CINXE.COM

Search results for: plunge pool

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plunge pool</title> <meta name="description" content="Search results for: plunge pool"> <meta name="keywords" content="plunge pool"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plunge pool" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plunge pool"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 347</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plunge pool</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Reliability Assessment of Various Empirical Formulas for Prediction of Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Galoie">Majid Galoie</a>, <a href="https://publications.waset.org/abstracts/search?q=Khodadad%20Safavi"> Khodadad Safavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Karami%20Nejad"> Abdolreza Karami Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Roshan"> Reza Roshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a comprehensive scouring model has been developed in order to evaluate the accuracy of various empirical relationships which were suggested for prediction of scour hole depth in plunge pools by Martins, Mason, Chian and Veronese. For this reason, scour hole depths caused by free falling jets from a flip bucket to a plunge pool were investigated. In this study various discharges, angles, scouring times, etc. have been considered. The final results demonstrated that the all mentioned empirical formulas, except Mason formula, were reasonably agreement with the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scour%20hole%20depth" title="scour hole depth">scour hole depth</a>, <a href="https://publications.waset.org/abstracts/search?q=plunge%20pool" title=" plunge pool"> plunge pool</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20model" title=" physical model"> physical model</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title=" reliability assessment "> reliability assessment </a> </p> <a href="https://publications.waset.org/abstracts/20084/reliability-assessment-of-various-empirical-formulas-for-prediction-of-scour-hole-depth-plunge-pool-using-a-comprehensive-physical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> Optimization of Flip Bucket Dents in Order to Reduce Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Galoie">Majid Galoie</a>, <a href="https://publications.waset.org/abstracts/search?q=Khodadad%20Safavi"> Khodadad Safavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Karami%20Nejad"> Abdolreza Karami Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Roshan"> Reza Roshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scour downstream of a flip bucket in a plunge pool is caused by impingement of water jet force. In order to reduce this force and consequently reduce scour hole depth, flip buckets may equip by dents. The minimum scour hole depth might be occurred by optimization of dents (number, shape, placement) on flip buckets. In this study, a comprehensive physical model has been developed and various options for dents have been investigated. The experimental data for each dent option such as scour hole depth, angle of impingement jet, piezometric pressure in tail-water and jet trajectory have been measured for various discharges. Finally, the best option can be found by analysis of the experimental results which has been expressed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scouring%20process" title="scouring process">scouring process</a>, <a href="https://publications.waset.org/abstracts/search?q=plunge%20pool" title=" plunge pool"> plunge pool</a>, <a href="https://publications.waset.org/abstracts/search?q=scour%20hole%20depth" title=" scour hole depth"> scour hole depth</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20model" title=" physical model"> physical model</a>, <a href="https://publications.waset.org/abstracts/search?q=flip%20bucket" title=" flip bucket "> flip bucket </a> </p> <a href="https://publications.waset.org/abstracts/20083/optimization-of-flip-bucket-dents-in-order-to-reduce-scour-hole-depth-plunge-pool-using-a-comprehensive-physical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Process Parameter Study on Friction Push Plug Welding of AA6061 Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Li">H. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Qin"> W. Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Ye"> Ben Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Push Plug Welding (FPPW) is a solid phase welding suitable for repairing defective welds and filling self-reacting weld keyholes in Friction Stir Welds. In FPPW process, a tapered shaped plug is rotated at high speed and forced into a tapered hole in the substrate. The plug and substrate metal is softened by the increasing temperature generated by friction and material plastic deformation. This paper aims to investigate the effect of process parameters on the quality of the weld. Orthogonal design methods were employed to reduce the amount of experiment. Three values were selected for each process parameter, rotation speed (1500r/min, 2000r/min, 2500r/min), plunge depth (2mm, 3mm, 4mm) and plunge speed (60mm/min, 90mm/min, 120r/min). AA6061aluminum alloy plug and substrate plate was used in the experiment. In a trial test with the plunge depth of 1mm, a noticeable defect appeared due to the short plunge time and insufficient temperature. From the recorded temperature profiles, it was found that the peak temperature increased with the increase of the rotation speed, plunge speed and plunge depth. In the initial stage, the plunge speed was the main factor affecting heat generation, while in the steady state welding stage, the rotation speed played a more important role. The FPPW weld defect includes flash and incomplete penetration in the upper, middle and bottom interface with the substrate. To obtain defect free weld, the higher rotation speed and proper plunge depth were recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20push%20plug%20welding" title="friction push plug welding">friction push plug welding</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameter" title=" process parameter"> process parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20defect" title=" weld defect"> weld defect</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20design" title=" orthogonal design"> orthogonal design</a> </p> <a href="https://publications.waset.org/abstracts/96583/process-parameter-study-on-friction-push-plug-welding-of-aa6061-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwarsono">Suwarsono</a>, <a href="https://publications.waset.org/abstracts/search?q=Ario%20S.