CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–7 of 7 results for author: <span class="mathjax">Shaul, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Shaul%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shaul, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shaul%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shaul, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19304">arXiv:2310.19304</a> <span> [<a href="https://arxiv.org/pdf/2310.19304">pdf</a>, <a href="https://arxiv.org/format/2310.19304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Privacy-Preserving Federated Learning over Vertically and Horizontally Partitioned Data for Financial Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kadhe%2C+S+R">Swanand Ravindra Kadhe</a>, <a href="/search/cs?searchtype=author&query=Ludwig%2C+H">Heiko Ludwig</a>, <a href="/search/cs?searchtype=author&query=Baracaldo%2C+N">Nathalie Baracaldo</a>, <a href="/search/cs?searchtype=author&query=King%2C+A">Alan King</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cs?searchtype=author&query=Houck%2C+K">Keith Houck</a>, <a href="/search/cs?searchtype=author&query=Rawat%2C+A">Ambrish Rawat</a>, <a href="/search/cs?searchtype=author&query=Purcell%2C+M">Mark Purcell</a>, <a href="/search/cs?searchtype=author&query=Holohan%2C+N">Naoise Holohan</a>, <a href="/search/cs?searchtype=author&query=Takeuchi%2C+M">Mikio Takeuchi</a>, <a href="/search/cs?searchtype=author&query=Kawahara%2C+R">Ryo Kawahara</a>, <a href="/search/cs?searchtype=author&query=Drucker%2C+N">Nir Drucker</a>, <a href="/search/cs?searchtype=author&query=Shaul%2C+H">Hayim Shaul</a>, <a href="/search/cs?searchtype=author&query=Kushnir%2C+E">Eyal Kushnir</a>, <a href="/search/cs?searchtype=author&query=Soceanu%2C+O">Omri Soceanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19304v1-abstract-short" style="display: inline;"> The effective detection of evidence of financial anomalies requires collaboration among multiple entities who own a diverse set of data, such as a payment network system (PNS) and its partner banks. Trust among these financial institutions is limited by regulation and competition. Federated learning (FL) enables entities to collaboratively train a model when data is either vertically or horizontal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19304v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19304v1-abstract-full" style="display: none;"> The effective detection of evidence of financial anomalies requires collaboration among multiple entities who own a diverse set of data, such as a payment network system (PNS) and its partner banks. Trust among these financial institutions is limited by regulation and competition. Federated learning (FL) enables entities to collaboratively train a model when data is either vertically or horizontally partitioned across the entities. However, in real-world financial anomaly detection scenarios, the data is partitioned both vertically and horizontally and hence it is not possible to use existing FL approaches in a plug-and-play manner. Our novel solution, PV4FAD, combines fully homomorphic encryption (HE), secure multi-party computation (SMPC), differential privacy (DP), and randomization techniques to balance privacy and accuracy during training and to prevent inference threats at model deployment time. Our solution provides input privacy through HE and SMPC, and output privacy against inference time attacks through DP. Specifically, we show that, in the honest-but-curious threat model, banks do not learn any sensitive features about PNS transactions, and the PNS does not learn any information about the banks' dataset but only learns prediction labels. We also develop and analyze a DP mechanism to protect output privacy during inference. Our solution generates high-utility models by significantly reducing the per-bank noise level while satisfying distributed DP. To ensure high accuracy, our approach produces an ensemble model, in particular, a random forest. This enables us to take advantage of the well-known properties of ensembles to reduce variance and increase accuracy. Our solution won second prize in the first phase of the U.S. Privacy Enhancing Technologies (PETs) Prize Challenge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19304v1-abstract-full').style.display = 'none'; document.getElementById('2310.19304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prize Winner in the U.S. Privacy Enhancing Technologies (PETs) Prize Challenge</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06739">arXiv:2306.06739</a> <span> [<a href="https://arxiv.org/pdf/2306.06739">pdf</a>, <a href="https://arxiv.org/format/2306.06739">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-031-34671-2_8">10.1007/978-3-031-34671-2_8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generating One-Hot Maps under Encryption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Aharoni%2C+E">Ehud Aharoni</a>, <a href="/search/cs?searchtype=author&query=Drucker%2C+N">Nir Drucker</a>, <a href="/search/cs?searchtype=author&query=Kushnir%2C+E">Eyal Kushnir</a>, <a href="/search/cs?searchtype=author&query=Masalha%2C+R">Ramy Masalha</a>, <a href="/search/cs?searchtype=author&query=Shaul%2C+H">Hayim Shaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06739v1-abstract-short" style="display: inline;"> One-hot maps are commonly used in the AI domain. Unsurprisingly, they can also bring great benefits to ML-based algorithms such as decision trees that run under Homomorphic Encryption (HE), specifically CKKS. Prior studies in this domain