CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–12 of 12 results for author: <span class="mathjax">Holohan, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Holohan%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Holohan, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Holohan%2C+N&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Holohan, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19304">arXiv:2310.19304</a> <span> [<a href="https://arxiv.org/pdf/2310.19304">pdf</a>, <a href="https://arxiv.org/format/2310.19304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Privacy-Preserving Federated Learning over Vertically and Horizontally Partitioned Data for Financial Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kadhe%2C+S+R">Swanand Ravindra Kadhe</a>, <a href="/search/cs?searchtype=author&query=Ludwig%2C+H">Heiko Ludwig</a>, <a href="/search/cs?searchtype=author&query=Baracaldo%2C+N">Nathalie Baracaldo</a>, <a href="/search/cs?searchtype=author&query=King%2C+A">Alan King</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cs?searchtype=author&query=Houck%2C+K">Keith Houck</a>, <a href="/search/cs?searchtype=author&query=Rawat%2C+A">Ambrish Rawat</a>, <a href="/search/cs?searchtype=author&query=Purcell%2C+M">Mark Purcell</a>, <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Takeuchi%2C+M">Mikio Takeuchi</a>, <a href="/search/cs?searchtype=author&query=Kawahara%2C+R">Ryo Kawahara</a>, <a href="/search/cs?searchtype=author&query=Drucker%2C+N">Nir Drucker</a>, <a href="/search/cs?searchtype=author&query=Shaul%2C+H">Hayim Shaul</a>, <a href="/search/cs?searchtype=author&query=Kushnir%2C+E">Eyal Kushnir</a>, <a href="/search/cs?searchtype=author&query=Soceanu%2C+O">Omri Soceanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19304v1-abstract-short" style="display: inline;"> The effective detection of evidence of financial anomalies requires collaboration among multiple entities who own a diverse set of data, such as a payment network system (PNS) and its partner banks. Trust among these financial institutions is limited by regulation and competition. Federated learning (FL) enables entities to collaboratively train a model when data is either vertically or horizontal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19304v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19304v1-abstract-full" style="display: none;"> The effective detection of evidence of financial anomalies requires collaboration among multiple entities who own a diverse set of data, such as a payment network system (PNS) and its partner banks. Trust among these financial institutions is limited by regulation and competition. Federated learning (FL) enables entities to collaboratively train a model when data is either vertically or horizontally partitioned across the entities. However, in real-world financial anomaly detection scenarios, the data is partitioned both vertically and horizontally and hence it is not possible to use existing FL approaches in a plug-and-play manner. Our novel solution, PV4FAD, combines fully homomorphic encryption (HE), secure multi-party computation (SMPC), differential privacy (DP), and randomization techniques to balance privacy and accuracy during training and to prevent inference threats at model deployment time. Our solution provides input privacy through HE and SMPC, and output privacy against inference time attacks through DP. Specifically, we show that, in the honest-but-curious threat model, banks do not learn any sensitive features about PNS transactions, and the PNS does not learn any information about the banks' dataset but only learns prediction labels. We also develop and analyze a DP mechanism to protect output privacy during inference. Our solution generates high-utility models by significantly reducing the per-bank noise level while satisfying distributed DP. To ensure high accuracy, our approach produces an ensemble model, in particular, a random forest. This enables us to take advantage of the well-known properties of ensembles to reduce variance and increase accuracy. Our solution won second prize in the first phase of the U.S. Privacy Enhancing Technologies (PETs) Prize Challenge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19304v1-abstract-full').style.display = 'none'; document.getElementById('2310.19304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prize Winner in the U.S. Privacy Enhancing Technologies (PETs) Prize Challenge</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03543">arXiv:2307.03543</a> <span> [<a href="https://arxiv.org/pdf/2307.03543">pdf</a>, <a href="https://arxiv.org/ps/2307.03543">ps</a>, <a href="https://arxiv.org/format/2307.03543">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Random Number Generators and Seeding for Differential Privacy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03543v1-abstract-short" style="display: inline;"> Differential Privacy (DP) relies on random numbers to preserve privacy, typically utilising Pseudorandom Number Generators (PRNGs) as a source of randomness. In order to allow for consistent reproducibility, testing and bug-fixing in DP algorithms and results, it is important to allow for the seeding of the PRNGs used therein. In this work, we examine the landscape