CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 73 results for author: <span class="mathjax">Wildes, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Wildes%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wildes, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wildes%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wildes, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wildes%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wildes%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wildes%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13720">arXiv:2405.13720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13720">pdf</a>, <a href="https://arxiv.org/format/2405.13720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbital excitations encoding the magnetic phase transition in the van der Waals antiferromagnet FePS$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elnaggar%2C+H">Hebatalla Elnaggar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">Teguh Citra Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Domaine%2C+G">Gabriele Domaine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Testa%2C+L">Luc Testa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Favre%2C+V">Virgile Favre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Luca%2C+M">Mario Di Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+M">Mitali Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F+M+F">Frank M. F. de Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronnow%2C+H+M">Henrik M. Ronnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13720v1-abstract-short" style="display: inline;"> In the rich phases of van der Waals (vdW) materials featuring intertwined electronic order and collective phenomena, characterizing elementary dynamics that entail the low-energy Hamiltonian and electronic degrees of freedom is of paramount importance. Here we performed resonant inelastic X-ray scattering (RIXS) to elaborate the spin-orbital ground and excited states of the vdW antiferromagnetic i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13720v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13720v1-abstract-full" style="display: none;"> In the rich phases of van der Waals (vdW) materials featuring intertwined electronic order and collective phenomena, characterizing elementary dynamics that entail the low-energy Hamiltonian and electronic degrees of freedom is of paramount importance. Here we performed resonant inelastic X-ray scattering (RIXS) to elaborate the spin-orbital ground and excited states of the vdW antiferromagnetic insulator FePS$_{3}$, as well as their relation to magnetism. We observed the spectral enhancement of spin-orbital multiplet transitions about $\sim$ 100 and $\sim$ 220 meV, as well as quasielastic response, when entering the zig-zag antiferromagnetic phase, where the spectral changes develop an order-parameter-like evolution with temperature. By comparing with ligand field theory calculations, we discovered the essential role of trigonal lattice distortion and negative metal-ligand charge-transfer to account for these emergent excitations. Such spectral profiles are further examined upon confinement by mechanical exfoliation. We reveal their spectral robustness down to the few atomic layer limit, in accordance with the persistent antiferromagnetic state previously reported in optical measurements. Our study demonstrates the versatile RIXS capability that resolves magneto-crystalline anisotropy and charge-transfer energetics. These provide the crucial insight to understand how the spontaneous magnetic symmetry-breaking stabilizes in the quasi-two-dimensional limit for the vdW magnet FePS$_{3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13720v1-abstract-full').style.display = 'none'; document.getElementById('2405.13720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16180">arXiv:2310.16180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16180">pdf</a>, <a href="https://arxiv.org/format/2310.16180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.134420">10.1103/PhysRevB.109.134420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting spin ice physics in the ferromagnetic Ising pyrochlore Pr$_2$Sn$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ortiz%2C+B+R">Brenden R. Ortiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">Paul M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pokharel%2C+G">Ganesh Pokharel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knudston%2C+M+J">Miles J. Knudston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alvarado%2C+S+J+G">Steven J. Gomez Alvarado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A+F">Andrew F. May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">Stuart Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin-Thro%2C+L">Lucile Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">Gabriele Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">Chris R. Wiebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+S+D">Stephen D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">Joseph A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">Adam A. Aczel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16180v1-abstract-short" style="display: inline;"> Pyrochlore materials are characterized by their hallmark network of corner-sharing rare-earth tetrahedra, which can produce a wide array of complex magnetic ground states. Ferromagnetic Ising pyrochlores often obey the &#34;two-in-two-out&#34; spin ice rules, which can lead to a highly-degenerate spin structure. Large moment systems, such as Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$, tend to host a classica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16180v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16180v1-abstract-full" style="display: none;"> Pyrochlore materials are characterized by their hallmark network of corner-sharing rare-earth tetrahedra, which can produce a wide array of complex magnetic ground states. Ferromagnetic Ising pyrochlores often obey the &#34;two-in-two-out&#34; spin ice rules, which can lead to a highly-degenerate spin structure. Large moment systems, such as Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$, tend to host a classical spin ice state with low-temperature spin freezing and emergent magnetic monopoles. Systems with smaller effective moments, such as Pr$^{3+}$-based pyrochlores, have been proposed as excellent candidates for hosting a &#34;quantum spin ice&#34; characterized by entanglement and a slew of exotic quasiparticle excitations. However, experimental evidence for a quantum spin ice state has remained elusive. Here, we show that the low-temperature magnetic properties of Pr$_2$Sn$_2$O$_7$ satisfy several important criteria for continued consideration as a quantum spin ice. We find that Pr$_2$Sn$_2$O$_7$ exhibits a partially spin-frozen ground state with a large volume fraction of dynamic magnetism. Our comprehensive bulk characterization and neutron scattering measurements enable us to map out the magnetic field-temperature phase diagram, producing results consistent with expectations for a ferromagnetic Ising pyrochlore. We identify key hallmarks of spin ice physics, and show that the application of small magnetic fields ($渭_0 H_c \sim$0.75T) suppresses the spin ice state and induces a long-range ordered magnetic structure. Together, our work clarifies the current state of Pr$_2$Sn$_2$O$_7$ and encourages future studies aimed at exploring the potential for a quantum spin ice ground state in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16180v1-abstract-full').style.display = 'none'; document.getElementById('2310.16180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07559">arXiv:2301.07559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07559">pdf</a>, <a href="https://arxiv.org/format/2301.07559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.166703">10.1103/PhysRevLett.130.166703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Evidence for the Spiral Spin Liquid in LiYbO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Graham%2C+J+N">J. N. Graham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qureshi%2C+N">N. Qureshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">C. Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+L">L. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07559v2-abstract-short" style="display: inline;"> Spiral spin liquids are an exotic class of correlated paramagnets with an enigmatic magnetic ground state composed of a degenerate manifold of fluctuating spin spirals. Experimental realisations of the spiral spin liquid are scarce, mainly due to the prominence of structural distortions in candidate materials that can trigger order-by-disorder transitions to more conventionally ordered magnetic gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07559v2-abstract-full').style.display = 'inline'; document.getElementById('2301.07559v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07559v2-abstract-full" style="display: none;"> Spiral spin liquids are an exotic class of correlated paramagnets with an enigmatic magnetic ground state composed of a degenerate manifold of fluctuating spin spirals. Experimental realisations of the spiral spin liquid are scarce, mainly due to the prominence of structural distortions in candidate materials that can trigger order-by-disorder transitions to more conventionally ordered magnetic ground states. Expanding the pool of candidate materials that may host a spiral spin liquid is therefore crucial to realising this novel magnetic ground state and understanding its robustness against perturbations that arise in real materials. Here, we show that the material LiYbO$_2$ is the first experimental realisation of a spiral spin liquid predicted to emerge from the $J_1$-$J_2$ Heisenberg model on an elongated diamond lattice. Through a complementary combination of high-resolution and diffuse neutron magnetic scattering studies on a polycrystalline sample, we demonstrate that LiYbO$_2$ fulfils the requirements for the experimental realisation of the spiral spin liquid and reconstruct single-crystal diffuse neutron magnetic scattering maps that reveal continuous spiral spin contours -- a characteristic experimental hallmark of this exotic magnetic phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07559v2-abstract-full').style.display = 'none'; document.getElementById('2301.07559v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, accepted PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06479">arXiv:2212.06479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06479">pdf</a>, <a href="https://arxiv.org/ps/2212.06479">ps</a>, <a href="https://arxiv.org/format/2212.06479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.054438">10.1103/PhysRevB.107.054438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin wave spectra of single crystal CoPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A5k%2C+B">B. F氓k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+U+B">U. B. Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enderle%2C+M">M. Enderle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+J+R">J. R. Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Testa%2C+L">L. Testa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">C. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06479v1-abstract-short" style="display: inline;"> The spin waves in single crystals of the layered van der Waals antiferromagnet CoPS$_3$ have been measured using inelastic neutron scattering. The data show four distinct spin wave branches with large ($\gtrsim 14$ meV) energy gaps at the Brillouin zone center indicating significant anisotropy. The data were modelled using linear spin wave theory derived from a Heisenberg Hamiltonian. Exchange int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06479v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06479v1-abstract-full" style="display: none;"> The spin waves in single crystals of the layered van der Waals antiferromagnet CoPS$_3$ have been measured using inelastic neutron scattering. The data show four distinct spin wave branches with large ($\gtrsim 14$ meV) energy gaps at the Brillouin zone center indicating significant anisotropy. The data were modelled using linear spin wave theory derived from a Heisenberg Hamiltonian. Exchange interactions up to the third nearest-neighbour in the layered planes were required to fit the data with ferromagnetic $J_1 = -1.37$ meV between first neighbours, antiferromagnetic $J_3 = 3.0$ meV between third neighbours, and a very small $J_2 = 0.09$ meV between second neighbours. A biaxial single-ion anisotropy was required, with a collinear term $D^x = -0.77$ meV for the axis parallel to the aligned moment direction and a coplanar term $D^z=6.07$ meV for an axis approximately normal to the layered crystal planes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06479v1-abstract-full').style.display = 'none'; document.getElementById('2212.06479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14956">arXiv:2209.14956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14956">pdf</a>, <a href="https://arxiv.org/format/2209.14956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Reply to &#34;Comment on: &#39;Case for a U(1)$_蟺$ Quantum Spin Liquid Ground State in the Dipole-Octupole Pyrochlore $\mathrm{Ce}_2\mathrm{Zr}_2\mathrm{O}_7$&#39; &#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+E+M">E. M. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benton%2C+O">O. Benton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yahne%2C+D+R">D. R. Yahne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Placke%2C+B">B. Placke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%A4fer%2C+R">R. Sch盲fer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaudet%2C+J">J. Gaudet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudemaine%2C+J">J. Dudemaine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fitterman%2C+A">A. Fitterman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beare%2C+J">J. Beare</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharya%2C+S">S. Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeLazzer%2C+T">T. DeLazzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buhariwalla%2C+C+R+C">C. R. C. Buhariwalla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N+P">N. P. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Movshovich%2C+R">R. Movshovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garrett%2C+J+D">J. D. Garrett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marjerrison%2C+C+A">C. A. Marjerrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clancy%2C+J+P">J. P. Clancy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kermarrec%2C+E">E. Kermarrec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luke%2C+G+M">G. M. Luke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bianchi%2C+A+D">A. D. Bianchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+K+A">K. A. Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14956v2-abstract-short" style="display: inline;"> In his comment [arXiv:2209.03235], S. W. Lovesey argues that our analysis of neutron scattering experiments performed on Ce$_2$Zr$_2$O$_7$ is invalid. Lovesey argues that we have not properly accounted for the higher-order multipolar contributions to the magnetic scattering and that our use of pseudospin-$1/2$ operators to describe the scattering is inappropriate. In this reply, we show that the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14956v2-abstract-full').style.display = 'inline'; document.getElementById('2209.14956v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14956v2-abstract-full" style="display: none;"> In his comment [arXiv:2209.03235], S. W. Lovesey argues that our analysis of neutron scattering experiments performed on Ce$_2$Zr$_2$O$_7$ is invalid. Lovesey argues that we have not properly accounted for the higher-order multipolar contributions to the magnetic scattering and that our use of pseudospin-$1/2$ operators to describe the scattering is inappropriate. In this reply, we show that the multipolar corrections discussed by Lovesey only become significant at scattering wavevectors exceeding those accessed in our experiments. This in no way contradicts or undermines our work, which never claimed a direct observation of scattering from higher-order multipoles. We further show that Lovesey&#39;s objections to our use of pseudospins are unfounded, and that the pseudospin operators are able to describe all magnetic scattering processes at the energy scale of our experiments, far below the crystal field gap. Finally, we comment on certain assumptions in Lovesey&#39;s calculations of the scattering amplitude which are inconsistent with experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14956v2-abstract-full').style.display = 'none'; document.getElementById('2209.14956v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07448">arXiv:2207.07448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07448">pdf</a>, <a href="https://arxiv.org/ps/2207.07448">ps</a>, <a href="https://arxiv.org/format/2207.07448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.174422">10.1103/PhysRevB.106.174422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The magnetic dynamics of NiPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+J+R">J. R. Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ewings%2C+R+A">R. A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rule%2C+K+C">K. C. Rule</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">G. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anand%2C+K">K. Anand</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07448v2-abstract-short" style="display: inline;"> Neutron spectroscopy measurements have been performed on single crystals of the antiferromagnetic van der Waals compound NiPS$_3$. Linear spin wave theory using a Heisenberg Hamiltonian with single-ion anisotropies has been applied to determine the magnetic exchange parameters and the nature of the anisotropy. The analysis reveals that NiPS$_3$ is less two-dimensional than its sister compounds, wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07448v2-abstract-full').style.display = 'inline'; document.getElementById('2207.07448v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07448v2-abstract-full" style="display: none;"> Neutron spectroscopy measurements have been performed on single crystals of the antiferromagnetic van der Waals compound NiPS$_3$. Linear spin wave theory using a Heisenberg Hamiltonian with single-ion anisotropies has been applied to determine the magnetic exchange parameters and the nature of the anisotropy. The analysis reveals that NiPS$_3$ is less two-dimensional than its sister compounds, with a relatively large ferromagnetic exchange of $J^{\prime} = -0.3$ meV between the layered \emph{ab} planes. In-plane magnetic exchange interactions up to the third nearest-neighbour were required to fit the data. The nearest-neighbour exchange was ferromagnetic with $J_1 = -2.6$ meV, the second neighbour was antiferromagnetic and small with $J_2 = 0.2$ meV, and the dominant antiferromagnetic third neighbour exchange was $J_3 = 13.5$ meV. The anisotropy was shown to be largely XY-like with a small uniaxial component, leading to the appearance of two low-energy spin wave modes in the spin wave spectrum at the Brillouin zone centre. The analysis could reproduce the spin wave energies, however there are discrepancies with the calculated neutron intensities hinting at more exotic phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07448v2-abstract-full').style.display = 'none'; document.getElementById('2207.07448v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, 33 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05606">arXiv:2207.05606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05606">pdf</a>, <a href="https://arxiv.org/format/2207.05606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.174431">10.1103/PhysRevB.106.174431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Incommensurate and multiple-$\boldsymbol{q}$ magnetic misfit order in the frustrated quantum-spin-ladder material antlerite, Cu$_3$SO$_4$(OH)$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kulbakov%2C+A+A">Anton A. Kulbakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sadrollahi%2C+E">Elaheh Sadrollahi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasch%2C+F">Florian Rasch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avdeev%2C+M">Maxim Avdeev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ga%C3%9F%2C+S">Sebastian Ga脽</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohorquez%2C+L+T+C">Laura Teresa Corredor Bohorquez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">Anja U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feig%2C+M">Manuel Feig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gumeniuk%2C+R">Roman Gumeniuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poddig%2C+H">Hagen Poddig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6tzer%2C+M">Markus St枚tzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litterst%2C+F+J">F. Jochen Litterst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puente-Orench%2C+I">In茅s Puente-Orench</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">Jochen Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inosov%2C+D+S">Dmytro S. Inosov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peets%2C+D+C">Darren C. Peets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05606v2-abstract-short" style="display: inline;"> In frustrated magnetic systems, the competition amongst interactions can introduce extremely high degeneracy and prevent the system from readily selecting a unique ground state. In such cases, the magnetic order is often exquisitely sensitive to the balance among the interactions, allowing tuning among novel magnetically ordered phases. In antlerite, Cu$_3$SO$_4$(OH)$_4$, Cu$^{2+}$ ($S=1/2$) quant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05606v2-abstract-full').style.display = 'inline'; document.getElementById('2207.05606v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05606v2-abstract-full" style="display: none;"> In frustrated magnetic systems, the competition amongst interactions can introduce extremely high degeneracy and prevent the system from readily selecting a unique ground state. In such cases, the magnetic order is often exquisitely sensitive to the balance among the interactions, allowing tuning among novel magnetically ordered phases. In antlerite, Cu$_3$SO$_4$(OH)$_4$, Cu$^{2+}$ ($S=1/2$) quantum spins populate three-leg zigzag ladders in a highly frustrated quasi-one-dimensional structural motif. We demonstrate that at zero applied field, in addition to its recently reported low-temperature phase of coupled ferromagnetic and antiferromagnetic spin chains, this mineral hosts an incommensurate helical+cycloidal state, an idle-spin state, and a multiple-$q$ phase which is the magnetic analog of misfit crystal structures. The antiferromagnetic order on the central leg is reentrant. The high tunability of the magnetism in antlerite makes it a particularly promising platform for pursuing exotic magnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05606v2-abstract-full').style.display = 'none'; document.getElementById('2207.05606v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 Figures, follow-up paper to arXiv:2203.15343. mCIFs describing the magnetic refinements are included as ancillary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 174431 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.10168">arXiv:2206.10168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.10168">pdf</a>, <a href="https://arxiv.org/format/2206.10168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00965-5">10.1038/s42005-022-00965-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dipolar spin-waves and tunable band gap at the Dirac points in the 2D magnet ErBr3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wessler%2C+C">C. Wessler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuhr%2C+U">U. Stuhr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braun%2C+H+B">H. B. Braun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">M. Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.10168v1-abstract-short" style="display: inline;"> Topological magnon insulators constitute a growing field of research for their potential use as information carriers without heat dissipation. We report an experimental and theoretical study of the magnetic ground-state and excitations in the van der Waals two-dimensional honeycomb magnet ErBr3. We show that the magnetic properties of this compound are entirely governed by the dipolar interactions&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.10168v1-abstract-full').style.display = 'inline'; document.getElementById('2206.10168v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.10168v1-abstract-full" style="display: none;"> Topological magnon insulators constitute a growing field of research for their potential use as information carriers without heat dissipation. We report an experimental and theoretical study of the magnetic ground-state and excitations in the van der Waals two-dimensional honeycomb magnet ErBr3. We show that the magnetic properties of this compound are entirely governed by the dipolar interactions which generate a continuously degenerate non-collinear ground-state on the honeycomb lattice with spins confined in the plane. We find that the magnon dispersion exhibits Dirac-like cones when the magnetic moments in the ground-state are related by time-reversal and inversion symmetries associated with a Berry phase 蟺as in single-layer graphene. A magnon band gap opens when the dipoles are rotated away from this state, entailing a finite Berry curvature in the vicinity of the K and K&#39; Dirac points. Our results illustrate that the spin-wave dispersion of dipoles on the honeycomb lattice can be reversibly controlled from a magnetic phase with Dirac cones to a topological antiferromagnetic insulator with non-trivial valley Chern number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.10168v1-abstract-full').style.display = 'none'; document.getElementById('2206.10168v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 5, 185 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15343">arXiv:2203.15343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.15343">pdf</a>, <a href="https://arxiv.org/format/2203.15343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L020405">10.1103/PhysRevB.106.L020405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupled frustrated ferromagnetic and antiferromagnetic quantum spin chains in the quasi-one-dimensional mineral antlerite, Cu$_3$SO$_4$(OH)$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kulbakov%2C+A+A">Anton A. Kulbakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kononenko%2C+D+Y">Denys Y. Kononenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nishimoto%2C+S">Satoshi Nishimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stahl%2C+Q">Quirin Stahl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakkingal%2C+A+M">Aswathi Mannathanath Chakkingal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feig%2C+M">Manuel Feig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gumeniuk%2C+R">Roman Gumeniuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skourski%2C+Y">Yurii Skourski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhaskaran%2C+L">Lakshmi Bhaskaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvyagin%2C+S+A">Sergei A. Zvyagin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Embs%2C+J+P">Jan Peter Embs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puente-Orench%2C+I">In茅s Puente-Orench</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">Jochen Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inosov%2C+D+S">Dmytro S. Inosov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peets%2C+D+C">Darren C. Peets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15343v2-abstract-short" style="display: inline;"> Magnetic frustration, the competition among exchange interactions, often leads to novel magnetic ground states with unique physical properties which can hinge on details of interactions that are otherwise difficult to observe. Such states are particularly interesting when it is possible to tune the balance among the interactions to access multiple types of magnetic order. We present antlerite, Cu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15343v2-abstract-full').style.display = 'inline'; document.getElementById('2203.15343v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15343v2-abstract-full" style="display: none;"> Magnetic frustration, the competition among exchange interactions, often leads to novel magnetic ground states with unique physical properties which can hinge on details of interactions that are otherwise difficult to observe. Such states are particularly interesting when it is possible to tune the balance among the interactions to access multiple types of magnetic order. We present antlerite, Cu$_3$SO$_4$(OH)$_4$, as a potential platform for tuning frustration. Contrary to previous reports, the low-temperature magnetic state of its three-leg zigzag ladders is a quasi-one-dimensional analog of the magnetic state recently proposed to exhibit spinon-magnon mixing in botallackite. Density functional theory calculations indicate that antlerite&#39;s magnetic ground state is exquisitely sensitive to fine details of the atomic positions, with each chain independently on the cusp of a phase transition, indicating an excellent potential for tunability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15343v2-abstract-full').style.display = 'none'; document.getElementById('2203.15343v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 4 figures. Supplementary at end: 7+$\varepsilon$ pages, 10 figures. CIF files included as ancillary files. Added more details on inelastic neutron scattering and DMRG calculations</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, L020405 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07015">arXiv:2203.07015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07015">pdf</a>, <a href="https://arxiv.org/format/2203.07015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.054106">10.1103/PhysRevB.107.054106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparative structural evolution under pressure of powder and single crystals of the layered antiferromagnet FePS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jarvis%2C+D+M">David M. Jarvis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coak%2C+M+J">Matthew J. Coak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamidov%2C+H">Hayrullo Hamidov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haines%2C+C+R+S">Charles R. S. Haines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lampronti%2C+G+I">Giulio I. Lampronti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+S">Shiyu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daisenberger%2C+D">Dominik Daisenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+D+R">David R. Allan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Warren%2C+M+R">Mark R. Warren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+S+S">Siddharth S. Saxena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07015v1-abstract-short" style="display: inline;"> The layered antiferromagnet FePS$_3$ has been shown to undergo a structural transition under pressure linked to an insulator-metal transition, with two incompatible models previously proposed for the highest-pressure structure. We present a study of the high-pressure crystal structures of FePS$_3$ using both single-crystal and powder x-ray diffraction. We show that the highest pressure transition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07015v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07015v1-abstract-full" style="display: none;"> The layered antiferromagnet FePS$_3$ has been shown to undergo a structural transition under pressure linked to an insulator-metal transition, with two incompatible models previously proposed for the highest-pressure structure. We present a study of the high-pressure crystal structures of FePS$_3$ using both single-crystal and powder x-ray diffraction. We show that the highest pressure transition involves a collapse of the inter-planar spacing of this material, along with an increase in symmetry from a monoclinic to a trigonal structure, to the exclusion of other models. The extent of this volume collapse is shown to be sensitive to the presence of a helium pressure medium in the sample environment, indicating that consideration of such experimental factors is important for understanding high-pressure behaviours in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07015v1-abstract-full').style.display = 'none'; document.getElementById('2203.07015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01217">arXiv:2108.01217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01217">pdf</a>, <a href="https://arxiv.org/format/2108.01217">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The case for a U(1)$_蟺$ Quantum Spin Liquid Ground State in the Dipole-Octupole Pyrochlore Ce$_2$Zr$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+E+M">E. M. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benton%2C+O">O. Benton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yahne%2C+D+R">D. R. Yahne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Placke%2C+B">B. Placke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%A4fer%2C+R">R. Sch盲fer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaudet%2C+J">J. Gaudet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudemaine%2C+J">J. Dudemaine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fitterman%2C+A">A. Fitterman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beare%2C+J">J. Beare</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharya%2C+S">S. Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeLazzer%2C+T">T. DeLazzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buhariwalla%2C+C+R+C">C. R. C. Buhariwalla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N+P">N. P. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Movshovich%2C+R">R. Movshovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garrett%2C+J+D">J. D. Garrett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marjerrison%2C+C+A">C. A. Marjerrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clancy%2C+J+P">J. P. Clancy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kermarrec%2C+E">E. Kermarrec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luke%2C+G+M">G. M. Luke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bianchi%2C+A+D">A. D. Bianchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+K+A">K. A. Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01217v4-abstract-short" style="display: inline;"> The Ce$^{3+}$ pseudospin-$\frac{1}{2}$ degrees of freedom in the pyrochlore magnet Ce$_2$Zr$_2$O$_7$ are known to possess dipole-octupole (DO) character, making it a candidate for novel quantum spin liquid (QSL) ground states at low temperatures. We report new polarized neutron diffraction at low temperatures, as well as heat capacity ($C_p$) measurements on single crystal Ce$_2$Zr$_2$O$_7$. The f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01217v4-abstract-full').style.display = 'inline'; document.getElementById('2108.01217v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01217v4-abstract-full" style="display: none;"> The Ce$^{3+}$ pseudospin-$\frac{1}{2}$ degrees of freedom in the pyrochlore magnet Ce$_2$Zr$_2$O$_7$ are known to possess dipole-octupole (DO) character, making it a candidate for novel quantum spin liquid (QSL) ground states at low temperatures. We report new polarized neutron diffraction at low temperatures, as well as heat capacity ($C_p$) measurements on single crystal Ce$_2$Zr$_2$O$_7$. The former bears both similarities and differences from that measured in the canonical dipolar spin ice compound Ho$_2$Ti$_2$O$_7$, while the latter rises sharply at low temperatures, initially plateauing near 0.08 K, before falling off towards a high temperature zero beyond 3 K. Above $\sim$0.5 K, the $C_p$ data set can be fit to the results of a quantum numerical linked cluster (NLC) calculation, carried out to 4$^{\mathrm{th}}$ order, that allows estimates for the terms in the near-neighbour XYZ Hamiltonian expected for such DO pyrochlore systems. Fits of the same theory to the temperature dependence of the magnetic susceptibility and unpolarized neutron scattering complement this analysis. A comparison between the resulting best fit NLC calculation and the polarized neutron diffraction shows both agreement and discrepancies, mostly in the form of zone-boundary diffuse scattering in the non-spin flip channel, which are attributed to interactions beyond near-neighbours. The lack of an observed thermodynamic anomaly and the constraints on the near-neighbour XYZ Hamiltonian suggest that Ce$_2$Zr$_2$O$_7$ realizes a U(1)$_蟺$ QSL state at low temperatures, and one that likely resides near the boundary between dipolar and octupolar character. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01217v4-abstract-full').style.display = 'none'; document.getElementById('2108.01217v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06904">arXiv:2107.06904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06904">pdf</a>, <a href="https://arxiv.org/format/2107.06904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.064412">10.1103/PhysRevB.104.064412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic correlations in triangular antiferromagnet FeGa$_2$S$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guratinder%2C+K">K. Guratinder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bewley%2C+R">R. Bewley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=W%C3%B6rle%2C+M">M. W枚rle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabra%2C+D">D. Cabra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osorio%2C+S+A">S. A. Osorio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villalba%2C+M">M. Villalba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madsen%2C+A+K">A. K. Madsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puphal%2C+P">P. Puphal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaharko%2C+O">O. Zaharko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06904v1-abstract-short" style="display: inline;"> The crystal structure and magnetic correlations in triangular antiferromagnet FeGa$_2$S$_4$ are studied by x-ray diffraction, magnetic susceptibility, neutron diffraction and neutron inelastic scattering. We report significant mixing at the cation sites and disentangle magnetic properties dominated by major and minor magnetic sites. The magnetic short-range correlations at 0.77 脜$^{-1}$ correspond&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06904v1-abstract-full').style.display = 'inline'; document.getElementById('2107.06904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06904v1-abstract-full" style="display: none;"> The crystal structure and magnetic correlations in triangular antiferromagnet FeGa$_2$S$_4$ are studied by x-ray diffraction, magnetic susceptibility, neutron diffraction and neutron inelastic scattering. We report significant mixing at the cation sites and disentangle magnetic properties dominated by major and minor magnetic sites. The magnetic short-range correlations at 0.77 脜$^{-1}$ correspond to the major sites and being static at base temperature they evolve into dynamic correlations around 30 - 50 K. The minor sites contribute to the magnetic peak at 0.6 脜$^{-1}$, which vanishes at 5.5 K. Our analytical studies of triangular lattice models with bilinear and biquadratic terms provide the ratios between exchanges for the proposed ordering vectors. The modelling of the inelastic neutron spectrum within linear spin wave theory results in the set of exchange couplings $J_1=1.7$\,meV, $J_2=0.9$\,meV, $J_3=0.8$\,meV for the bilinear Heisenberg Hamiltonian. However, not all features of the excitation spectrum are explained with this model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06904v1-abstract-full').style.display = 'none'; document.getElementById('2107.06904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15854">arXiv:2106.15854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.15854">pdf</a>, <a href="https://arxiv.org/format/2106.15854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-26068-3">10.1038/s41467-021-26068-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field-controlled spin fluctuations and quantum criticality in Sr3Ru2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lester%2C+C">C. Lester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramos%2C+S">S. Ramos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Croft%2C+T+P">T. P. Croft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laver%2C+M">M. Laver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bewley%2C+R+I">R. I. Bewley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guidi%2C+T">T. Guidi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hiess%2C+A">A. Hiess</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forgan%2C+E+M">E. M. Forgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15854v2-abstract-short" style="display: inline;"> When the transition temperature of a continuous phase transition is tuned to absolute zero, new ordered phases and physical behaviour emerge in the vicinity of the resulting quantum critical point. Sr3Ru2O7 can be tuned through quantum criticality with magnetic field at low temperature. Near its critical field Bc it displays the hallmark T-linear resistivity and a T log(1/T) electronic heat capaci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15854v2-abstract-full').style.display = 'inline'; document.getElementById('2106.15854v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15854v2-abstract-full" style="display: none;"> When the transition temperature of a continuous phase transition is tuned to absolute zero, new ordered phases and physical behaviour emerge in the vicinity of the resulting quantum critical point. Sr3Ru2O7 can be tuned through quantum criticality with magnetic field at low temperature. Near its critical field Bc it displays the hallmark T-linear resistivity and a T log(1/T) electronic heat capacity behaviour of strange metals. However, these behaviours have not been related to any critical fluctuations. Here we use inelastic neutron scattering to reveal the presence of collective spin fluctuations whose relaxation time and strength show a nearly singular variation with magnetic field as Bc is approached. The large increase in the electronic heat capacity and entropy near Bc can be understood quantitatively in terms of the scattering of conduction electrons by these spin-fluctuations. On entering the spin density wave (SDW) phase present near Bc, the fluctuations become stronger suggesting that the SDW order is stabilised through an &#34;order-by-disorder&#34; mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15854v2-abstract-full').style.display = 'none'; document.getElementById('2106.15854v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 5798 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05987">arXiv:2104.05987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.05987">pdf</a>, <a href="https://arxiv.org/format/2104.05987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.054440">10.1103/PhysRevB.104.054440 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics of the director state in frustrated hyperkagome systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jacobsen%2C+H">Henrik Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Florea%2C+O">Ovidiu Florea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefmann%2C+K">Kim Lefmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O">Oleg Petrenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knee%2C+C+S">Chris S. Knee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seydel%2C+T">Tilo Seydel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henry%2C+P+F">Paul F. Henry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bewley%2C+R">Robert Bewley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voneshen%2C+D">David Voneshen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G">G酶ran Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deen%2C+P+P">Pascale P. Deen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05987v2-abstract-short" style="display: inline;"> We present an experimental study of the magnetic structure and dynamics of two frustrated hyperkagome compounds, Gd3Ga5O12 and Gd3Al5O12. It has previously been shown that Gd3Ga5O12 exhibits long-range correlations of multipolar directors, that are formed from antiferromagnetic spins on loops of ten ions. Using neutron diffraction and Reverse Monte Carlo simulations we prove the existence of simil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05987v2-abstract-full').style.display = 'inline'; document.getElementById('2104.05987v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05987v2-abstract-full" style="display: none;"> We present an experimental study of the magnetic structure and dynamics of two frustrated hyperkagome compounds, Gd3Ga5O12 and Gd3Al5O12. It has previously been shown that Gd3Ga5O12 exhibits long-range correlations of multipolar directors, that are formed from antiferromagnetic spins on loops of ten ions. Using neutron diffraction and Reverse Monte Carlo simulations we prove the existence of similar magnetic correlations in Gd3Al5O12, showing the ubiquity of these complex structures in frustrated hyperkagome materials. Using inelastic neutron scattering we shed further light on the director state and the associated low lying magnetic excitations. In addition we have measured quasielastic dynamics that show evidence of spin diffusion. Finally, we present AC susceptibility measurements on both Gd3Ga5O12 and Gd3Al5O12, revealing a large difference in the low frequency dynamics between the two otherwise similar compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05987v2-abstract-full').style.display = 'none'; document.getElementById('2104.05987v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures, Accepted by Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 054440 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.10539">arXiv:2103.10539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.10539">pdf</a>, <a href="https://arxiv.org/format/2103.10539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.134433">10.1103/PhysRevB.103.134433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic structure and low temperature properties of geometrically frustrated SrNd$_2$O$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qureshi%2C+N">N. Qureshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">C. Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A5k%2C+B">B. F氓k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riberolles%2C+S+X+M">S. X. M. Riberolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">O. A. Petrenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.10539v1-abstract-short" style="display: inline;"> We report the low-temperature properties of SrNd$_2$O$_4$, a geometrically frustrated magnet. Magnetisation and heat capacity measurements performed on polycrystalline samples indicate the appearance of a magnetically ordered state at $T_{\rm N}=2.28(4)$~K. Powder neutron diffraction measurements reveal that an \afm\ state with the propagation vector \QV\ is stabilised below this temperature. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.10539v1-abstract-full').style.display = 'inline'; document.getElementById('2103.10539v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.10539v1-abstract-full" style="display: none;"> We report the low-temperature properties of SrNd$_2$O$_4$, a geometrically frustrated magnet. Magnetisation and heat capacity measurements performed on polycrystalline samples indicate the appearance of a magnetically ordered state at $T_{\rm N}=2.28(4)$~K. Powder neutron diffraction measurements reveal that an \afm\ state with the propagation vector \QV\ is stabilised below this temperature. The magnetic order is incomplete, as only one of the two Nd$^{3+}$ sites carries a significant magnetic moment while the other site remains largely disordered. The presence of a disordered magnetic component below $T_{\rm N}$ is confirmed with polarised neutron diffraction measurements. In an applied magnetic field, the bulk properties measurements indicate a phase transition at about 30~kOe. We construct a tentative $H$-$T$ phase diagram of \sno\ from these measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.10539v1-abstract-full').style.display = 'none'; document.getElementById('2103.10539v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 134433 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09049">arXiv:2101.09049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09049">pdf</a>, <a href="https://arxiv.org/format/2101.09049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.247201">10.1103/PhysRevLett.126.247201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and unconventional Coulomb phase in Nd$_2$Zr$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A9ger%2C+M">M. L茅ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raymond%2C+S">S. Raymond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09049v2-abstract-short" style="display: inline;"> We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an &#34;all in - all out&#34; antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09049v2-abstract-full').style.display = 'inline'; document.getElementById('2101.09049v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09049v2-abstract-full" style="display: none;"> We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an &#34;all in - all out&#34; antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above $T_{\rm N} \approx 300$ mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near $T_{\rm N}$ do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the &#34;all in - all out&#34; order superimposed on a Coulomb phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09049v2-abstract-full').style.display = 'none'; document.getElementById('2101.09049v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + 9 pages supp. mat</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 247201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10361">arXiv:2012.10361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.10361">pdf</a>, <a href="https://arxiv.org/format/2012.10361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.177201">10.1103/PhysRevLett.128.177201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometric frustration on the trillium lattice in a magnetic metal-organic framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bulled%2C+J+M">Johnathan M. Bulled</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">Joseph A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cassidy%2C+S+J">Simon J. Cassidy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pato-Doldan%2C+B">Breogan Pato-Doldan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomez-Aguirre%2C+L+C">L. Claudia Gomez-Aguirre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saines%2C+P+J">Paul J. Saines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodwin%2C+A+L">Andrew L. Goodwin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10361v3-abstract-short" style="display: inline;"> In the dense metal-organic framework Na[Mn(HCOO)$_3$], Mn$^{2+}$ ions ($S=\frac{5}{2}$) occupy the nodes of a `trillium&#39; hyperkagome net. We show that this material exhibits a variety of behaviour characteristic of geometric frustration: the N茅el transition is suppressed well below the characteristic magnetic interaction strength; short-range magnetic order persists far above the N茅el temperature;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10361v3-abstract-full').style.display = 'inline'; document.getElementById('2012.10361v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10361v3-abstract-full" style="display: none;"> In the dense metal-organic framework Na[Mn(HCOO)$_3$], Mn$^{2+}$ ions ($S=\frac{5}{2}$) occupy the nodes of a `trillium&#39; hyperkagome net. We show that this material exhibits a variety of behaviour characteristic of geometric frustration: the N茅el transition is suppressed well below the characteristic magnetic interaction strength; short-range magnetic order persists far above the N茅el temperature; and the magnetic susceptibility exhibits a pseudo-plateau at $\frac{1}{3}$-saturation magnetisation. We demonstrate that a simple nearest-neighbour Heisenberg antiferromagnet model accounts quantitatively for each observation, and hence Na[Mn(HCOO)$_3$] is the first experimental realisation of this model on the trillium net. We develop a mapping between this trillium model and that on the two-dimensional Shastry-Sutherland lattice, and demonstrate how both link geometric frustration within the classical spin liquid regime to a strong magnetocaloric response at low fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10361v3-abstract-full').style.display = 'none'; document.getElementById('2012.10361v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02898">arXiv:2010.02898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02898">pdf</a>, <a href="https://arxiv.org/ps/2010.02898">ps</a>, <a href="https://arxiv.org/format/2010.02898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.024424">10.1103/PhysRevB.103.024424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A search for non-reciprocal magnons in MnPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">S. Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">D. Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02898v1-abstract-short" style="display: inline;"> Recent articles have suggested that the quasi-two dimensional antiferromagnet MnPS$_3$ may have non-reciprocal magnons, whereby magnons in a Brillouin zone corner at +q have different energies than those at $-$q. The magnons along the Brillouin zone boundaries were measured using neutron three-axis spectrometry, paying careful attention to the resolution function, to determine whether such non-rec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02898v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02898v1-abstract-full" style="display: none;"> Recent articles have suggested that the quasi-two dimensional antiferromagnet MnPS$_3$ may have non-reciprocal magnons, whereby magnons in a Brillouin zone corner at +q have different energies than those at $-$q. The magnons along the Brillouin zone boundaries were measured using neutron three-axis spectrometry, paying careful attention to the resolution function, to determine whether such non-reciprocity was present. The data show that, within the resolution, there are no significant differences between the magnons in opposite Brillouin zone corners. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02898v1-abstract-full').style.display = 'none'; document.getElementById('2010.02898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 024424 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11447">arXiv:2008.11447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11447">pdf</a>, <a href="https://arxiv.org/format/2008.11447">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.011024">10.1103/PhysRevX.11.011024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of magnetic order in van-der-Waals antiferromagnet FePS$_3$ through insulator-metal transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Coak%2C+M+J">Matthew J. Coak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarvis%2C+D+M">David M Jarvis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamidov%2C+H">Hayrullo Hamidov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">Joseph A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haines%2C+C+R+S">Charles R. S. Haines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dang%2C+N+T">Ngoc T. Dang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kichanov%2C+S+E">Sergey E. Kichanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savenko%2C+B+N">Boris N. Savenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sungmin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kratochv%C3%ADlov%C3%A1%2C+M">Marie Kratochv铆lov谩</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klotz%2C+S">Stefan Klotz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+T">Thomas Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozlenko%2C+D+P">Denis P. Kozlenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+S+S">Siddharth S. Saxena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11447v1-abstract-short" style="display: inline;"> Layered van-der-Waals 2D magnetic materials are of great interest in fundamental condensed-matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultra-high-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnet FePS$_3$ at pressures up to 183 kbar and temp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11447v1-abstract-full').style.display = 'inline'; document.getElementById('2008.11447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11447v1-abstract-full" style="display: none;"> Layered van-der-Waals 2D magnetic materials are of great interest in fundamental condensed-matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultra-high-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnet FePS$_3$ at pressures up to 183 kbar and temperatures down to 80 K. These data are complemented by high-pressure magnetometry and reverse Monte Carlo modeling of the spin configurations. As pressure is applied, the previously-measured ambient-pressure magnetic order switches from an antiferromagnetic to a ferromagnetic interplanar interaction, and from 2D-like to 3D-like character. The overall antiferromagnetic structure within the $ab$ planes, ferromagnetic chains antiferromagnetically coupled, is preserved, but the magnetic propagation vector is altered from $(0\:1\:\frac{1}{2})$ to $(0\:1\:0)$, a halving of the magnetic unit cell size. At higher pressures, coincident with the second structural transition and the insulator-metal transition in this compound, we observe a suppression of this long-range-order and emergence of a form of magnetic short-range order which survives above room temperature. Reverse Monte Carlo fitting suggests this phase to be a short-ranged version of the original ambient pressure structure - with a return to antiferromagnetic interplanar correlations. The persistence of magnetism well into the HP-II metallic state is an observation in seeming contradiction with previous x-ray spectroscopy results which suggest a spin-crossover transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11447v1-abstract-full').style.display = 'none'; document.getElementById('2008.11447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript currently under review in Phys Rev X</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 011024 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.11791">arXiv:2007.11791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.11791">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.184429">10.1103/PhysRevB.102.184429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-waves in 2D honeycomb lattice $XXZ$-type van der Waals antiferromagnet CoPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Chaebin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+J">Jaehong Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Masuda%2C+T">Takatsugu Masuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asai%2C+S">Shinichiro Asai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Itoh%2C+S">Shinichi Itoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Heung-Sik Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.11791v1-abstract-short" style="display: inline;"> The magnetic excitations in CoPS$_3$, a two-dimensional van der Waals (vdW) antiferromagnet with spin $S=3/2$ on a honeycomb lattice, has been measured using powder inelastic neutron scattering. Clear dispersive spin waves are observed with a large spin gap of ~13 meV. The magnon spectra were fitted using an $XXZ$-type $J_1-J_2-J_3$ Heisenberg Hamiltonian with a single-ion anisotropy assuming no m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11791v1-abstract-full').style.display = 'inline'; document.getElementById('2007.11791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.11791v1-abstract-full" style="display: none;"> The magnetic excitations in CoPS$_3$, a two-dimensional van der Waals (vdW) antiferromagnet with spin $S=3/2$ on a honeycomb lattice, has been measured using powder inelastic neutron scattering. Clear dispersive spin waves are observed with a large spin gap of ~13 meV. The magnon spectra were fitted using an $XXZ$-type $J_1-J_2-J_3$ Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb layers. The best-fit parameters show ferromagnetic exchange $J_1=-2.08$ meV and $J_2=-0.26$ meV for the nearest and second-nearest neighbors and a sizeable antiferromagnetic exchange $J_3=4.21$ meV for the third-nearest neighbor with the strong easy-axis anisotropy $K=-2.06$ meV. The suitable fitting could only be achieved by the anisotropic $XXZ$-type Hamiltonian, in which the exchange interaction for the out-of-plane component is smaller than that for the in-plane one by a ratio $伪=J_z/J_x=0.6$. Moreover, the absence of spin-orbit exciton around 30 meV indicates that Co$^{2+}$ ions in CoPS$_3$ have a $S=3/2$ state rather than a spin-orbital entangled $J_\rm{eff}=1/2$ ground state. Our result directly shows that CoPS$_3$ is an experimental realization of the $XXZ$ model with a honeycomb lattice in 2D vdW magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11791v1-abstract-full').style.display = 'none'; document.getElementById('2007.11791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 184429 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12145">arXiv:2006.12145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.12145">pdf</a>, <a href="https://arxiv.org/format/2006.12145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.084401">10.1103/PhysRevMaterials.4.084401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local nuclear and magnetic order in the two-dimensional spin glass, Mn$_{0.5}$Fe$_{0.5}$PS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Graham%2C+J+N">J. N. Graham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coak%2C+M+J">M. J. Coak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+S">S. Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suard%2C+E">E. Suard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+-">J. -G. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+L">L. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12145v2-abstract-short" style="display: inline;"> We present a comprehensive study of the short-ranged nuclear and magnetic order in the two-dimensional spin glass, Mn$_{0.5}$Fe$_{0.5}$PS$_3$. Nuclear neutron scattering data reveal a random distribution of Mn$^{2+}$ and Fe$^{2+}$ ions within the honeycomb layers, which gives rise to a spin glass state through inducing competition between neighbouring exchange interactions, indicated in magnetic s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12145v2-abstract-full').style.display = 'inline'; document.getElementById('2006.12145v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12145v2-abstract-full" style="display: none;"> We present a comprehensive study of the short-ranged nuclear and magnetic order in the two-dimensional spin glass, Mn$_{0.5}$Fe$_{0.5}$PS$_3$. Nuclear neutron scattering data reveal a random distribution of Mn$^{2+}$ and Fe$^{2+}$ ions within the honeycomb layers, which gives rise to a spin glass state through inducing competition between neighbouring exchange interactions, indicated in magnetic susceptibility data by a cusp at the glass transition, $T_g = 35$ K. Analysis of magnetic diffuse neutron scattering data collected for both single crystal and polycrystalline samples gives further insight into the origin of the spin glass phase, with spin correlations revealing a mixture of satisfied and unsatisfied correlations between magnetic moments within the honeycomb planes, which can be explained by considering the magnetic structures of the parent compounds, MnPS$_3$ and FePS$_3$. We found that, on approaching $T_g$ from above, an ensemble-averaged correlation length of $尉= 5.5(6)$ 脜 developed between satisfied correlations, and below $T_g$, the glassy behaviour gave rise to a distance-independent correlation between unsatisfied moments. Correlations between the planes were found to be very weak, which mirrored our observations of rod-like structures parallel to the c* axis in our single crystal diffraction measurements, confirming the two-dimensional nature of Mn$_{0.5}$Fe$_{0.5}$PS$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12145v2-abstract-full').style.display = 'none'; document.getElementById('2006.12145v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, accepted manuscript in PRM</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 084401 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.06273">arXiv:2006.06273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.06273">pdf</a>, <a href="https://arxiv.org/format/2006.06273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab9d4b">10.1088/1361-648X/ab9d4b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-chain correlations in the frustrated triangular lattice material CuMnO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kimber%2C+S+A+J">Simon A. J. Kimber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mutka%2C+H">Hannu Mutka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bos%2C+J+G">Jan-Willem G. Bos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Argyriou%2C+D+N">Dimitri N. Argyriou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.06273v1-abstract-short" style="display: inline;"> The Ising triangular lattice remains the classic test-case for frustrated magnetism. Here we report neutron scattering measurements of short range magnetic order in CuMnO$_2$, which consists of a distorted lattice of Mn$^{3+}$ spins with single-ion anisotropy. Physical property measurements on CuMnO$_2$ are consistent with 1D correlations caused by anisotropic orbital occupation. However the diffu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06273v1-abstract-full').style.display = 'inline'; document.getElementById('2006.06273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.06273v1-abstract-full" style="display: none;"> The Ising triangular lattice remains the classic test-case for frustrated magnetism. Here we report neutron scattering measurements of short range magnetic order in CuMnO$_2$, which consists of a distorted lattice of Mn$^{3+}$ spins with single-ion anisotropy. Physical property measurements on CuMnO$_2$ are consistent with 1D correlations caused by anisotropic orbital occupation. However the diffuse magnetic neutron scattering seen in powder measurements has previously been fitted by 2D Warren-type correlations. Using neutron spectroscopy, we show that paramagnetic fluctuations persist up to $\sim$25 meV above TN= 65 K. This is comparable to the incident energy of typical diffractometers, and results in a smearing of the energy integrated signal, which hence cannot be analysed in the quasi-static approximation. We use low energy XYZ polarised neutron scattering to extract the purely magnetic (quasi)-static signal. This is fitted by reverse Monte Carlo analysis, which reveals that two directions in the triangular layers are perfectly frustrated in the classical spin-liquid phase at 75 K. Strong antiferromagnetic correlations are only found along the b-axis, and our results hence unify the pictures seen by neutron scattering and macroscopic physical property measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06273v1-abstract-full').style.display = 