CINXE.COM

Search results for: manufacturing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: manufacturing</title> <meta name="description" content="Search results for: manufacturing"> <meta name="keywords" content="manufacturing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="manufacturing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="manufacturing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1379</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: manufacturing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1379</span> Framework for Improving Manufacturing &quot;Implicit Competitiveness&quot; by Enhancing Monozukuri Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Togawa">Takahiro Togawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Huu%20Phuc"> Nguyen Huu Phuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty"> Oke Oktavianty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our research focuses on a framework which analyses the relationship between product/process architecture, manufacturing organizational capability and manufacturing &quot;implicit competitiveness&quot; in order to improve manufacturing implicit competitiveness. We found that 1) there is a relationship between architecture-based manufacturing organizational capability and manufacturing implicit competitiveness, and 2) analysis and measures conducted in manufacturing organizational capability proved effective to improve manufacturing implicit competitiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=implicit%20competitiveness" title="implicit competitiveness">implicit competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=QCD" title=" QCD"> QCD</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20capacity" title=" organizational capacity"> organizational capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20strategy" title=" architectural strategy"> architectural strategy</a> </p> <a href="https://publications.waset.org/abstracts/64771/framework-for-improving-manufacturing-implicit-competitiveness-by-enhancing-monozukuri-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1378</span> A Review of the Run to Run (R to R) Control in the Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Aghapouramin">Khalil Aghapouramin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ranjbar"> Mostafa Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Run-to-Run%20%28R2R%29%20control" title="Run-to-Run (R2R) control">Run-to-Run (R2R) control</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20in%20engineering" title=" process in engineering"> process in engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20controls" title=" manufacturing controls"> manufacturing controls</a> </p> <a href="https://publications.waset.org/abstracts/48352/a-review-of-the-run-to-run-r-to-r-control-in-the-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1377</span> Sustainable Manufacturing Framework for Small and Medium Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Deglurkar">Rajan Deglurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research carried out in this piece of work is on 'Framework of Sustainable Manufacturing for Small and Medium Enterprises'. It consists of elucidation of concepts about sustainable manufacturing and sustainable product development with critical review performed on seven techniques of sustainable manufacturing. The work also covers the survey about critical review of awareness in the market with respect to the manufacturers and the consumers. The factors and challenges for sustainable manufacturing implementation are reviewed and simple framework is constructed for the small and medium enterprise for successful implementation of sustainable manufacturing and sustainable product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20manufacturing" title=" sustainable manufacturing"> sustainable manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=framework%20for%20sustainable%20manufacturing" title=" framework for sustainable manufacturing"> framework for sustainable manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/11856/sustainable-manufacturing-framework-for-small-and-medium-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1376</span> Manufacturing Facility Location Selection: A Numercal Taxonomy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seifoddini%20Hamid">Seifoddini Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardikoraeem%20Mahsa"> Mardikoraeem Mahsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghorayshi%20Roya"> Ghorayshi Roya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing facility location selection is an important strategic decision for many industrial corporations. In this paper, a new approach to the manufacturing location selection problem is proposed. In this approach, cluster analysis is employed to identify suitable manufacturing locations based on economic, social, environmental, and political factors. These factors are quantified using the existing real world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20facility" title="manufacturing facility">manufacturing facility</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20sites" title=" manufacturing sites"> manufacturing sites</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20world%20data" title=" real world data"> real world data</a> </p> <a href="https://publications.waset.org/abstracts/25361/manufacturing-facility-location-selection-a-numercal-taxonomy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1375</span> An Advanced Method of Minimizing Unforeseen Disruptions within a Manufacturing System: A Case Study of Amico, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Max%20Moleke">Max Moleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing industries are faced with different types of problems. One of the most important role of controlling and monitoring a production process is to actually determine how to deal with unforeseen disruption when they arise. A majority of manufacturing tern to spend huge