CINXE.COM
Search results for: cement admixture
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cement admixture</title> <meta name="description" content="Search results for: cement admixture"> <meta name="keywords" content="cement admixture"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cement admixture" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cement admixture"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 820</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cement admixture</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> A Study on the Possibility of Utilizing the Converter Slag as the Cement Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Choi%20Woo-Seok">Choi Woo-Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Eun-Sup"> Kim Eun-Sup</a>, <a href="https://publications.waset.org/abstracts/search?q=Ha%20Eun-Ryong"> Ha Eun-Ryong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Converter slag is used as a low-value product like a construction fill material and soil stabilizer unlike electric furnace slag and blast furnace slag. This study is fundamental research for utilizing the converter slag as the cement admixture. Magnetic separation was conducted for quality improvement of the converter slag, and it was classified according to into 3 types; SA: pure slag, SB: separated slag, SC: remained slag after separating. In XRF result, SB slag was Fe₂CO₃ ratio was higher, and CaO ratio was lower than SA. SC slag was Fe₂CO₃ ratio was lower, and CaO ratio was higher than SA. In compressive strength test for soil cement using SA, SB, SC as the cement admixture, SC slag was more effective in terms of 28days compressive strength than SA, SB slag. In this result, it is considered that the remained material (SC) after magnetic separation is available as the cement admixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=converter%20slag" title="converter slag">converter slag</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20separation" title=" magnetic separation"> magnetic separation</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20admixture" title=" cement admixture"> cement admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/56788/a-study-on-the-possibility-of-utilizing-the-converter-slag-as-the-cement-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">785</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Influence of Gum Acacia Karroo on Some Mechanical Properties of Cement Mortars and Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mbugua%20R.%20N.">Mbugua R. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20R.%20W."> Salim R. W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndambuki%20J.%20M."> Ndambuki J. M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural admixtures provide concrete with enhanced properties but their processing end up making them very expensive resulting in increase to cost of concrete. In this study the effect of Gum from Acacia Karroo (GAK) as set-retarding admixture in cement pastes was studied. The possibility of using GAK as water reducing admixture both in cement mortar concrete was also investigated. Cement pastes with different dosages of GAK were prepared to measure the setting time using different dosages. Compressive strength of cement mortars with 0.7, 0.8 and 0.9% weight of cement and w/c ratio of 0.5 were compared to those with water cement (w/c) ratio of 0.44 but same dosage of GAK. Concrete samples were prepared using higher dosages of GAK (1, 2 and 3\% wt of cement) and a water bidder (w/b) of 0.61 were compared to those with the same GAK dosage but with reduced w/b ratio. There was increase in compressive strength of 9.3% at 28 days for cement mortar samples with 0.9% dosage of GAK and reduced w/c ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Gum%20Acacia%20Karroo" title=" Gum Acacia Karroo"> Gum Acacia Karroo</a>, <a href="https://publications.waset.org/abstracts/search?q=retarding%20admixture" title=" retarding admixture"> retarding admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=setting%20time" title=" setting time"> setting time</a>, <a href="https://publications.waset.org/abstracts/search?q=water-reducing%20admixture" title=" water-reducing admixture"> water-reducing admixture</a> </p> <a href="https://publications.waset.org/abstracts/30168/influence-of-gum-acacia-karroo-on-some-mechanical-properties-of-cement-mortars-and-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Possibilities of Utilization Zeolite in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sedlmajer">M. Sedlmajer</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach"> J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rovnan%C3%ADkova"> P. Rovnaníkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several possibilities of reducing the required amount of cement in concrete production. Natural zeolite is one of the raw materials which can partly substitute Portland cement. The effort to reduce the amount of Portland cement used in concrete production is brings both economical as well as ecological benefits. The paper presents the properties of concrete containing natural zeolite as an active admixture in the concrete which partly substitutes Portland cement. The properties discussed here bring information about the basic mechanical properties and frost resistance of concrete containing zeolite. The properties of concretes with the admixture of zeolite are compared with a reference concrete with no content of zeolite. The properties of the individual concretes are observed for 360 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/30263/possibilities-of-utilization-zeolite-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natia%20Tabatadze">Natia Tabatadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20materials" title="structural materials">structural materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20concrete" title=" hydraulic concrete"> hydraulic concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=low-deformable" title=" low-deformable"> low-deformable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption%20for%20mass" title=" water absorption for mass"> water absorption for mass</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption%20for%20volume" title=" water absorption for volume"> water absorption for volume</a> </p> <a href="https://publications.waset.org/abstracts/77960/study-of-the-hydraulic-concrete-physical-mechanical-properties-by-using-admixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Influence of Pulverized Granite on the Mechanical and Durability Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwabena%20A.