%20Baskoro"> Ario S. Baskoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Gandjar%20Kiswanto"> Gandjar Kiswanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Budiono"> Budiono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20spot%20welding" title="friction stir spot welding">friction stir spot welding</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20A1100" title=" aluminum A1100"> aluminum A1100</a>, <a href="https://publications.waset.org/abstracts/search?q=plunge%20speed" title=" plunge speed"> plunge speed</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20force" title=" axial force"> axial force</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/55161/influences-of-plunge-speed-on-axial-force-and-temperature-of-friction-stir-spot-welding-in-thin-aluminum-a1100" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farokh%20Alipour">Farokh Alipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Falavand"> Ali Falavand</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Beit%20Saeid"> Neda Beit Saeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LNG" title="LNG">LNG</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20fire" title=" pool fire"> pool fire</a>, <a href="https://publications.waset.org/abstracts/search?q=spill" title=" spill"> spill</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/19964/an-investigation-about-rate-of-evaporation-from-the-water-surface-and-lng-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Probabilistic Safety Assessment of Koeberg Spent Fuel Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibongiseni%20Thabethe">Sibongiseni Thabethe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Korir"> Ian Korir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective management of spent fuel pool (SFP) safety has been raised as one of the emerging issues to further enhance nuclear installation safety after the Fukushima accident on March 11, 2011. Before then, SFP safety-related issues have been mainly focused on (a) controlling the configuration of the fuel assemblies in the pool with no loss of pool coolants and (b) ensuring adequate pool storage space to prevent fuel criticality owing to chain reactions of the fission products and the ability for neutron absorption to keep the fuel cool. A probabilistic safety (PSA) assessment was performed using the systems analysis program for hands-on integrated reliability evaluations (SAPHIRE) computer code. Event and fault tree analysis was done to develop a PSA model for the Koeberg SFP. We present preliminary PSA results of events that lead to boiling and cause fuel uncovering, resulting in possible fuel damage in the Koeberg SFP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20code" title="computer code">computer code</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20assemblies" title=" fuel assemblies"> fuel assemblies</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20risk%20assessment" title=" probabilistic risk assessment"> probabilistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a> </p> <a href="https://publications.waset.org/abstracts/131191/probabilistic-safety-assessment-of-koeberg-spent-fuel-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Investigating the Energy Harvesting Potential of a Pitch-Plunge Airfoil Subjected to Fluctuating Wind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magu%20Raam%20Prasaad%20R.">Magu Raam Prasaad R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkatramani%20Jagadish"> Venkatramani Jagadish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent studies in the literature have shown that randomly fluctuating wind flows can give rise to a distinct regime of pre-flutter oscillations called intermittency. Intermittency is characterized by the presence of sporadic bursts of high amplitude oscillations interspersed amidst low-amplitude aperiodic fluctuations. The focus of this study is on investigating the energy harvesting potential of these intermittent oscillations. Available literature has by and large devoted its attention on extracting energy from flutter oscillations. The possibility of harvesting energy from pre-flutter regimes have remained largely unexplored. However, extracting energy from violent flutter oscillations can be severely detrimental to the structural integrity of airfoil structures. Consequently, investigating the relatively stable pre-flutter responses for energy extraction applications is of practical importance. The present study is devoted towards addressing these concerns. A pitch-plunge airfoil with cubic hardening nonlinearity in the plunge and pitch degree of freedom is considered. The input flow fluctuations are modelled using a sinusoidal term with randomly perturbed frequencies. An electromagnetic coupling is provided to the pitch-plunge equations, such that, energy from the wind induced vibrations of the structural response are extracted. With the mean flow speed as the bifurcation parameter, a fourth order Runge-Kutta based time marching algorithm is used to solve the governing aeroelastic equations with electro-magnetic coupling. The harnessed energy from the intermittency regime is presented and the results are discussed in comparison to that obtained from the flutter regime. The insights from this study could be useful in health monitoring of aeroelastic structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title="aeroelasticity">aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittency" title=" intermittency"> intermittency</a>, <a href="https://publications.waset.org/abstracts/search?q=randomly%20fluctuating%20flows" title=" randomly fluctuating flows"> randomly fluctuating flows</a> </p> <a