used these maps but assumed that the client encrypts them. Here, we consider different tradeoffs that may affect the client's decision on how to pack and store th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06739v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06739v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06739v1-abstract-full" style="display: none;"> One-hot maps are commonly used in the AI domain. Unsurprisingly, they can also bring great benefits to ML-based algorithms such as decision trees that run under Homomorphic Encryption (HE), specifically CKKS. Prior studies in this domain used these maps but assumed that the client encrypts them. Here, we consider different tradeoffs that may affect the client's decision on how to pack and store these maps. We suggest several conversion algorithms when working with encrypted data and report their costs. Our goal is to equip the ML over HE designer with the data it needs for implementing encrypted one-hot maps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06739v1-abstract-full').style.display = 'none'; document.getElementById('2306.06739v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03384">arXiv:2207.03384</a> <span> [<a href="https://arxiv.org/pdf/2207.03384">pdf</a>, <a href="https://arxiv.org/format/2207.03384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-031-51482-1_11">10.1007/978-3-031-51482-1_11 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Pruning for Machine Learning Under Homomorphic Encryption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Aharoni%2C+E">Ehud Aharoni</a>, <a href="/search/cs?searchtype=author&query=Baruch%2C+M">Moran Baruch</a>, <a href="/search/cs?searchtype=author&query=Bose%2C+P">Pradip Bose</a>, <a href="/search/cs?searchtype=author&query=Buyuktosunoglu%2C+A">Alper Buyuktosunoglu</a>, <a href="/search/cs?searchtype=author&query=Drucker%2C+N">Nir Drucker</a>, <a href="/search/cs?searchtype=author&query=Pal%2C+S">Subhankar Pal</a>, <a href="/search/cs?searchtype=author&query=Pelleg%2C+T">Tomer Pelleg</a>, <a href="/search/cs?searchtype=author&query=Sarpatwar%2C+K">Kanthi Sarpatwar</a>, <a href="/search/cs?searchtype=author&query=Shaul%2C+H">Hayim Shaul</a>, <a href="/search/cs?searchtype=author&query=Soceanu%2C+O">Omri Soceanu</a>, <a href="/search/cs?searchtype=author&query=Vaculin%2C+R">Roman Vaculin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03384v2-abstract-short" style="display: inline;"> Privacy-preserving machine learning (PPML) solutions are gaining widespread popularity. Among these, many rely on homomorphic encryption (HE) that offers confidentiality of the model and the data, but at the cost of large latency and memory requirements. Pruning neural network (NN) parameters improves latency and memory in plaintext ML but has little impact if directly applied to HE-based PPML.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03384v2-abstract-full').style.display = 'inline'; document.getElementById('2207.03384v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03384v2-abstract-full" style="display: none;"> Privacy-preserving machine learning (PPML) solutions are gaining widespread popularity. Among these, many rely on homomorphic encryption (HE) that offers confidentiality of the model and the data, but at the cost of large latency and memory requirements. Pruning neural network (NN) parameters improves latency and memory in plaintext ML but has little impact if directly applied to HE-based PPML. We introduce a framework called HE-PEx that comprises new pruning methods, on top of a packing technique called tile tensors, for reducing the latency and memory of PPML inference. HE-PEx uses permutations to prune additional ciphertexts, and expansion to recover inference loss. We demonstrate the effectiveness of our methods for pruning fully-connected and convolutional layers in NNs on PPML tasks, namely, image compression, denoising, and classification, with autoencoders, multilayer perceptrons (MLPs) and convolutional neural networks (CNNs). We implement and deploy our networks atop a framework called HElayers, which shows a 10-35% improvement in inference speed and a 17-35% decrease in memory requirement over the unpruned network, corresponding to 33-65% fewer ciphertexts, within a 2.5% degradation in inference accuracy over the unpruned network. Compared to the state-of-the-art pruning technique for PPML, our techniques generate networks with 70% fewer ciphertexts, on average, for the same degradation limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03384v2-abstract-full').style.display = 'none'; document.getElementById('2207.03384v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> In: Tsudik, G., Conti, M., Liang, K., Smaragdakis, G. (eds) Computer Security - ESORICS 2023. ESORICS 2023. Lecture Notes in Computer Science, vol 14347. Springer, Cham </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01805">arXiv:2011.01805</a> <span> [<a href="https://arxiv.org/pdf/2011.01805">pdf</a>, <a href="https://arxiv.org/format/2011.01805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.56553/popets-2023-0020">10.56553/popets-2023-0020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HeLayers: A Tile Tensors Framework for Large Neural Networks on Encrypted Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Aharoni%2C+E">Ehud Aharoni</a>, <a href="/search/cs?searchtype=author&query=Adir%2C+A">Allon Adir</a>, <a href="/search/cs?searchtype=author&query=Baruch%2C+M">Moran Baruch</a>, <a href="/search/cs?searchtype=author&query=Drucker%2C+N">Nir Drucker</a>, <a