%20Boakye">Kwabena A. Boakye</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Atiemo"> Eugene Atiemo</a>, <a href="https://publications.waset.org/abstracts/search?q=Trinity%20A.%20Tagbor"> Trinity A. Tagbor</a>, <a href="https://publications.waset.org/abstracts/search?q=Delali%20Adjei"> Delali Adjei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of mineral admixtures such as metakaolin, GGBS, fly ash, etc., in concrete is a common practice in the world. However, the only admixture available for use in the Ghanaian construction industry is calcined clay pozzolan. This research, therefore, studies the alternate use of granite dust, a by-product from stone quarrying, as a mineral admixture in concrete. Granite dust, which is usually damped as waste or as an erosion control material, was collected and pulverized to about 75µm. Some physical, chemical, and mineralogical tests were conducted on the granite dust. 5%-25% ordinary Portland cement of Class 42.5N was replaced with granite dust which was used as the main binder in the preparation of 150mm×150mm×150mm concrete cubes according to methods prescribed by BS EN 12390-2:2000. Properties such as workability, compressive strength, flexural strength, water absorption, and durability were determined. Compressive and flexural strength results indicate that granite dust could be used to replace ordinary Portland cement up to an optimum of 15% to achieve C25. Water permeability increased as the granite dust admixture content increased from 5% - 25%. Durability studies after 90 days proved that even though strength decreased as granite dust content increased, the concrete containing granite dust had better resistance to sulphate attack comparable to the reference cement. Pulverized granite can be used to partially replace ordinary Portland cement in concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=admixture" title="admixture">admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=granite%20dust" title=" granite dust"> granite dust</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolans" title=" pozzolans"> pozzolans</a> </p> <a href="https://publications.waset.org/abstracts/106009/influence-of-pulverized-granite-on-the-mechanical-and-durability-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Recycled Waste Glass Powder as a Partial Cement Replacement in Polymer-Modified Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikol%20%C5%BDi%C5%BEkov%C3%A1">Nikol Žižková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to observe the behavior of polymer-modified cement mortars with regard to the use of a pozzolanic admixture. Polymer-modified mortars (PMMs) containing various types of waste glass (waste packing glass and fluorescent tube glass) were produced always with 20% of cement substituted with a pozzolanic-active material. Ethylene/vinyl acetate copolymer (EVA) was used for polymeric modification. The findings confirm the possibility of using the waste glass examined herein as a partial substitute for cement in the production of PMM, which contributes to the preservation of non-renewable raw material resources and to the efficiency of waste glass material reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20waste%20glass" title="recycled waste glass">recycled waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-modified%20mortars" title=" polymer-modified mortars"> polymer-modified mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20admixture" title=" pozzolanic admixture"> pozzolanic admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%2Fvinyl%20acetate%20copolymer" title=" ethylene/vinyl acetate copolymer"> ethylene/vinyl acetate copolymer</a> </p> <a href="https://publications.waset.org/abstracts/58596/recycled-waste-glass-powder-as-a-partial-cement-replacement-in-polymer-modified-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Influence of Bio-Based Admixture on Compressive Strength of Concrete for Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raza">K. Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gul"> S. Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ali"> M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is a fundamental building material, extensively utilized by the construction industry. Problems related to the strength of concrete is an immense issue for the sustainability of concrete structures. Concrete mostly loses its strength due to the cracks produced in it by shrinkage or hydration process. This study aims to enhance the strength and service life of the concrete structures by incorporating bio-based admixture in the concrete. By the injection of bio-based admixture (BBA) in concrete, it will self-heal the cracks by producing calcium carbonate. Minimization of cracks will compact the microstructure of the concrete, due to which strength will increase. For this study, Bacillus subtilis will be used as a bio-based admixture (BBA) in concrete. Calcium lactate up to 1.5% will be used as the food source for the Bacillus subtilis in concrete. Two formulations containing 0 and 5% of Bacillus subtilis by weight of cement, will be used for the casting of concrete specimens. Direct mixing method will be adopted for the usage of bio-based admixture in concrete. Compressive strength test will be carried out after 28 days of curing. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) will be performed for the examination of micro-structure of concrete. Results will be drawn by comparing the test results of 0 and 5% the formulations. It will be recommended to use to bio-based admixture (BBA) in concrete for columns because of the satisfactory increase in the compressive strength of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20admixture" title="bio-based admixture">bio-based admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis" title=" Bacillus subtilis"> Bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20lactate" title=" calcium lactate"> calcium lactate</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/104922/influence-of-bio-based-admixture-on-compressive-strength-of-concrete-for-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Effect of Permeability Reducing Admixture Utilization on Sulfate Resistance of Self-Consolidating Concrete Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mardani-Aghabaglou">Ali Mardani-Aghabaglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zia%20Ahmad%20Faqiri"> Zia Ahmad Faqiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Semsi%20Yazici"> Semsi Yazici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of permeability reducing admixture (PRA) utilization on fresh properties, compressive strength and sulfate resistance of self-consolidating concrete (SSC) were investigated. For this aim, two different commercial PRA were used at two utilization ratios as %0.1 and %0.2 wt. CEM I 42.5 R type cement and crushed limestone aggregate having Dmax of 15 mm were used for preparing of SCC mixtures. In all mixtures, cement content, water/cement ratio, and flow value were kept constant as 450 kg, 0.40 and 65 ± 2 cm, respectively. In order to obtain desired flow value, a polycarboxylate ether-based high range water reducing admixture was used at different content. T50 flow time, flow value, L-box, and U-funnel of SCC mixture were measured as fresh properties. 1, 3, 7 and 28-day compressive strength of SCC mixture were obtained on 150 mm cubic specimens. To investigate the sulfate resistance of SCC mixture 75x75x285 mm prismatic specimens were produced. After 28-day water curing, specimens were immersed in %5 sodium sulfate solution during 210 days. The length change of specimens was measured at 5-day time intervals up to 210 days. According to the test results, all fresh properties of SCC mixtures were in accordance with the European federation of specialist construction chemicals and concrete systems (EFNARC) critter for SCC mixtures. The utilization of PRA had no significant effect on compressive strength and fresh properties of SCC mixtures. Regardless of PRA type, sulfate resistance of SCC mixture increased by adding of PRA into the SCC mixtures. The length changes of the SCC mixtures containing %1 and %2 PRA were measured as %8 and %14 less than that of control mixture containing no PRA, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permeability%20reducing%20admixture" title="permeability reducing admixture">permeability reducing admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=self-consolidating%20concrete" title=" self-consolidating concrete"> self-consolidating concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20properties" title=" fresh properties"> fresh properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20resistance" title=" sulfate resistance"> sulfate resistance</a> </p> <a href="https://publications.waset.org/abstracts/99509/effect-of-permeability-reducing-admixture-utilization-on-sulfate-resistance-of-self-consolidating-concrete-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Viability of Eggshells Ash Affecting the Setting Time of Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fazeera%20Ujin">Fazeera Ujin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Shavarebi%20Ali"> Kamran Shavarebi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Yasmin%20Hanur%20Harith"> Zarina Yasmin Hanur Harith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement. Chemical properties of both eggshells ash and cement are compared. From the results obtained, both eggshells ash and cement have the same chemical composition and primary composition which is the calcium compounds. Results from the setting time show that by adding the eggshells ash to the cement, the setting time of the cement decreases. In short, the higher amount of eggshells ash, the faster the rate of setting and apply to all percentage of eggshells ash that were used in this investigation. Both initial and final setting times fulfill the setting time requirements by Malaysian Standard. Hence, it is suggested that eggshells ash can be used as an admixture in concrete mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title="construction materials">construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshells%20ash" title=" eggshells ash"> eggshells ash</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=setting%20time" title=" setting time"> setting time</a> </p> <a href="https://publications.waset.org/abstracts/43490/viability-of-eggshells-ash-affecting-the-setting-time-of-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Ramesh%20Babu">T. S. Ramesh Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Neeraja"> D. Neeraja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Class%20F%20fly%20ash" title="Class F fly ash">Class F fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20admixture" title=" natural admixture"> natural admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20weight" title=" unit weight"> unit weight</a> </p> <a href="https://publications.waset.org/abstracts/47902/mechanical-properties-of-class-f-fly-ash-blended-concrete-incorporation-with-natural-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Improvement of Performance for R. C. Beams Made from Recycled Aggregate by Using Non-Traditional Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Yehia">A. H. Yehia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rashwan"> M. M. Rashwan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Assaf"> K. A. Assaf</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Abd%20el%20Samee"> K. Abd el Samee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflection" title="deflection">deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=non-traditional%20admixture" title=" non-traditional admixture"> non-traditional admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20and%20over%20reinforcement" title=" under and over reinforcement"> under and over reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/7134/improvement-of-performance-for-r-c-beams-made-from-recycled-aggregate-by-using-non-traditional-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> Key