href="https://publications.waset.org/abstracts/80463/investigating-the-energy-harvesting-potential-of-a-pitch-plunge-airfoil-subjected-to-fluctuating-wind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simiao%20Ren">Simiao Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=En%20Wei"> En Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOv8" title=" YOLOv8"> YOLOv8</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20pool" title=" swimming pool"> swimming pool</a>, <a href="https://publications.waset.org/abstracts/search?q=drowning" title=" drowning"> drowning</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20adaptation" title=" domain adaptation"> domain adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20network" title=" generative adversarial network"> generative adversarial network</a>, <a href="https://publications.waset.org/abstracts/search?q=GAN" title=" GAN"> GAN</a>, <a href="https://publications.waset.org/abstracts/search?q=GP-GAN" title=" GP-GAN"> GP-GAN</a> </p> <a href="https://publications.waset.org/abstracts/163443/domain-adaptation-save-lives-drowning-detection-in-swimming-pool-scene-based-on-yolov8-improved-by-gaussian-poisson-generative-adversarial-network-augmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Stochastic Response of an Airfoil and Its Effects on Limit Cycle Oscillations’ Behavior under Stall Flutter Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketseas%20Dimitris">Ketseas Dimitris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we investigate the effect of noise on a classical two-degree-of-freedom pitch-plunge aeroelastic system. The inlet velocity of the flow is modelled as a stochastically varying parameter by the Ornstein-Uhlenbeck (OU) stochastic process. The system is a 2D airfoil, and the elastic problem is simulated using linear springs. We study the manifestation of Limit Cycle Oscillations (LCO) that correspond to the varying fluid velocity under the dynamic stall regime. We aim to delve into the unexplored facets of the classical pitch-plunge aeroelastic system, seeking a comprehensive understanding of how parametric noise influences the occurrence of LCO and expands the boundaries of its known behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title=" aeroelasticity"> aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20mechanics" title=" computational fluid mechanics"> computational fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=stall%20flutter" title=" stall flutter"> stall flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastical%20processes" title=" stochastical processes"> stochastical processes</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20cycle%20oscillation" title=" limit cycle oscillation"> limit cycle oscillation</a> </p> <a href="https://publications.waset.org/abstracts/179303/stochastic-response-of-an-airfoil-and-its-effects-on-limit-cycle-oscillations-behavior-under-stall-flutter-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee-Ting%20Lee">Yee-Ting Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Rong%20Zhuang"> Jyun-Rong Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Hsin%20Hsieh"> Wen-Hsin Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Shik%20Yang"> An-Shik Yang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS<sup>&reg;</sup> (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20pool%20dimensions" title=" molten pool dimensions"> molten pool dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a> </p> <a href="https://publications.waset.org/abstracts/66793/fem-simulations-to-study-the-effects-of-laser-power-and-scan-speed-on-molten-pool-size-in-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Ku">Y. T. Ku</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang"> J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20F.%20Chang"> Y. F. Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=BWR" title=" BWR"> BWR</a>, <a href="https://publications.waset.org/abstracts/search?q=decommissioning" title=" decommissioning"> decommissioning</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20pool" title=" upper pool"> upper pool</a> </p> <a href="https://publications.waset.org/abstracts/92505/cfd-simulation-for-flow-behavior-in-boiling-water-reactor-vessel-and-upper-pool-under-decommissioning-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Heating System for Water Pool by Solar Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20swimming%20pool" title=" solar swimming pool"> solar swimming pool</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20heating" title=" water heating"> water heating</a>, <a href="https://publications.waset.org/abstracts/search?q=PVC%20tubes" title=" PVC tubes"> PVC tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20system" title=" alternative system"> alternative system</a> </p> <a href="https://publications.waset.org/abstracts/18363/heating-system-for-water-pool-by-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Knowledge, Attitude and Practice on Swimming Pool Hygiene and Assessment of Microbial Contamination in Educational Institution in Selangor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarini%20Ismail">Zarini Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mas%20Ayu%20Arina%20Mohd%20Anuwar"> Mas Ayu Arina Mohd Anuwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Chai%20Ying"> Ling Chai Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=Tengku%20Zetty%20Maztura%20Tengku%20Jamaluddin"> Tengku Zetty Maztura Tengku Jamaluddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Azmawati%20Mohamed"> Nurul Azmawati Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadeeya%20Ayn%20Umaisara%20Mohamad%20Nor"> Nadeeya Ayn Umaisara Mohamad Nor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transmission of infectious diseases can occur anywhere, including in the swimming pools. A large number of swimmers turnover and poor hygienic behaviours will increase the occurrence of direct and indirect water contamination. A wide variety of infections such as the gastrointestinal illnesses, skin rash, eye infections, ear infections and respiratory illnesses had been reported following the exposure to the contaminated water. Understanding the importance of pool hygiene with a healthy practice will reduce the risk of infection. The aims of the study are to investigate the knowledge, attitude