href="/search/cs?searchtype=author&query=Ezov%2C+G">Gilad Ezov</a>, <a href="/search/cs?searchtype=author&query=Farkash%2C+A">Ariel Farkash</a>, <a href="/search/cs?searchtype=author&query=Greenberg%2C+L">Lev Greenberg</a>, <a href="/search/cs?searchtype=author&query=Masalha%2C+R">Ramy Masalha</a>, <a href="/search/cs?searchtype=author&query=Moshkowich%2C+G">Guy Moshkowich</a>, <a href="/search/cs?searchtype=author&query=Murik%2C+D">Dov Murik</a>, <a href="/search/cs?searchtype=author&query=Shaul%2C+H">Hayim Shaul</a>, <a href="/search/cs?searchtype=author&query=Soceanu%2C+O">Omri Soceanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01805v3-abstract-short" style="display: inline;"> Privacy-preserving solutions enable companies to offload confidential data to third-party services while fulfilling their government regulations. To accomplish this, they leverage various cryptographic techniques such as Homomorphic Encryption (HE), which allows performing computation on encrypted data. Most HE schemes work in a SIMD fashion, and the data packing method can dramatically affect the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01805v3-abstract-full').style.display = 'inline'; document.getElementById('2011.01805v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01805v3-abstract-full" style="display: none;"> Privacy-preserving solutions enable companies to offload confidential data to third-party services while fulfilling their government regulations. To accomplish this, they leverage various cryptographic techniques such as Homomorphic Encryption (HE), which allows performing computation on encrypted data. Most HE schemes work in a SIMD fashion, and the data packing method can dramatically affect the running time and memory costs. Finding a packing method that leads to an optimal performant implementation is a hard task. We present a simple and intuitive framework that abstracts the packing decision for the user. We explain its underlying data structures and optimizer, and propose a novel algorithm for performing 2D convolution operations. We used this framework to implement an HE-friendly version of AlexNet, which runs in three minutes, several orders of magnitude faster than other state-of-the-art solutions that only use HE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01805v3-abstract-full').style.display = 'none'; document.getElementById('2011.01805v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> E.1; E.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07301">arXiv:1801.07301</a> <span> [<a href="https://arxiv.org/pdf/1801.07301">pdf</a>, <a href="https://arxiv.org/format/1801.07301">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Geometry">cs.CG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Secure $k$-ish Nearest Neighbors Classifier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Shaul%2C+H">Hayim Shaul</a>, <a href="/search/cs?searchtype=author&query=Feldman%2C+D">Dan Feldman</a>, <a href="/search/cs?searchtype=author&query=Rus%2C+D">Daniela Rus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07301v2-abstract-short" style="display: inline;"> In machine learning, classifiers are used to predict a class of a given query based on an existing (classified) database. Given a database S of n d-dimensional points and a d-dimensional query q, the k-nearest neighbors (kNN) classifier assigns q with the majority class of its k nearest neighbors in S. In the secure version of kNN, S and q are owned by two different parties that do not want to s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07301v2-abstract-full').style.display = 'inline'; document.getElementById('1801.07301v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07301v2-abstract-full" style="display: none;"> In machine learning, classifiers are used to predict a class of a given query based on an existing (classified) database. Given a database S of n d-dimensional points and a d-dimensional query q, the k-nearest neighbors (kNN) classifier assigns q with the majority class of its k nearest neighbors in S. In the secure version of kNN, S and q are owned by two different parties that do not want to share their data. Unfortunately, all known solutions for secure kNN either require a large communication complexity between the parties, or are very inefficient to run. In this work we present a classifier based on kNN, that can be implemented efficiently with homomorphic encryption (HE). The efficiency of our classifier comes from a relaxation we make on kNN, where we allow it to consider kappa nearest neighbors for kappa ~ k with some probability. We therefore call our classifier k-ish Nearest Neighbors (k-ish NN). The success probability of our solution depends on the distribution of the distances from q to S and increase as its statistical distance to Gaussian decrease. To implement our classifier we introduce the concept of double-blinded coin-toss. In a doubly-blinded coin-toss the success probability as well as the output of the toss are encrypted. We use this coin-toss to efficiently approximate the average and variance of the distances from q to S. We believe these two techniques may be of independent interest. When implemented with HE, the k-ish NN has a circuit depth that is independent of n, therefore making it scalable. We also implemented our classifier in an open source library based on HELib and tested it on a breast tumor database. The accuracy of our classifier (F_1 score) were 98\% and classification took less than 3 hours compared to (estimated) weeks in current HE