CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;28 of 28 results for author: <span class="mathjax">Sun, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Sun%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sun, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sun%2C+W&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sun, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-55042-y">10.1038/s41467-024-55042-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v2-abstract-short" style="display: inline;"> The beta decay of the lightest charmed baryon $螞_c^+$ provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v2-abstract-full" style="display: none;"> The beta decay of the lightest charmed baryon $螞_c^+$ provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay $螞_c^+ \rightarrow n e^+ 谓_{e}$, utilizing $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector. A novel Graph Neural Network based technique effectively separates signals from dominant backgrounds, notably $螞_c^+ \rightarrow 螞e^+ 谓_{e}$, achieving a statistical significance exceeding $10蟽$. The absolute branching fraction is measured to be $(3.57\pm0.34_{\mathrm{stat.}}\pm0.14_{\mathrm{syst.}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay as $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This work highlights a new approach to further understand fundamental interactions in the charmed baryon sector, and showcases the power of modern machine learning techniques in experimental high-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v2-abstract-full').style.display = 'none'; document.getElementById('2410.13515v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun. 16, 681 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14410">arXiv:2409.14410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14410">pdf</a>, <a href="https://arxiv.org/format/2409.14410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2588-0">10.1007/s11433-024-2588-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decay properties of light $1^{-+}$ hybrids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Liang%2C+J">Juzheng Liang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+S">Siyang Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14410v2-abstract-short" style="display: inline;"> We explore the decay properties of the isovector and isoscalar $1^{-+}$ light hybrids, $蟺_1$ and $畏_1$, in $N_f=2$ lattice QCD at a pion mass $m_蟺\approx 417~\mathrm{MeV}$. The McNeile and Michael method is adopted to extract the effective couplings for individual decay modes, which are used to estimate the partial decay widths of $蟺_1(1600)$ and $畏_1(1855)$ by assuming SU(3) symmetry. The partial&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14410v2-abstract-full').style.display = 'inline'; document.getElementById('2409.14410v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14410v2-abstract-full" style="display: none;"> We explore the decay properties of the isovector and isoscalar $1^{-+}$ light hybrids, $蟺_1$ and $畏_1$, in $N_f=2$ lattice QCD at a pion mass $m_蟺\approx 417~\mathrm{MeV}$. The McNeile and Michael method is adopted to extract the effective couplings for individual decay modes, which are used to estimate the partial decay widths of $蟺_1(1600)$ and $畏_1(1855)$ by assuming SU(3) symmetry. The partial decay widths of $蟺_1(1600)$ are predicted to be $(螕_{b_1蟺}, 螕_{f_1(1285)蟺}, 螕_{蟻蟺}, 螕_{K^*\bar{K}}) = (325 \pm 75, \mathcal{O}(10), 52 \pm 7, 8.6 \pm 1.3)~\mathrm{MeV}$, and the total width is estimated to be $396 \pm 90~\mathrm{MeV}$, considering only statistical errors. If $畏_1(1855)$ and the $4.4蟽$ signal observed by BESIII (labeled as $畏_1(2200)$) are taken as the two mass eigenstates of the isoscalar $1^{-+}$ light hybrids in SU(3), then the dominant decay channel(s) of $畏_1(1855)$ ($畏_1(2200)$) is $K_1(1270)\bar{K}$ ($K_1(1270)\bar{K}$ and $K_1(1400)\bar{K}$) through the $1^{+(-)}0^{-(+)}$ mode. The vector-vector decay modes are also significant for the two $畏_1$ states. Using the mixing angle $伪\approx 22.7^\circ$ obtained from lattice QCD for the two $畏_1$ states, the total widths are estimated to be $螕_{畏_1(1855)}=282(85)~\mathrm{MeV}$ and $螕_{畏_1(2200)}=455(143)~\mathrm{MeV}$. The former is compatible with the experimental width of $畏_1(1855)$. Although many systematic uncertainties are not well controlled, these results are qualitatively informative for the experimental search for light hybrids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14410v2-abstract-full').style.display = 'none'; document.getElementById('2409.14410v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11842">arXiv:2403.11842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11842">pdf</a>, <a href="https://arxiv.org/format/2403.11842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Form factor for Dalitz decays from $J/蠄$ to light pseudoscalars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11842v1-abstract-short" style="display: inline;"> We calculate the form factor $M(q^2)$ for the Dalitz decay $J/蠄\to 纬^*(q^2)畏_{(N_f=1)}$ with $畏_{(N_f)}$ being the SU($N_f$) flavor singlet pseudoscalar meson. The difference among the partial widths $螕(J/蠄\to 纬畏_{(N_f)})$ at different $N_f$ can be attributed in part to the $\mathbf{U}_A(1)$ anomaly that induces a $N_f$ scaling. $M(q^2)$&#39;s in $N_f=1,2$ are both well described by the single pole mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11842v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11842v1-abstract-full" style="display: none;"> We calculate the form factor $M(q^2)$ for the Dalitz decay $J/蠄\to 纬^*(q^2)畏_{(N_f=1)}$ with $畏_{(N_f)}$ being the SU($N_f$) flavor singlet pseudoscalar meson. The difference among the partial widths $螕(J/蠄\to 纬畏_{(N_f)})$ at different $N_f$ can be attributed in part to the $\mathbf{U}_A(1)$ anomaly that induces a $N_f$ scaling. $M(q^2)$&#39;s in $N_f=1,2$ are both well described by the single pole model $M(q^2)=M(0)/(1-q^2/螞^2)$. Combined with the known experimental results of the Dalitz decays $J/蠄\to Pe^+e^-$, the pseudoscalar mass $m_P$ dependence of the pole parameter $螞$ is approximated by $螞(m_P^2)=螞_1(1-m_P^2/螞_2^2)$ with $螞_1=2.64(4)~\mathrm{GeV}$ and $螞_2=2.97(33)~\mathrm{GeV}$. These results provide inputs for future theoretical and experimental studies on the Dalitz decays $J/蠄\to Pe^+e^-$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11842v1-abstract-full').style.display = 'none'; document.getElementById('2403.11842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14541">arXiv:2402.14541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14541">pdf</a>, <a href="https://arxiv.org/format/2402.14541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> $X(3872)$ Relevant $D\bar{D}^*$ Scattering in $N_f=2$ Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+H">Haozheng Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liang%2C+J">Juzheng Liang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14541v2-abstract-short" style="display: inline;"> We study the $S$-wave $D\bar{D}^*(I=0)$ scattering at four different pion masses $m_蟺$ ranging from 250 MeV to 417 MeV from $N_f=2$ lattice QCD. Three energy levels $E_{2,3,4}$ are extracted at each $m_蟺$. The analysis of $E_{2,3}$ using the effective range expansion (ERE) comes out with a shallow bound state below the $D\bar{D}^*$ threshold, and the phase