amount of money in order to meet up with their customers requirements and demand but due to instabilities within the manufacturing process, this objectives and goals are difficult to be achieved. In this research, we have developed a feedback control system that can minimize instability within the manufacturing system in order to boost the system output and productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruption" title="disruption">disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a> </p> <a href="https://publications.waset.org/abstracts/51225/an-advanced-method-of-minimizing-unforeseen-disruptions-within-a-manufacturing-system-a-case-study-of-amico-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1374</span> Effect of the Workpiece Position on the Manufacturing Tolerances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahou%20Mohamed">Rahou Mohamed </a>, <a href="https://publications.waset.org/abstracts/search?q=Sebaa%20Fethi"> Sebaa Fethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheikh%20Abdelmadjid"> Cheikh Abdelmadjid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing but also the manufacturing constraints, for example geometrical defects of the machine, vibration, and the wear of the cutting tool. The choice of positioning has an important influence on the cost and quality of manufacture. To avoid this problem, a two-step approach have been developed. The first step is dedicated to the determination of the optimum position. As for the second step, a study was carried out for the tightening effect on the tolerance interval. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=position" title=" position"> position</a> </p> <a href="https://publications.waset.org/abstracts/24541/effect-of-the-workpiece-position-on-the-manufacturing-tolerances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1373</span> A Risk Management Approach for Nigeria Manufacturing Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olaniyi%20O.%20Omoyajowo">Olaniyi O. Omoyajowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To be successful in today&rsquo;s competitive global environment, manufacturing industry must be able to respond quickly to changes in technology. These changes in technology introduce new risks and hazards. The management of risk/hazard in a manufacturing process recommends method through which the success rate of an organization can be increased. Thus, there is a continual need for manufacturing industries to invest significant amount of resources in risk management, which in turn optimizes the production output and profitability of any manufacturing industry (if implemented properly). To help improve the existing risk prevention and mitigation practices in Small and Medium Enterprise (SME) in Nigeria Manufacturing Industries (NMI), the researcher embarks on this research to develop a systematic Risk Management process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20management" title="manufacturing management">manufacturing management</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a> </p> <a href="https://publications.waset.org/abstracts/49491/a-risk-management-approach-for-nigeria-manufacturing-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1372</span> Investigating the Use of Advanced Manufacturing Technologies in the Assembly Type Manufacturing Companies in Trinidad and Tobago</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Sangster">Nadine Sangster</a>, <a href="https://publications.waset.org/abstracts/search?q=Akil%20James"> Akil James</a>, <a href="https://publications.waset.org/abstracts/search?q=Rondell%20Duke"> Rondell Duke</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Ameerali"> Aaron Ameerali</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Lalla"> Terrence Lalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market place of the 21st century is evolving into one of merging national markets, fragmented consumer markets, and rapidly changing product technologies. The use of new technologies has become vital to the manufacturing industry for their survival and sustainability. This work focused on the assembly type industry in a small developing country and aimed at identifying the use of advanced manufacturing technologies and their impact on this sector of the manufacturing industry. It was found that some technologies were being used and that they had improved the effectiveness of those companies but there was still quite a bit of room for improvements. Some of the recommendations included benchmarking against international standards, the adoption of a “made in TT” campaign and the effective utilisation of the technologies to improve manufacturing effectiveness and thus improve competitive advantages and strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology" title="advanced manufacturing technology">advanced manufacturing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Trinidad%20and%20Tobago" title=" Trinidad and Tobago"> Trinidad and Tobago</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering"> industrial engineering</a> </p> <a href="https://publications.waset.org/abstracts/6597/investigating-the-use-of-advanced-manufacturing-technologies-in-the-assembly-type-manufacturing-companies-in-trinidad-and-tobago" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1371</span> Quality Based Approach for Efficient Biologics Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kaminagayoshi">Takashi Kaminagayoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20drugs" title="antibody drugs">antibody drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=biologics" title=" biologics"> biologics</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20efficiency" title=" manufacturing efficiency"> manufacturing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=PDCA%20cycle" title=" PDCA cycle"> PDCA cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20engineering" title=" quality engineering"> quality engineering</a> </p> <a