Parameters for Controlling Swell of Expansive Soil-Hydraulic Cement Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aung%20Phyo%20Kyaw">Aung Phyo Kyaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo%20Chieh%20Chao"> Kuo Chieh Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Expansive soils are more complicated than normal soils, although the soil itself is not very complicated. When evaluating foundation performance on expansive soil, it is important to consider soil expansion. The primary focus of this study is on hydraulic cement and expansive soil mixtures, and the research aims to identify key parameters for controlling the swell of the expansive soil-hydraulic cement mixture. Treatment depths can be determined using hydraulic cement ratios of 4%, 8%, 12%, and 15% for treating expansive soil. To understand the effect of hydraulic cement percentages on the swelling of expansive soil-hydraulic admixture, performing the consolidation-swell test σ''ᶜˢ is crucial. This investigation primarily focuses on consolidation-swell tests σ''ᶜˢ, although the heave index Cₕ is also needed to determine total heave. The heave index can be measured using the percent swell in the specific inundation stress in both the consolidation-swell test and the constant-volume test swelling pressure. Obtaining the relationship between swelling pressure and σ''ᶜⱽ determined from the "constant volume test" is useful in predicting heave from a single oedometer test. The relationship between σ''ᶜˢ and σ''ᶜⱽ is based on experimental results of expansive soil behavior and facilitates heave prediction for each soil. In this method, the soil property "m" is used as a parameter, and common soil property tests include compaction, particle size distribution, and the Atterberg limit. The Electricity Generating Authority of Thailand (EGAT) provided the soil sample for this study, and all laboratory testing is performed according to American Society for Testing and Materials (ASTM) standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title="expansive soil">expansive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20pressure" title=" swelling pressure"> swelling pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20heave" title=" total heave"> total heave</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20depth" title=" treatment depth"> treatment depth</a> </p> <a href="https://publications.waset.org/abstracts/163671/key-parameters-for-controlling-swell-of-expansive-soil-hydraulic-cement-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kianoosh%20Samimi">Kianoosh Samimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Estakhr"> Farhad Estakhr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Mahdikhani"> Mahdi Mahdikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Faramaz%20Moodi"> Faramaz Moodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SCC" title="SCC">SCC</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title=" metakaolin"> metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20type" title=" cement type"> cement type</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfuric%20acid%20attacks" title=" sulfuric acid attacks"> sulfuric acid attacks</a> </p> <a href="https://publications.waset.org/abstracts/76208/resistance-to-sulfuric-acid-attacks-of-self-consolidating-concrete-effect-metakaolin-and-various-cements-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> Obtaining the Hydraulic Concrete Resistant to the Aggressive Environment by Using Admixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tabatadze">N. Tabatadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research aim is to study the physical and mechanical characteristics of hydraulic concrete in the surface active environment. The specific goal is to obtain high strength and low deformable concrete based on nano additives, resistant to the aggressive environment. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa). Moreover, water absorption (W=0,59 % of admixture instead of W=1,41 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20concrete" title="hydraulic concrete">hydraulic concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali-silica%20reaction" title=" alkali-silica reaction"> alkali-silica reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption"> water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=water-resistance" title=" water-resistance"> water-resistance</a> </p> <a href="https://publications.waset.org/abstracts/72475/obtaining-the-hydraulic-concrete-resistant-to-the-aggressive-environment-by-using-admixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">806</span> Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Gunneswara%20Rao">T. D. Gunneswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudimby%20Andal"> Mudimby Andal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementing%20efficiency" title="cementing efficiency">cementing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20calcium%20fly%20ash" title=" low calcium fly ash"> low calcium fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a> </p> <a href="https://publications.waset.org/abstracts/3427/cementing-efficiency-of-low-calcium-fly-ash-in-fly-ash-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">805</span> Durability and Early-Age Behavior of Sprayed Concrete with an Expansion Admixture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyong-Ku%20Yun">Kyong-Ku Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeo-Re%20Lee"> Kyeo-Re Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyong%20Namkung"> Kyong Namkung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeon%20Han"> Seung-Yeon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan-Gil%20Choi"> Pan-Gil Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprayed concrete is a way to spray a concrete using a machinery with high air pressure. There are insufficient studies on the durability and early-age behavior of sprayed concrete using high quality expansion agent. A series of an experiment were executed with 5 varying expansion agent replacement rates, while all the other conditions were kept constant, including cement binder content and water-cement ratio. The