shifts at $E_{3,4}$ indicate the possible&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14541v2-abstract-full').style.display = 'inline'; document.getElementById('2402.14541v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14541v2-abstract-full" style="display: none;"> We study the $S$-wave $D\bar{D}^*(I=0)$ scattering at four different pion masses $m_蟺$ ranging from 250 MeV to 417 MeV from $N_f=2$ lattice QCD. Three energy levels $E_{2,3,4}$ are extracted at each $m_蟺$. The analysis of $E_{2,3}$ using the effective range expansion (ERE) comes out with a shallow bound state below the $D\bar{D}^*$ threshold, and the phase shifts at $E_{3,4}$ indicate the possible existence of a resonance near 4.0 GeV. We also perform a joint analysis to $E_{2,3,4}$ through the $K$-matrix parameterization of the scattering amplitude. In this way, we observe a $D\bar{D}^*$ bound state whose properties are almost the same as that from the ERE analysis. At each $m_蟺$, this joint analysis also results in a resonance pole with a mass slightly above 4.0 GeV and a width around 40-60 MeV, which are compatible with the properties of the newly observed $蠂_{c1}(4010)$ by LHCb. More scrutinized lattice QCD calculations are desired to check the existence of this resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14541v2-abstract-full').style.display = 'none'; document.getElementById('2402.14541v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures. Substantially revised. A section is added to address the joint analysis of the $E_{2,3,4}$ based on the $K$-matrix parameterization of scattering amplitude. A resonance pole is observed with a mass slightly $&gt; 4.0$ GeV and width around 40-60 MeV, compatible with the newly observed $蠂_{c1}(4010)$ by LHCb. The conclusion on the existence of a bound state does not change</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00814">arXiv:2310.00814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.00814">pdf</a>, <a href="https://arxiv.org/format/2310.00814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quark masses and low energy constants in the continuum from the tadpole improved clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hu%2C+Z">Zhi-Cheng Hu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hu%2C+B">Bo-Lun Hu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00814v2-abstract-short" style="display: inline;"> We present the light-flavor quark masses and low energy constants using the 2+1 flavor full-QCD ensembles with stout smeared clover fermion action and Symanzik gauge actions. Both the fermion and gauge actions are tadpole improved self-consistently. The simulations are performed on 11 ensembles at 3 lattice spacings $a\in[0.05,0.11]$ fm, 4 spatial sizes $L\in[2.5, 5.1]$ fm, 7 pion masses&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00814v2-abstract-full').style.display = 'inline'; document.getElementById('2310.00814v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00814v2-abstract-full" style="display: none;"> We present the light-flavor quark masses and low energy constants using the 2+1 flavor full-QCD ensembles with stout smeared clover fermion action and Symanzik gauge actions. Both the fermion and gauge actions are tadpole improved self-consistently. The simulations are performed on 11 ensembles at 3 lattice spacings $a\in[0.05,0.11]$ fm, 4 spatial sizes $L\in[2.5, 5.1]$ fm, 7 pion masses $m_蟺\in[135,350]$ MeV, and several values of the strange quark mass. The quark mass is defined through the partially conserved axial current (PCAC) relation and renormalized to $\overline{\mathrm{MS}}$ 2 GeV through the intermediate regularization independent momentum subtraction (RI/MOM) scheme. The systematic uncertainty of using the symmetric momentum subtraction (SMOM) scheme is also included. Eventually, we predict $m_u=2.45(22)(20)$ MeV, $m_d=4.74(11)(09)$ MeV, and $m_s=98.8(2.9)(4.7)$ MeV with the systematic uncertainties from lattice spacing determination, continuum extrapolation and renormalization constant included. We also obtain the chiral condensate $危^{1/3}=268.6(3.6)(0.7)$ MeV and the pion decay constant $F=86.6(7)(1.4) $ MeV in the $N_f=2$ chiral limit, and the next-to-leading order low energy constants $\ell_3=2.43(54)(05)$ and $\ell_4=4.322(75)(96)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00814v2-abstract-full').style.display = 'none'; document.getElementById('2310.00814v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted by PRD. 7 pages, 4 figures, with more details in the appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09662">arXiv:2309.09662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09662">pdf</a>, <a href="https://arxiv.org/format/2309.09662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Radiative transition decay width of $蠄_2(3823)\rightarrow纬蠂_{c1}$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gao%2C+Y">Yan Gao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09662v1-abstract-short" style="display: inline;"> We present an exploratory $N_f=2$ lattice QCD study of $蠄_2(3823)\to 纬蠂_{c1}$ at a pion mass $m_蟺\approx 350$~MeV. The related two-point and three-piont functions are calculated using the distillation method. The electromagnetic multipole form factor $\hat{V}(0)=2.083(11)$ for $J/蠄\to纬畏_c$ is consistent with previous lattice results, the form factors $\hat{E}_1(0)$, $\hat{M}_2(0)$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09662v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09662v1-abstract-full" style="display: none;"> We present an exploratory $N_f=2$ lattice QCD study of $蠄_2(3823)\to 纬蠂_{c1}$ at a pion mass $m_蟺\approx 350$~MeV. The related two-point and three-piont functions are calculated using the distillation method. The electromagnetic multipole form factor $\hat{V}(0)=2.083(11)$ for $J/蠄\to纬畏_c$ is consistent with previous lattice results, the form factors $\hat{E}_1(0)$, $\hat{M}_2(0)$ and $\hat{E}_3(0)$ for $螕(蠂_{c2}\to纬J/蠄)$ have the same hierarchy as that derived from experiments and the predicted decay width $螕(蠂_{c2}\to纬J/蠄)=368(5)~\text{keV}$ is in excellent agreement with the PDG value $374(10)~\text{keV}$ and previous lattice QCD results in the quenched approximation. The same strategy is applied to the study of the process $蠄_2(3823)\to 纬蠂_{c1}$ and the partial decay width is predicted to be $337(27)~\text{keV}$. According to the BESIII constraints on the $蠄_2(3823)$ decay channels and some phenomenological results, we estimate the total width $螕(蠄_2(3823))=520(100)~\text{keV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09662v1-abstract-full').style.display = 'none'; document.getElementById('2309.09662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12884">arXiv:2306.12884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.12884">pdf</a>, <a href="https://arxiv.org/format/2306.12884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Decays of $1^{-+}$ Charmoniumlike Hybrid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12884v2-abstract-short" style="display: inline;"> By extracting the transition amplitudes, we give the first lattice QCD prediction of the two-body decay partial widths of the $1^{-+}$ charmoniumlike hybrid $畏_{c1}$. Given the calculated mass value $m_{畏_{c1}}=4.329(36)$ GeV, the $畏_{c1}$ decay is dominated by the open charm modes $D_1\bar{D}$, $D^*\bar{D}$ and $D^*\bar{D}^*$ with partial