of Random Number Generators (RNG… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03543v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03543v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03543v1-abstract-full" style="display: none;"> Differential Privacy (DP) relies on random numbers to preserve privacy, typically utilising Pseudorandom Number Generators (PRNGs) as a source of randomness. In order to allow for consistent reproducibility, testing and bug-fixing in DP algorithms and results, it is important to allow for the seeding of the PRNGs used therein. In this work, we examine the landscape of Random Number Generators (RNGs), and the considerations software engineers should make when choosing and seeding a PRNG for DP. We hope it serves as a suitable guide for DP practitioners, and includes many lessons learned when implementing seeding for diffprivlib. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03543v1-abstract-full').style.display = 'none'; document.getElementById('2307.03543v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.04780">arXiv:2108.04780</a> <span> [<a href="https://arxiv.org/pdf/2108.04780">pdf</a>, <a href="https://arxiv.org/format/2108.04780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Secure k-Anonymization over Encrypted Databases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kesarwani%2C+M">Manish Kesarwani</a>, <a href="/search/cs?searchtype=author&query=Kaul%2C+A">Akshar Kaul</a>, <a href="/search/cs?searchtype=author&query=Braghin%2C+S">Stefano Braghin</a>, <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Antonatos%2C+S">Spiros Antonatos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.04780v1-abstract-short" style="display: inline;"> Data protection algorithms are becoming increasingly important to support modern business needs for facilitating data sharing and data monetization. Anonymization is an important step before data sharing. Several organizations leverage on third parties for storing and managing data. However, third parties are often not trusted to store plaintext personal and sensitive data; data encryption is wide… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04780v1-abstract-full').style.display = 'inline'; document.getElementById('2108.04780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.04780v1-abstract-full" style="display: none;"> Data protection algorithms are becoming increasingly important to support modern business needs for facilitating data sharing and data monetization. Anonymization is an important step before data sharing. Several organizations leverage on third parties for storing and managing data. However, third parties are often not trusted to store plaintext personal and sensitive data; data encryption is widely adopted to protect against intentional and unintentional attempts to read personal/sensitive data. Traditional encryption schemes do not support operations over the ciphertexts and thus anonymizing encrypted datasets is not feasible with current approaches. This paper explores the feasibility and depth of implementing a privacy-preserving data publishing workflow over encrypted datasets leveraging on homomorphic encryption. We demonstrate how we can achieve uniqueness discovery, data masking, differential privacy and k-anonymity over encrypted data requiring zero knowledge about the original values. We prove that the security protocols followed by our approach provide strong guarantees against inference attacks. Finally, we experimentally demonstrate the performance of our data publishing workflow components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04780v1-abstract-full').style.display = 'none'; document.getElementById('2108.04780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10138">arXiv:2107.10138</a> <span> [<a href="https://arxiv.org/pdf/2107.10138">pdf</a>, <a href="https://arxiv.org/format/2107.10138">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Secure Random Sampling in Differential Privacy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Braghin%2C+S">Stefano Braghin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10138v2-abstract-short" style="display: inline;"> Differential privacy is among the most prominent techniques for preserving privacy of sensitive data, oweing to its robust mathematical guarantees and general applicability to a vast array of computations on data, including statistical analysis and machine learning. Previous work demonstrated that concrete implementations of differential privacy mechanisms are vulnerable to statistical attacks. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10138v2-abstract-full').style.display = 'inline'; document.getElementById('2107.10138v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10138v2-abstract-full" style="display: none;"> Differential privacy is among the most prominent techniques for preserving privacy of sensitive data, oweing to its robust mathematical guarantees and general applicability to a vast array of computations on data, including statistical analysis and machine learning. Previous work demonstrated that concrete implementations of differential privacy mechanisms are vulnerable to statistical attacks. This vulnerability is caused by the approximation of real values to floating point numbers. This paper presents a practical solution to the finite-precision floating point vulnerability, where the inverse transform sampling of the Laplace distribution can itself be inverted, thus enabling an attack where the original value can be retrieved with non-negligible advantage. The proposed solution has the advantages of being generalisable to any infinitely divisible probability distribution, and of simple implementation in modern architectures. Finally, the solution has been designed to make side channel attack infeasible, because of inherently exponential, in the size of the domain, brute force attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10138v2-abstract-full').style.display = 'none'; document.getElementById('2107.10138v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.10987">arXiv:2007.10987</a> <span> [<a href="https://arxiv.org/pdf/2007.10987">pdf</a>, <a href="https://arxiv.org/format/2007.10987">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> IBM Federated Learning: an Enterprise Framework White Paper V0.1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ludwig%2C+H">Heiko Ludwig</a>, <a href="/search/cs?searchtype=author&query=Baracaldo%2C+N">Nathalie Baracaldo</a>, <a href="/search/cs?searchtype=author&query=Thomas%2C+G">Gegi Thomas</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cs?searchtype=author&query=Anwar%2C+A">Ali Anwar</a>, <a href="/search/cs?searchtype=author&query=Rajamoni%2C+S">Shashank Rajamoni</a>, <a href="/search/cs?searchtype=author&query=Ong%2C+Y">Yuya Ong</a>, <a href="/search/cs?searchtype=author&query=Radhakrishnan%2C+J">Jayaram Radhakrishnan</a>, <a href="/search/cs?searchtype=author&query=Verma%2C+A">Ashish Verma</a>, <a href="/search/cs?searchtype=author&query=Sinn%2C+M">Mathieu Sinn</a>, <a href="/search/cs?searchtype=author&query=Purcell%2C+M">Mark Purcell</a>, <a href="/search/cs?searchtype=author&query=Rawat%2C+A">Ambrish Rawat</a>, <a href="/search/cs?searchtype=author&query=Minh%2C+T">Tran Minh</a>, <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Chakraborty%2C+S">Supriyo Chakraborty</a>, <a href="/search/cs?searchtype=author&query=Whitherspoon%2C+S">Shalisha Whitherspoon</a>, <a href="/search/cs?searchtype=author&query=Steuer%2C+D">Dean Steuer</a>, <a href="/search/cs?searchtype=author&query=Wynter%2C+L">Laura Wynter</a>, <a href="/search/cs?searchtype=author&query=Hassan%2C+H">Hifaz Hassan</a>, <a href="/search/cs?searchtype=author&query=Laguna%2C+S">Sean Laguna</a>, <a href="/search/cs?searchtype=author&query=Yurochkin%2C+M">Mikhail Yurochkin</a>, <a href="/search/cs?searchtype=author&query=Agarwal%2C+M">Mayank Agarwal</a>, <a href="/search/cs?searchtype=author&query=Chuba%2C+E">Ebube Chuba</a>, <a href="/search/cs?searchtype=author&query=Abay%2C+A">Annie Abay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.10987v1-abstract-short" style="display: inline;"> Federated Learning (FL) is an approach to conduct machine learning without centralizing training data in a single place, for reasons of privacy, confidentiality or data volume. However, solving federated machine learning problems raises issues above and beyond those of centralized machine learning. These issues include setting up communication infrastructure between parties, coordinating the learn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10987v1-abstract-full').style.display = 'inline'; document.getElementById('2007.10987v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.10987v1-abstract-full" style="display: none;"> Federated Learning (FL) is an approach to conduct machine learning without centralizing training data in a single place, for reasons of privacy, confidentiality or data volume. However, solving federated machine learning problems raises issues above and beyond those of centralized machine learning. These issues include setting up communication infrastructure between parties, coordinating the learning process, integrating party results, understanding the characteristics of the training data sets of different participating parties, handling data heterogeneity, and operating with the absence of a verification data set. IBM Federated Learning provides infrastructure and coordination for federated learning. Data scientists can design and run federated learning jobs based on existing, centralized machine learning models and can provide high-level instructions on how to run the federation. The framework applies to both Deep Neural Networks as well as ``traditional'' approaches for the most common machine learning libraries. {\proj} enables data scientists to expand their scope from centralized to federated machine learning, minimizing the learning curve at the outset while also providing the flexibility to deploy to different compute environments and design custom fusion algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10987v1-abstract-full').style.display = 'none'; document.getElementById('2007.10987v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; I.2.11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.02444">arXiv:1907.02444</a> <span> [<a href="https://arxiv.org/pdf/1907.02444">pdf</a>, <a href="https://arxiv.org/format/1907.02444">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Diffprivlib: The IBM Differential Privacy Library </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Braghin%2C+S">Stefano Braghin</a>, <a href="/search/cs?searchtype=author&query=Mac+Aonghusa%2C+P">P贸l Mac Aonghusa</a>, <a href="/search/cs?searchtype=author&query=Levacher%2C+K">Killian Levacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.02444v1-abstract-short" style="display: inline;"> Since its conception in 2006, differential privacy has emerged as the de-facto standard in data privacy, owing to its robust mathematical guarantees, generalised applicability and rich body of literature. Over the years, researchers have studied differential privacy and its applicability to an ever-widening field of topics. Mechanisms have been created to optimise the process of achieving differen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02444v1-abstract-full').style.display = 'inline'; document.getElementById('1907.02444v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.02444v1-abstract-full" style="display: none;"> Since its conception in 2006, differential privacy has emerged as the de-facto standard in data privacy, owing to its robust mathematical guarantees, generalised applicability and rich body of literature. Over the years, researchers have studied differential privacy and its applicability to an ever-widening field of topics. Mechanisms have been created to optimise the process of achieving differential privacy, for various data types and scenarios. Until this work however, all previous work on differential privacy has been conducted on a ad-hoc basis, without a single, unifying codebase to implement results. In this work, we present the IBM Differential Privacy Library, a general purpose, open source library for investigating, experimenting and developing differential privacy applications in the Python programming language. The library includes a host of mechanisms, the building blocks of differential privacy, alongside a number of applications to machine learning and other data analytics tasks. Simplicity and accessibility has been prioritised in developing the library, making it suitable to a wide audience of users, from those using the library for their first investigations in data privacy, to the privacy experts looking to contribute their own models and mechanisms for others to use. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02444v1-abstract-full').style.display = 'none'; document.getElementById('1907.02444v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.09829">arXiv:1906.09829</a> <span> [<a href="https://arxiv.org/pdf/1906.09829">pdf</a>, <a href="https://arxiv.org/format/1906.09829">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> AnonTokens: tracing re-identification attacks through decoy records </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Antonatos%2C+S">Spiros Antonatos</a>, <a href="/search/cs?searchtype=author&query=Braghin%2C+S">Stefano Braghin</a>, <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=MacAonghusa%2C+P">Pol MacAonghusa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.09829v1-abstract-short" style="display: inline;"> Privacy is of the utmost concern when it comes to releasing data to third parties. Data owners rely on anonymization approaches to safeguard the released datasets against re-identification attacks. However, even with strict anonymization in place, re-identification attacks are still a possibility and in many cases a reality. Prior art has focused on providing better anonymization algorithms with m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09829v1-abstract-full').style.display = 'inline'; document.getElementById('1906.09829v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.09829v1-abstract-full" style="display: none;"> Privacy is of the utmost concern when it comes to releasing data to third parties. Data owners rely on anonymization approaches to safeguard the released datasets against re-identification attacks. However, even with strict anonymization in place, re-identification attacks are still a possibility and in many cases a reality. Prior art has focused on providing better anonymization algorithms with minimal loss of information and how to prevent data disclosure attacks. Our approach tries to tackle the issue of tracing re-identification attacks based on the concept of honeytokens, decoy or "bait" records with the goal to lure malicious users. While the concept of honeytokens has been widely used in the security domain, this is the first approach to apply the concept on the data privacy domain. Records with high re-identification risk, called AnonTokens, are inserted into anonymized datasets. This work demonstrates the feasibility, detectability and usability of AnonTokens and provides promising results for data owners who want to apply our approach to real use cases. We evaluated our concept with real large-scale population datasets. The results show that the introduction of decoy tokens is feasible without significant impact on the released dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09829v1-abstract-full').style.display = 'none'; document.getElementById('1906.09829v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10410">arXiv:1808.10410</a> <span> [<a