and practices on pool hygiene among swimming pool users and to determine the microbial contaminants in swimming pools. A cross-sectional study was conducted using self-administered questionnaires to 600 swimming pool users from four swimming pools belong to the three educational institutions in Selangor. Data was analyzed using SPSS Statistics version 22.0 for Windows. The knowledge, attitude and practice of the study participants were analyzed using the sum score based on Bloom’s cut-off point (80%). Having a score above the cut-off point was classified as having high levels of knowledge, positive attitude and good practice. The association between socio-demographic characteristics, knowledge and attitude with practice on pool hygiene was determined by Chi-Square test. The physicochemical parameters and the microbial contamination were determined using a standard method for examination of waste and wastewater. Of the 600 respondents, 465 (77.5%) were females with the mean age of 21 years old. Most of the respondents are the students (98.8%) which belong to the three educational institutions in Selangor. Overall, the majority of the respondents (89.2%) had low knowledge on pool hygiene, but had positive attitudes (91.3%). Whereas only half of the respondents (50%) practice good hygiene while using the swimming pools. There was a significant association between practice level on pool hygiene with knowledge (p < 0.001) and also the attitude (p < 0.001). The measurements of the physicochemical parameters showed that all 4 swimming pools had low levels of pH and two had low levels of free chlorine. However, all the water samples tested were negative for Escherichia coli. The findings of this study suggested that high knowledge and positive attitude towards pool hygiene ensure a good practice among swimming pool users. Thus, it is recommended that educational interventions should be given to the swimming pool users to increase their knowledge regarding the pool hygiene and this will prevent the unnecessary outbreak of infectious diseases related to swimming pool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude" title="attitude">attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20hygiene" title=" pool hygiene"> pool hygiene</a>, <a href="https://publications.waset.org/abstracts/search?q=practice" title=" practice"> practice</a> </p> <a href="https://publications.waset.org/abstracts/67187/knowledge-attitude-and-practice-on-swimming-pool-hygiene-and-assessment-of-microbial-contamination-in-educational-institution-in-selangor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang">J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Lin"> H. T. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Tseng"> Y. S. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Y.%20Li"> W. Y. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chen"> H. C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m &times; 7.87 m &times; 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TRACE" title="TRACE">TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAPTRAN" title=" FRAPTRAN"> FRAPTRAN</a>, <a href="https://publications.waset.org/abstracts/search?q=BWR" title=" BWR"> BWR</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a> </p> <a href="https://publications.waset.org/abstracts/49105/the-model-establishment-and-analysis-of-tracefraptran-for-chinshan-nuclear-power-plant-spent-fuel-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Dynamic Process of Single Water Droplet Impacting on a Hot Heptane Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingjun%20Xu">Mingjun Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouxiang%20Lu"> Shouxiang Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the interaction mechanism between the water droplet and pool fire has an important significance in engineering application of water sprinkle/spray/mist fire suppression. The micro impact process is unclear when the droplet impacts on the burning liquid surface at present. To deepen the understanding of the mechanisms of pool fire suppression with water spray/mist, dynamic processes of single water droplet impinging onto a hot heptane surface are visualized with the aid of a high-speed digital camera at 2000 fps. Each test is repeated 20 times. The water droplet diameter is around 1.98 mm, and the impact Weber number ranges from 30 to 695. The heptane is heated by a hot plate to mimic the burning condition, and the temperature varies from 30 to 90°C. The results show that three typical phenomena, including penetration, crater-jet and surface bubble, are observed, and the pool temperature has a significant influence on the critical condition for the appearance of each phenomenon. A global picture of different phenomena is built according to impact Weber number and pool temperature. In addition, the pool temperature and Weber number have important influences on the characteristic parameters including maximum crater depth, crown height and liquid column height. For a fixed Weber number, the liquid column height increases with pool temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20impact" title="droplet impact">droplet impact</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20suppression" title=" fire suppression"> fire suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20surface" title=" hot surface"> hot surface</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20spray" title=" water spray"> water spray</a> </p> <a href="https://publications.waset.org/abstracts/74681/dynamic-process-of-single-water-droplet-impacting-on-a-hot-heptane-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Experimental Investigation of Nucleate Pool Boiling Heat Transfer Characteristics on Copper Surface with Laser-Textured Stepped Microstructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md%20Salim%20Newaz"> Kazi Md Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the rapid advancement of integrated circuits and the increasing trend towards miniaturizing electronic devices, the amount of heat produced by electronic devices has consistently exceeded the maximum limit for heat dissipation. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-textured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-textured copper surfaces is superior to the bare copper surface in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20texturing" title=" laser texturing"> laser texturing</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/165865/experimental-investigation-of-nucleate-pool-boiling-heat-transfer-characteristics-on-copper-surface-with-laser-textured-stepped-microstructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Antioxidant Properties and Nutritive Value of Raw and Cooked Pool barb (Puntius sophore) of Eastern Himalayas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chungkham%20Sarojnalini">Chungkham Sarojnalini</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahengbam%20Sarjubala%20Devi"> Wahengbam Sarjubala Devi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antioxidant properties and nutritive values of raw and cooked Pool barb, Puntius sophore (Hamilton-Buchanan) of Eastern Himalayas, India were determined. Antioxidant activity of the methanol extract of the raw, steamed, fried and curried Pool barb was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. In DPPH scavenging assay the IC50 value of the raw, steamed, fried and curried Pool barb was 1.66 microgram/ml, 16.09 microgram/ml, 8.99 microgram/ml, 0.59 microgram/ml whereas the IC50 of the reference ascorbic acid was 46.66 microgram/ml. This results shows that the fish have high antioxidant activity. Protein content was found highest in raw (20.50±0.08%) and lowest in curried (18.66±0.13%). Moisture content in raw, fried and curried was 76.35±0.09, 46.27±0.14 and 57.46±0.24 respectively. Lipid content was recorded 2.46±0.14% in raw and 21.76±0.10% in curried. Ash content varies from 12.57±0.11 to 22.53±0.07%. The total aminoacids were varied from 36.79±0.02 and 288.43±0.12 mg/100 g. Eleven essential mineral elements were found abundant in all the samples. The samples had a considerable amount of Fe ranging from 152.17 to 320.39 milligram/100 gram, Ca 902.06 to 1356.02 milligram/100 gram, Zn 91.07 to 138.14 milligram/100 gram, K 193.25 to 261.56 milligram/100 gram, Mg 225.06 to 229.10 milligram/100 gram. Ni was not detected in the curried fish. The Mg and K contents were significantly decreased in frying method; however the Fe, Cu, Ca, Co and Mn content were increased significantly in all the cooked samples. The Mg and Na contents were significantly increased in curried sample and the Cr content was decreased significantly (p<0.05) in all the cooked samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20property" title="antioxidant property">antioxidant property</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20barb" title=" pool barb"> pool barb</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=aminoacids" title=" aminoacids"> aminoacids</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20methods" title=" cooking methods"> cooking methods</a> </p> <a href="https://publications.waset.org/abstracts/3155/antioxidant-properties-and-nutritive-value-of-raw-and-cooked-pool-barb-puntius-sophore-of-eastern-himalayas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md%20Salim%20Newaz"> Kazi Md Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title=" laser structuring"> laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/163989/experimental-investigation-of-nucleate-pool-boiling-heat-transfer-on-laser-structured-copper-surfaces-of-different-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md%20Salim%20Newaz"> Kazi Md Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions, and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title=" laser structuring"> laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/165129/experimental-investigation-of-nucleate-pool-boiling-heat-transfer-on-laser-structured-copper-surfaces-of-different-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md.%20Salim%20Newaz"> Kazi Md. Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser-machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title=" laser structuring"> laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/165173/experimental-investigation-of-nucleate-pool-boiling-heat-transfer-on-laser-structured-copper-surfaces-of-different-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Simulation of Single-Track Laser Melting on IN718 using Material Point Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kadiyala">S. Kadiyala</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Berzins"> M. Berzins</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Juba"> D. Juba</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Keyrouz"> W. Keyrouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dditive%20manufacturing%20simulation" title="dditive manufacturing simulation">dditive manufacturing simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20point%20method" title=" material point method"> material point method</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change" title=" phase change"> phase change</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20pool%20physics" title=" melt pool physics"> melt pool physics</a> </p> <a href="https://publications.waset.org/abstracts/177736/simulation-of-single-track-laser-melting-on-in718-using-material-point-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Nikkhah%20Rashidabad">V. Nikkhah Rashidabad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Manteghian"> M. Manteghian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Masoumi"> M. Masoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mousavian"> S. Mousavian</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ashouri"> D. Ashouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20diameter" title="bubble diameter">bubble diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flux" title=" heat flux"> heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=training%20algorithm" title=" training algorithm"> training algorithm</a> </p> <a href="https://publications.waset.org/abstracts/2793/application-of-neural-networks-to-predict-changing-the-diameters-of-bubbles-in-pool-boiling-distilled-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> STR and SNP Markers of Y-Chromosome Unveil Similarity between the Gene Pool of Kurds and