tests includes early-age shrinkage test, rapid chloride permeability test, and image analysis of air void structure. The early-age expansion test with the variation of expansion agent show that the expansion strain increases as the ratio of expansion agent increases. The rapid chloride permeability test shows that it decrease as the expansion agent increase. Therefore, expansion agent affects into the rapid chloride permeability in a better way. As expansion agent content increased, spacing factor slightly decreased while specific surface kept relatively stable. As a results, the optimum ratio of expansion agent would be selected between 7 % and 11%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sprayed%20concrete" title="sprayed concrete">sprayed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=early-age%20behavior" title=" early-age behavior"> early-age behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion%20admixture" title=" expansion admixture "> expansion admixture </a> </p> <a href="https://publications.waset.org/abstracts/30715/durability-and-early-age-behavior-of-sprayed-concrete-with-an-expansion-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">804</span> Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Melichar">Tomáš Melichar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Byd%C5%BEovsk%C3%BD"> Jiří Bydžovský</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%ADt%20%C4%8Cern%C3%BD"> Vít Černý</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate" title="aggregate">aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=ash" title=" ash"> ash</a>, <a href="https://publications.waset.org/abstracts/search?q=high" title=" high"> high</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=microsilica" title=" microsilica"> microsilica</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-cement" title=" polymer-cement"> polymer-cement</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/11303/research-and-development-of-lightweight-repair-mortars-with-focus-on-their-resistance-to-high-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">803</span> Temperature and Admixtures Effects on the Maturity of Normal and Super Fine Ground Granulated Blast Furnace Slag Mortars for the Precast Concrete Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Cruickshank">Matthew Cruickshank</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaaruchandra%20Korde"> Chaaruchandra Korde</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20P.%20West"> Roger P. West</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Reddy"> John Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast concrete element exports are growing in importance in Ireland’s concrete industry and with the increased global focus on reducing carbon emissions, the industry is exploring more sustainable alternatives such as using ground granulated blast-furnace slag (GGBS) as a partial replacement of Portland cement. It is well established that GGBS, with low early age strength development, has limited use in precast manufacturing due to the need for early de-moulding, cutting of pre-stressed strands and lifting. In this dichotomy, the effects of temperature, admixture, are explored to try to achieve the required very early age strength. Testing of the strength of mortars is mandated in the European cement standard, so here with 50% GGBS and Super Fine GGBS, with three admixture conditions (none, conventional accelerator, novel accelerator) and two early age curing temperature conditions (20°C and 35°C), standard mortar strengths are measured at six ages (16 hours, 1, 2, 3, 7, 28 days). The present paper will describe the effort towards developing maturity curves to aid in understanding the effect of these accelerating admixtures and GGBS fineness on slag cement mortars, allowing prediction of their strength with time and temperature. This study is of particular importance to the precast industry where concrete temperature can be controlled. For the climatic conditions in Ireland, heating of precast beds for long hours will amount to an additional cost and also contribute to the carbon footprint of the products. When transitioned from mortar to concrete, these maturity curves are expected to play a vital role in predicting the strength of the GGBS concrete at a very early age prior to demoulding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerating%20admixture" title="accelerating admixture">accelerating admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20age%20strength" title=" early age strength"> early age strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20granulated%20blast-furnace%20slag" title=" ground granulated blast-furnace slag"> ground granulated blast-furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity" title=" maturity"> maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete" title=" precast concrete"> precast concrete</a> </p> <a href="https://publications.waset.org/abstracts/99831/temperature-and-admixtures-effects-on-the-maturity-of-normal-and-super-fine-ground-granulated-blast-furnace-slag-mortars-for-the-precast-concrete-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">802</span> The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%BDymantas%20Rud%C5%BEionis">Žymantas Rudžionis</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulius%20Grigali%C5%ABnas"> Paulius Grigaliūnas</a>, <a href="https://publications.waset.org/abstracts/search?q=Danut%C4%97%20Vai%C4%8Diukynien%C4%97"> Danutė Vaičiukynienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title="self compacting concrete">self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber%20reinforced%20concrete" title=" steel fiber reinforced concrete"> steel fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolitic%20waste" title=" zeolitic waste"> zeolitic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological" title=" rheological"> rheological</a>, <a href="https://publications.waset.org/abstracts/search?q=properties%20of%20concrete" title=" properties of concrete"> properties of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20flow" title=" slump flow"> slump flow</a> </p> <a