widths of $258(133)$ MeV, $88(18)$ MeV and $150(118)$ MeV,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12884v2-abstract-full').style.display = 'inline'; document.getElementById('2306.12884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12884v2-abstract-full" style="display: none;"> By extracting the transition amplitudes, we give the first lattice QCD prediction of the two-body decay partial widths of the $1^{-+}$ charmoniumlike hybrid $畏_{c1}$. Given the calculated mass value $m_{畏_{c1}}=4.329(36)$ GeV, the $畏_{c1}$ decay is dominated by the open charm modes $D_1\bar{D}$, $D^*\bar{D}$ and $D^*\bar{D}^*$ with partial widths of $258(133)$ MeV, $88(18)$ MeV and $150(118)$ MeV, respectively. The coupling of $畏_{c1}$ to $蠂_{c1}$ plus a flavor singlet pseudoscalar is not small, but $蠂_{c1}畏$ decay is suppressed by the small $畏-畏&#39;$ mixing angle. The partial width of $畏_{c1}\to 畏_c畏&#39;$ is estimated to be around 1 MeV. We suggest experiments to search for $畏_{c1}$ in the $P$-wave $D^*\bar{D}$ and $D^*\bar{D}^*$ systems. Especially, the polarization of $D^*\bar{D}^*$ can be used to distinguish the $1^{-+}$ product (total spin $S=1$) from $1^{--}$ products ($S=0$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12884v2-abstract-full').style.display = 'none'; document.getElementById('2306.12884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures. Revised to article format</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17865">arXiv:2303.17865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17865">pdf</a>, <a href="https://arxiv.org/format/2303.17865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.137941">10.1016/j.physletb.2023.137941 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $螢_c-螢_c^{\prime}$ mixing From Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+H">Hang Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+J">Jin-Xin Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17865v2-abstract-short" style="display: inline;"> In heavy quark limit, the lowest-lying charmed baryons with two light quarks can form an SU(3) triplet and sextet. The $螢_c$ in the SU(3) triplet and $螢_c&#39;$ in the sextet have the same $J^{PC}$ quantum number and can mix due to the finite charm quark mass and the fact the strange quark is heavier than the up/down quark. We explore the $螢_c$-$螢_c&#39;$ mixing by calculating the two-point correlation fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17865v2-abstract-full').style.display = 'inline'; document.getElementById('2303.17865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17865v2-abstract-full" style="display: none;"> In heavy quark limit, the lowest-lying charmed baryons with two light quarks can form an SU(3) triplet and sextet. The $螢_c$ in the SU(3) triplet and $螢_c&#39;$ in the sextet have the same $J^{PC}$ quantum number and can mix due to the finite charm quark mass and the fact the strange quark is heavier than the up/down quark. We explore the $螢_c$-$螢_c&#39;$ mixing by calculating the two-point correlation functions of the $螢_c$ and $螢_c&#39;$ baryons from lattice QCD. Based on the lattice data, we adopt two independent methods to determine the mixing angle between $螢_c$ and $螢_c&#39;$. After making the chiral and continuum extrapolation, it is found that the mixing angle $胃$ is $1.2^{\circ}\pm0.1^{\circ}$, which seems insufficient to account for the large SU(3) symmetry breaking effects found in weak decays of charmed baryons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17865v2-abstract-full').style.display = 'none'; document.getElementById('2303.17865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04713">arXiv:2211.04713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04713">pdf</a>, <a href="https://arxiv.org/format/2211.04713">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Triply charmed baryons mass decomposition from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+J">Jin-Bo Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qin%2C+W">Wen Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04713v2-abstract-short" style="display: inline;"> We present the first calculation of the connected scalar matrix element and the momentum fraction of charm quark within the$\frac{3}{2}^{+}$ and $\frac{3}{2}^{-}$triply charmed baryons on lattice QCD. The results are based on overlap valence fermions on two ensembles of $N_f=2+1$ domain wall fermion configurations with two lattice spacings. The corresponding sea quark pion masses are $300$ MeV and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04713v2-abstract-full').style.display = 'inline'; document.getElementById('2211.04713v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04713v2-abstract-full" style="display: none;"> We present the first calculation of the connected scalar matrix element and the momentum fraction of charm quark within the$\frac{3}{2}^{+}$ and $\frac{3}{2}^{-}$triply charmed baryons on lattice QCD. The results are based on overlap valence fermions on two ensembles of $N_f=2+1$ domain wall fermion configurations with two lattice spacings. The corresponding sea quark pion masses are $300$ MeV and $278$ MeV. The separated contributions to the triply charmed baryon mass are derived through the decomposition of the QCD energy-momentum tensor. The contribution of the connected charm quark matrix element to the triply charmed baryon is about 3/2 times that of the charmonium. And it contributes almost 70\% of the total mass. The mass splitting of $\frac{3}{2}^{+}$ and $\frac{3}{2}^{-}$triply charmed baryons is mainly from $\langle H_{E}\rangle$ of the QCD energy-momentum tensor. A mass decomposition from the quark model is also studied for comparison. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04713v2-abstract-full').style.display = 'none'; document.getElementById('2211.04713v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 page, 17 figures, Version for submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&amp;(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&amp;(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&amp;(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04694">arXiv:2207.04694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.04694">pdf</a>, <a href="https://arxiv.org/format/2207.04694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054511">10.1103/PhysRevD.107.