources, temperature variations, and metrological conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fine%20particulate%20matter" title="fine particulate matter">fine particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA" title=" ARIMA"> ARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=RMSE" title=" RMSE"> RMSE</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangkok" title=" Bangkok"> Bangkok</a> </p> <a href="https://publications.waset.org/abstracts/90925/analysis-and-prediction-of-fine-particulate-matter-in-the-air-environment-for-2007-2020-in-bangkok-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8713</span> An Investigation of Trends and Variability of Rainfall in Shillong City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Kumar%20Tanti">Kamal Kumar Tanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nayan%20Moni%20Saikia"> Nayan Moni Saikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Markynti%20Swer"> Markynti Swer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate and analyse the trends and variability of rainfall in Shillong and its nearby areas, located in Meghalaya hills of North-East India; which is geographically a neighbouring area to the wettest places of the Earth, i.e., Cherrapunji and Mawsynram. The analysis of variability and trends to annual, seasonal, monthly and daily rainfall was carried out, using the data collected from the IMD station at Shillong; thereby attempting to highlight whether rainfall in Shillong area has been increasing or decreasing over the years. Rainfall variability coefficient is utilized to compare the current rainfall trend of the area with its past rainfall trends. The present study also aims to analyse the frequency of occurrence of extreme rainfall events over the region. These studies will help us to establish a correlation between the current rainfall trend and climate change scenario of the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trends%20and%20variability%20of%20rainfall" title="trends and variability of rainfall">trends and variability of rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=annual" title=" annual"> annual</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal" title=" seasonal"> seasonal</a>, <a href="https://publications.waset.org/abstracts/search?q=monthly%20and%20daily%20rainfall" title=" monthly and daily rainfall"> monthly and daily rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20variability%20coefficient" title=" rainfall variability coefficient"> rainfall variability coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20rainfall%20events" title=" extreme rainfall events"> extreme rainfall events</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Shillong" title=" Shillong"> Shillong</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherrapunji" title=" Cherrapunji"> Cherrapunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mawsynram" title=" Mawsynram"> Mawsynram</a> </p> <a href="https://publications.waset.org/abstracts/45927/an-investigation-of-trends-and-variability-of-rainfall-in-shillong-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8712</span> A Study of Indoor Radon, Thoron, Their Progeny Concentration Levels and Inhalation Dose in Dwellings of Different Districts of Punjab State, India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Saini">Komal Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Sahoo"> B. K. Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.S.%20Bajwa"> B.S. Bajwa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, indoor radon and thoron concentrations have been estimated using newly developed twin cup based pin hole dosimeter with single entry face in some areas of Punjab state, India. The equilibrium equivalent concentration (EEC) of radon and thoron has also been estimated directly by using progeny sensors, fabricated by BARC, India. Observed radon and thoron concentrations varied from 38.7±5.79 to 98.7±13.11 Bq/m3 and 25.38±6.56 to 126.56±14.23 Bq/m3 with an average value of 61.59±8.11 & 70.89±9.52 Bq/m3 respectively. Average equilibrium equivalent concentration of radon and thoron was 27.98±4.66 & 2.24±0.61 Bq/m3. Calculated equilibrium factor for radon and thoron was 0.467 and 0.034 in the present study. Annual inhalation dose calculated from the present observed concentrations, varied from 1.80 to 3.60 mSv/year with an average value of 2.52 mSv/year, which is well within reference level. It has been observed from the present study that thoron is a significant contributor to the inhalation dose which is about 25% of the total inhalation dose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radon" title="radon">radon</a>, <a href="https://publications.waset.org/abstracts/search?q=thoron" title=" thoron"> thoron</a>, <a href="https://publications.waset.org/abstracts/search?q=pin%20hole%20cup%20dosimeter" title=" pin hole cup dosimeter"> pin hole cup dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=DTPS%2FDRPS" title=" DTPS/DRPS"> DTPS/DRPS</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20inhalation%20dose" title=" annual inhalation dose"> annual inhalation dose</a> </p> <a href="https://publications.waset.org/abstracts/42356/a-study-of-indoor-radon-thoron-their-progeny-concentration-levels-and-inhalation-dose-in-dwellings-of-different-districts-of-punjab-state-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8711</span> Automated Tracking and Statistics of Vehicles at the Signalized Intersection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Zhang">Qiang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojian%20Hu1"> Xiaojian Hu1</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tracking%20and%20statistics" title="tracking and statistics">tracking and statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=signalized%20intersection" title=" signalized intersection"> signalized intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20parameter" title=" motion parameter"> motion parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a> </p> <a href="https://publications.waset.org/abstracts/136436/automated-tracking-and-statistics-of-vehicles-at-the-signalized-intersection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8710</span> Copper