href="https://arxiv.org/pdf/1808.10410">pdf</a>, <a href="https://arxiv.org/ps/1808.10410">ps</a>, <a href="https://arxiv.org/format/1808.10410">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> The Bounded Laplace Mechanism in Differential Privacy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Antonatos%2C+S">Spiros Antonatos</a>, <a href="/search/cs?searchtype=author&query=Braghin%2C+S">Stefano Braghin</a>, <a href="/search/cs?searchtype=author&query=Mac+Aonghusa%2C+P">P贸l Mac Aonghusa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10410v1-abstract-short" style="display: inline;"> The Laplace mechanism is the workhorse of differential privacy, applied to many instances where numerical data is processed. However, the Laplace mechanism can return semantically impossible values, such as negative counts, due to its infinite support. There are two popular solutions to this: (i) bounding/capping the output values and (ii) bounding the mechanism support. In this paper, we show tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10410v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10410v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10410v1-abstract-full" style="display: none;"> The Laplace mechanism is the workhorse of differential privacy, applied to many instances where numerical data is processed. However, the Laplace mechanism can return semantically impossible values, such as negative counts, due to its infinite support. There are two popular solutions to this: (i) bounding/capping the output values and (ii) bounding the mechanism support. In this paper, we show that bounding the mechanism support, while using the parameters of the pure Laplace mechanism, does not typically preserve differential privacy. We also present a robust method to compute the optimal mechanism parameters to achieve differential privacy in such a setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10410v1-abstract-full').style.display = 'none'; document.getElementById('1808.10410v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01615">arXiv:1710.01615</a> <span> [<a href="https://arxiv.org/pdf/1710.01615">pdf</a>, <a href="https://arxiv.org/format/1710.01615">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> ($k$,$蔚$)-Anonymity: $k$-Anonymity with $蔚$-Differential Privacy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Antonatos%2C+S">Spiros Antonatos</a>, <a href="/search/cs?searchtype=author&query=Braghin%2C+S">Stefano Braghin</a>, <a href="/search/cs?searchtype=author&query=Mac+Aonghusa%2C+P">P贸l Mac Aonghusa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01615v1-abstract-short" style="display: inline;"> The explosion in volume and variety of data offers enormous potential for research and commercial use. Increased availability of personal data is of particular interest in enabling highly customised services tuned to individual needs. Preserving the privacy of individuals against reidentification attacks in this fast-moving ecosystem poses significant challenges for a one-size fits all approach to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01615v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01615v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01615v1-abstract-full" style="display: none;"> The explosion in volume and variety of data offers enormous potential for research and commercial use. Increased availability of personal data is of particular interest in enabling highly customised services tuned to individual needs. Preserving the privacy of individuals against reidentification attacks in this fast-moving ecosystem poses significant challenges for a one-size fits all approach to anonymisation. In this paper we present ($k$,$蔚$)-anonymisation, an approach that combines the $k$-anonymisation and $蔚$-differential privacy models into a single coherent framework, providing privacy guarantees at least as strong as those offered by the individual models. Linking risks of less than 5\% are observed in experimental results, even with modest values of $k$ and $蔚$. Our approach is shown to address well-known limitations of $k$-anonymity and $蔚$-differential privacy and is validated in an extensive experimental campaign using openly available datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01615v1-abstract-full').style.display = 'none'; document.getElementById('1710.01615v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.05568">arXiv:1612.05568</a> <span> [<a href="https://arxiv.org/pdf/1612.05568">pdf</a>, <a href="https://arxiv.org/format/1612.05568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TIFS.2017.2718487">10.1109/TIFS.2017.2718487 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal Differentially Private Mechanisms for Randomised Response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Leith%2C+D+J">Douglas J. Leith</a>, <a href="/search/cs?searchtype=author&query=Mason%2C+O">Oliver Mason</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.05568v1-abstract-short" style="display: inline;"> We examine a generalised Randomised Response (RR) technique in the context of differential privacy and examine the optimality of such mechanisms. Strict and relaxed differential privacy are considered for binary outputs. By examining the error of a statistical