CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 173 results for author: <span class="mathjax">Urbach, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Urbach%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Urbach, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Urbach%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Urbach, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14981">arXiv:2411.14981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14981">pdf</a>, <a href="https://arxiv.org/format/2411.14981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> On the equivalence of Prony and Lanczos methods for Euclidean correlation functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sen%2C+A">Aniket Sen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14981v1-abstract-short" style="display: inline;"> We investigate the oblique Lanczos method recently put forward in arXiv:2406.20009 for analysing Euclidean correlators in lattice field theories and show that it is analytically equivalent to the well known Prony Generalised Eigenvalue Method (PGEVM). Moreover, we discuss that the signal-to-noise problem is not aleviated by either of these two methods. Still, both methods show clear advantages whe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14981v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14981v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14981v1-abstract-full" style="display: none;"> We investigate the oblique Lanczos method recently put forward in arXiv:2406.20009 for analysing Euclidean correlators in lattice field theories and show that it is analytically equivalent to the well known Prony Generalised Eigenvalue Method (PGEVM). Moreover, we discuss that the signal-to-noise problem is not aleviated by either of these two methods. Still, both methods show clear advantages when compared to the standard effective mass approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14981v1-abstract-full').style.display = 'none'; document.getElementById('2411.14981v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08852">arXiv:2411.08852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08852">pdf</a>, <a href="https://arxiv.org/format/2411.08852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Strange and charm quark contributions to the muon anomalous magnetic moment in lattice QCD with twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">A. De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Evangelista%2C+A">A. Evangelista</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kalntis%2C+N">N. Kalntis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">N. Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08852v1-abstract-short" style="display: inline;"> We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks at five lattice spacings and at values of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08852v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08852v1-abstract-full" style="display: none;"> We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks at five lattice spacings and at values of the quark mass parameters that are close and/or include the isospin symmetric QCD point of interest. After computing the small corrections necessary to precisely match this point, and carrying out an extrapolation to the continuum limit based on the data at lattice spacings $a \simeq 0.049, 0.057, 0.068, 0.080$~fm and spatial lattice sizes up to $L \simeq 7.6$~fm, we obtain $a_渭^{\rm HVP}(s) = (53.57 \pm 0.63) \times 10^{-10}$ and $a_渭^{\rm HVP}(c) = (14.56 \pm 0.13) \times 10^{-10}$, for the quark-connected strange and charm contributions, respectively. Our findings agree well with the corresponding results by other lattice groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08852v1-abstract-full').style.display = 'none'; document.getElementById('2411.08852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 18 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-197 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16659">arXiv:2407.16659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16659">pdf</a>, <a href="https://arxiv.org/format/2407.16659">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.211906">10.1103/PhysRevLett.133.211906 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $蠅$ meson from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mai%2C+M">Maxim Mai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16659v2-abstract-short" style="display: inline;"> Many excited states in the hadron spectrum have large branching ratios to three-hadron final states. Understanding such particles from first principles QCD requires input from lattice QCD with one-, two-, and three-meson interpolators as well as a reliable three-body formalism relating finite-volume spectra at unphysical pion mass values to the scattering amplitudes at the physical point. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16659v2-abstract-full').style.display = 'inline'; document.getElementById('2407.16659v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16659v2-abstract-full" style="display: none;"> Many excited states in the hadron spectrum have large branching ratios to three-hadron final states. Understanding such particles from first principles QCD requires input from lattice QCD with one-, two-, and three-meson interpolators as well as a reliable three-body formalism relating finite-volume spectra at unphysical pion mass values to the scattering amplitudes at the physical point. In this work, we provide the first-ever calculation of the resonance parameters of the $蠅$ meson from lattice QCD, including an update of the formalism through matching to effective field theories. The main result of this pioneering study, the pole position of the $蠅$ meson at $\sqrt{s_蠅}= (778.0(11.2)-i\,3.0(5) )\,\mathrm{MeV}$, agrees reasonably well with experiment. In addition we provide an estimate of the $蠅-蟻$ mass difference as $29(15)\,\mathrm{MeV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16659v2-abstract-full').style.display = 'none'; document.getElementById('2407.16659v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures, 3 tables. v2: version published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 211906 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08529">arXiv:2405.08529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08529">pdf</a>, <a href="https://arxiv.org/format/2405.08529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quark and gluon momentum fractions in the pion and in the kaon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chacon%2C+L+A+R">Luis Alberto Rodriguez Chacon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=wenger%2C+U">Urs wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08529v1-abstract-short" style="display: inline;"> We present the full decomposition of the momentum fraction carried by quarks and gluons in the pion and the kaon. We employ three gauge ensembles generated with $N_f=2+1+1$ Wilson twisted-mass clover-improved fermions at the physical quark masses. For both mesons we perform a continuum extrapolation directly at the physical pion mass, which allows us to determine for the first time the momentum de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08529v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08529v1-abstract-full" style="display: none;"> We present the full decomposition of the momentum fraction carried by quarks and gluons in the pion and the kaon. We employ three gauge ensembles generated with $N_f=2+1+1$ Wilson twisted-mass clover-improved fermions at the physical quark masses. For both mesons we perform a continuum extrapolation directly at the physical pion mass, which allows us to determine for the first time the momentum decomposition at the physical point. We find that the total momentum fraction carried by quarks is 0.532(56) and 0.618(32) and by gluons 0.388(49) and 0.408(61) in the pion and in the kaon, respectively, in the $\overline{\mathrm{MS}}$ scheme and at the renormalization scale of 2 GeV. Having computed both the quark and gluon contributions in the continuum limit, we find that the momentum sum is 0.926(68) for the pion and 1.046(90) for the kaon, verifying the momentum sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08529v1-abstract-full').style.display = 'none'; document.getElementById('2405.08529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17545">arXiv:2404.17545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17545">pdf</a>, <a href="https://arxiv.org/format/2404.17545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards determining the (2+1)-dimensional Quantum Electrodynamics running coupling with Monte Carlo and quantum computing methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Crippa%2C+A">Arianna Crippa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=K%C3%BChn%2C+S">Stefan K眉hn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stornati%2C+P">Paolo Stornati</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17545v2-abstract-short" style="display: inline;"> In this paper, we examine a compact $U(1)$ lattice gauge theory in $(2+1)$ dimensions and present a strategy for studying the running coupling and extracting the non-perturbative $螞$-parameter. To this end, we combine Monte Carlo simulations and quantum computing, where the former can be used to determine the numerical value of the lattice spacing $a$, and the latter allows for reaching the pertur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17545v2-abstract-full').style.display = 'inline'; document.getElementById('2404.17545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17545v2-abstract-full" style="display: none;"> In this paper, we examine a compact $U(1)$ lattice gauge theory in $(2+1)$ dimensions and present a strategy for studying the running coupling and extracting the non-perturbative $螞$-parameter. To this end, we combine Monte Carlo simulations and quantum computing, where the former can be used to determine the numerical value of the lattice spacing $a$, and the latter allows for reaching the perturbative regime at very small values of the bare coupling and, correspondingly, small values of $a$. The methodology involves a series of sequential steps (i.e., the step scaling function) to bridge results from small lattice spacings to non-perturbative large-scale lattice calculations. Focusing on the pure gauge case, we demonstrate that these quantum circuits, adapted to gauge degrees of freedom, are able to capture the relevant physics by studying the expectation value of the plaquette operator, for matching with corresponding Monte Carlo simulations. We also present results for the static potential and static force, which can be related to the renormalized coupling. The procedure outlined in this work can be extended to Abelian and non-Abelian lattice gauge theories with matter fields and might provide a way towards studying lattice quantum chromodynamics utilizing both quantum and classical methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17545v2-abstract-full').style.display = 'none'; document.getElementById('2404.17545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Edit and add references. Fix typos. Replace Figure 7. Add acknowledgements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05404">arXiv:2403.05404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05404">pdf</a>, <a href="https://arxiv.org/format/2403.05404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Inclusive hadronic decay rate of the $蟿$ lepton from lattice QCD: the $\bar u s$ flavour channel and the Cabibbo angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">A. De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Evangelista%2C+A">A. Evangelista</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">N. Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05404v2-abstract-short" style="display: inline;"> We present a lattice determination of the inclusive decay rate of the process $蟿\mapsto X_{us} 谓_蟿$ in which the $蟿$ lepton decays into a generic hadronic state $X_{us}$ with $\bar u s$ flavour quantum numbers. Our results have been obtained in $n_f=2+1+1$ iso-symmetric QCD with full non-perturbative accuracy, without any OPE approximation and, except for the presently missing long-distance isospi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05404v2-abstract-full').style.display = 'inline'; document.getElementById('2403.05404v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05404v2-abstract-full" style="display: none;"> We present a lattice determination of the inclusive decay rate of the process $蟿\mapsto X_{us} 谓_蟿$ in which the $蟿$ lepton decays into a generic hadronic state $X_{us}$ with $\bar u s$ flavour quantum numbers. Our results have been obtained in $n_f=2+1+1$ iso-symmetric QCD with full non-perturbative accuracy, without any OPE approximation and, except for the presently missing long-distance isospin-breaking corrections, include a solid estimate of all sources of theoretical uncertainties. This has been possible by using the Hansen-Lupo-Tantalo method [1] that we have already successfully applied in [2] to compute the inclusive decay rate of the process $蟿\mapsto X_{ud} 谓_蟿$ in the $\bar u d$ flavour channel. By combining our first-principles theoretical results with the presently-available experimental data we extract the CKM matrix element $\vert V_{us}\vert$, the Cabibbo angle, with a $0.9$\% accuracy, dominated by the experimental error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05404v2-abstract-full').style.display = 'none'; document.getElementById('2403.05404v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 table. Version accepted by PRL, expanded technical discussion moved to an appendix, results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15926">arXiv:2311.15926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.15926">pdf</a>, <a href="https://arxiv.org/format/2311.15926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Testing the $\mathrm{SU}(2)$ lattice Hamiltonian built from $S_3$ partitionings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hartung%2C+T">Tobias Hartung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jakobs%2C+T">Timo Jakobs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rolfes%2C+D">Dominik Rolfes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15926v1-abstract-short" style="display: inline;"> We test a possible digitization of $\mathrm{SU}(2)$ lattice gauge theories based on partitionings of the sphere $S_3$. In our construction the link operators are unitary and diagonal, with eigenvalues determined by the vertices of the partitioning. The canonical momenta are finite difference operators approximating the Lie derivatives on the manifold. In this formalism we implement the standard Wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15926v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15926v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15926v1-abstract-full" style="display: none;"> We test a possible digitization of $\mathrm{SU}(2)$ lattice gauge theories based on partitionings of the sphere $S_3$. In our construction the link operators are unitary and diagonal, with eigenvalues determined by the vertices of the partitioning. The canonical momenta are finite difference operators approximating the Lie derivatives on the manifold. In this formalism we implement the standard Wilson Hamiltonian. We show results for a 2-site Schwinger-type model in 1D and a single-plaquette system in 2D. Our calculations are performed on a classical computer, though in principle they can be implemented also on a quantum device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15926v1-abstract-full').style.display = 'none'; document.getElementById('2311.15926v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11928">arXiv:2311.11928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11928">pdf</a>, <a href="https://arxiv.org/format/2311.11928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13037-5">10.1140/epjc/s10052-024-13037-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digitizing lattice gauge theories in the magnetic basis: reducing the breaking of the fundamental commutation relations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11928v2-abstract-short" style="display: inline;"> We present a digitization scheme for the lattice $\mathrm{SU}(2)$ gauge theory Hamiltonian in the $\mathit{magnetic}$ $\mathit{basis}$, where the gauge links are unitary and diagonal. The digitization is obtained from a particular partitioning of the $\mathrm{SU}(2)$ group manifold, with the canonical momenta constructed by an approximation of the Lie derivatives on this partitioning. This constru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11928v2-abstract-full').style.display = 'inline'; document.getElementById('2311.11928v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11928v2-abstract-full" style="display: none;"> We present a digitization scheme for the lattice $\mathrm{SU}(2)$ gauge theory Hamiltonian in the $\mathit{magnetic}$ $\mathit{basis}$, where the gauge links are unitary and diagonal. The digitization is obtained from a particular partitioning of the $\mathrm{SU}(2)$ group manifold, with the canonical momenta constructed by an approximation of the Lie derivatives on this partitioning. This construction, analogous to a discrete Fourier transform, preserves the spectrum of the kinetic part of the Hamiltonian and the canonical commutation relations exactly on a subspace of the truncated Hilbert space, while the residual subspace can be projected above the cutoff of the theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11928v2-abstract-full').style.display = 'none'; document.getElementById('2311.11928v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05774">arXiv:2309.05774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05774">pdf</a>, <a href="https://arxiv.org/format/2309.05774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon axial and pseudoscalar form factors using twisted-mass fermion ensembles at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05774v2-abstract-short" style="display: inline;"> We compute the nucleon axial and pseudoscalar form factors using three $N_f=$2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. The values of the lattice spacings of these three physical point ensembles are 0.080 fm, 0.068 fm, and 0.057 fm, and spatial sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding $m_蟺L$&gt;3.6. Convergence to the gro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05774v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05774v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05774v2-abstract-full" style="display: none;"> We compute the nucleon axial and pseudoscalar form factors using three $N_f=$2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. The values of the lattice spacings of these three physical point ensembles are 0.080 fm, 0.068 fm, and 0.057 fm, and spatial sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding $m_蟺L$&gt;3.6. Convergence to the ground state matrix elements is assessed using multi-state fits. We study the momentum dependence of the three form factors and check the partially conserved axial-vector current (PCAC) hypothesis and the pion pole dominance (PPD). We show that in the continuum limit, the PCAC and PPD relations are satisfied. We also show that the Goldberger-Treimann relation is approximately fulfilled and determine the Goldberger-Treiman discrepancy. We find for the nucleon axial charge $g_A$=1.245(28)(14), for the axial radius $\langle r^2_A \rangle$=0.339(48)(06) fm$^2$, for the pion-nucleon coupling constant $g_{蟺NN} \equiv \lim_{Q^2 \rightarrow -m_蟺^2} G_{蟺NN}(Q^2)$=13.25(67)(69) and for $G_P(0.88m_渭^2)\equiv g_P^*$=8.99(39)(49). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05774v2-abstract-full').style.display = 'none'; document.getElementById('2309.05774v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version, 32 pages, 39 figures, 14 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12458">arXiv:2308.12458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12458">pdf</a>, <a href="https://arxiv.org/format/2308.12458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.094514">10.1103/PhysRevD.108.094514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion Transition Form Factor from Twisted-Mass Lattice QCD and the Hadronic Light-by-Light $蟺^0$-pole Contribution to the Muon $g-2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">S. Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">G. Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">F. Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12458v2-abstract-short" style="display: inline;"> The neutral pion generates the leading pole contribution to the hadronic light-by-light tensor, which is given in terms of the nonperturbative transition form factor $\mathcal{F}_{蟺^0纬纬}(q_1^2,q_2^2)$. Here we present an ab-initio lattice calculation of this quantity in the continuum and at the physical point using twisted-mass lattice QCD. We report our results for the transition form factor para&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12458v2-abstract-full').style.display = 'inline'; document.getElementById('2308.12458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12458v2-abstract-full" style="display: none;"> The neutral pion generates the leading pole contribution to the hadronic light-by-light tensor, which is given in terms of the nonperturbative transition form factor $\mathcal{F}_{蟺^0纬纬}(q_1^2,q_2^2)$. Here we present an ab-initio lattice calculation of this quantity in the continuum and at the physical point using twisted-mass lattice QCD. We report our results for the transition form factor parameterized using a model-independent conformal expansion valid for arbitrary space-like kinematics and compare it with experimental measurements of the single-virtual form factor, the two-photon decay width, and the slope parameter. We then use the transition form factors to compute the pion-pole contribution to the hadronic light-by-light scattering in the muon $g-2$, finding $a_渭^{蟺^0\text{-pole}} = 56.7(3.2) \times 10^{-11}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12458v2-abstract-full').style.display = 'none'; document.getElementById('2308.12458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures, 4 tables, updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 9, 094514 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03211">arXiv:2306.03211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.03211">pdf</a>, <a href="https://arxiv.org/format/2306.03211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Exploring a new approach to Hadronic Parity Violation from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schlage%2C+N">Nikolas Schlage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sen%2C+A">Aniket Sen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03211v2-abstract-short" style="display: inline;"> The long-range, parity-odd nucleon interaction generated by single pion exchange is captured in the parity-odd pion-nucleon coupling $h^1_蟺$. Its calculation in lattice QCD requires the evaluation of 4-quark operator nucleon 3-point functions. We investigate a new numerical approach to compute $h^1_蟺$ based on nucleon matrix elements of parity-even 4-quark operators and related to the parity-viola&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03211v2-abstract-full').style.display = 'inline'; document.getElementById('2306.03211v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03211v2-abstract-full" style="display: none;"> The long-range, parity-odd nucleon interaction generated by single pion exchange is captured in the parity-odd pion-nucleon coupling $h^1_蟺$. Its calculation in lattice QCD requires the evaluation of 4-quark operator nucleon 3-point functions. We investigate a new numerical approach to compute $h^1_蟺$ based on nucleon matrix elements of parity-even 4-quark operators and related to the parity-violating electro-weak theory by PCAC and chiral perturbation theory. This study is performed with 2+1+1 dynamical flavors of twisted mass fermions at pion mass $m_蟺 \approx 260\,\text{MeV}$ in a lattice box of $L \approx 3 \,\text{fm} $ and with a lattice spacing of $a \approx 0.091 \,\text{fm}$. From a calculation excluding fermion loop diagrams we find a bare coupling of $h^1_蟺= 8.08 \,(98) \cdot 10^{-7}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03211v2-abstract-full').style.display = 'none'; document.getElementById('2306.03211v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, 4 tables. Parity-violating Lagrangian Eq. (1), PCAC relation Eq. (2), details on 4-quark operators Eq. (4), summary of statistics Tab. I., summary of our results for the bare matrix elements weighted by the Wilson coefficients Tab. IV. and references to our preliminary results of this work added. Results of the paper are unaffected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02322">arXiv:2304.02322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.02322">pdf</a>, <a href="https://arxiv.org/format/2304.02322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11829-9">10.1140/epjc/s10052-023-11829-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Canonical Momenta in Digitized SU(2) Lattice Gauge Theory: Definition and Free Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jakobs%2C+T">Timo Jakobs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hartung%2C+T">Tobias Hartung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rolfes%2C+D">Dominik Rolfes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02322v2-abstract-short" style="display: inline;"> Hamiltonian simulations of quantum systems require a finite-dimensional representation of the operators acting on the Hilbert space H. Here we give a prescription for gauge links and canonical momenta of an SU(2) gauge theory, such that the matrix representation of the former is diagonal in H. This is achieved by discretising the sphere $S_3$ isomorphic to SU(2) and the corresponding directional d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02322v2-abstract-full').style.display = 'inline'; document.getElementById('2304.02322v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02322v2-abstract-full" style="display: none;"> Hamiltonian simulations of quantum systems require a finite-dimensional representation of the operators acting on the Hilbert space H. Here we give a prescription for gauge links and canonical momenta of an SU(2) gauge theory, such that the matrix representation of the former is diagonal in H. This is achieved by discretising the sphere $S_3$ isomorphic to SU(2) and the corresponding directional derivatives. We show that the fundamental commutation relations are fulfilled up to discretisation artefacts. Moreover, we directly construct the Casimir operator corresponding to the Laplace-Beltrami operator on $S_3$ and show that the spectrum of the free theory is reproduced again up to discretisation effects. Qualitatively, these results do not depend on the specific discretisation of SU(2), but the actual convergence rates do. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02322v2-abstract-full').style.display = 'none'; document.getElementById('2304.02322v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">typos corrected, matches published version in EPJC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06359">arXiv:2301.06359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06359">pdf</a>, <a href="https://arxiv.org/format/2301.06359">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hadronic Parity Violation from Twisted Mass Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Schlage%2C+N">Nikolas Schlage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sen%2C+A">Aniket Sen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06359v3-abstract-short" style="display: inline;"> We present results for an exploratory lattice calculation of the leading parity-violating pion-nucleon coupling $h_蟺^1$. Based on the PCAC relation we use a parity-conserving Lagrangian and focus on the techniques to determine the nucleon matrix elements of the effective 4-quark operators. For our study we employ an ensemble of twisted mass fermions with $260$ MeV pion mass. Barring mixing with lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06359v3-abstract-full').style.display = 'inline'; document.getElementById('2301.06359v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06359v3-abstract-full" style="display: none;"> We present results for an exploratory lattice calculation of the leading parity-violating pion-nucleon coupling $h_蟺^1$. Based on the PCAC relation we use a parity-conserving Lagrangian and focus on the techniques to determine the nucleon matrix elements of the effective 4-quark operators. For our study we employ an ensemble of twisted mass fermions with $260$ MeV pion mass. Barring mixing with lower-dimensional operators and renormalization at this stage, we discuss our estimate for $h_蟺^1$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06359v3-abstract-full').style.display = 'none'; document.getElementById('2301.06359v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LATTICE2022 proceedings, revised coupling $h_蟺^1$ in Tabs. 3 and 4 and in corresponding Fig. 5</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12493">arXiv:2212.12493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12493">pdf</a>, <a href="https://arxiv.org/format/2212.12493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the R-ratio smeared with Gaussian kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12493v1-abstract-short" style="display: inline;"> The ratio $R(E)$ of the cross-sections for $e^+e^-\to$ hadrons and $e^+e^-\to 渭^+渭^-$ is a valuable energy-dependent probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of $R(E)$ are the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon $g-2$ and these are in significant tension with direct lattice cal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12493v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12493v1-abstract-full" style="display: none;"> The ratio $R(E)$ of the cross-sections for $e^+e^-\to$ hadrons and $e^+e^-\to 渭^+渭^-$ is a valuable energy-dependent probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of $R(E)$ are the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon $g-2$ and these are in significant tension with direct lattice calculations and with the muon $g-2$ experiment. In this talk we discuss the results of our first-principles lattice study of $R(E)$. By using a recently proposed method for extracting smeared spectral densities from Euclidean lattice correlators, we have calculated $R(E)$ convoluted with Gaussian kernels of different widths $蟽$ and central energies up to $2.5$ GeV. Our theoretical results have been compared with the KNT19 [1] compilation of experimental results smeared with the same Gaussian kernels and a tension (about three standard deviations) has been observed for $蟽\sim 600$ MeV and central energies around the $蟻$-resonance peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12493v1-abstract-full').style.display = 'none'; document.getElementById('2212.12493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the 39th International Symposium on Lattice Field Theory (Lattice2022), 8th-13th August, 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10490">arXiv:2212.10490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10490">pdf</a>, <a href="https://arxiv.org/format/2212.10490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Short \&amp; intermediate distance HVP contributions to muon g-2: SM (lattice) prediction versus $e^+e^-$ annihilation data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10490v1-abstract-short" style="display: inline;"> We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LO-HVP) term of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10490v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10490v1-abstract-full" style="display: none;"> We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LO-HVP) term of the muon anomalous magnetic moment, $a_渭$. Results for $a_渭^{\rm LO-HVP,W}$ and $a_渭^{\rm LO-HVP,SD}$, besides representing a step forward to a complete lattice computation of $a_渭^{\rm LO-HVP}$ and a useful benchmark among lattice groups, are compared here with their dispersive counterparts based on experimental data for $e^+e^-$ into hadrons. The comparison confirms the tension in $a_渭^{\rm LO-HVP,W}$, already noted in 2020 by the BMW Collaboration, while showing no tension in $a_渭^{\rm LO-HVP,SD}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10490v1-abstract-full').style.display = 'none'; document.getElementById('2212.10490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk given at ICHEP 2022 (6-13 July 2022, Bologna - Italy) - Results here are almost final - Contribution accepted for publication on PoS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10300">arXiv:2212.10300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10300">pdf</a>, <a href="https://arxiv.org/format/2212.10300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pseudoscalar-pole contributions to the muon $g-2$ at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10300v1-abstract-short" style="display: inline;"> Pseudoscalar-pole diagrams are an important component of estimates of the hadronic light-by-light (HLbL) contribution to the muon $g-2$. We report on our computation of the transition form factors $\mathcal{F}_{P \rightarrow 纬^* 纬^*}$ for the neutral pseudoscalar mesons $P=蟺^0$ and $畏$. The calculation is performed using twisted-mass lattice QCD with physical quark masses. On the lattice, we have&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10300v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10300v1-abstract-full" style="display: none;"> Pseudoscalar-pole diagrams are an important component of estimates of the hadronic light-by-light (HLbL) contribution to the muon $g-2$. We report on our computation of the transition form factors $\mathcal{F}_{P \rightarrow 纬^* 纬^*}$ for the neutral pseudoscalar mesons $P=蟺^0$ and $畏$. The calculation is performed using twisted-mass lattice QCD with physical quark masses. On the lattice, we have access to a broad range of (space-like) photon four-momenta and therefore produce form factor data complementary to the experimentally accessible single-virtual direction, which directly leads to an estimate of the pion- and $畏$-pole components of the muon $g-2$. For the pion, our result for the $g-2$ contribution in the continuum is comparable with previous lattice and data-driven determinations, with combined relative uncertainties below $10\%$. For the $畏$ meson, we report on a preliminary determination from a single lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10300v1-abstract-full').style.display = 'none'; document.getElementById('2212.10300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09627">arXiv:2212.09627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09627">pdf</a>, <a href="https://arxiv.org/format/2212.09627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Hamiltonian limit of lattice QED in 2+1 dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">L. Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gro%C3%9F%2C+C+F">C. F. Gro脽</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=K%C3%BChn%2C+S">S. K眉hn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09627v1-abstract-short" style="display: inline;"> The Hamiltonian limit of lattice gauge theories can be found by extrapolating the results of anisotropic lattice computations, i.e., computations using lattice actions with different temporal and spatial lattice spacings ($a_t\neq a_s$), to the limit of $a_t\to 0$. In this work, we present a study of this Hamiltonian limit for a Euclidean $U(1)$ gauge theory in 2+1 dimensions (QED3), regularized o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09627v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09627v1-abstract-full" style="display: none;"> The Hamiltonian limit of lattice gauge theories can be found by extrapolating the results of anisotropic lattice computations, i.e., computations using lattice actions with different temporal and spatial lattice spacings ($a_t\neq a_s$), to the limit of $a_t\to 0$. In this work, we present a study of this Hamiltonian limit for a Euclidean $U(1)$ gauge theory in 2+1 dimensions (QED3), regularized on a toroidal lattice. The limit is found using the renormalized anisotropy $尉_R=a_t/a_s$, by sending $尉_R \to 0$ while keeping the spatial lattice spacing constant. We compute $尉_R$ in $3$ different ways: using both the ``normal&#39;&#39; and the ``sideways&#39;&#39; static quark potential, as well as the gradient flow evolution of gauge fields. The latter approach will be particularly relevant for future investigations of combining quantum computations with classical Monte Carlo computations, which requires the matching of lattice results obtained in the Hamiltonian and Lagrangian formalisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09627v1-abstract-full').style.display = 'none'; document.getElementById('2212.09627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5480 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09496">arXiv:2212.09496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09496">pdf</a>, <a href="https://arxiv.org/format/2212.09496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Digitizing SU(2) Gauge Fields and What to Look Out for When Doing So </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hartung%2C+T">Tobias Hartung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jakobs%2C+T">Timo Jakobs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09496v1-abstract-short" style="display: inline;"> With the long term perspective of using quantum computers and tensor networks for lattice gauge theory simulations, an efficient method of digitizing gauge group elements is needed. We thus present our results for a handful of discretization approaches for the non-trivial example of SU(2), such as its finite subgroups, as well as different classes of finite subsets. We focus our attention on a fre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09496v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09496v1-abstract-full" style="display: none;"> With the long term perspective of using quantum computers and tensor networks for lattice gauge theory simulations, an efficient method of digitizing gauge group elements is needed. We thus present our results for a handful of discretization approaches for the non-trivial example of SU(2), such as its finite subgroups, as well as different classes of finite subsets. We focus our attention on a freezing transition observed towards weak couplings. A generalized version of the Fibonacci spiral appears to be particularly efficient and close to optimal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09496v1-abstract-full').style.display = 'none'; document.getElementById('2212.09496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Rheinische Friedrich-Wilhelms-Universit盲t Bonn, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09340">arXiv:2212.09340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09340">pdf</a>, <a href="https://arxiv.org/format/2212.09340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Time windows of the muon HVP from twisted-mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09340v1-abstract-short" style="display: inline;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted-m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09340v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09340v1-abstract-full" style="display: none;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted-mass quarks with masses of all the dynamical quark flavours tuned close to their physical values. The simulations are carried out at three values of the lattice spacing equal to $\simeq 0.057, 0.068$ and $0.080$ fm with spatial lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_渭^{\rm SD} = 69.27\,(34) \cdot 10^{-10}$, in agreement with the dispersive determination based on experimental $e^+ e^-$ data. For the intermediate window we get instead $a_渭^{\rm W} = 236.3\,(1.3) \cdot 10^{-10}$, which is consistent with recent determinations by other lattice collaborations, but disagrees with the dispersive determination at the level of $3.6\,蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09340v1-abstract-full').style.display = 'none'; document.getElementById('2212.09340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 1 table, LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08467">arXiv:2212.08467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.08467">pdf</a>, <a href="https://arxiv.org/format/2212.08467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.241901">10.1103/PhysRevLett.130.241901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the energy-smeared R-ratio on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08467v2-abstract-short" style="display: inline;"> We present a first-principles lattice QCD investigation of the $R$-ratio between the $e^+e^-$ cross-section into hadrons and that into muons. By using the method of Ref.