Yezidis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chukhryaeva">M. Chukhryaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Skhalyakho"> R. Skhalyakho</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kagazegeva"> J. Kagazegeva</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pocheshkhova"> E. Pocheshkhova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Yepiskopossyan"> L. Yepiskopossyan</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Balanovsky"> O. Balanovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Balanovska"> E. Balanovska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Middle East is crossroad of different populations at different times. The Kurds are of particular interest in this region. Historical sources suggested that the origin of the Kurds is associated with Medes. Therefore, it was especially interesting to compare gene pool of Kurds with other supposed descendants of Medes-Tats. Yezidis are ethno confessional group of Kurds. Yezidism as a confessional teaching was formed in the XI-XIII centuries in Iraq. Yezidism has caused reproductively isolation of Yezidis from neighboring populations for centuries. Also, isolation helps to retain Yezidian caste system. It is unknown how the history of Yezidis affected its genу pool because it has never been the object of researching. We have examined the Y-chromosome variation in Yezidis and Kurdish males to understand their gene pool. We collected DNA samples from 90 Yezidi males and 24 Kurdish males together with their pedigrees. We performed Y-STR analysis of 17 loci in the samples collected (Yfiler system from Applied Biosystems) and analysis of 42 Y-SNPs by real-time PCR. We compared our data with published data from other Kurdish groups and from European, Caucasian, and West Asian populations. We found that gene pool of Yezidis contains haplogroups common in the Middle East (J-M172(xM67,M12)- 24%, E-M35(xM78)- 9%) and in South Western Asia (R-M124- 8%) and variant with wide distribution area - R-M198(xM458- 9%). The gene pool of Kurdish has higher genetic diversity than Yezidis. Their dominants haplogroups are R-M198- 20,3 %, E-M35- 9%, J-M172- 9%. Multidimensional scaling also shows that the Kurds and Yezidis are part of the same frontier Asian cluster, which, in addition, included Armenians, Iranians, Turks, and Greeks. At the same time, the peoples of the Caucasus and Europe form isolated clusters that do not overlap with the Asian clusters. It is noteworthy that Kurds from our study gravitate towards Tats, which indicates that most likely these two populations are descendants of ancient Medes population. Multidimensional scaling also reveals similarity between gene pool of Yezidis, Kurds with Armenians and Iranians. The analysis of Yezidis pedigrees and their STR variability did not reveal a reliable connection between genetic diversity and caste system. This indicates that the Yezidis caste system is a social division and not a biological one. Thus, we showed that, despite many years of isolation, the gene pool of Yezidis retained a common layer with the gene pool of Kurds, these populations have common spectrum of haplogroups, but Yezidis have lower genetic diversity than Kurds. This study received primary support from the RSF grant No. 16-36-00122 to MC and grant No. 16-06-00364 to EP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20pool" title="gene pool">gene pool</a>, <a href="https://publications.waset.org/abstracts/search?q=haplogroup" title=" haplogroup"> haplogroup</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurds" title=" Kurds"> Kurds</a>, <a href="https://publications.waset.org/abstracts/search?q=SNP%20and%20STR%20markers" title=" SNP and STR markers"> SNP and STR markers</a>, <a href="https://publications.waset.org/abstracts/search?q=Yezidis" title=" Yezidis"> Yezidis</a> </p> <a href="https://publications.waset.org/abstracts/82834/str-and-snp-markers-of-y-chromosome-unveil-similarity-between-the-gene-pool-of-kurds-and-yezidis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mabhout">Amir Mabhout</a>, <a href="https://publications.waset.org/abstracts/search?q=Toktam%20Ghafarian"> Toktam Ghafarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Farzin"> Amirhossein Farzin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Makki"> Zahra Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Alizadeh"> Sajjad Alizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Ghavi"> Amirhossein Ghavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title="data analysis">data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM%20neural%20network" title=" LSTM neural network"> LSTM neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=netflix" title=" netflix"> netflix</a> </p> <a href="https://publications.waset.org/abstracts/155259/analysis-and-prediction-of-netflix-viewing-history-using-netflixlatte-as-an-enriched-real-data-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Analysis of the Feasibility of Using a Solar Spiral Type Water Heater for Swimming Pool Application in Physiotherapy and Sports Centers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20M.%20Carvalho">G. B. M. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20C.%20Vale"> V. A. C. Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20L.%20C%C3%B6uras%20Ford"> E. T. L. Cöuras Ford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A heated pool makes it possible to use it during all hours of the day and in the seasons, especially in physiotherapies and sports centers. However, the cost of installation, operation and maintenance often makes it difficult to deploy. In addition, the current global policy for the use of natural resources from energy sources contradicts the most common means of heating swimming pools, such as the use of gas (Natural Gas and Liquefied Petroleum Gas), the use of firewood or oil and the use of electricity (heat pumps and electrical resistances). In this sense, this work focuses on the use of solar water heaters to be used in swimming pools of physiotherapy centers, in order to analyze their viability for this purpose in view of the costs linked to the medium and/or long term heating. For this, materials of low cost, low weight, easy commercial acquisition were used besides easy manufacture. Parameters such as flow, temperature distribution, efficiency and technical-economic feasibility were evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heating" title="heating">heating</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=pool" title=" pool"> pool</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collectors" title=" solar collectors"> solar collectors</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/74801/analysis-of-the-feasibility-of-using-a-solar-spiral-type-water-heater-for-swimming-pool-application-in-physiotherapy-and-sports-centers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Soil Organic Carbon Pool Assessment and Chemical Evaluation of Soils in Akure North and South Local Government Area of Ondo State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20F.