href="https://publications.waset.org/abstracts/42626/quality-based-approach-for-efficient-biologics-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1370</span> Significant Factors in Agile Manufacturing and the Role of Product Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Askarizadeh">Mehrnoosh Askarizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agile manufacturing concept was first coined by Iacocca institute in 1991 as a new manufacturing paradigm in order to provide and ensure competitiveness in the emerging global manufacturing order. Afterward, a considerable number of studies have been conducted in this area. Reviewing these studies reveals that they mostly focus on agile manufacturing drivers, definition and characteristics but few of them propose practical solutions to achieve it. Agile manufacturing is recommended as a successful paradigm after lean for the 21st manufacturing firms. This competitive concept has been developed in response to the continuously changes and uncertainties in today’s business environment. In order to become an agile competitor, a manufacturing firm should focus on enriching its agility capabilities. These agility capabilities can be categorized into seven groups: proactiveness, customer focus, responsiveness, quickness, flexibility, basic competence and partnership. A manufacturing firm which is aiming at achieving agility should first develop its own appropriate agility strategy. This strategy prioritizes required agility capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile%20manufacturing" title="agile manufacturing">agile manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20architecture" title=" product architecture"> product architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20focus" title=" customer focus"> customer focus</a>, <a href="https://publications.waset.org/abstracts/search?q=responsiveness" title=" responsiveness"> responsiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=quickness" title=" quickness"> quickness</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=basic%20competence" title=" basic competence"> basic competence</a> </p> <a href="https://publications.waset.org/abstracts/33496/significant-factors-in-agile-manufacturing-and-the-role-of-product-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1369</span> Barriers Facing the Implementation of Lean Manufacturing in Libyan Manufacturing Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abduelmula">Mohamed Abduelmula</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Birkett"> Martin Birkett</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Connor"> Chris Connor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lean Manufacturing has developed from being a set of tools and methods to becoming a management philosophy which can be used to remove or reduce waste in manufacturing processes and so enhance the operational productivity of an enterprise. Several enterprises around the world have applied the lean manufacturing system and gained great improvements. This paper investigates the barriers and obstacles that face Libyan manufacturing companies to implement lean manufacturing. A mixed-method approach is suggested, starting with conducting a questionnaire to get quantitative data then using this to develop semi-structured interviews to collect qualitative data. The findings of the questionnaire results and how these can be used further develop the semi-structured interviews are then discussed. The survey was distributed to 65 manufacturing companies in Libya, and a response rate of 64.6% was obtained. The results showed that these are five main barriers to implementing lean in Libya, namely organizational culture, skills and expertise, and training program, financial capability, top management, and communication. These barriers were also identified from the literature as being significant obstacles to implementing Lean in other countries industries. Having an understanding of the difficulties that face the implementation of lean manufacturing systems, as a new and modern system and using this to develop a suitable framework will help to improve the manufacturing sector in Libya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=barriers" title=" barriers"> barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan%20manufacturing%20companies" title=" Libyan manufacturing companies"> Libyan manufacturing companies</a> </p> <a href="https://publications.waset.org/abstracts/75278/barriers-facing-the-implementation-of-lean-manufacturing-in-libyan-manufacturing-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1368</span> Developing an Information Model of Manufacturing Process for Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Hyun%20Lee">Jae Hyun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing companies use life-cycle inventory databases to analyze sustainability of their manufacturing processes. Life cycle inventory data provides reference data which may not be accurate for a specific company. Collecting accurate data of manufacturing processes for a specific company requires enormous time and efforts. An information model of typical manufacturing processes can reduce time and efforts to get appropriate reference data for a specific company. This paper shows an attempt to build an abstract information model which can be used to develop information models for specific manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20information%20model" title="process information model">process information model</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=OWL" title=" OWL"> OWL</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/5611/developing-an-information-model-of-manufacturing-process-for-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1367</span> A Preliminary Conceptual Scale to Discretize the Distributed Manufacturing Continuum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20Ul%20Haq">Ijaz Ul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiorenzo%20Franceschini"> Fiorenzo Franceschini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distributed