[1], that allows to extract smeared spectral densities from Euclidean correlators, we compute the $R$-ratio convoluted with Gaussian smearing kernels of widths of about $600$ MeV and central energies from $220$ MeV up to $2.5$ GeV.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08467v2-abstract-full').style.display = 'inline'; document.getElementById('2212.08467v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08467v2-abstract-full" style="display: none;"> We present a first-principles lattice QCD investigation of the $R$-ratio between the $e^+e^-$ cross-section into hadrons and that into muons. By using the method of Ref.[1], that allows to extract smeared spectral densities from Euclidean correlators, we compute the $R$-ratio convoluted with Gaussian smearing kernels of widths of about $600$ MeV and central energies from $220$ MeV up to $2.5$ GeV. Our theoretical results are compared with the corresponding quantities obtained by smearing the KNT19 compilation [2] of $R$-ratio experimental measurements with the same kernels and, by centring the Gaussians in the region around the $蟻$-resonance peak, a tension of about three standard deviations is observed. From the phenomenological perspective, we have not included yet in our calculation QED and strong isospin-breaking corrections and this might affect the observed tension. From the methodological perspective, our calculation demonstrates that it is possible to study the $R$-ratio in Gaussian energy bins on the lattice at the level of accuracy required in order to perform precision tests of the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08467v2-abstract-full').style.display = 'none'; document.getElementById('2212.08467v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication on PRL. Results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07057">arXiv:2212.07057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07057">pdf</a>, <a href="https://arxiv.org/format/2212.07057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Disconnected contribution to the LO HVP term of muon g-2 from ETMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07057v1-abstract-short" style="display: inline;"> We present a lattice determination of the disconnected contributions to the leading-order hadronic vacuum polarization (HVP) to the muon anomalous magnetic moment in the so-called short and intermediate time-distance windows. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson twisted-mass clover-improved quarks with masses&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07057v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07057v1-abstract-full" style="display: none;"> We present a lattice determination of the disconnected contributions to the leading-order hadronic vacuum polarization (HVP) to the muon anomalous magnetic moment in the so-called short and intermediate time-distance windows. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson twisted-mass clover-improved quarks with masses approximately tuned to their physical value. We take the continuum limit employing three lattice spacings at about 0.08, 0.07 and 0.06 fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07057v1-abstract-full').style.display = 'none'; document.getElementById('2212.07057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 7 tables, LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06704">arXiv:2212.06704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06704">pdf</a>, <a href="https://arxiv.org/format/2212.06704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.054509">10.1103/PhysRevD.108.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $畏\rightarrow 纬^* 纬^*$ transition form factor and the hadronic light-by-light $畏$-pole contribution to the muon $g-2$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06704v2-abstract-short" style="display: inline;"> We calculate the double-virtual $畏\rightarrow 纬^* 纬^*$ transition form factor $\mathcal{F}_{畏\to 纬^* 纬^*}(q_1^2,q_2^2)$ from first principles using a lattice QCD simulation with $N_f=2+1+1$ quark flavors at the physical pion mass and at one lattice spacing and volume. The kinematic range covered by our calculation is complementary to the one accessible from experiment and is relevant for the $畏$-p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06704v2-abstract-full').style.display = 'inline'; document.getElementById('2212.06704v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06704v2-abstract-full" style="display: none;"> We calculate the double-virtual $畏\rightarrow 纬^* 纬^*$ transition form factor $\mathcal{F}_{畏\to 纬^* 纬^*}(q_1^2,q_2^2)$ from first principles using a lattice QCD simulation with $N_f=2+1+1$ quark flavors at the physical pion mass and at one lattice spacing and volume. The kinematic range covered by our calculation is complementary to the one accessible from experiment and is relevant for the $畏$-pole contribution to the hadronic light-by-light scattering in the anomalous magnetic moment $a_渭= (g-2)/2$ of the muon. From the form factor calculation we extract the partial decay width $螕(畏\rightarrow 纬纬) = 323(85)_\text{stat}(22)_\text{syst}$ eV and the slope parameter $b_畏=1.19(36)_\text{stat}(16)_\text{syst}$ GeV${}^{-2}$. For the $畏$-pole contribution to $a_渭$ we obtain $a_渭^{畏-\text{pole}} = 13.2(5.2)_\text{stat}(1.3)_\text{syst} \cdot 10^{-11}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06704v2-abstract-full').style.display = 'none'; document.getElementById('2212.06704v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures; updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108 (2023) 054509 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06635">arXiv:2212.06635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06635">pdf</a>, <a href="https://arxiv.org/format/2212.06635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Twisted mass ensemble generation on GPU machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06635v1-abstract-short" style="display: inline;"> We present how we ported the Hybrid Monte Carlo implementation in the tmLQCD software suite to GPUs through offloading its most expensive parts to the QUDA library. We discuss our motivations and some of the technical challenges that we encountered as we added the required functionality to both tmLQCD and QUDA. We further present some performance details, focussing in particular on the usage of QU&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06635v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06635v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06635v1-abstract-full" style="display: none;"> We present how we ported the Hybrid Monte Carlo implementation in the tmLQCD software suite to GPUs through offloading its most expensive parts to the QUDA library. We discuss our motivations and some of the technical challenges that we encountered as we added the required functionality to both tmLQCD and QUDA. We further present some performance details, focussing in particular on the usage of QUDA&#39;s multigrid solver for poorly conditioned light quark monomials as well as the multi-shift solver for the non-degenerate strange and charm sector in $N_f=2+1+1$ simulations using twisted mass clover fermions, comparing the efficiency of state-of-the-art simulations on CPU and GPU machines. We also take a look at the performance-portability question through preliminary tests of our HMC on a machine based on AMD&#39;s MI250 GPU, finding good performance after a very minor additional porting effort. Finally, we conclude that we should be able to achieve GPU utilisation factors acceptable for the current generation of (pre-)exascale supercomputers with subtantial efficiency improvements and real time speedups compared to just running on CPUs. At the same time, we find that future challenges will require different approaches and, most importantly, a very significant investment of personnel for software development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06635v1-abstract-full').style.display = 'none'; document.getElementById('2212.06635v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Contribution to the 39th International Symposium on Lattice Field Theory (Lattice2022), 8-13 August, 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05605">arXiv:2211.05605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05605">pdf</a>, <a href="https://arxiv.org/format/2211.05605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2023)252">10.1007/JHEP02(2023)252 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-body resonances in the $\varphi^4$ theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mai%2C+M">Maxim Mai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rusetsky%2C+A">Akaki Rusetsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05605v2-abstract-short" style="display: inline;"> We study the properties of three-body resonances using a lattice complex scalar $\varphi^4$ theory with two scalars, with parameters chosen such that one heavy particle can decay into three light ones. We determine the two- and three-body spectra for several lattice volumes using variational techniques, and then analyze them with two versions of the three-particle finite-volume formalism: the Rela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05605v2-abstract-full').style.display = 'inline'; document.getElementById('2211.05605v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05605v2-abstract-full" style="display: none;"> We study the properties of three-body resonances using a lattice complex scalar $\varphi^4$ theory with two scalars, with parameters chosen such that one heavy particle can decay into three light ones. We determine the two- and three-body spectra for several lattice volumes using variational techniques, and then analyze them with two versions of the three-particle finite-volume formalism: the Relativistic Field Theory approach and the Finite-Volume Unitarity approach. We find that both methods provide an equivalent description of the energy levels, and we are able to fit the spectra using simple parametrizations of the scattering quantities. By solving the integral equations of the corresponding three-particle formalisms, we determine the pole position of the resonance in the complex energy-plane and thereby its mass and width. We find very good agreement between the two methods at different values of the coupling of the theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05605v2-abstract-full').style.display = 'none'; document.getElementById('2211.05605v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5487 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 02 (2023) 252 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.15547">arXiv:2210.15547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.15547">pdf</a>, <a href="https://arxiv.org/format/2210.15547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Defining Canonical Momenta for Discretised SU(2) Gauge Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hartung%2C+T">Tobias Hartung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.15547v1-abstract-short" style="display: inline;"> In this proceeding contribution we discuss how to define canonical momenta for SU(N) lattice gauge theories in the Hamiltonian formalism in a basis where the gauge field operators are diagonal. For an explicit discretisation of SU(2) we construct the momenta and check the violation of the fundamental commutation relations. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.15547v1-abstract-full" style="display: none;"> In this proceeding contribution we discuss how to define canonical momenta for SU(N) lattice gauge theories in the Hamiltonian formalism in a basis where the gauge field operators are diagonal. For an explicit discretisation of SU(2) we construct the momenta and check the violation of the fundamental commutation relations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15547v1-abstract-full').style.display = 'none'; document.getElementById('2210.15547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Rheinische Friedrich-Wilhelms-Universit盲t Bonn, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05743">arXiv:2210.05743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05743">pdf</a>, <a href="https://arxiv.org/format/2210.05743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon transverse quark spin densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05743v1-abstract-short" style="display: inline;"> We present a calculation of the Mellin moments of the nucleon transverse quark spin densities extracted from the unpolarized and transversity generalized form factors. We use three $N_F=2+1+1$ ensembles of twisted mass fermions with quark masses tuned to their physical values and lattice spacings $a\sim 0.08$~fm, $a\sim 0.07$~fm and $a\sim 0.06$~fm and extrapolate the form factors to the continuum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05743v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05743v1-abstract-full" style="display: none;"> We present a calculation of the Mellin moments of the nucleon transverse quark spin densities extracted from the unpolarized and transversity generalized form factors. We use three $N_F=2+1+1$ ensembles of twisted mass fermions with quark masses tuned to their physical values and lattice spacings $a\sim 0.08$~fm, $a\sim 0.07$~fm and $a\sim 0.06$~fm and extrapolate the form factors to the continuum limit. Besides isovector densities we also include results for the tensor charge for each quark flavor using the ensemble with $a\sim 0.08$~fm for which we include the disconnected contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05743v1-abstract-full').style.display = 'none'; document.getElementById('2210.05743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, talk presented at the 39th International Symposium on Lattice Field Theory, LATTICE2022 8th-13th August, 2022, University of Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15084">arXiv:2206.15084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15084">pdf</a>, <a href="https://arxiv.org/format/2206.15084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.074506">10.1103/PhysRevD.107.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15084v3-abstract-short" style="display: inline;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$, defined by the RBC/UKQCD Collaboration [1]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15084v3-abstract-full').style.display = 'inline'; document.getElementById('2206.15084v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15084v3-abstract-full" style="display: none;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$, defined by the RBC/UKQCD Collaboration [1]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks with masses of all the dynamical quark flavors tuned close to their physical values. The simulations are carried out at three values of the lattice spacing equal to $\simeq 0.057, 0.068$ and $0.080$ fm with spatial lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_渭^{\rm SD}({\rm ETMC}) = 69.27\,(34) \cdot 10^{-10}$, which is consistent with the recent dispersive value of $a_渭^{\rm SD}(e^+ e^-) = 68.4\,(5) \cdot 10^{-10}$ [2]. In the case of the intermediate window we get the value $a_渭^{\rm W}({\rm ETMC}) = 236.3\,(1.3) \cdot 10^{-10}$, which is consistent with the result $a_渭^{\rm W}({\rm BMW}) = 236.7\,(1.4) \cdot 10^{-10}$ [3] by the BMW collaboration as well as with the recent determination by the CLS/Mainz group of $a_渭^{\rm W}({\rm CLS}) = 237.30\,(1.46) \cdot 10^{-10}$ [4]. However, it is larger than the dispersive result of $a_渭^{\rm W}(e^+ e^-) = 229.4\,(1.4) \cdot 10^{-10}$ [2] by approximately $3.6$ standard deviations. The tension increases to approximately $4.5$ standard deviations if we average our ETMC result with those by BMW and CLS/Mainz. Our accurate lattice results in the short and intermediate windows point to a possible deviation of the $e^+ e^-$ cross section data with respect to Standard Model predictions in the low and intermediate energy regions, but not in the high energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15084v3-abstract-full').style.display = 'none'; document.getElementById('2206.15084v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">78 pages, 22 figures, 14 tables. Analysis improved with more data and fits, presentation reorganized, more material in appendices, fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.01477">arXiv:2206.01477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.01477">pdf</a>, <a href="https://arxiv.org/format/2206.01477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2022.11.005">10.1016/j.physrep.2022.11.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a theory of hadron resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mai%2C+M">Maxim Mai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.01477v1-abstract-short" style="display: inline;"> In this review, we present the current state of the art of our understanding of the spectrum of excited strongly interacting particles and discuss methods that allow for a systematic and model-independent calculation of the hadron spectrum. These are lattice QCD and effective field theories. Synergies between both approaches can be exploited allowing for deeper understanding of the hadron spectrum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01477v1-abstract-full').style.display = 'inline'; document.getElementById('2206.01477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.01477v1-abstract-full" style="display: none;"> In this review, we present the current state of the art of our understanding of the spectrum of excited strongly interacting particles and discuss methods that allow for a systematic and model-independent calculation of the hadron spectrum. These are lattice QCD and effective field theories. Synergies between both approaches can be exploited allowing for deeper understanding of the hadron spectrum. Results based on effective field theories and hadron-hadron scattering in lattice QCD or combinations thereof are presented and discussed. We also show that the often used Breit-Wigner parameterization is at odds with chiral symmetry and should not be used in case of strongly coupled channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01477v1-abstract-full').style.display = 'none'; document.getElementById('2206.01477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">75 pages, 21 figures, commissioned article for Physics Reports</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rept. 1001 (2023) 1-66 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09871">arXiv:2202.09871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09871">pdf</a>, <a href="https://arxiv.org/format/2202.09871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054504">10.1103/PhysRevD.107.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First moments of the nucleon transverse quark spin densities using lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">G. Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09871v1-abstract-short" style="display: inline;"> We present a calculation of the Mellin moments of the transverse quark spin densities in the nucleon using lattice QCD. The densities are extracted from the unpolarized and transversity generalized form factors extrapolated to the continuum limit using three $N_f=2+1+1$ twisted mass fermion gauge ensembles simulated with physical quark masses and spanning three lattice spacings. The first moment o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09871v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09871v1-abstract-full" style="display: none;"> We present a calculation of the Mellin moments of the transverse quark spin densities in the nucleon using lattice QCD. The densities are extracted from the unpolarized and transversity generalized form factors extrapolated to the continuum limit using three $N_f=2+1+1$ twisted mass fermion gauge ensembles simulated with physical quark masses and spanning three lattice spacings. The first moment of transversely polarized quarks in an unpolarized nucleon shows an interesting distortion, which can be traced back to the sharp falloff of the transversity generalized form factor $\bar{B}_{Tn0}(t)$. The isovector tensor anomalous magnetic moment is determined to be $魏_T=1.051(94)$, which confirms a negative and large Boer-Mulders function, $h_1^{\perp}$, in the nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09871v1-abstract-full').style.display = 'none'; document.getElementById('2202.09871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09625">arXiv:2201.09625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09625">pdf</a>, <a href="https://arxiv.org/format/2201.09625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10192-5">10.1140/epjc/s10052-022-10192-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digitising SU(2) Gauge Fields and the Freezing Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hartung%2C+T">Tobias Hartung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jakobs%2C+T">Timo Jakobs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09625v1-abstract-short" style="display: inline;"> Efficient discretisations of gauge groups are crucial with the long term perspective of using tensor networks or quantum computers for lattice gauge theory simulations. For any Lie group other than U$(1)$, however, there is no class of asymptotically dense discrete subgroups. Therefore, discretisations limited to subgroups are bound to lead to a freezing of Monte Carlo simulations at weak coupling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09625v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09625v1-abstract-full" style="display: none;"> Efficient discretisations of gauge groups are crucial with the long term perspective of using tensor networks or quantum computers for lattice gauge theory simulations. For any Lie group other than U$(1)$, however, there is no class of asymptotically dense discrete subgroups. Therefore, discretisations limited to subgroups are bound to lead to a freezing of Monte Carlo simulations at weak couplings, necessitating alternative partitionings without a group structure. In this work we provide a comprehensive analysis of this freezing for all discrete subgroups of SU$(2)$ and different classes of asymptotically dense subsets. We find that an appropriate choice of the subset allows unfrozen simulations for arbitrary couplings, though one has to be careful with varying weights of unevenly distributed points. A generalised version of the Fibonacci spiral appears to be particularly efficient and close to optimal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09625v1-abstract-full').style.display = 'none'; document.getElementById('2201.09625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02551">arXiv:2201.02551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02551">pdf</a>, <a href="https://arxiv.org/format/2201.02551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Twisted mass gauge ensembles at physical values of the light, strange and charm quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02551v1-abstract-short" style="display: inline;"> Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks are highly desirable especially to remove systematic errors due to chiral extrapolations. However such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte Carlo al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02551v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02551v1-abstract-full" style="display: none;"> Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks are highly desirable especially to remove systematic errors due to chiral extrapolations. However such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte Carlo algorithm, that are enabling simulations of a new set of gauge ensembles by the Extended Twisted Mass collaboration (ETMC). We present the status of the on-going ETMC simulation effort that aims to enabling studies of finite size and discretization effects. We work within the twisted mass discretization which is free of odd-discretization effects at maximal twist and present our tuning procedure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02551v1-abstract-full').style.display = 'none'; document.getElementById('2201.02551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, The 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03586">arXiv:2112.03586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03586">pdf</a>, <a href="https://arxiv.org/format/2112.03586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0519">10.22323/1.396.0519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion-pole contribution to HLbL from twisted mass lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03586v3-abstract-short" style="display: inline;"> We report on our computation of the pion transition form factor ${\cal F}_{P\rightarrow 纬^*纬^*}$ from twisted mass lattice QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon $a_渭=(g-2)_渭$. The pion transition form factor is computed directly at the physical point&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03586v3-abstract-full').style.display = 