href="https://publications.waset.org/abstracts/4267/the-influence-of-zeolitic-spent-refinery-admixture-on-the-rheological-and-technological-properties-of-steel-fiber-reinforced-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">801</span> Transient Electrical Resistivity and Elastic Wave Velocity of Sand-Cement-Inorganic Binder Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiza%20Rusati%20Pacifique">Kiza Rusati Pacifique</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-il%20Song"> Ki-il Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement milk grout has been used for ground improvement. Due to the environmental issues related to cement, the reduction of cement usage is requesting. In this study, inorganic binder is introduced to reduce the use of cement contents for ground improvement. To evaluate transient electrical and mechanical properties of sand-cement-inorganic binder mixture, two non-destructive testing (NDT) methods, Electrical Resistivity (ER) and Free Free Resonant Column (FFRC) tests were adopted in addition to unconfined compressive strength test. Electrical resistivity, longitudinal wave velocity and damping ratio of sand-cement admixture samples improved with addition of inorganic binders were measured. Experimental tests were performed considering four different mixing ratios and three different cement contents depending on the curing time. Results show that mixing ratio and curing time have considerable effects on electrical and mechanical properties of mixture. Unconfined compressive strength (UCS) decreases as the cement content decreases. However, sufficient grout strength can be obtained with increase of content of inorganic binder. From the results, it is found that the inorganic binder can be used to enhance the mechanical properties of mixture and reduce the cement content. It is expected that data and trends proposed in this study can be used as reference in predicting grouting quality in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title="damping ratio">damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title=" electrical resistivity"> electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20binder" title=" inorganic binder"> inorganic binder</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20wave%20velocity" title=" longitudinal wave velocity"> longitudinal wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/78919/transient-electrical-resistivity-and-elastic-wave-velocity-of-sand-cement-inorganic-binder-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">800</span> Evaluation of Properties of Alkali Activated Slag Concrete Blended with Polypropylene Shredding and Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jagannath%20Prasad%20Tegar">Jagannath Prasad Tegar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20Ahmad"> Zeeshan Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ordinary Portland Cement (OPC) is a major constituent of concrete, which is being used extensively since last half century. The production of cement is impacting not only environment alone, but depleting natural materials. During the past 3 decades, the scholars have carried out studies and researches to explore the supplementary cementatious materials such as Ground granulated Blast furnace slag (GGBFS), silica fumes (SF), metakaolin or fly ash (FA). This has contributed towards improved cementatious materials which are being used in construction, but not the way it is supposed to be. The alkali activated slag concrete is another innovation which has constituents of cementatious materials like Ground Granuled Blast Furnace Slag (GGBFS), Fly Ash (FA), Silica Fumes (SF) or Metakaolin. Alkaline activators like Sodium Silicate (Na₂SiO₃) and Sodium Hydroxide (NaOH) is utilized. In view of evaluating properties of alkali activated slag concrete blended with polypropylene shredding and accelerator, research study is being carried out. This research study is proposed to evaluate the effect of polypropylene shredding and accelerating admixture on mechanical properties of alkali-activated slag concrete. The mechanical properties include the compressive strength, splitting tensile strength and workability. The outcomes of this research are matched with the hypothesis and it is found that 27% of cement can be replaced with the ground granulated blast furnace slag (GGBFS) and for split tensile strength 20% replacement is achieved. Overall it is found that 20% of cement can be replaced with ground granulated blast furnace slag. The tests conducted in the laboratory for evaluating properties such as compressive strength test, split tensile strength test, and slump cone test. On the aspect of cost, it is substantially benefitted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ordinary%20Portland%20cement" title="ordinary Portland cement">ordinary Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20slag%20concrete" title=" activated slag concrete"> activated slag concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20granule%20blast%20furnace%20slag" title=" ground granule blast furnace slag"> ground granule blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fumes" title=" silica fumes"> silica fumes</a> </p> <a href="https://publications.waset.org/abstracts/87926/evaluation-of-properties-of-alkali-activated-slag-concrete-blended-with-polypropylene-shredding-and-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">799</span> Experimental Study on Recycled Aggregate Pervious Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Wenzhan">Ji Wenzhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tao"> Zhang Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Guoyou"> Li Guoyou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title="recycled aggregate">recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20concrete" title=" permeable concrete"> permeable concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/85903/experimental-study-on-recycled-aggregate-pervious-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">798</span> Effect of Mineral Admixture on Self-Healing Performance in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Cheol%20Choi">Young-Cheol Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Won%20Yoo"> Sung-Won Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong%20Chun%20Lee"> Bong