manufacturing methodology brings a new concept of decentralized manufacturing operations close to the proximity of end users. A preliminary scale, to measure distributed capacity and evaluate positioning of firms, is developed in this research. In the first part of the paper, a literature review has been performed which highlights the explorative nature of the studies conducted to present definitions and classifications due to novelty of this topic. From literature, five dimensions of distributed manufacturing development stages have been identified: localization, manufacturing technologies, customization and personalization, digitalization and democratization of design. Based on these determinants a conceptual scale is proposed to measure the status of distributed manufacturing of a generic firm. A multiple case study is then conducted in two steps to test the conceptual scale and to identify the corresponding level of distributed potential in each case study firm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20manufacturing" title="distributed manufacturing">distributed manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20capacity" title=" distributed capacity"> distributed capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20production" title=" localized production"> localized production</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinal%20scale" title=" ordinal scale"> ordinal scale</a> </p> <a href="https://publications.waset.org/abstracts/89405/a-preliminary-conceptual-scale-to-discretize-the-distributed-manufacturing-continuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1366</span> Biomimetic Adhesive Pads for Precision Manufacturing Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Yi">Hoon Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Sung"> Minho Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangil%20Ko"> Hangil Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Kyu%20Kwak"> Moon Kyu Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Eui%20Jeong"> Hoon Eui Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gecko" title="gecko">gecko</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20robot" title=" manufacturing robot"> manufacturing robot</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20manufacturing" title=" precision manufacturing"> precision manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/38058/biomimetic-adhesive-pads-for-precision-manufacturing-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1365</span> Use of Six-sigma Concept in Discrete Manufacturing Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ignatio%20Madanhire">Ignatio Madanhire</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mbohwa"> Charles Mbohwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficiency in manufacturing is critical in raising the value of exports so as to gainfully trade on the regional and international markets. There seems to be increasing popularity of continuous improvement strategies availed to manufacturing entities, but this research study established that there has not been a similar popularity accorded to the Six Sigma methodology. Thus this work was conducted to investigate the applicability, effectiveness, usefulness, application and suitability of the Six Sigma methodology as a competitiveness option for discrete manufacturing entity. Development of Six-sigma center in the country with continuous improvement information would go a long way in benefiting the entire industry <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20manufacturing" title="discrete manufacturing">discrete manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=six-sigma" title=" six-sigma"> six-sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20improvement" title=" continuous improvement"> continuous improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title=" competitiveness"> competitiveness</a> </p> <a href="https://publications.waset.org/abstracts/13351/use-of-six-sigma-concept-in-discrete-manufacturing-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1364</span> A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Shams%20Bidhendi">Saba Shams Bidhendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Goh"> Steven Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Wandel"> Andrew Wandel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author&rsquo;s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers&rsquo; resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20strategies" title=" lean strategies"> lean strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes" title=" manufacturing wastes"> manufacturing wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20performance" title=" manufacturing performance"> manufacturing performance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a> </p> <a href="https://publications.waset.org/abstracts/97420/a-multi-objective-methodology-for-selecting-lean-initiatives-in-modular-construction-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1363</span> Advanced Manufacturing Technology Adoption in Manufacturing Comapnies in Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Nyori%20Makari">George Nyori Makari</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ogola"> J. M. Ogola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few decades, manufacturing has evolved from a more labor-intensive set of mechanical processes to a sophisticated set of information based technology processes. With the existence of various advanced manufacturing technologies (AMTs), more and more functions or jobs are performed by these machines instead of human labour. This study was undertaken in order to research the extent of AMTs adoption in manufacturing companies in Kenya. In order to investigate a survey was conducted via questionnaires that were sent to 183 selected AMT manufacturing companies in Kenya. 