'inline'; document.getElementById('2112.03586v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03586v3-abstract-full" style="display: none;"> We report on our computation of the pion transition form factor ${\cal F}_{P\rightarrow 纬^*纬^*}$ from twisted mass lattice QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon $a_渭=(g-2)_渭$. The pion transition form factor is computed directly at the physical point. We present first results for our estimate of the pion-pole contribution with kinematic setup for the pion at rest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03586v3-abstract-full').style.display = 'none'; document.getElementById('2112.03586v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures; Proceedings of the 38th International Symposium on Lattice Field Theory - Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.15447">arXiv:2111.15447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.15447">pdf</a>, <a href="https://arxiv.org/format/2111.15447">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Scattering from generalised lattice $蠁^4$ theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rusetsky%2C+A">Akaki Rusetsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.15447v1-abstract-short" style="display: inline;"> We investigate numerically different techniques to extract scattering amplitudes from the Euclidean Lattice 蠁4 theory with two fields, having different masses. We present an exploratory study of the recently proposed method by Bruno and Hansen for extracting the scattering length from a four-point function (cf 10.1007/JHEP06(2021)043), and a study of the two- and three-particle quantization condit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15447v1-abstract-full').style.display = 'inline'; document.getElementById('2111.15447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.15447v1-abstract-full" style="display: none;"> We investigate numerically different techniques to extract scattering amplitudes from the Euclidean Lattice 蠁4 theory with two fields, having different masses. We present an exploratory study of the recently proposed method by Bruno and Hansen for extracting the scattering length from a four-point function (cf 10.1007/JHEP06(2021)043), and a study of the two- and three-particle quantization condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15447v1-abstract-full').style.display = 'none'; document.getElementById('2111.15447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the 38th International Symposium on Lattice Field Theory (LATTICE21), 26-30 July 2021, Zoom/Gather@Massachusetts Institute of Technology. This contribution overlap with arXiv:2107.04853</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5366 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14710">arXiv:2111.14710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14710">pdf</a>, <a href="https://arxiv.org/format/2111.14710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Gradient flow scale-setting with $N_f=2+1+1$ Wilson-clover twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Labus%2C+P">Peter Labus</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14710v1-abstract-short" style="display: inline;"> We present a determination of the gradient flow scales $w_0$, $\sqrt{t_0}$ and $t_0/w_0$ in isosymmetric QCD, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ flavours of Wilson-clover twisted-mass quarks including configurations close to the physical point for all dynamical flavours. The simulations are carried out at three values of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14710v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14710v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14710v1-abstract-full" style="display: none;"> We present a determination of the gradient flow scales $w_0$, $\sqrt{t_0}$ and $t_0/w_0$ in isosymmetric QCD, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ flavours of Wilson-clover twisted-mass quarks including configurations close to the physical point for all dynamical flavours. The simulations are carried out at three values of the lattice spacing and the scale is set through the PDG value of the pion decay constant, yielding $w_0=0.17383(63)$ fm, $\sqrt{t_0}=0.14436(61)$ fm and $t_0/w_0=0.11969(62)$ fm. Finally, fixing the kaon mass to its isosymmetric value, we determine the ratio of the kaon and pion leptonic decay constants to be $f_K/f_蟺=1.1995(44)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14710v1-abstract-full').style.display = 'none'; document.getElementById('2111.14710v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2104.06747</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09025">arXiv:2111.09025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09025">pdf</a>, <a href="https://arxiv.org/format/2111.09025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hadronic Parity Violation from 4-quark Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sen%2C+A">Aniket Sen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schlage%2C+N">Nikolas Schlage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09025v1-abstract-short" style="display: inline;"> We present an exploratory investigation of the parity odd $螖I = 1$ pion-nucleon coupling $h_蟺^1$ from lattice QCD. Based on the PCAC relation, we study the parity-conserving effective Hamiltonian and extract the coupling by determining the nucleon mass splitting arising from the effective 4-quark interactions using the Feynman-Hellmann theorem. We present preliminary results of the mass shift for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09025v1-abstract-full').style.display = 'inline'; document.getElementById('2111.09025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09025v1-abstract-full" style="display: none;"> We present an exploratory investigation of the parity odd $螖I = 1$ pion-nucleon coupling $h_蟺^1$ from lattice QCD. Based on the PCAC relation, we study the parity-conserving effective Hamiltonian and extract the coupling by determining the nucleon mass splitting arising from the effective 4-quark interactions using the Feynman-Hellmann theorem. We present preliminary results of the mass shift for a $32^3 \times 64$ ensemble of $N_f = 2 + 1 + 1$ twisted mass fermions at pion mass $260$ MeV and lattice spacing $a = 0.097$ fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09025v1-abstract-full').style.display = 'none'; document.getElementById('2111.09025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LATTICE2021 proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00288">arXiv:2111.00288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00288">pdf</a>, <a href="https://arxiv.org/format/2111.00288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD results for the topological up-quark mass contribution: too small to rescue the $m_u=0$ solution to the strong CP problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00288v2-abstract-short" style="display: inline;"> A vanishing Yukawa coupling of the up quark could in principle solve the strong CP problem. To render this solution consistent with current algebra results, the up quark must receive an alternative mass contribution that conserves CP symmetry. Such a contribution could be provided by QCD through non-perturbative topological effects, including instantons. In this talk, we present the first direct l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00288v2-abstract-full').style.display = 'inline'; document.getElementById('2111.00288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00288v2-abstract-full" style="display: none;"> A vanishing Yukawa coupling of the up quark could in principle solve the strong CP problem. To render this solution consistent with current algebra results, the up quark must receive an alternative mass contribution that conserves CP symmetry. Such a contribution could be provided by QCD through non-perturbative topological effects, including instantons. In this talk, we present the first direct lattice computation of this topological mass contribution, using gauge configurations generated by the Extended Twisted Mass collaboration. We use the Iwasaki gauge action, Wilson twisted mass fermions at maximal twist, and dynamical up, down, strange and charm quarks. Our result for the topological mass contribution is an order of magnitude too small to account for the phenomenologically required up-quark mass. This rules out the &#34;massless&#34; up-quark solution to the strong CP problem, in accordance with previous results relying on $蠂$PT fits to lattice data. The talk is based on [Alexandrou et al., PRL 125, 232001 (2020)], where more details can be found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00288v2-abstract-full').style.display = 'none'; document.getElementById('2111.00288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, proceedings of the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5347 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15340">arXiv:2110.15340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15340">pdf</a>, <a href="https://arxiv.org/ps/2110.15340">ps</a>, <a href="https://arxiv.org/format/2110.15340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0377">10.22323/1.396.0377 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Hubbard model with fermionic tensor networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Schneider%2C+M">Manuel Schneider</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15340v2-abstract-short" style="display: inline;"> Many electromagnetic properties of graphene can be described by the Hubbard model on a honeycomb lattice. However, this system suffers strongly from the sign problem if a chemical potential is included. Tensor network methods are not affected by this problem. We use the imaginary time evolution of a fermionic projected entangled pair state, which allows to simulate both parity sectors independentl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15340v2-abstract-full').style.display = 'inline'; document.getElementById('2110.15340v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15340v2-abstract-full" style="display: none;"> Many electromagnetic properties of graphene can be described by the Hubbard model on a honeycomb lattice. However, this system suffers strongly from the sign problem if a chemical potential is included. Tensor network methods are not affected by this problem. We use the imaginary time evolution of a fermionic projected entangled pair state, which allows to simulate both parity sectors independently. Incorporating the fermionic nature on the level of the tensor network allows to fix the particle number to be either even or odd. This way we can access the states at half filling and with one additional electron. We calculate the energy and other observables of both states, which was not possible before with Monte Carlo methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15340v2-abstract-full').style.display = 'none'; document.getElementById('2110.15340v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 38th International Symposium on Lattice Field Theory (Lattice 2021)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04588">arXiv:2110.04588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04588">pdf</a>, <a href="https://arxiv.org/format/2110.04588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Determination of the light, strange and charm quark masses using twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Di+Carlo%2C+M">M. Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fiorenza%2C+E">E. Fiorenza</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Manigrasso%2C+F">F. Manigrasso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Martinelli%2C+G">G. Martinelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rossi%2C+G+C">G. C. Rossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tarantino%2C+C">C. Tarantino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Todaro%2C+A">A. Todaro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04588v1-abstract-short" style="display: inline;"> We present results for the light, strange and charm quark masses using $N_f=2+1+1$ twisted mass fermion ensembles at three values of the lattice spacing, including two ensembles simulated with the physical value of the pion mass. The analysis is done both in the meson and baryon sectors. The difference in the mean values found in the two sectors is included as part of the systematic error. The pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04588v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04588v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04588v1-abstract-full" style="display: none;"> We present results for the light, strange and charm quark masses using $N_f=2+1+1$ twisted mass fermion ensembles at three values of the lattice spacing, including two ensembles simulated with the physical value of the pion mass. The analysis is done both in the meson and baryon sectors. The difference in the mean values found in the two sectors is included as part of the systematic error. The presentation is based on the work of Ref. [1], where more details can be found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04588v1-abstract-full').style.display = 'none'; document.getElementById('2110.04588v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at the 38th International Symposium on Lattice Field Theory, Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology, 26-30 Jul. 2021; 8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10692">arXiv:2109.10692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10692">pdf</a>, <a href="https://arxiv.org/format/2109.10692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.252001">10.1103/PhysRevLett.127.252001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark and gluon momentum fractions in the pion from $N_f=2+1+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10692v1-abstract-short" style="display: inline;"> We perform the first full decomposition of the pion momentum into its gluon and quark contributions. We employ an ensemble generated by the Extended Twisted Mass Collaboration with $N_f=2 + 1 +1$ Wilson twisted mass clover fermions at maximal twist tuned to reproduce the physical pion mass. We present our results in the $\overline{\mathrm{MS}}$ scheme at $2\gev$. We find $\avgx_{u+d}=0.601(28)$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10692v1-abstract-full').style.display = 'inline'; document.getElementById('2109.10692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10692v1-abstract-full" style="display: none;"> We perform the first full decomposition of the pion momentum into its gluon and quark contributions. We employ an ensemble generated by the Extended Twisted Mass Collaboration with $N_f=2 + 1 +1$ Wilson twisted mass clover fermions at maximal twist tuned to reproduce the physical pion mass. We present our results in the $\overline{\mathrm{MS}}$ scheme at $2\gev$. We find $\avgx_{u+d}=0.601(28)$, $\avgx_s=0.059(13)$, $\avgx_c=0.019(05)$, and $\avgx_g=0.52(11)$ for the separate contributions, respectively, whose sum saturates the momentum sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10692v1-abstract-full').style.display = 'none'; document.getElementById('2109.10692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04853">arXiv:2107.04853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04853">pdf</a>, <a href="https://arxiv.org/format/2107.04853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09830-1">10.1140/epjc/s10052-021-09830-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing a new method for scattering in finite volume in the $蠁^4$ theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rusetsky%2C+A">Akaki Rusetsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04853v1-abstract-short" style="display: inline;"> We test an alternative proposal by Bruno and Hansen [1] to extract the scattering length from lattice simulations in a finite volume. For this, we use a scalar $蠁^4$ theory with two mass nondegenerate particles and explore various strategies to implement this new method. We find that the results are comparable to those obtained from the L眉scher method, with somewhat smaller statistical uncertainti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04853v1-abstract-full').style.display = 'inline'; document.getElementById('2107.04853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04853v1-abstract-full" style="display: none;"> We test an alternative proposal by Bruno and Hansen [1] to extract the scattering length from lattice simulations in a finite volume. For this, we use a scalar $蠁^4$ theory with two mass nondegenerate particles and explore various strategies to implement this new method. We find that the results are comparable to those obtained from the L眉scher method, with somewhat smaller statistical uncertainties at larger volumes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04853v1-abstract-full').style.display = 'none'; document.getElementById('2107.04853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13583">arXiv:2106.13583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13583">pdf</a>, <a href="https://arxiv.org/format/2106.13583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.155118">10.1103/PhysRevB.104.155118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating both parity sectors of the Hubbard Model with Tensor Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Schneider%2C+M">Manuel Schneider</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13583v2-abstract-short" style="display: inline;"> Tensor networks are a powerful tool to simulate a variety of different physical models, including those that suffer from the sign problem in Monte Carlo simulations. The Hubbard model on the honeycomb lattice with non-zero chemical potential is one such problem. Our method is based on projected entangled pair states (PEPS) using imaginary time evolution. We demonstrate that it provides accurate es&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13583v2-abstract-full').style.display = 'inline'; document.getElementById('2106.13583v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13583v2-abstract-full" style="display: none;"> Tensor networks are a powerful tool to simulate a variety of different physical models, including those that suffer from the sign problem in Monte Carlo simulations. The Hubbard model on the honeycomb lattice with non-zero chemical potential is one such problem. Our method is based on projected entangled pair states (PEPS) using imaginary time evolution. We demonstrate that it provides accurate estimators for the ground state of the model, including cases where Monte Carlo simulations fail miserably. In particular it shows near to optimal, that is linear, scaling in lattice size. We also present a novel approach to directly simulate the subspace with an odd number of fermions. It allows to independently determine the ground state in both sectors. Without a chemical potential this corresponds to half filling and the lowest energy state with one additional electron or hole. We identify several stability issues, such as degenerate ground states and large single particle gaps, and provide possible fixes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13583v2-abstract-full').style.display = 'none'; document.getElementById('2106.13583v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104 (2021) 155118 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06936">arXiv:2105.06936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.06936">pdf</a>, <a href="https://arxiv.org/format/2105.06936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.155142">10.1103/PhysRevB.104.155142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Antiferromagnetic Character of the Quantum Phase Transition in the Hubbard Model on the Honeycomb Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krieg%2C+S">Stefan Krieg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06936v2-abstract-short" style="display: inline;"> We provide a unified, comprehensive treatment of all operators that contribute to the anti-ferromagnetic, ferromagnetic, and charge-density-wave structure factors and order parameters of the hexagonal Hubbard Model. We use the Hybrid Monte Carlo algorithm to perform a systematic, carefully controlled analysis in the temporal Trotter error and of the thermodynamic limit. We expect our findings to i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06936v2-abstract-full').style.display = 'inline'; document.getElementById('2105.06936v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06936v2-abstract-full" style="display: none;"> We provide a unified, comprehensive treatment of all operators that contribute to the anti-ferromagnetic, ferromagnetic, and charge-density-wave structure factors and order parameters of the hexagonal Hubbard Model. We use the Hybrid Monte Carlo algorithm to perform a systematic, carefully controlled analysis in the temporal Trotter error and of the thermodynamic limit. We expect our findings to improve the consistency of Monte Carlo determinations of critical exponents. We perform a data collapse analysis and determine the critical exponent $尾=0.898(37)$ for the semimetal-Mott insulator transition in the hexagonal Hubbard Model. Our methods are applicable to a wide range of lattice theories of strongly correlated electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06936v2-abstract-full').style.display = 'none'; document.getElementById('2105.06936v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 155142 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13408">arXiv:2104.13408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13408">pdf</a>, <a href="https://arxiv.org/format/2104.13408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074515">10.1103/PhysRevD.104.074515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark masses using twisted mass fermion gauge ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Di+Carlo%2C+M">M. Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fiorenza%2C+E">E. Fiorenza</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Manigrasso%2C+F">F. Manigrasso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Martinelli%2C+G">G. Martinelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Papadiofantous%2C+E">E. Papadiofantous</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rossi%2C+G+C">G. C. Rossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tarantino%2C+C">C. Tarantino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Todaro%2C+A">A. Todaro</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13408v3-abstract-short" style="display: inline;"> We present a calculation of the up, down, strange and charm quark masses performed within the lattice QCD framework. We use the twisted mass fermion action and carry out simulations that include in the sea two light mass-degenerate quarks, as well as the strange and charm quarks. In the analysis we use gauge ensembles simulated at three values of the lattice spacing and with light quarks that corr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13408v3-abstract-full').style.display = 'inline'; document.getElementById('2104.13408v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13408v3-abstract-full" style="display: none;"> We present a calculation of the up, down, strange and charm quark masses performed within the lattice QCD framework. We use the twisted mass fermion action and carry out simulations that include in the sea two light mass-degenerate quarks, as well as the strange and charm quarks. In the analysis we use gauge ensembles simulated at three values of the lattice spacing and with light quarks that correspond to pion masses in the range from 350 MeV to the physical value, while the strange and charm quark masses are tuned approximately to their physical values. We use several quantities to set the scale in order to check for finite lattice spacing effects and in the continuum limit we get compatible results. The quark mass renormalization is carried out non-perturbatively using the RI&#39;-MOM method converted into the $\overline{\rm MS}$ scheme. For the determination of the quark masses we use physical observables from both the meson and the baryon sectors, obtaining $m_{ud} = 3.636(66)(^{+60}_{-57})$~MeV and $m_s = 98.7(2.4)(^{+4.0}_{-3.2})$~MeV in the $\overline{\rm MS}(2\,{\rm GeV})$ scheme and $m_c = 1036(17)(^{+15}_{-8})$~MeV in the $\overline{\rm MS}(3\,{\rm GeV})$ scheme, where the first errors are statistical and the second ones are combinations of systematic errors. For the quark mass ratios we get $m_s / m_{ud} = 27.17(32)(^{+56}_{-38})$ and $m_c / m_s = 11.48(12)(^{+25}_{-19})$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13408v3-abstract-full').style.display = 'none'; document.getElementById('2104.13408v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 23 figures, 24 tables. One reference added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06747">arXiv:2104.06747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.06747">pdf</a>, <a href="https://arxiv.org/format/2104.06747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074520">10.1103/PhysRevD.104.074520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ratio of kaon and pion leptonic decay constants with $N_f = 2 + 1 + 1$ Wilson-clover twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Labus%2C+P">P. Labus</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ueding%2C+M">M. Ueding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06747v3-abstract-short" style="display: inline;"> We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric QCD (isoQCD), $f_K / f_蟺$, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, including configurations close to the physical point for all dynamical flavors. The simulations are carried out a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06747v3-abstract-full').style.display = 'inline'; document.getElementById('2104.06747v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06747v3-abstract-full" style="display: none;"> We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric QCD (isoQCD), $f_K / f_蟺$, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, including configurations close to the physical point for all dynamical flavors. The simulations are carried out at three values of the lattice spacing ranging from $\sim 0.068$ to $\sim 0.092$ fm with linear lattice size up to $L \sim 5.5$~fm. The scale is set by the PDG value of the pion decay constant, $f_蟺^{isoQCD} = 130.4~(2)$ MeV, at the isoQCD pion point, $M_蟺^{isoQCD} = 135.0~(2)$ MeV, obtaining for the gradient-flow (GF) scales the values $w_0 = 0.17383~(63)$ fm, $\sqrt{t_0} = 0.14436~(61)$ fm and $t_0 / w_0 = 0.11969~(62)$ fm. The data are analyzed within the framework of SU(2) Chiral Perturbation Theory (ChPT) without resorting to the use of renormalized quark masses. At the isoQCD kaon point $M_K^{isoQCD} = 494.2~(4)$ MeV we get $(f_K / f_蟺)^{isoQCD} = 1.1995~(44)$, where the error includes both statistical and systematic uncertainties. Implications for the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{us}|$ and for the first-row CKM unitarity are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06747v3-abstract-full').style.display = 'none'; document.getElementById('2104.06747v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages, 14 figures, 12 tables. Version to appear in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13342">arXiv:2011.13342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.13342">pdf</a>, <a href="https://arxiv.org/format/2011.13342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.034509">10.1103/PhysRevD.103.