%20Dada">B. F. Dada</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Ewulo"> B. S. Ewulo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Awodun"> M. A. Awodun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Ajayi"> S. O. Ajayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aggregate soil carbon distribution and stock in the soil in the form of a carbon pool is important for soil fertility and sequestration. The amount of carbon pool and other nutrients statues of the soil are to benefit plants, animal and the environment in the long run. This study was carried out at Akure North and South Local Government; the study area is one of the 18 Local Government Areas of Ondo State in the Southwest geo-political zone of Nigeria. The sites were divided into Map Grids and geo-referenced with Global Positioning System (GPS). Horizons were designated and morphological description carried out on the field. Pedons were characterized and classified according to USDA soil taxonomy. The local government area shares boundaries with; Ikere Local Government (LG) in the North, Ise Orun LG in the northwest, Ifedore LG in the northeast Akure South LG in the East, Ose LG in the South East, and Owo LG in the South. SOC-pool at Federal College of Agriculture topsoil horizon A2 is significantly higher than all horizons, 67.83 th⁻&sup1;. The chemical properties of the pedons have shown that the soil is very strongly acidic to neutral reaction (4.68 &ndash; 6.73). The nutrients status of the soil topsoil A1 and A2 generally indicates that the soils have a low potential for retaining plant nutrients, and therefore call for adequate soil management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon%20%28SOC%29" title="soil organic carbon (SOC)">soil organic carbon (SOC)</a>, <a href="https://publications.waset.org/abstracts/search?q=horizon" title=" horizon"> horizon</a>, <a href="https://publications.waset.org/abstracts/search?q=pedon" title=" pedon"> pedon</a>, <a href="https://publications.waset.org/abstracts/search?q=Akure" title=" Akure"> Akure</a> </p> <a href="https://publications.waset.org/abstracts/112867/soil-organic-carbon-pool-assessment-and-chemical-evaluation-of-soils-in-akure-north-and-south-local-government-area-of-ondo-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> The Model Establishment and Analysis of TRACE/MELCOR for Kuosheng Nuclear Power Plant Spent Fuel Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Hsu">W. S. Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chiang"> Y. Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Tseng"> Y. S. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang"> J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of NPPs in Taiwan after Japan Fukushima NPP disaster occurred. Hence, in order to estimate the safety of Kuosheng NPP spent fuel pool (SFP), by using TRACE, MELCOR, and SNAP codes, the safety analysis of Kuosheng NPP SFP was performed. There were two main steps in this research. First, the Kuosheng NPP SFP models were established. Second, the transient analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition (Fukushima-like condition). The results showed that the calculations of MELCOR and TRACE were very similar in this case, and the fuel uncover happened roughly at 4<sup>th</sup> day after the failure of cooling system. The above results indicated that Kuosheng NPP SFP may be unsafe in the case of long-term SBO situation. In addition, future calculations were needed to be done by the other codes like FRAPTRAN for the cladding calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TRACE" title="TRACE">TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=MELCOR" title=" MELCOR"> MELCOR</a>, <a href="https://publications.waset.org/abstracts/search?q=SNAP" title=" SNAP"> SNAP</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a> </p> <a href="https://publications.waset.org/abstracts/57025/the-model-establishment-and-analysis-of-tracemelcor-for-kuosheng-nuclear-power-plant-spent-fuel-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Experimental Investigation of Heat Transfer on Vertical Two-Phased Closed Thermosyphon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hadi%20Kusuma">M. Hadi Kusuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Nandy%20Putra"> Nandy Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Anhar%20Riza%20Antariksawan"> Anhar Riza Antariksawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficky%20Augusta%20Imawan"> Ficky Augusta Imawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat pipe is considered to be applied as a passive system to remove residual heat that generated from reactor core when incident occur or from spent fuel storage pool. The objectives are to characterized the heat transfer phenomena, performance of heat pipe, and as a model for large heat pipe will be applied as passive cooling system on nuclear spent fuel pool storage. In this experimental wickless heat pipe or two-phase closed thermosyphon (TPCT) is used. Variation of heat flux are 611.24 Watt/m<sup>2</sup> - 3291.29 Watt/m<sup>2</sup>. Variation of filling ratio are 45 - 70%. Variation of initial pressure are -62 to -74 cm Hg. Demineralized water is used as working fluid in the TPCT. The results showed that increasing of heat load leads to an increase of evaporation of the working fluid. The optimum filling ratio obtained for 60% of