Content in Daily Food Rations Planned and Served to Students from Selected Military Academies and Soldiers Doing Compulsory Military Service in the Polish Army</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Bertrandt">J. Bertrandt</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K%C5%82os"> A. Kłos</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Waszkowski"> R. Waszkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nowicki"> T. Nowicki</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Pytlak"> R. Pytlak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20St%C4%99zycka"> E. Stęzycka</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gazdzinska"> A. Gazdzinska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the work was estimation of copper intake with the daily food rations used for alimentation of students of military high schools and soldiers doing compulsory military service in the Polish Army. An average planned copper content in daily food rations used for alimentation of students and soldiers amounted to 2.49±0.35 mg, and 2.44±0.25 mg respectively. The copper content in the daily food ration given for consumption to students amounted from 1.81±0.14 mg to 2.58±0.44 mg while daily food rations served to soldiers delivered from 2.06±0.45 mg to 2.13±0.33 mg. The copper content in the rations planned for students and soldiers’ alimentation was within the limits of the norms obligatory in Poland. Daily food rations given for consumption, except rations served for students, were within the limits of the recommended norms, but food rations really eaten by examined men didn’t cover the requirements for copper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20food%20ration" title=" daily food ration"> daily food ration</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20service" title=" military service"> military service</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a> </p> <a href="https://publications.waset.org/abstracts/3786/copper-content-in-daily-food-rations-planned-and-served-to-students-from-selected-military-academies-and-soldiers-doing-compulsory-military-service-in-the-polish-army" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8709</span> Density Based Traffic System Using Pic Microcontroller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatipamula%20Samiksha%20Goud">Tatipamula Samiksha Goud</a>, <a href="https://publications.waset.org/abstracts/search?q=.A.Naveena">.A.Naveena</a>, <a href="https://publications.waset.org/abstracts/search?q=M.sresta"> M.sresta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic congestion is a major issue in many cities throughout the world, particularly in urban areas, and it is past time to switch from a fixed timer mode to an automated system. The current traffic signalling system is a fixed-time system that is inefficient if one lane is more functional than the others. A structure for an intelligent traffic control system is being designed to address this issue. When traffic density is higher on one side of a junction, the signal's green time is extended in comparison to the regular time. This study suggests a technique in which the signal's time duration is assigned based on the amount of traffic present at the time. Infrared sensors can be used to do this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared%20sensors" title="infrared sensors">infrared sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-controllers" title=" micro-controllers"> micro-controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=LEDs" title=" LEDs"> LEDs</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillators" title=" oscillators"> oscillators</a> </p> <a href="https://publications.waset.org/abstracts/152588/density-based-traffic-system-using-pic-microcontroller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8708</span> Relationship between Driving under the Influence and Traffic Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Hak%20Lee">Eun Hak Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Hyun%20Seo"> Young-Hyun Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosuk%20Shin"> Hosuk Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Young%20Kho"> Seung-Young Kho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among traffic crashes, driving under the influence (DUI) of alcohol is the most dangerous behavior in Seoul, South Korea. In 2016 alone 40 deaths occurred on of 2,857 cases of DUI. Since DUI is one of the major factors in increasing the severity of crashes, the intensive management of DUI required to reduce traffic crash deaths and the crash damages. This study aims to investigate the relationship between DUI and traffic safety in order to establish countermeasures for traffic safety improvement. The analysis was conducted on the habitual drivers who drove under the influence. Information of habitual drivers is matched to crash data and fine data. The descriptive statistics on data used in this study, which consists of driver license acquisition, traffic fine, and crash data provided by the Korean National Police Agency, are described. The drivers under the influence are classified by statistically significant criteria, such as driver’s age, license type, driving experience, and crash reasons. With the results of the analysis, we propose some countermeasures to enhance traffic safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driving%20under%20influence" title="driving under influence">driving under influence</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title=" traffic safety"> traffic safety</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20crash" title=" traffic crash"> traffic crash</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20fine" title=" traffic fine"> traffic fine</a> </p> <a href="https://publications.waset.org/abstracts/85925/relationship-between-driving-under-the-influence-and-traffic-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8707</span> Enhanced Traffic Light Detection Method Using