estimator, we present closed solutions for the optimal mechanism(s) in both cases. The optimal mechanism is also given for the specific cas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05568v1-abstract-full').style.display = 'inline'; document.getElementById('1612.05568v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.05568v1-abstract-full" style="display: none;"> We examine a generalised Randomised Response (RR) technique in the context of differential privacy and examine the optimality of such mechanisms. Strict and relaxed differential privacy are considered for binary outputs. By examining the error of a statistical estimator, we present closed solutions for the optimal mechanism(s) in both cases. The optimal mechanism is also given for the specific case of the original RR technique as introduced by Warner in 1965. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05568v1-abstract-full').style.display = 'none'; document.getElementById('1612.05568v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.07254">arXiv:1505.07254</a> <span> [<a href="https://arxiv.org/pdf/1505.07254">pdf</a>, <a href="https://arxiv.org/ps/1505.07254">ps</a>, <a href="https://arxiv.org/format/1505.07254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Discrete Mathematics">cs.DM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> Differentially Private Response Mechanisms on Categorical Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Leith%2C+D">Doug Leith</a>, <a href="/search/cs?searchtype=author&query=Mason%2C+O">Oliver Mason</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.07254v1-abstract-short" style="display: inline;"> We study mechanisms for differential privacy on finite datasets. By deriving \emph{sufficient sets} for differential privacy we obtain necessary and sufficient conditions for differential privacy, a tight lower bound on the maximal expected error of a discrete mechanism and a characterisation of the optimal mechanism which minimises the maximal expected error within the class of mechanisms conside… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07254v1-abstract-full').style.display = 'inline'; document.getElementById('1505.07254v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.07254v1-abstract-full" style="display: none;"> We study mechanisms for differential privacy on finite datasets. By deriving \emph{sufficient sets} for differential privacy we obtain necessary and sufficient conditions for differential privacy, a tight lower bound on the maximal expected error of a discrete mechanism and a characterisation of the optimal mechanism which minimises the maximal expected error within the class of mechanisms considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07254v1-abstract-full').style.display = 'none'; document.getElementById('1505.07254v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68R01; 68R05; 60C05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6124">arXiv:1402.6124</a> <span> [<a href="https://arxiv.org/pdf/1402.6124">pdf</a>, <a href="https://arxiv.org/ps/1402.6124">ps</a>, <a href="https://arxiv.org/format/1402.6124">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> Differential Privacy in Metric Spaces: Numerical, Categorical and Functional Data Under the One Roof </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Leith%2C+D">Douglas Leith</a>, <a href="/search/cs?searchtype=author&query=Mason%2C+O">Oliver Mason</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6124v1-abstract-short" style="display: inline;"> We study Differential Privacy in the abstract setting of Probability on metric spaces. Numerical, categorical and functional data can be handled in a uniform manner in this setting. We demonstrate how mechanisms based on data sanitisation and those that rely on adding noise to query responses fit within this framework. We prove that once the sanitisation is differentially private, then so is the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6124v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6124v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6124v1-abstract-full" style="display: none;"> We study Differential Privacy in the abstract setting of Probability on metric spaces. Numerical, categorical and functional data can be handled in a uniform manner in this setting. We demonstrate how mechanisms based on data sanitisation and those that rely on adding noise to query responses fit within this framework. We prove that once the sanitisation is differentially private, then so is the query response for any query. We show how to construct sanitisations for high-dimensional databases using simple 1-dimensional mechanisms. We also provide lower bounds on the expected error for differentially private sanitisations in the general metric space setting. Finally, we consider the question of sufficient sets for differential privacy and show that for relaxed differential privacy, any algebra generating the Borel $蟽$-algebra is a sufficient set for relaxed differential privacy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6124v1-abstract-full').style.display = 'none'; document.getElementById('1402.6124v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 Pages</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>