TPCT evaporator volume, and initial pressure variation gave different TPCT wall temperature characteristic. TPCT showed best performance with 60% filling ratio and can be consider to be applied as passive residual heat removal system or passive cooling system on spent fuel storage pool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20closed%20term%20syphon" title="two-phase closed term syphon">two-phase closed term syphon</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title=" heat pipe"> heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title=" passive cooling"> passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20storage%20pool" title=" spent fuel storage pool"> spent fuel storage pool</a> </p> <a href="https://publications.waset.org/abstracts/30599/experimental-investigation-of-heat-transfer-on-vertical-two-phased-closed-thermosyphon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Participatory Approach for Urban Sustainability through Ostrom’s Principles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuladeep%20Kumar%20Sadevi">Kuladeep Kumar Sadevi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shift towards raising global urban population has intense implications on the sustainability of the urban livelihoods. Rapid urbanization has made governments, companies and civil societies recognize that they are barely equipped to deal with growing urban demands, especially water, waste and energy management. Effective management of land, water, energy and waste at a community level should be addressed well to attain greener cities. In pursuit of Green livelihoods; various norms, codes, and green rating programmes have been followed by stakeholders at various levels. While the sustainability is being adapted at smaller scale developments, greening the urban environment at community/city level is still finding its path to reality. This is due to lack of the sense of ownership in the citizens for their immediate neighborhoods and city as a whole. This phenomenon can be well connected to the theory of 'tragedy of commons' with respect to the community engagement to manage the common pool resources. The common pool resource management has been well addressed by Elinor Ostrom, who shared the Nobel Prize in Economics in 2009 for her lifetime of scholarly work investigating how communities succeed or fail at managing common pool (finite) resources. This paper examines the applicability of Elinor Ostrom's 8 Principles for Managing a Commons, to meet urban sustainability. The key objective of this paper is to come up with a model for effective urban common pool resource management, which ultimately leads to sustainability as a whole. The paper brings out a methodology to understand various parameters involved in urban sustainability, examine the synergies of all such parameters, and application of Ostrom’s principles to correlate these parameters in order to attain effective urban resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20pool%20resources" title="common pool resources">common pool resources</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cities" title=" green cities"> green cities</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20communities" title=" green communities"> green communities</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20management" title=" participatory management"> participatory management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20resource%20management" title=" urban resource management"> urban resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20sustainability" title=" urban sustainability"> urban sustainability</a> </p> <a href="https://publications.waset.org/abstracts/56334/participatory-approach-for-urban-sustainability-through-ostroms-principles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> The impact of Climate Change and Land use/land Cover Change (LUCC) on Carbon Storage in Arid and Semi-Arid Regions of China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Fang">Xia Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arid and semiarid areas of China (ASAC) have experienced significant land-use/cover changes (LUCC), along with intensified climate change. However, LUCC and climate changes and their individual and interactive effects on carbon stocks have not yet been fully understood in the ASAC. This study analyses the carbon stocks in the ASAC during 1980 - 2020 using the specific arid ecosystem model (AEM), and investigates the effects of LUCC and climate change on carbon stock trends. The results indicate that in the past 41 years, the ASAC carbon pool experienced an overall growth trend, with an increase of 182.03 g C/m2. Climatic factors (+291.99 g C/m2), especially the increase in precipitation, were the main drivers of the carbon pool increase. LUCC decreased the carbon pool (-112.27 g C/m2), mainly due to the decrease in grassland area (-2.77%). The climate-induced carbon sinks were distributed in northern Xinjiang, on the Ordos Plateau, and in Northeast China, while the LUCC-induced carbon sinks mainly occurred on the Ordos Plateau and the North China Plain, resulting in a net decrease in carbon sequestration in these regions according to carbon pool measurements. The study revealed that the combination of climate variability, LUCC, and increasing atmospheric CO2 concentration resulted in an increase of approximately 182.03 g C/m2, which was mainly distributed in eastern Inner Mongolia and the western Qinghai-Tibet Plateau. Our findings are essential for improving theoretical guidance to protect the ecological environment, rationally plan land use, and understand the sustainable development of arid and semiarid zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AEM" title="AEM">AEM</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=LUCC" title=" LUCC"> LUCC</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20stocks" title=" carbon stocks"> carbon stocks</a> </p> <a href="https://publications.waset.org/abstracts/169074/the-impact-of-climate-change-and-land-useland-cover-change-lucc-on-carbon-storage-in-arid-and-semi-arid-regions-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plunge%20pool&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10