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $1^{-+}$ Hybrid in $J/蠄$ Radiative Decays from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04694v3-abstract-short" style="display: inline;"> We present the first theoretical prediction of the production rate of $1^{-+}$ light hybrid meson $畏_1$ in $J/蠄$ radiative decays. In the $N_f=2$ lattice QCD formalism with the pion mass $m_蟺\approx 350$ MeV, the related electromagnetic multipole form factors are extracted from the three-point functions that involve necessarily quark annihilation diagrams, which are calculated through the distilla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04694v3-abstract-full').style.display = 'inline'; document.getElementById('2207.04694v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04694v3-abstract-full" style="display: none;"> We present the first theoretical prediction of the production rate of $1^{-+}$ light hybrid meson $畏_1$ in $J/蠄$ radiative decays. In the $N_f=2$ lattice QCD formalism with the pion mass $m_蟺\approx 350$ MeV, the related electromagnetic multipole form factors are extracted from the three-point functions that involve necessarily quark annihilation diagrams, which are calculated through the distillation method. The partial width of $J/蠄\to 纬畏_1$ is determined to be $2.29(77)~\mathrm{eV}$ at the $畏_1$ mass $m_{畏_1}=2.23(4)$ GeV. If $畏_1$ corresponds to the recently observed $畏_1(1855)$ in the process $J/蠄\to 纬畏_1(1855)\to 纬畏畏&#39;$ by BESIII, then the branching fraction $\mathrm{Br}(J/蠄\to 纬畏_1(1855))$ is estimated to be $6.2(2.2)\times 10^{-5}$, which implies $\mathrm{Br}(畏_1(1855)\to 畏畏&#39;)\sim 4.3\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04694v3-abstract-full').style.display = 'none'; document.getElementById('2207.04694v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Published in prd</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06185">arXiv:2206.06185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.06185">pdf</a>, <a href="https://arxiv.org/format/2206.06185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137391">10.1016/j.physletb.2022.137391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $T_{cc}^{+}(3875)$ relevant $DD^*$ scattering from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+S">Siyang Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06185v3-abstract-short" style="display: inline;"> The $S$-wave $DD^*$ scattering in the isospin $I=0,1$ channels is studied in $N_f=2$ lattice QCD at $m_蟺\approx 350$ MeV. It is observed that the $DD^*$ interaction is repulsive in the $I=1$ channel when the $DD^*$ energy is near the $DD^*$ threshold. In contrast, the $DD^*$ interaction in the $I=0$ channel is definitely attractive in a wide range of the $DD^*$ energy. This is consistent with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06185v3-abstract-full').style.display = 'inline'; document.getElementById('2206.06185v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06185v3-abstract-full" style="display: none;"> The $S$-wave $DD^*$ scattering in the isospin $I=0,1$ channels is studied in $N_f=2$ lattice QCD at $m_蟺\approx 350$ MeV. It is observed that the $DD^*$ interaction is repulsive in the $I=1$ channel when the $DD^*$ energy is near the $DD^*$ threshold. In contrast, the $DD^*$ interaction in the $I=0$ channel is definitely attractive in a wide range of the $DD^*$ energy. This is consistent with the isospin assignment $I=0$ for $T_{cc}^+(3875)$. By analyzing the components of the $DD^*$ correlation functions, it turns out that the quark diagram responsible for the different properties of $I=0,1$ $DD^*$ interactions can be understood as the charged $蟻$ meson exchange effect. This observation provides direct information on the internal dynamics of $T_{cc}^+(3875)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06185v3-abstract-full').style.display = 'none'; document.getElementById('2206.06185v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 14 figures, version to appear in Physics Letters B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02724">arXiv:2206.02724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.02724">pdf</a>, <a href="https://arxiv.org/format/2206.02724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.061901">10.1103/PhysRevLett.130.061901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative Decay Width of $J/蠄\to 纬畏_{(2)}$ from $N_f=2$ Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02724v2-abstract-short" style="display: inline;"> The large radiative production rate for pseudoscalar mesons in the $J/蠄$ radiative decay remains elusive. We present the first lattice QCD calculation of partial decay width of $J/蠄$ radiatively decaying into $畏_{(2)}$, the $\mathrm{SU(2)}$ flavor singlet pseudoscalar meson, which confirms QCD $\mathrm{U_A(1)}$ anomaly enhancement to the coupling of gluons with flavor singlet pseudoscalar mesons.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02724v2-abstract-full').style.display = 'inline'; document.getElementById('2206.02724v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02724v2-abstract-full" style="display: none;"> The large radiative production rate for pseudoscalar mesons in the $J/蠄$ radiative decay remains elusive. We present the first lattice QCD calculation of partial decay width of $J/蠄$ radiatively decaying into $畏_{(2)}$, the $\mathrm{SU(2)}$ flavor singlet pseudoscalar meson, which confirms QCD $\mathrm{U_A(1)}$ anomaly enhancement to the coupling of gluons with flavor singlet pseudoscalar mesons. The lattice simulation is carried out using $N_f=2$ lattice QCD gauge configurations at the pion mass $m_蟺 \approx 350$ MeV. In particular, the distillation method has been utilized to calculate light quark loops. The results are reported here with the mass $m_{畏_{(2)}}= 718(8)$ MeV and the decay width $螕(J/蠄\to纬畏_{(2)})=0.385(45)$ keV. By assuming the dominance of $\mathrm{U_A(1)}$ anomaly and flavor singlet-octet mixing angle $胃=-24.5^\circ$, the production rates for the physical $畏$ and $畏&#39;$ in $J/蠄$ radiative decay are predicted to be $1.15(14)\times 10^{-3}$ and $4.49(53)\times 10^{-3}$, respectively, which agree well with the experimental measurement data. Our study manifests the potential of lattice QCD studies on the light hadron production in $J/蠄$ radiative decays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02724v2-abstract-full').style.display = 'none'; document.getElementById('2206.02724v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 061901 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12541">arXiv:2205.12541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12541">pdf</a>, <a href="https://arxiv.org/format/2205.12541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094510">10.1103/PhysRevD.107.094510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $畏$-glueball mixing from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12541v2-abstract-short" style="display: inline;"> We perform the first lattice study on the mixing of the isoscalar pseudoscalar meson $畏$ and the pseudoscalar glueball $G$ in the $N_f=2$ QCD at the pion mass $m_蟺\approx 350$ MeV. The $畏$ mass is determined to be $m_畏=714(6)(16)$ MeV. Through the Witten-Veneziano relation, this value can be matched to a mass value of $\sim 981$ MeV for the $\mathrm{SU(3)}$ counterpart of $畏$. Based on a large gau&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12541v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12541v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12541v2-abstract-full" style="display: none;"> We perform the first lattice study on the mixing of the isoscalar pseudoscalar meson $畏$ and the pseudoscalar glueball $G$ in the $N_f=2$ QCD at the pion mass $m_蟺\approx 350$ MeV. The $畏$ mass is determined to be $m_畏=714(6)(16)$ MeV. Through the Witten-Veneziano relation, this value can be matched to a mass value of $\sim 981$ MeV for the $\mathrm{SU(3)}$ counterpart of $畏$. Based on a large gauge ensemble, the $畏-G$ mixing energy and the mixing angle are determined to be $|x|=107(15)(2)$ MeV and $|胃|=3.46(46)^\circ$ from the $畏-G$ correlators that are calculated using the distillation method. We conclude that the $畏-G$ mixing is tiny and the topology induced interaction contributes most of $畏$ mass owing to the QCD $\mathrm{U_A(1)}$ anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12541v2-abstract-full').style.display = 'none'; document.getElementById('2205.12541v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 094510 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09004">arXiv:2201.09004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09004">pdf</a>, <a href="https://arxiv.org/format/2201.09004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Performance of the GPU inverters with Chroma+QUDA for various fermion actions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Ren-Qiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09004v2-abstract-short" style="display: inline;"> We present our progress on the Chroma interfaces of the twisted-mass, HISQ (highly improved staggered quark) and overlap fermion inverters using QUDA. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09004v2-abstract-full" style="display: none;"> We present our progress on the Chroma interfaces of the twisted-mass, HISQ (highly improved staggered quark) and overlap fermion inverters using QUDA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09004v2-abstract-full').style.display = 'none'; document.getElementById('2201.09004v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11929">arXiv:2111.11929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.11929">pdf</a>, <a href="https://arxiv.org/format/2111.11929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/accc1c">10.1088/1674-1137/accc1c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueballs at Physical Pion Mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11929v1-abstract-short" style="display: inline;"> We study glueballs on two $N_f=2+1$ RBC/UKQCD gauge ensembles with physical quark masses at two lattice spacings. The statistical uncertainties of the glueball correlation functions are considerably reduced through the cluster decomposition error reduction (CDER) method. The Bethe-Salpeter wave functions are obtained for the scalar, tensor and pseudoscalar glueballs by using spatially extended glu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11929v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11929v1-abstract-full" style="display: none;"> We study glueballs on two $N_f=2+1$ RBC/UKQCD gauge ensembles with physical quark masses at two lattice spacings. The statistical uncertainties of the glueball correlation functions are considerably reduced through the cluster decomposition error reduction (CDER) method. The Bethe-Salpeter wave functions are obtained for the scalar, tensor and pseudoscalar glueballs by using spatially extended glueball operators defined through the gauge potential $A_渭(x)$ in the Coulomb gauge. These wave functions show similar features of non-relativistic two-gluon systems, and they are used to optimize the signals of the related correlation functions at the early time regions. Consequently, the ground state masses can be extracted precisely. To the extent that the excited state contamination is not important, our calculation gives glueball masses at the physical pion mass for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11929v1-abstract-full').style.display = 'none'; document.getElementById('2111.11929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01755">arXiv:2110.01755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.01755">pdf</a>, <a href="https://arxiv.org/format/2110.01755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac3d8c">10.1088/1674-1137/ac3d8c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Annihilation diagram contribution to charmonium masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Renqiang Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01755v2-abstract-short" style="display: inline;"> In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01755v2-abstract-full').style.display = 'inline'; document.getElementById('2110.01755v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01755v2-abstract-full" style="display: none;"> In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark annihilation effect almost does not change the $J/蠄$ mass, but lifts the $畏_c$ mass by approximately 3-4 MeV. For $1P$ charmonia, this effect results in positive mass shifts of approximately 1 MeV for $蠂_{c1}$ and $h_c$, but decreases the $蠂_{c2}$ mass by approximately 3 MeV. We have not obtain a reliable result for the mass shift of $蠂_{c0}$. In addition, it is observed that the spin averaged mass of the spin-triplet $1P$ charmonia is in a good agreement with the $h_c$, as expected by the non-relativistic quark model and measured by experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01755v2-abstract-full').style.display = 'none'; document.getElementById('2110.01755v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. C 46(2022) 043102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12749">arXiv:2107.12749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12749">pdf</a>, <a href="https://arxiv.org/format/2107.12749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.136960">10.1016/j.physletb.2022.136960 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Glueball content of $畏_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Renqiang Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12749v2-abstract-short" style="display: inline;"> We carry out the first lattice QCD derivation of the mixing energy and the mixing angle of the pseudoscalar charmonium and glueball on two gauge ensembles with $N_f=2$ degenerate dynamical charm quarks. The mixing energy is determined to be $49(6)$ MeV on the near physical charm ensemble, which seems insensitive to charm quark mass. By the assumption that $X(2370)$ is predominantly a pseudoscalar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12749v2-abstract-full').style.display = 'inline'; document.getElementById('2107.12749v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12749v2-abstract-full" style="display: none;"> We carry out the first lattice QCD derivation of the mixing energy and the mixing angle of the pseudoscalar charmonium and glueball on two gauge ensembles with $N_f=2$ degenerate dynamical charm quarks. The mixing energy is determined to be $49(6)$ MeV on the near physical charm ensemble, which seems insensitive to charm quark mass. By the assumption that $X(2370)$ is predominantly a pseudoscalar glueball, the mixing angle is determined to be approximately $4.6(6)^\circ$, which results in a $+3.9(9)$ MeV mass shift of the ground state pseudoscalar charmonium. In the mean time, the mixing can raise the total width of the pseudoscalar charmonium by 7.2(8) MeV, which explains to some extent the relative large total width of the $畏_c$ meson. As a result, the branching fraction of $畏_c\to 纬纬$ can be understood in this $c\bar{c}$-glueball mixing framework. On the other hand, the possible discrepancy of the theoretical predictions and the experimental results of the partial width of $J/蠄\to纬畏_c$ cannot be alleviated by the $c\bar{c}$-glueball mixing picture yet, which demands future precise experimental measurements of this partial width. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12749v2-abstract-full').style.display = 'none'; document.getElementById('2107.12749v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures;v2: accepted by Physics Letter B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81T25 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B, 827(2022)136960 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07064">arXiv:2103.07064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.07064">pdf</a>, <a href="https://arxiv.org/ps/2103.07064">ps</a>, <a href="https://arxiv.org/format/2103.07064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac2b12">10.1088/1674-1137/ac2b12 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Lattice QCD determination of semileptonic decays of charmed-strange baryons $螢_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huang%2C+F">Fei Huang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+R">Renbo Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lu%2C+C">Cai-Dian Lu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07064v2-abstract-short" style="display: inline;"> While the standard model is the most successfully theory to describe all interactions and constituents in elementary particle physics, it has been constantly examined for over four decades. Weak decays of charm quarks can measure the coupling strength of quarks in different families and serve as an ideal probe for CP violation. As the lowest charm-strange baryons with three different flavors,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07064v2-abstract-full').style.display = 'inline'; document.getElementById('2103.07064v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07064v2-abstract-full" style="display: none;"> While the standard model is the most successfully theory to describe all interactions and constituents in elementary particle physics, it has been constantly examined for over four decades. Weak decays of charm quarks can measure the coupling strength of quarks in different families and serve as an ideal probe for CP violation. As the lowest charm-strange baryons with three different flavors, $螢_c$ baryons (made of $csu$ or $csd$) have been extensively studied in experiments at the large hadron collider and in electron-positron collision. However the lack of reliable knowledge in theory becomes the unavoidable obstacle in the way. In this work, we use the state-of-the-art Lattice QCD techniques, and generate 2+1 clover fermion ensembles with two lattice spacings, $a=(0.108{\rm fm},0.080{\rm fm})$. We then present the first {\it ab-initio} lattice QCD determination of form factors governing $螢_{c}\to 螢\ell^+谓_{\ell}$, analogous with the notable $尾$-decay of nuclei. Our theoretical results for decay widths are consistent with and about two times more precise than the latest measurements by ALICE and Belle collaborations. Together with experimental measurements, we independently determine the quark-mixing matrix element $|V_{cs}|$, which is found in good agreement with other determinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07064v2-abstract-full').style.display = 'none'; document.getElementById('2103.07064v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+1 pages, 4 figures; v2: 7 pages, corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 46, 011002(2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.06228">arXiv:2012.06228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.06228">pdf</a>, <a href="https://arxiv.org/format/2012.06228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.094503">10.1103/PhysRevD.103.094503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gluons in charmoniumlike states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.06228v2-abstract-short" style="display: inline;"> The mass components of charmoniumlike states are investigated through the decomposition of QCD energy-momentum tensor (EMT) on lattice. The quark mass contribution $\langle H_m\rangle$ and the momentum fraction $\langle x\rangle$ of valence charm quark and antiquark are calculated for conventional $1S,1P,1D$ charmonia and the exotic $1^{-+}$ charmoniumlike state, based on the $N_f=2+1$ gauge confi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06228v2-abstract-full').style.display = 'inline'; document.getElementById('2012.06228v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.06228v2-abstract-full" style="display: none;"> The mass components of charmoniumlike states are investigated through the decomposition of QCD energy-momentum tensor (EMT) on lattice. The quark mass contribution $\langle H_m\rangle$ and the momentum fraction $\langle x\rangle$ of valence charm quark and antiquark are calculated for conventional $1S,1P,1D$ charmonia and the exotic $1^{-+}$ charmoniumlike state, based on the $N_f=2+1$ gauge configurations generated by the RBC/UKQCD collaboration. It is found that $\langle H_m\rangle$ is close to each other and around 2.0 to 2.2 GeV for these states, which implies that the mass splittings among these states come almost from the gluon contribution of QCD trace anomaly. The $\langle x\rangle$ of the $1^{-+}$ state is only around 0.55, while that in conventional charmonia is around 0.7 to 0.8. This difference manifests that the proportion of light quarks and gluons in the $1^{-+}$ charmoniumlike state is significantly larger than conventional states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06228v2-abstract-full').style.display = 'none'; document.getElementById('2012.06228v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures; v2: match the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 094503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09819">arXiv:1910.09819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.09819">pdf</a>, <a href="https://arxiv.org/format/1910.09819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac0ee2">10.1088/1674-1137/ac0ee2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Color halo scenario of charmonium-like hybrids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yunheng Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09819v2-abstract-short" style="display: inline;"> The internal structures of $J^{PC}=1^{--}, (0,1,2)^{-+}$ charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function $桅_n(r)$ in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator $\bar{c}{c}g$ between the vacuum and $n$-th state for each $J^{PC}$ with $r$ being the spatial separation between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09819v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09819v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09819v2-abstract-full" style="display: none;"> The internal structures of $J^{PC}=1^{--}, (0,1,2)^{-+}$ charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function $桅_n(r)$ in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator $\bar{c}{c}g$ between the vacuum and $n$-th state for each $J^{PC}$ with $r$ being the spatial separation between a localized $\bar{c}c$ component and the chromomagnetic strength tensor. These wave functions exhibit some similarities for states with the aforementioned different quantum numbers, and their $r$-behaviors (no node for the ground states and one node for the first excited states) imply that $r$ can be a meaningful dynamical variable for these states. Additionally, the mass splittings of the ground states and first excited states of charmonium-like hybrids in these channels are obtained for the first time to be approximately 1.2-1.4 GeV. These results do not support the flux-tube description of heavy-quarkonium-like hybrids in the Born-Oppenheimer approximation. In contrast, a charmonium-like hybrid can be viewed as a &#34;color