92 companies responded positively. All the surveyed companies were found to have a measure of investment in at least two of the 14 types of AMTs investigated. In general the company surveyed showed that the level of AMT adoption in Kenya is very low with investments levels at a mean of 2.057 and integration levels at a mean of 1.639 in a scale of 1-5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMT%20adoption" title="AMT adoption">AMT adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=AMT%20investments" title=" AMT investments"> AMT investments</a>, <a href="https://publications.waset.org/abstracts/search?q=AMT%20integration" title=" AMT integration"> AMT integration</a>, <a href="https://publications.waset.org/abstracts/search?q=companies%20in%20Kenya" title=" companies in Kenya"> companies in Kenya</a> </p> <a href="https://publications.waset.org/abstracts/37149/advanced-manufacturing-technology-adoption-in-manufacturing-comapnies-in-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1362</span> Understand the Concept of Agility for the Manufacturing SMEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20H.%20Hejaaji">Adel H. Hejaaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for organisations to be flexible to meet the rapidly changing requirements of their customers is now well appreciated and can be witnessed within companies with their use of techniques such as single-minute exchange of die (SMED) for machine change-over or Kanban as the visual production and inventory control for Just-in-time manufacture and delivery. What is not so well appreciated by companies is the need for agility. Put simply it is the need to be alert for a new and unexpected opportunity and quick to respond with the changes necessary in order to profit from it. This paper aims to study the literature of agility in manufacturing to understand the concept of agility and how it is important and critical for the small and medium size manufacturing organisations (SMEs), and to defined the specific benefits of moving towards agility, and thus what benefit it can bring to an organisation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMEs" title="SMEs">SMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=agile%20manufacturing" title=" agile manufacturing"> agile manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering "> industrial engineering </a> </p> <a href="https://publications.waset.org/abstracts/16546/understand-the-concept-of-agility-for-the-manufacturing-smes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1361</span> Role of Senior Management in Implementing Lean Manufacturing Practices: A Study of Manufacturing Companies of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saima%20Yaqoob">Saima Yaqoob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to advancement in technologies and cutting cost competition, especially in manufacturing business, organizations are now becoming more focused toward achieving exceptional quality standards with low manufacturing cost. In this concern, many process improvement strategies are becoming popular in the way of increasing productivity and output. Lean manufacturing principles are among one of them, increasingly used for improving productivity by reducing wastages. Many success factors are involved in lean implementation. But, the role of senior management is most important in developing the lean culture in an organization. Purpose of this study is to investigate the perception of executive level management related to the successful implementation of lean practices and its comparison with the existing practices in the organization. In order to collect data, survey questionnaire comprised of eight statements rendering the critical success factors were sent to the top management of fifty (50) automotive manufacturing companies of Karachi. After analyzing their feedbacks, the trend of lean manufacturing principles and the commitment of senior management toward its implementation was identified in the manufacturing industries of Karachi, Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20improvement" title=" process improvement"> process improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=senior%20management" title=" senior management"> senior management</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=involvement" title=" involvement"> involvement</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20reduction" title=" waste reduction"> waste reduction</a> </p> <a href="https://publications.waset.org/abstracts/88598/role-of-senior-management-in-implementing-lean-manufacturing-practices-a-study-of-manufacturing-companies-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1360</span> Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micheal%20O.%20Alabi">Micheal O. Alabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20technology" title=" 3D printing technology"> 3D printing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/62748/industrial-applications-of-additive-manufacturing-and-3d-printing-technology-a-review-from-south-africa-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1359</span> Productivity and Structural Design of Manufacturing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryspek%20Usubamatov">Ryspek Usubamatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20San%20Chin"> Tan San Chin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarken%20Kapaeva"> Sarken Kapaeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=productivity" title="productivity">productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems" title=" manufacturing systems"> manufacturing systems</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a> </p> <a href="https://publications.waset.org/abstracts/3403/productivity-and-structural-design-of-manufacturing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1358</span> Performance Enhancement of Autopart Manufacturing Industry Using Lean Manufacturing Strategies: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raman%20Kumar">Raman Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasgurpreet%20Singh%20Chohan"> Jasgurpreet Singh Chohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chander%20Shekhar%20Verma"> Chander