implementations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07301v2-abstract-full').style.display = 'none'; document.getElementById('1801.07301v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.05811">arXiv:1708.05811</a> <span> [<a href="https://arxiv.org/pdf/1708.05811">pdf</a>, <a href="https://arxiv.org/format/1708.05811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Secure Search on the Cloud via Coresets and Sketches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Akavia%2C+A">Adi Akavia</a>, <a href="/search/cs?searchtype=author&query=Feldman%2C+D">Dan Feldman</a>, <a href="/search/cs?searchtype=author&query=Shaul%2C+H">Hayim Shaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.05811v1-abstract-short" style="display: inline;"> \emph{Secure Search} is the problem of retrieving from a database table (or any unsorted array) the records matching specified attributes, as in SQL SELECT queries, but where the database and the query are encrypted. Secure search has been the leading example for practical applications of Fully Homomorphic Encryption (FHE) starting in Gentry's seminal work; however, to the best of our knowledge al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05811v1-abstract-full').style.display = 'inline'; document.getElementById('1708.05811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.05811v1-abstract-full" style="display: none;"> \emph{Secure Search} is the problem of retrieving from a database table (or any unsorted array) the records matching specified attributes, as in SQL SELECT queries, but where the database and the query are encrypted. Secure search has been the leading example for practical applications of Fully Homomorphic Encryption (FHE) starting in Gentry's seminal work; however, to the best of our knowledge all state-of-the-art secure search algorithms to date are realized by a polynomial of degree $惟(m)$ for $m$ the number of records, which is typically too slow in practice even for moderate size $m$. In this work we present the first algorithm for secure search that is realized by a polynomial of degree polynomial in $\log m$. We implemented our algorithm in an open source library based on HELib implementation for the Brakerski-Gentry-Vaikuntanthan's FHE scheme, and ran experiments on Amazon's EC2 cloud. Our experiments show that we can retrieve the first match in a database of millions of entries in less than an hour using a single machine; the time reduced almost linearly with the number of machines. Our result utilizes a new paradigm of employing coresets and sketches, which are modern data summarization techniques common in computational geometry and machine learning, for efficiency enhancement for homomorphic encryption. As a central tool we design a novel sketch that returns the first positive entry in a (not necessarily sparse) array; this sketch may be of independent interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05811v1-abstract-full').style.display = 'none'; document.getElementById('1708.05811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.1; F.2.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.4061">arXiv:0908.4061</a> <span> [<a href="https://arxiv.org/pdf/0908.4061">pdf</a>, <a href="https://arxiv.org/ps/0908.4061">ps</a>, <a href="https://arxiv.org/format/0908.4061">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Geometry">cs.CG</span> </div> </div> <p class="title is-5 mathjax"> Semi-algebraic Range Reporting and Emptiness Searching with Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Sharir%2C+M">Micha Sharir</a>, <a href="/search/cs?searchtype=author&query=Shaul%2C+H">Hayim Shaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.4061v2-abstract-short" style="display: inline;"> In a typical range emptiness searching (resp., reporting) problem, we are given a set $P$ of $n$ points in $\reals^d$, and wish to preprocess it into a data structure that supports efficient range emptiness (resp., reporting) queries, in which we specify a range $蟽$, which, in general, is a semi-algebraic set in $\reals^d$ of constant description complexity, and wish to determine whether… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.4061v2-abstract-full').style.display = 'inline'; document.getElementById('0908.4061v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.4061v2-abstract-full" style="display: none;"> In a typical range emptiness searching (resp., reporting) problem, we are given a set $P$ of $n$ points in $\reals^d$, and wish to preprocess it into a data structure that supports efficient range emptiness (resp., reporting) queries, in which we specify a range $蟽$, which, in general, is a semi-algebraic set in $\reals^d$ of constant description complexity, and wish to determine whether $P\cap蟽=\emptyset$, or to report all the points in $P\cap蟽$. Range emptiness searching and reporting arise in many applications, and have been treated by Matou拧ek \cite{Ma:rph} in the special case where the ranges are halfspaces bounded by hyperplanes. As shown in \cite{Ma:rph}, the two problems are closely related, and have solutions (for the case of halfspaces) with similar performance bounds. In this paper we extend the analysis to general semi-algebraic ranges, and show how to adapt Matou拧ek's technique, without the need to {\em linearize} the ranges into a higher-dimensional space. This yields more efficient solutions to several useful problems, and we demonstrate the new technique in four applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.4061v2-abstract-full').style.display = 'none'; document.getElementById('0908.4061v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>