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon axial and pseudoscalar form factors from lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leontiou%2C+T">T. Leontiou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13342v1-abstract-short" style="display: inline;"> We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the strange and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13342v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13342v1-abstract-full" style="display: none;"> We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the strange and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13342v1-abstract-full').style.display = 'none'; document.getElementById('2011.13342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages and 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 034509 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.11715">arXiv:2010.11715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.11715">pdf</a>, <a href="https://arxiv.org/format/2010.11715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2021)060">10.1007/JHEP02(2021)060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relativistic $N$-particle energy shift in finite volume </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rusetsky%2C+A">Akaki Rusetsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schlage%2C+N">Nikolas Schlage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.11715v5-abstract-short" style="display: inline;"> We present a general method for deriving the energy shift of an interacting system of $N$ spinless particles in a finite volume. To this end, we use the nonrelativistic effective field theory (NREFT), and match the pertinent low-energy constants to the scattering amplitudes. Relativistic corrections are explicitly included up to a given order in the $1/L$ expansion. We apply this method to obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11715v5-abstract-full').style.display = 'inline'; document.getElementById('2010.11715v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.11715v5-abstract-full" style="display: none;"> We present a general method for deriving the energy shift of an interacting system of $N$ spinless particles in a finite volume. To this end, we use the nonrelativistic effective field theory (NREFT), and match the pertinent low-energy constants to the scattering amplitudes. Relativistic corrections are explicitly included up to a given order in the $1/L$ expansion. We apply this method to obtain the ground state of $N$ particles, and the first excited state of two and three particles to order $L^{-6}$ in terms of the threshold parameters of the two- and three-particle relativistic scattering amplitudes. We use these expressions to analyze the $N$-particle ground state energy shift in the complex $\varphi^4$ theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11715v5-abstract-full').style.display = 'none'; document.getElementById('2010.11715v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 12 figures, 8 tables. Typos in Appendix A removed, numerical values for the integrals added. Results of the paper are unaffected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03035">arXiv:2008.03035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.03035">pdf</a>, <a href="https://arxiv.org/format/2008.03035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09206-5">10.1140/epjc/s10052-021-09206-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering of two and three physical pions at maximal isospin from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fischer%2C+M">Matthias Fischer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03035v3-abstract-short" style="display: inline;"> We present the first direct $N_f=2$ lattice QCD computation of two- and three-$蟺^+$ scattering quantities that includes an ensemble at the physical point. We study the quark mass dependence of the two-pion phase shift, and the three-particle interaction parameters. We also compare to phenomenology and chiral perturbation theory (ChPT). In the two-particle sector, we observe good agreement to the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03035v3-abstract-full').style.display = 'inline'; document.getElementById('2008.03035v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03035v3-abstract-full" style="display: none;"> We present the first direct $N_f=2$ lattice QCD computation of two- and three-$蟺^+$ scattering quantities that includes an ensemble at the physical point. We study the quark mass dependence of the two-pion phase shift, and the three-particle interaction parameters. We also compare to phenomenology and chiral perturbation theory (ChPT). In the two-particle sector, we observe good agreement to the phenomenological fits in $s$- and $d$-wave, and obtain $M_蟺a_0 = -0.0481(86)$ at the physical point from a direct computation. In the three-particle sector, we observe reasonable agreement at threshold to the leading order chiral expansion, i.e.\@ a mildly attractive three-particle contact term. In contrast, we observe that the energy-dependent part of the three-particle quasilocal scattering quantity is not well described by leading order ChPT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03035v3-abstract-full').style.display = 'none'; document.getElementById('2008.03035v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13805">arXiv:2006.13805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.13805">pdf</a>, <a href="https://arxiv.org/format/2006.13805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136449">10.1016/j.physletb.2021.136449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $蟻$-resonance with physical pion mass from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fischer%2C+M">Matthias Fischer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mai%2C+M">Maxim Mai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Werner%2C+M">Markus Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13805v1-abstract-short" style="display: inline;"> We present the first-ever lattice computation of pi pi-scattering in the I=1 channel with Nf=2 dynamical quark flavours obtained including an ensemble with physical value of the pion mass. Employing a global fit to data at three values of the pion mass, we determine the universal parameters of the rho-resonance. We carefully investigate systematic uncertainties by determining energy eigenvalues us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13805v1-abstract-full').style.display = 'inline'; document.getElementById('2006.13805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13805v1-abstract-full" style="display: none;"> We present the first-ever lattice computation of pi pi-scattering in the I=1 channel with Nf=2 dynamical quark flavours obtained including an ensemble with physical value of the pion mass. Employing a global fit to data at three values of the pion mass, we determine the universal parameters of the rho-resonance. We carefully investigate systematic uncertainties by determining energy eigenvalues using different methods and by comparing inverse amplitude method and Breit-Wigner type parametrizations. Overall, we find mass 786(20) MeV and width 180(6) MeV, including statistical and systematic uncertainties. In stark disagreement with the previous Nf=2 extrapolations from higher than physical pion mass results, our mass value is in good agreement with experiment, while the width is slightly too high. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13805v1-abstract-full').style.display = 'none'; document.getElementById('2006.13805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">raw data available in data repository: https://github.com/urbach/datarhonf2</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.11112">arXiv:2005.11112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.11112">pdf</a>, <a href="https://arxiv.org/format/2005.11112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.245105">10.1103/PhysRevB.102.245105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Semimetal-Mott Insulator Quantum Phase Transition of the Hubbard Model on the Honeycomb Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krieg%2C+S">Stefan Krieg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%A4hde%2C+T+A">Timo A. L盲hde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.11112v3-abstract-short" style="display: inline;"> We take advantage of recent improvements in the grand canonical Hybrid Monte Carlo algorithm, to perform a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron interactions. After carefully controlled analyses of the Trotter error, the thermodynamic limit, and finite-size scaling with inverse temperature, we find a critical coupling of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11112v3-abstract-full').style.display = 'inline'; document.getElementById('2005.11112v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.11112v3-abstract-full" style="display: none;"> We take advantage of recent improvements in the grand canonical Hybrid Monte Carlo algorithm, to perform a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron interactions. After carefully controlled analyses of the Trotter error, the thermodynamic limit, and finite-size scaling with inverse temperature, we find a critical coupling of $U_c/魏=3.834(14)$ and the critical exponent $z谓=1.185(43)$. Under the assumption that this corresponds to the expected anti-ferromagnetic Mott transition, we are also able to provide a preliminary estimate $尾=1.095(37)$ for the critical exponent of the order parameter. We consider our findings in view of the $SU(2)$ Gross-Neveu, or chiral Heisenberg, universality class. We also discuss the computational scaling of the Hybrid Monte Carlo algorithm, and possible extensions of our work to carbon nanotubes, fullerenes, and topological insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11112v3-abstract-full').style.display = 'none'; document.getElementById('2005.11112v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 245105 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10472">arXiv:2004.10472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.10472">pdf</a>, <a href="https://arxiv.org/format/2004.10472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-020-00205-w">10.1140/epja/s10050-020-00205-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the generalised eigenvalue method and its relation to Prony and generalised pencil of function methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fischer%2C+M">Matthias Fischer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10472v1-abstract-short" style="display: inline;"> We discuss the relation of three methods to determine energy levels in lattice QCD simulations: the generalised eigenvalue, the Prony and the generalised pencil of function methods. All three can be understood as special cases of a generalised eigenvalue problem. We show analytically that the leading corrections to an energy $E_l$ in all three methods due to unresolved states decay asymptotically&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10472v1-abstract-full').style.display = 'inline'; document.getElementById('2004.10472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10472v1-abstract-full" style="display: none;"> We discuss the relation of three methods to determine energy levels in lattice QCD simulations: the generalised eigenvalue, the Prony and the generalised pencil of function methods. All three can be understood as special cases of a generalised eigenvalue problem. We show analytically that the leading corrections to an energy $E_l$ in all three methods due to unresolved states decay asymptotically exponentially like $\exp(-(E_{n}-E_l)t)$. Using synthetic data we show that these corrections behave as expected also in practice. We propose a novel combination of the generalised eigenvalue and the Prony method, denoted as GEVM/PGEVM, which helps to increase the energy gap $E_{n}-E_l$. We illustrate its usage and performance using lattice QCD examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10472v1-abstract-full').style.display = 'none'; document.getElementById('2004.10472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Urbach%2C+C&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10