Shekhar Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the manufacturing industries respond rapidly to new demands and compete in this continuously changing environment, thus seeking out new methods allowing them to remain competitive and flexible simultaneously. The aim of the manufacturing organizations is to reduce manufacturing costs and wastes through system simplification, organizational potential, and proper infrastructural planning by using modern techniques like lean manufacturing. In India, large number of medium and large scale manufacturing industries has successfully implemented lean manufacturing techniques. Keeping in view the above-mentioned facts, different tools will be involved in the successful implementation of the lean approach. The present work is focused on the auto part manufacturing industry to improve the performance of the recliner assembly line. There is a number of lean manufacturing tools available, but the experience and complete knowledge of manufacturing processes are required to select an appropriate tool for a specific process. Fishbone diagrams (scrap, inventory, and waiting) have been drawn to identify the root cause of different. Effect of cycle time reduction on scrap and inventory is analyzed thoroughly in the case company. Results have shown that there is a decrease in inventory cost by 7 percent after the successful implementation of the lean tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20tool" title="lean tool">lean tool</a>, <a href="https://publications.waset.org/abstracts/search?q=fish-bone%20diagram" title=" fish-bone diagram"> fish-bone diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20time%20reduction" title=" cycle time reduction"> cycle time reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a> </p> <a href="https://publications.waset.org/abstracts/110274/performance-enhancement-of-autopart-manufacturing-industry-using-lean-manufacturing-strategies-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1357</span> An Evaluative Approach for Successful Implementation of Lean and Green Manufacturing in Indian SMEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20S.%20N.%20Narayana">Satya S. N. Narayana</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Parthiban"> P. Parthiban</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Niranjan"> T. Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kannan"> N. Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enterprises adopt methodologies to increase their business performance and to stay competent in the volatile global market. Lean manufacturing is one such manufacturing paradigm which focuses on reduction of cost by elimination of wastes or non-value added activities. With increased awareness about social responsibility and the necessary to meet the terms of the environmental policy, green manufacturing is becoming increasingly important for industries. Large plants have more resources, have started implementing lean and green practices and they are getting good results. Small and medium scale enterprises (SMEs) are facing problems in implementing lean and green concept. This paper aims to identify the key issues for implementation of lean and green concept in Indian SMEs. The key factors identified based on literature review and expert opinions are grouped into different levels by Modified Interpretive Structural Modeling (MISM) to explore the importance among the factors to implement lean and green manufacturing. Finally, Fuzzy Analytic Network Process (FANP) method has been used to determine the extent to which the main principles of lean and green manufacturing have been carried out in the six Indian medium scale manufacturing industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manufacturing" title=" green manufacturing"> green manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=MISM" title=" MISM"> MISM</a>, <a href="https://publications.waset.org/abstracts/search?q=FANP" title=" FANP"> FANP</a> </p> <a href="https://publications.waset.org/abstracts/52263/an-evaluative-approach-for-successful-implementation-of-lean-and-green-manufacturing-in-indian-smes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1356</span> Development Trends of the Manufacturing Industry in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nino%20Grigolaia">Nino Grigolaia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction. The paper discusses the role of the manufacturing industry in the Georgian economy, analyzes the current trends in the development of the manufacturing industry, reveals its impact on the Georgian economy, and justifies the essential importance of industrial transformation for the future development of the Georgian economy. Objectives. The main objective of research is to study development trends of the manufacturing industry of Georgia and estimate the industrial policy in Georgia. Methodology. The paper uses methods of induction, deduction, analysis, synthesis, analogy, correlation, and statistical observation. A qualitative study was conducted based on a survey of industry experts and entrepreneurs in order to identify the factors hindering and contributing to the manufacturing industry. Conclusions. The research reveals that the development of the manufacturing industry and the formation of industrial policy are of special importance for the further growth and development of the Georgian economy. Based on the research, the factors promoting and hindering the development of the manufacturing industry are identified. The need to increase foreign direct investment in the industrial sector are highlighted. Recommendations for the development of the country's manufacturing industry are developed, taking into account the competitive advantages and international experience of Georgia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title="manufacturing">manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20policy" title=" industrial policy"> industrial policy</a>, <a href="https://publications.waset.org/abstracts/search?q=contributing%20factor" title=" contributing factor"> contributing factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hindering%20factor" title=" hindering factor"> hindering factor</a> </p> <a href="https://publications.waset.org/abstracts/145248/development-trends-of-the-manufacturing-industry-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1355</span> Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Otegui">J. Otegui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agirre"> M. Agirre</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Cestau"> M. A. Cestau</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Erauskin"> H. Erauskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20design" title=" mechanical design"> mechanical design</a>, <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine." title=" stirling engine."