halo&#34; charmonium for which a relatively localized color octet $\bar{c}c$ is surrounded by gluonic degrees of freedom, which can readily decay into a charmonium state along with one or more light hadrons. The color halo picture is compatible with the decay properties of $Y(4260)$ and suggests LHCb and BelleII to search for $(0,1,2)^{-+}$ charmonium-like hybrids in $蠂_{c0,1,2}畏$ and $J/蠄蠅(蠁)$ final states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09819v2-abstract-full').style.display = 'none'; document.getElementById('1910.09819v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures. The contents are considerably enriched, more references are added. Match the publication version in Chin. Phys. C (in press)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 45, No. 9 (2021) 093111 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00711">arXiv:1711.00711</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.00711">pdf</a>, <a href="https://arxiv.org/format/1711.00711">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817505016">10.1051/epjconf/201817505016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueball relevant study on isoscalars from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gui%2C+L">Long-cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00711v1-abstract-short" style="display: inline;"> We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispersion relation. When $q\bar{q}$ operator is included, we find the mass of this state does not change, and the $q\bar{q}$ operator couples very weakly to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00711v1-abstract-full').style.display = 'inline'; document.getElementById('1711.00711v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00711v1-abstract-full" style="display: none;"> We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispersion relation. When $q\bar{q}$ operator is included, we find the mass of this state does not change, and the $q\bar{q}$ operator couples very weakly to this state. So this state is most likely a glueball state. For pseudoscalars, along with the exiting lattice results, our study implies that both the conventional $q\bar{q}$ state $畏_2$ (or $畏&#39;$ in flavor $SU(3)$) and a heavier glueball-like state with a mass of roughly 2.6 GeV exist in the spectrum of lattice QCD with dynamical quarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00711v1-abstract-full').style.display = 'none'; document.getElementById('1711.00711v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, 3 tables, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Web of Conferences 175, 05016 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.08174">arXiv:1702.08174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.08174">pdf</a>, <a href="https://arxiv.org/format/1702.08174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/42/9/093103">10.1088/1674-1137/42/9/093103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueball spectrum from $N_f=2$ lattice QCD study on anisotropic lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.08174v2-abstract-short" style="display: inline;"> The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_蟺\sim 938$ MeV and $650$ MeV. The quark mass dependence of the glueball masses have not been investigated in the present study. Only the gluonic operators built from Wilson l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.08174v2-abstract-full').style.display = 'inline'; document.getElementById('1702.08174v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.08174v2-abstract-full" style="display: none;"> The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_蟺\sim 938$ MeV and $650$ MeV. The quark mass dependence of the glueball masses have not been investigated in the present study. Only the gluonic operators built from Wilson loops are utilized in calculating the corresponding correlation functions. In the tensor channel, we obtain the ground state mass to be 2.363(39) GeV and 2.384(67) GeV at $m_蟺\sim 938$ MeV and $650$ MeV, respectively. In the pseudoscalar channel, when using the gluonic operator whose continuum limit has the form of $蔚_{ijk}TrB_iD_jB_k$, we obtain the ground state mass to be 2.573(55) GeV and 2.585(65) GeV at the two pion masses. These results are compatible with the corresponding results in the quenched approximation. In contrast, if we use the topological charge density as field operators for the pseudoscalar, the masses of the lowest state are much lighter (around 1GeV) and compatible with the expected masses of the flavor singlet $q\bar{q}$ meson. This indicates that the operator $蔚_{ijk}TrB_iD_jB_k$ and the topological charge density couple rather differently to the glueball states and $q\bar{q}$ mesons. The observation of the light flavor singlet pseudoscalar meson can be viewed as the manifestation of effects of dynamical quarks. In the scalar channel, the ground state masses extracted from the correlation functions of gluonic operators are determined to be around 1.4-1.5 GeV, which is close to the ground state masses from the correlation functions of the quark bilinear operators. In all cases, the mixing between glueballs and conventional mesons remains to be further clarified in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.08174v2-abstract-full').style.display = 'none'; document.getElementById('1702.08174v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, 9 tables; typos fixed, minor modifications, match the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin.Phys. C42 (2018) no.9, 093103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04294">arXiv:1511.04294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.04294">pdf</a>, <a href="https://arxiv.org/ps/1511.04294">ps</a>, <a href="https://arxiv.org/format/1511.04294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/40/4/041001">10.1088/1674-1137/40/4/041001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrum and Bethe-Salpeter amplitudes of $惟$ baryons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chiu%2C+W">Wei-Feng Chiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04294v2-abstract-short" style="display: inline;"> The $惟$ baryons with $J^P=3/2^\pm, 1/2^\pm$ are studied on the lattice in the quenched approximation. Their mass levels are ordered as $M_{3/2^+}&lt;M_{3/2^-}\approx M_{1/2^-}&lt;M_{1/2^+}$, as is expected from the constituent quark model. The mass values are also close to those of the four $惟$ states observed in experiments, respectively. We calculate the Bethe-Salpeter amplitudes of $惟(3/2^+)$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04294v2-abstract-full').style.display = 'inline'; document.getElementById('1511.04294v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04294v2-abstract-full" style="display: none;"> The $惟$ baryons with $J^P=3/2^\pm, 1/2^\pm$ are studied on the lattice in the quenched approximation. Their mass levels are ordered as $M_{3/2^+}&lt;M_{3/2^-}\approx M_{1/2^-}&lt;M_{1/2^+}$, as is expected from the constituent quark model. The mass values are also close to those of the four $惟$ states observed in experiments, respectively. We calculate the Bethe-Salpeter amplitudes of $惟(3/2^+)$ and $惟(1/2^+)$ and find there is a radial node for the $惟(1/2^+)$ Bethe-Salpeter amplitude, which may imply that $惟(1/2^+)$ is an orbital excitation of $惟$ baryons as a member of the $(D,L_N^P)=(70,0_2^+)$ supermultiplet in the $SU(6)\bigotimes O(3)$ quark model description. Our results are helpful for identifying the quantum number of experimentally observed $惟$ states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04294v2-abstract-full').style.display = 'none'; document.getElementById('1511.04294v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, submitted to Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C 40 (2016) 041001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.02541">arXiv:1507.02541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.02541">pdf</a>, <a href="https://arxiv.org/ps/1507.02541">ps</a>, <a href="https://arxiv.org/format/1507.02541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/42/6/063102">10.1088/1674-1137/42/6/063102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anatomy of the $蟻$ resonance from lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandru%2C+A">Andrei Alexandru</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.02541v2-abstract-short" style="display: inline;"> We propose a strategy to access the $q\bar{q}$ component of the $蟻$ resonance in lattice QCD. Through a mixed action formalism (overlap valence on domain wall sea), the energy of the $q\bar{q}$ component is derived at different valence quark masses, and shows a linear dependence on $m_蟺^2$. The slope is determined to be $c_1=0.505(3)\,{\rm GeV}^{-1}$, from which the valence $蟺蟻$ sigma term is extr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02541v2-abstract-full').style.display = 'inline'; document.getElementById('1507.02541v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.02541v2-abstract-full" style="display: none;"> We propose a strategy to access the $q\bar{q}$ component of the $蟻$ resonance in lattice QCD. Through a mixed action formalism (overlap valence on domain wall sea), the energy of the $q\bar{q}$ component is derived at different valence quark masses, and shows a linear dependence on $m_蟺^2$. The slope is determined to be $c_1=0.505(3)\,{\rm GeV}^{-1}$, from which the valence $蟺蟻$ sigma term is extracted to be $蟽_{蟺蟻}^{(\rm val)}=9.82(6)$ MeV using the Feynman-Hellman theorem. At the physical pion mass, the mass of the $q\bar{q}$ component is interpolated to be $m_蟻=775.9\pm 6.0\pm 1.8$ MeV, which is close to the $蟻$ resonance mass. We also obtain the leptonic decay constant of the $q\bar{q}$ component to be $f_{蟻^-}=208.5\pm 5.5\pm 0.9$ MeV, which can be compared with the experimental value $f_蟻^{\rm exp}\approx 221$ MeV through the relation $f_蟻^{\rm exp}=\sqrt{Z_蟻}f_{蟻^\pm} $ with $Z_蟻\approx 1.13$ being the on-shell wavefunction renormalization of $蟻$ owing to the $蟻-蟺$ interaction. We emphasize that $m_蟻$ and $f_蟻$ of the $q\bar{q}$ component, which are obtained for the first time from QCD, can be taken as the input parameters of $蟻$ in effective field theory studies where $蟻$ acts as a fundamental degree of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02541v2-abstract-full').style.display = 'none'; document.getElementById('1507.02541v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Considerably modified, more discussions, matching to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 42, 063102 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.2687">arXiv:0912.2687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0912.2687">pdf</a>, <a href="https://arxiv.org/ps/0912.2687">ps</a>, <a href="https://arxiv.org/format/0912.2687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.81.032201">10.1103/PhysRevC.81.032201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vacuum pseudoscalar susceptibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+L">Lei Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yu-Xin Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roberts%2C+C+D">Craig D. Roberts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+Y">Yuan-Mei Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei-Min Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zong%2C+H">Hong-Shi Zong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.2687v1-abstract-short" style="display: inline;"> We derive a novel model-independent result for the pion susceptibility in QCD via the isovector-pseudoscalar vacuum polarisation. In the neighbourhood of the chiral-limit, the pion susceptibility can be expressed as a sum of two independent terms. The first expresses the pion-pole contribution. The second is identical to the vacuum chiral susceptibility, which describes the response of QCD&#39;s gro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.2687v1-abstract-full').style.display = 'inline'; document.getElementById('0912.2687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.2687v1-abstract-full" style="display: none;"> We derive a novel model-independent result for the pion susceptibility in QCD via the isovector-pseudoscalar vacuum polarisation. In the neighbourhood of the chiral-limit, the pion susceptibility can be expressed as a sum of two independent terms. The first expresses the pion-pole contribution. The second is identical to the vacuum chiral susceptibility, which describes the response of QCD&#39;s ground-state to a fluctuation in the current-quark mass. In this result one finds a straightforward explanation of a mismatch between extant estimates of the pion susceptibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.2687v1-abstract-full').style.display = 'none'; document.getElementById('0912.2687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.C81:032201,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0812.2956">arXiv:0812.2956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0812.2956">pdf</a>, <a href="https://arxiv.org/ps/0812.2956">ps</a>, <a href="https://arxiv.org/format/0812.2956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.79.035209">10.1103/PhysRevC.79.035209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral susceptibility and the scalar Ward identity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+L">Lei Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yu-xin Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roberts%2C+C+D">Craig D. Roberts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+Y">Yuan-mei Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+W">Wei-min Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zong%2C+H">Hong-shi Zong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0812.2956v1-abstract-short" style="display: inline;"> The chiral susceptibility is given by the scalar vacuum polarisation at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularisation procedure. Owing to the scalar Ward identity, irrespe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.2956v1-abstract-full').style.display = 'inline'; document.getElementById('0812.2956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0812.2956v1-abstract-full" style="display: none;"> The chiral susceptibility is given by the scalar vacuum polarisation at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularisation procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.2956v1-abstract-full').style.display = 'none'; document.getElementById('0812.2956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ANL-PHY-12242-TH-2008 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.C79:035209,2009 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10