Chun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoungsun%20Park"> Byoungsun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hwa%20Jung"> Sang-Hwa Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cracks in concrete commonly provide the passages of ingresses of aggressive and harmful ions into concrete inside and thus reduce the durability of concrete members. In order to solve this problem, self-healing concrete based on mineral admixture has become a major issue. Self-healing materials are those which have the ability of autonomously repairing some damages or small cracks in concrete structures. Concrete has an inherent healing potential, called natural healing, which can take place in ordinary concrete elements but its power is limited and is not predictable. The main mechanism of self-healing in cracked concrete is the continued hydration of unreacted binder and the crystallization of calcium carbonate. Some mineral admixtures have been found to promote the self-healing of cementitious materials. The aim of this study is to investigate the effect of mineral admixture on the self-healing performances of high strength concrete. The potential capability of self-healing of cementitious materials was evaluated using isothermal conduction calorimeter. The self-healing efficiencies were studied by means of water flow tests on cracked concrete specimens. The results show a different healing behaviour depending on presence of the crystalline admixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20admixture" title="mineral admixture">mineral admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing" title=" self-healing"> self-healing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20flow%20test" title=" water flow test"> water flow test</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a> </p> <a href="https://publications.waset.org/abstracts/75654/effect-of-mineral-admixture-on-self-healing-performance-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">797</span> Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Sayadi">Ali A. Sayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20R.%20Neitzert"> Thomas R. Neitzert</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Charles%20Clifton"> G. Charles Clifton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perlite%20concrete" title="perlite concrete">perlite concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-lactic%20acid%20%28pla%29" title=" poly-lactic acid (pla)"> poly-lactic acid (pla)</a>, <a href="https://publications.waset.org/abstracts/search?q=expanded%20polystyrene%20%28eps%29" title=" expanded polystyrene (eps)"> expanded polystyrene (eps)</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/50271/feasibility-of-a-biopolymer-as-lightweight-aggregate-in-perlite-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">796</span> Combination of Standard Secondary Raw Materials and New Production Waste Materials in Green Concrete Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tazky">M. Tazky</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hela"> R. Hela</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Novosad"> P. Novosad</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Osuska"> L. Osuska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the possibility of safe incorporation fluidised bed combustion fly ash (waste material) into cement matrix together with next commonly used secondary raw material, which is high-temperature fly ash. Both of these materials have a very high pozzolanic ability, and the right combination could bring important improvements in both the physico-mechanical properties and the better durability of a cement composite. This paper tries to determine the correct methodology for designing green concrete by using modern methods measuring rheology of fresh concrete and following hydration processes. The use of fluidised bed combustion fly ash in cement composite production as an admixture is not currently common, but there are some real possibilities for its potential. The most striking negative aspect is its chemical composition which supports the development of new product formation, influencing the durability of the composite. Another disadvantage is the morphology of grains, which have a negative effect on consistency. This raises the question of how this waste can be used in concrete production to emphasize its positive properties and eliminate negatives. The focal point of the experiment carried out on cement pastes was particularly on the progress of hydration processes, aiming for the possible acceleration of pozzolanic reactions of both types of fly ash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20fly%20ash" title="high temperature fly ash">high temperature fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20combustion%20fly%20ash" title=" fluidized bed combustion fly ash"> fluidized bed combustion fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolan" title=" pozzolan"> pozzolan</a>, <a href="https://publications.waset.org/abstracts/search?q=CaO%20%28calcium%20oxide%29" title=" CaO (calcium oxide)"> CaO (calcium oxide)</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/72985/combination-of-standard-secondary-raw-materials-and-new-production-waste-materials-in-green-concrete-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">795</span> Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Parthiban">P. Parthiban</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Karthikeyan"> J. Karthikeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28<sup>th</sup> day with 30% replacement level in a density of 2200 kg/m<sup>3</sup> to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alccofine" title="Alccofine">Alccofine</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=RCPT" title=" RCPT"> RCPT</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20ash%20pellets" title=" wood ash pellets"> wood ash pellets</a> </p> <a href="https://publications.waset.org/abstracts/78324/influence-of-alccofine-on-semi-light-weight-concrete-under-accelerated-curing-and-conventional-curing-regimes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">794</span> Compatibility of Copolymer-Based Grinding Aids and