Geometry Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changhwan%20Choi">Changhwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongwan%20Park"> Yongwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20light" title="traffic light">traffic light</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20vehicle" title=" intelligent vehicle"> intelligent vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=night" title=" night"> night</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=DGPS" title=" DGPS"> DGPS</a> </p> <a href="https://publications.waset.org/abstracts/11840/enhanced-traffic-light-detection-method-using-geometry-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8706</span> Evaluation of Traffic Noise Around Different Facilities Located in Silent Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Shaaban">Khaled Shaaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schools and hospitals are supposed to be located in silent zones. In these areas, it is expected to maintain low noise levels in order to promote a peaceful environment for studying or recovering. However, many of these facilities are located in urban areas and are subject to high levels of noise. In this study, an evaluation of traffic noise around schools and hospitals was conducted during different periods of the day. The results indicated that the noise is positively correlated with the traffic volume around these facilities. Locations with higher traffic volumes tend to have higher noise levels. The results also showed that the noise levels exceed the recommended values by the World Health Organization. Several solutions were suggested as potential courses of action to decrease the excessive level of noise around these facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20noise" title="traffic noise">traffic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic" title=" road traffic"> road traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20levels" title=" noise levels"> noise levels</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20volume" title=" traffic volume"> traffic volume</a> </p> <a href="https://publications.waset.org/abstracts/163737/evaluation-of-traffic-noise-around-different-facilities-located-in-silent-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8705</span> Effectiveness of ATMS (Advanced Transport Management Systems) in Asuncion, Paraguay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Oh">Sung Ho Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advanced traffic lights, the system of traffic information collection and provision, the CCTVs for traffic control, and the traffic information center were installed in Asuncion, capital of Paraguay. After pre-post comparison of the installation, significant changes were found. Even though the traffic volumes were increased, travel speed was higher, so that travel time from origin to destination was decreased. the saving values for travel time, gas cost, and environmental cost are about 47 million US dollars per year. Satisfaction survey results for the installation were presented with statistical significance analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20transport%20management%20systems" title="advanced transport management systems">advanced transport management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=effectiveness" title=" effectiveness"> effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=Paraguay" title=" Paraguay"> Paraguay</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20lights" title=" traffic lights"> traffic lights</a> </p> <a href="https://publications.waset.org/abstracts/44715/effectiveness-of-atms-advanced-transport-management-systems-in-asuncion-paraguay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8704</span> Geographic Information System-Based Identification of Road Traffic Crash Hotspots on Rural Roads in Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Bakhit%20Kashoob">Mohammed Bakhit Kashoob</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Salim%20Al-Maashani"> Mohammed Salim Al-Maashani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdullah%20Al-Marhoon"> Ahmed Abdullah Al-Marhoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Geographic Information System (GIS) tools in the analysis of traffic crash data can help to identify locations or hotspots with high instances or risk of traffic crashes. The identification of traffic crash hotspots can effectively improve road safety measures. Mapping of road traffic crash hotspots can help the concerned authorities to give priority and take targeted measures and improvements to the road structure at these locations to reduce traffic crashes and fatalities. In Oman, there are countless rural roads that have more risks for traveling vehicles compared to urban roads. The likelihood of traffic crashes as well as fatality rate may increase with the presence of risks that are associated with the rural type of community. In this paper, the traffic crash hotspots on rural roads in Oman are specified using spatial analysis methods in GIS and traffic crash data. These hotspots are ranked based on the frequency of traffic crash occurrence (i.e., number of traffic crashes) and the rate of fatalities. The result of this study presents a map visualization of locations on rural roads with high traffic crashes and high fatalities rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title="road safety">road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20roads" title=" rural roads"> rural roads</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20crash" title=" traffic crash"> traffic crash</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20tools" title=" GIS tools"> GIS tools</a> </p> <a href="https://publications.waset.org/abstracts/153334/geographic-information-system-based-identification-of-road-traffic-crash-hotspots-on-rural-roads-in-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=292">292</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=293">293</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=annual%20average%20daily%20traffic&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10