> stirling engine.</a> </p> <a href="https://publications.waset.org/abstracts/185276/development-of-gamma-configuration-stirling-engine-using-polymeric-and-metallic-additive-manufacturing-for-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1354</span> Laser Additive Manufacturing: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranav%20Mohan%20Parki">Pranav Mohan Parki</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mallika%20Parveen"> C. Mallika Parveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahseen%20Ahmad%20Khan"> Tahseen Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihika%20Shivkumar"> Mihika Shivkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is one of the several manufacturing processes in use today. AM comprises of techniques such as ‘Selective Laser Sintering’ and ‘Selective Laser Melting’ etc. along with other equipment and materials has been developed way back in 1980s, although major use of these methods has risen during the last decade. AM seems to be the most efficient way when compared to the traditional machining procedures. Still many problems continue to hinder its progress to becoming the most widely used of all. This paper contributes to the better understanding of AM and also aims at providing viable solutions to these problems, which may further help in enabling AM to become the most flaw free production method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing%20%28AM%29" title="additive manufacturing (AM)">additive manufacturing (AM)</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20sintering" title=" laser sintering"> laser sintering</a> </p> <a href="https://publications.waset.org/abstracts/44548/laser-additive-manufacturing-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1353</span> A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frank%20Kuebler">Frank Kuebler</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolf%20Steinhilper"> Rolf Steinhilper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20process" title=" manufacturing process"> manufacturing process</a> </p> <a href="https://publications.waset.org/abstracts/8140/a-comparison-of-neural-network-and-doe-regression-analysis-for-predicting-resource-consumption-of-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1352</span> Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Jye%20Tseng">Yuan-Jye Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Han%20Lin"> Shin-Han Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20design" title=" green design"> green design</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manufacturing" title=" green manufacturing"> green manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/10104/integrated-evaluation-of-green-design-and-green-manufacturing-processes-using-a-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">807</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1351</span> An Architecture Framework for Design of Assembly Expert System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chee%20Fai%20Tan">Chee Fai Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Wahidin"> L. S. Wahidin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Khalil"> S. N. Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, manufacturing cost is one of the important factors that will affect the product cost as well as company profit. There are many methods that have been used to reduce the manufacturing cost in order for a company to stay competitive. One of the factors that effect manufacturing cost is the time. Expert system can be used as a method to reduce the manufacturing time. The purpose of the expert system is to diagnose and solve the problem of design of assembly. The paper describes an architecture framework for design of assembly expert system that focuses on commercial vehicle seat manufacturing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20assembly" title="design of assembly">design of assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20seat" title=" vehicle seat"> vehicle seat</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a> </p> <a href="https://publications.waset.org/abstracts/7387/an-architecture-framework-for-design-of-assembly-expert-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1350</span> Integrated Design in Additive Manufacturing Based on Design for Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Asadollahi-Yazdi">E. Asadollahi-Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gardan"> J. Gardan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Lafon"> P. Lafon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product&rsquo;s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20manufacturing" title=" design for manufacturing"> design for manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20design" title=" integrated design"> integrated design</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability" title=" interoperability"> interoperability</a> </p> <a href="https://publications.waset.org/abstracts/50213/integrated-design-in-additive-manufacturing-based-on-design-for-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=46">46</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10