Sulfonated Acetone-Formaldehyde Superplasticizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tailong">Zhang Tailong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compatibility between sulfonated acetone-formalehyde superplasticizer (SAF) and copolymer-based grinding aids (GA) were studied by fluidity, Zeta potential, setting time of cement pasts, initial slump and slump flow of concrete and compressive strength of concrete. ESEM, MIP, and XRD were used to investigate the changing of microstructure of interior concrete. The results indicated that GA could noticeably enhance the dispersion ability of SAF. It was found that better fluidity and slump-keeping ability of cement paste were obtained in the case of GA. In addition, GA and SAF together had a certain retardation effect on hydration of cement paste. With increasing of the GA dosage, the dispersion ability and retardation effect of admixture increased. The compressive strength of the sample made with SAF and GA after 28 days was higher than that of the control sample made only with SAF. The initial slump and slump flow of concrete increased by 10.0% and 22.9%, respectively, while 0.09 wt.% GA was used. XRD examination indicated that new products were not found in the case of GA. In addition, more dense arrangement of hydrates and lower porosity of the specimen were observed by ESEM and MIP, which contributed to higher compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copolymer-based%20grinding%20aids" title="copolymer-based grinding aids">copolymer-based grinding aids</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasiticizer" title=" superplasiticizer"> superplasiticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibility" title=" compatibility"> compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/3476/compatibility-of-copolymer-based-grinding-aids-and-sulfonated-acetone-formaldehyde-superplasticizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">793</span> Estimation Model for Concrete Slump Recovery by Using Superplasticizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaiyakrit%20Raoupatham">Chaiyakrit Raoupatham</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Hari%20Dhakal"> Ram Hari Dhakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chalermchai%20Wanichlamlert"> Chalermchai Wanichlamlert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation%20model" title="estimation model">estimation model</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20superplasticizer%20dosage" title=" second superplasticizer dosage"> second superplasticizer dosage</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20loss" title=" slump loss"> slump loss</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20recovery" title=" slump recovery"> slump recovery</a> </p> <a href="https://publications.waset.org/abstracts/41122/estimation-model-for-concrete-slump-recovery-by-using-superplasticizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">792</span> Utilization of Waste Marble Dust as a Viscosity Modifying Agent in Self Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shams%20Ul%20Khaliq">Shams Ul Khaliq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Zeb"> Mushtaq Zeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Bilal"> Fawad Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Akbar"> Faizan Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Aamir%20Abbas"> Syed Aamir Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self Compacting Concrete as the name implies--is the concrete requiring a very little or no vibration to fill the form homogeneously. Self Compacting Concrete (SCC) is defined by two primary properties: Ability to flow or deform under its own weight (with or without obstructions) and the ability to remain homogeneous while doing so. Flow ability is achieved by utilizing high range water reducing admixtures and segregation resistance is ensured by introducing a chemical viscosity modifying admixture (VMA) or increasing the amount of fines in the concrete. The study explores the use waste marble dust (WMD) to increase the amount of fines and hence achieve self-compatibility in an economical way, suitable for Pakistani construction industry. The study focuses on comparison of fresh properties of SCC containing varying amounts of waste marble dust (WMD) with that containing commercially available viscosity modifying admixture. The comparison is done at different dosages of super plasticizer keeping cement, water, coarse aggregate, and fine aggregate contents constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title="self compacting concrete">self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20marble%20dust%20%28WMD%29" title=" waste marble dust (WMD)"> waste marble dust (WMD)</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20ability" title=" flow ability"> flow ability</a>, <a href="https://publications.waset.org/abstracts/search?q=segregation%20resistance" title=" segregation resistance"> segregation resistance</a> </p> <a href="https://publications.waset.org/abstracts/49785/utilization-of-waste-marble-dust-as-a-viscosity-modifying-agent-in-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">791</span> Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muzeyyen%20Balcikanli">Muzeyyen Balcikanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Selma%20Ozaslan"> Selma Ozaslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Sahin"> Osman Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Uzal"> Burak Uzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Ozbay"> Erdogan Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindenter" title="nanoindenter">nanoindenter</a>, <a href="https://publications.waset.org/abstracts/search?q=CaCO3" title=" CaCO3"> CaCO3</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-hardness" title=" nano-hardness"> nano-hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-mechanical%20properties" title=" nano-mechanical properties"> nano-mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/54618/effect-of-nano-caco3-addition-on-the-nano-mechanical-properties-of-cement-paste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cement%20admixture&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>