'none'; document.getElementById('2006.06273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 32 445802 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02756">arXiv:2006.02756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.02756">pdf</a>, <a href="https://arxiv.org/format/2006.02756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.184408">10.1103/PhysRevB.102.184408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of uniaxial pressure on the spin ice Ho2Ti2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Edberg%2C+R">Richard Edberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bakke%2C+I+M+B">Ingrid Marie Bergh Bakke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kondo%2C+H">Hirotaka Kondo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sandberg%2C+L+%C3%98">Lise 脴rduk Sandberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haubro%2C+M">Morten Haubro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurthrie%2C+M">Malcom Gurthrie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holmes%2C+A">Alexander Holmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engqvist%2C+J">Jonas Engqvist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuhira%2C+K">Kazuyuki Matsuhira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefmann%2C+K">Kim Lefmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deen%2C+P">Pascale Deen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mito%2C+M">Masaki Mito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henelius%2C+P">Patrik Henelius</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02756v2-abstract-short" style="display: inline;"> The spin ice materials Ho2Ti2O7 and Dy2Ti2O7 are experimental and theoretical exemplars of highly frustrated magnetic materials. However, the effects of an applied uniaxial pressure are not well studied, and here we report magnetization measurements of Ho2Ti2O7 under uniaxial pressure applied in the [001], [111] and [110] crystalline directions. The basic features are captured by an extension of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02756v2-abstract-full').style.display = 'inline'; document.getElementById('2006.02756v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02756v2-abstract-full" style="display: none;"> The spin ice materials Ho2Ti2O7 and Dy2Ti2O7 are experimental and theoretical exemplars of highly frustrated magnetic materials. However, the effects of an applied uniaxial pressure are not well studied, and here we report magnetization measurements of Ho2Ti2O7 under uniaxial pressure applied in the [001], [111] and [110] crystalline directions. The basic features are captured by an extension of the dipolar spin ice model. We find a good match between our model and measurements with pressures applied along two of the three directions, and extend the framework to discuss the influence of crystal misalignment for the third direction. The parameters determined from the magnetization measurements reproduce neutron scattering measurements we perform under uniaxial pressure applied along the [110] crystalline direction. In the detailed analysis we include the recently verified susceptibility dependence of the demagnetizing factor. Our work demonstrates the application of a moderate applied pressure to modify the magnetic interaction parameters. The knowledge can be used to predict critical pressures needed to induce new phases and transitions in frustrated materials, and in the case of Ho2Ti2O7 we expect a transition to a ferromagnetic ground state for uniaxial pressures above 3.3 GPa. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02756v2-abstract-full').style.display = 'none'; document.getElementById('2006.02756v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 184408 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12031">arXiv:2005.12031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.12031">pdf</a>, <a href="https://arxiv.org/ps/2005.12031">ps</a>, <a href="https://arxiv.org/format/2005.12031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0009114">10.1063/5.0009114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for biquadratic exchange in the quasi-two-dimensional antiferromagnet FePS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhitomirsky%2C+M+E">M. E. Zhitomirsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ziman%2C+T">T. Ziman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%C3%A7on%2C+D">D. Lan莽on</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12031v1-abstract-short" style="display: inline;"> FePS$_3$ is a van der Waals compound with a honeycomb lattice that is a good example of a two-dimensional antiferromagnet with Ising-like anisotropy. Neutron spectroscopy data from FePS3 were previously analysed using a straight-forward Heisenberg Hamiltonian with a single-ion anisotropy. The analysis captured most of the elements of the data, however some significant discrepancies remained. The d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12031v1-abstract-full').style.display = 'inline'; document.getElementById('2005.12031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12031v1-abstract-full" style="display: none;"> FePS$_3$ is a van der Waals compound with a honeycomb lattice that is a good example of a two-dimensional antiferromagnet with Ising-like anisotropy. Neutron spectroscopy data from FePS3 were previously analysed using a straight-forward Heisenberg Hamiltonian with a single-ion anisotropy. The analysis captured most of the elements of the data, however some significant discrepancies remained. The discrepancies were most obvious at the Brillouin zone boundaries. The data are subsequently reanalysed allowing for unequal exchange between nominally equivalent nearest-neighbours, which resolves the discrepancies. The source of the unequal exchange is attributed to a biquadratic exchange term in the Hamiltonian which most probably arises from a strong magnetolattice coupling. The new parameters show that there are features consistent with Dirac magnon nodal lines along certain Brillouin zone boundaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12031v1-abstract-full').style.display = 'none'; document.getElementById('2005.12031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. The following article has been accepted by the Journal of Applied Physics. After it is published, it will be found at (https://publishing.aip.org/resources/librarians/products/journals/). The article was submitted as part of a special topic edition (https://publishing.aip.org/publications/journals/special-topics/jap/2d-quantum-materials-magnetism-and-superconductivity/)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.11119">arXiv:2005.11119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.11119">pdf</a>, <a href="https://arxiv.org/format/2005.11119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/ab93e3">10.1088/2053-1583/ab93e3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetoelastic interaction in the two-dimensional magnetic material MnPS$_3$ studied by first principles calculations and Raman experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaclavkova%2C+D">Diana Vaclavkova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delhomme%2C+A">Alex Delhomme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faugeras%2C+C">Cl茅ment Faugeras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">Marek Potemski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogucki%2C+A">Aleksander Bogucki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suffczy%C5%84ski%2C+J">Jan Suffczy艅ski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kossacki%2C+P">Piotr Kossacki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gremaud%2C+B">Benoit Gremaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sa%C3%BAl%2C+A">Andr茅s Sa煤l</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.11119v1-abstract-short" style="display: inline;"> We report experimental and theoretical studies on the magnetoelastic interactions in MnPS$_3$. Raman scattering response measured as a function of temperature shows a blue shift of the Raman active modes at 120.2 and 155.1 cm$^{-1}$, when the temperature is raised across the antiferromagnetic-paramagnetic transition. Density functional theory (DFT) calculations have been performed to estimate the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11119v1-abstract-full').style.display = 'inline'; document.getElementById('2005.11119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.11119v1-abstract-full" style="display: none;"> We report experimental and theoretical studies on the magnetoelastic interactions in MnPS$_3$. Raman scattering response measured as a function of temperature shows a blue shift of the Raman active modes at 120.2 and 155.1 cm$^{-1}$, when the temperature is raised across the antiferromagnetic-paramagnetic transition. Density functional theory (DFT) calculations have been performed to estimate the effective exchange interactions and calculate the Raman active phonon modes. The calculations lead to the conclusion that the peculiar behavior with temperature of the two low energy phonon modes can be explained by the symmetry of their corresponding normal coordinates which involve the virtual modification of the super-exchange angles associated with the leading antiferromagnetic (AFM) interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11119v1-abstract-full').style.display = 'none'; document.getElementById('2005.11119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 9 pages, 7 figures. Supplementary : 5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10605">arXiv:2005.10605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.10605">pdf</a>, <a href="https://arxiv.org/format/2005.10605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.064425">10.1103/PhysRevB.104.064425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent magnetic behaviour in the frustrated Yb$_3$Ga$_5$O$_{12}$ garnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sandberg%2C+L+O">Lise Orduk Sandberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edberg%2C+R">Richard Edberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+K+S">Kasper S. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin-Thro%2C+L">Lucile Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fak%2C+B">B. Fak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">Georg Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">Gabriele Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henelius%2C+P">Patrik Henelius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefmann%2C+K">Kim Lefmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deen%2C+P+P">Pascale P. Deen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10605v5-abstract-short" style="display: inline;"> We report neutron scattering, magnetic susceptibility and Monte Carlo theoretical analysis to verify the short range nature of the magnetic structure and spin-spin correlations in a Yb$_3$Ga$_5$O$_{12}$ single crystal. The quantum spin state of Yb$^{3+}$ in Yb$_3$Ga$_5$O$_{12}$ is verified. The quantum spins organise into a short ranged emergent director state for T $&lt;$ 0.4 K derived from anisotro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10605v5-abstract-full').style.display = 'inline'; document.getElementById('2005.10605v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10605v5-abstract-full" style="display: none;"> We report neutron scattering, magnetic susceptibility and Monte Carlo theoretical analysis to verify the short range nature of the magnetic structure and spin-spin correlations in a Yb$_3$Ga$_5$O$_{12}$ single crystal. The quantum spin state of Yb$^{3+}$ in Yb$_3$Ga$_5$O$_{12}$ is verified. The quantum spins organise into a short ranged emergent director state for T $&lt;$ 0.4 K derived from anisotropy and near neighbour exchange. We derive the magnitude of the near neighbour exchange interactions $0.6\; {\rm K} &lt; J_1 &lt; 0.7\; {\rm K}, J_2 = 0.12$~K and the magnitude of the dipolar exchange interaction, $D$, in the range $0.18 &lt; D &lt; 0.21$ K. Certain aspects of the broad experimental dataset can be modelled using a $J_1D$ model with ferromagnetic near neighbour spin-spin correlations while other aspects of the data can be accurately reproduced using a $J_1J_2D$ model with antiferromagnetic near neighbour spin-spin correlation. As such, although we do not quantify all the relevant exchange interactions we nevertheless provide a strong basis for the understanding of the complex Hamiltonian required to fully describe the magnetic state of Yb$_3$Ga$_5$O$_{12}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10605v5-abstract-full').style.display = 'none'; document.getElementById('2005.10605v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper 10 pages, appendix 6 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 064425 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10297">arXiv:2004.10297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.10297">pdf</a>, <a href="https://arxiv.org/format/2004.10297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.inorgchem.0c02899">10.1021/acs.inorgchem.0c02899 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sample Dependence of Magnetism in the Next Generation Cathode Material LiNi$_{0.8}$Mn$_{0.1}$Co$_{0.1}$O$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+P">P. Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">J. A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">C. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruff%2C+Z">Z. Ruff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keen%2C+D+A">D. A. Keen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+R+I">R. I. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grey%2C+C+P">C. P. Grey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dutton%2C+S+E">S. E. Dutton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10297v2-abstract-short" style="display: inline;"> We present a structural and magnetic study on two batches of polycrystalline LiNi$_{0.8}$Mn$_{0.1}$Co$_{0.1}$O$_2$ (commonly known as Li NMC 811), a Ni-rich Li ion battery cathode material, using elemental analysis, X-ray and neutron diffraction, magnetometry, and polarised neutron scattering measurements. We find that the samples, labelled S1 and S2, have the composition Li$_{1-x}$Ni$_{0.9+x-y}$M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10297v2-abstract-full').style.display = 'inline'; document.getElementById('2004.10297v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10297v2-abstract-full" style="display: none;"> We present a structural and magnetic study on two batches of polycrystalline LiNi$_{0.8}$Mn$_{0.1}$Co$_{0.1}$O$_2$ (commonly known as Li NMC 811), a Ni-rich Li ion battery cathode material, using elemental analysis, X-ray and neutron diffraction, magnetometry, and polarised neutron scattering measurements. We find that the samples, labelled S1 and S2, have the composition Li$_{1-x}$Ni$_{0.9+x-y}$Mn$_y$Co$_{0.1}$O$_2$, with $x = 0.025(2)$, $y = 0.120(2)$ for S1 and $x = 0.002(2)$, $y = 0.094(2)$ for S2, corresponding to different concentrations of magnetic ions and excess Ni$^{2+}$ in the Li$^+$layers. Both samples show a peak in the zero-field cooled (ZFC) dc susceptibility at 8.0(2) K but the temperature at which the ZFC and FC (field-cooled) curves deviate is substantially different: 64(2) K for S1 and 122(2) K for S2. Ac susceptibility measurements show that the transition for S1 shifts with frequency whereas no such shift is observed for S2 within the resolution of our measurements. Our results demonstrate the sample dependence of magnetic properties in Li NMC 811, consistent with previous reports on the parent material LiNiO$_2$. We further establish that a combination of experimental techniques are necessary to accurately determine the chemical composition of next generation battery materials with multiple cations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10297v2-abstract-full').style.display = 'none'; document.getElementById('2004.10297v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised manuscript, 27 pages main text, 6 figures, 5 pages supplementary material. Accepted for publication in Inorganic Chemistry</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Inorganic Chemistry 60, 263 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09749">arXiv:2002.09749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.09749">pdf</a>, <a href="https://arxiv.org/format/2002.09749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.167201">10.1103/PhysRevLett.125.167201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cluster Frustration in the Breathing Pyrochlore Magnet LiGaCr4S8 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pokharel%2C+G">Ganesh Pokharel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arachchige%2C+H+S">Hasitha Suriya Arachchige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+T+J">Travis J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A+F">Andrew F. May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fishman%2C+R+S">Randy S. Fishman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">Gabriele Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">Stuart Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">Georg Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D+S">David S. Parker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">Tao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">Joseph A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">Andrew D. Christianson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09749v1-abstract-short" style="display: inline;"> We present a comprehensive neutron scattering study of the breathing pyrochlore magnet LiGaCr4S8. We observe an unconventional magnetic excitation spectrum with a separation of high and low-energy spin dynamics in the correlated paramagnetic regime above a spin-freezing transition at 12(2) K. By fitting to magnetic diffuse-scattering data, we parameterize the spin Hamiltonian. We find that interac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09749v1-abstract-full').style.display = 'inline'; document.getElementById('2002.09749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09749v1-abstract-full" style="display: none;"> We present a comprehensive neutron scattering study of the breathing pyrochlore magnet LiGaCr4S8. We observe an unconventional magnetic excitation spectrum with a separation of high and low-energy spin dynamics in the correlated paramagnetic regime above a spin-freezing transition at 12(2) K. By fitting to magnetic diffuse-scattering data, we parameterize the spin Hamiltonian. We find that interactions are ferromagnetic within the large and small tetrahedra of the breathing pyrochlore lattice, but antiferromagnetic further-neighbor interactions are also essential to explain our data, in qualitative agreement with density-functional theory predictions [Ghoshet al.,npj Quantum Mater.4, 63 (2019)]. We explain the origin of geometrical frustration in LiGaCr4S8 interms of net antiferromagnetic coupling between emergent tetrahedral spin clusters that occupy a face-centered lattice. Our results provide insight into the emergence of frustration in the presence of strong further-neighbor couplings, and a blueprint for the determination of magnetic interactions in classical spin liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09749v1-abstract-full').style.display = 'none'; document.getElementById('2002.09749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental information available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 167201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.00928">arXiv:1912.00928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.00928">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0827-7">10.1038/s41567-020-0827-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quantum liquid of magnetic octupoles on the pyrochlore lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sibille%2C+R">Romain Sibille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gauthier%2C+N">Nicolas Gauthier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Por%C3%A9e%2C+V">Victor Por茅e</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ewings%2C+R+A">Russell A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">Toby G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollivier%2C+J">Jacques Ollivier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">Clemens Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+T+C">Thomas C. Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keen%2C+D+A">David A. Keen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G酶ran J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+L">Lukas Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petit%2C+S">Sylvain Petit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennell%2C+T">Tom Fennell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.00928v1-abstract-short" style="display: inline;"> Spin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles$^1$. Theories typically define such states using gauge fields and deconfined quasiparticle excitations that emerge from a simple rule governing the local ground state of a frustrated magnet. For example, the &#39;2-in-2-out&#39; ice rule for dipole moments on a tetrahedron can lead to a quantum spin ice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00928v1-abstract-full').style.display = 'inline'; document.getElementById('1912.00928v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.00928v1-abstract-full" style="display: none;"> Spin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles$^1$. Theories typically define such states using gauge fields and deconfined quasiparticle excitations that emerge from a simple rule governing the local ground state of a frustrated magnet. For example, the &#39;2-in-2-out&#39; ice rule for dipole moments on a tetrahedron can lead to a quantum spin ice in rare-earth pyrochlores - a state described by a lattice gauge theory of quantum electrodynamics$^{2-4}$. However, f-electron ions often carry multipole degrees of freedom of higher rank than dipoles, leading to intriguing behaviours and &#39;hidden&#39; orders$^{5-6}$. Here we show that the correlated ground state of a Ce$^{3+}$-based pyrochlore, Ce$_2$Sn$_2$O$_7$, is a quantum liquid of magnetic octupoles. Our neutron scattering results are consistent with the formation of a fluid-like state of matter, but the intensity distribution is weighted to larger scattering vectors, which indicates that the correlated degrees of freedom have a more complex magnetization density than that typical of magnetic dipoles in a spin liquid. The temperature evolution of the bulk properties in the correlated regime below 1 Kelvin is well reproduced using a model of dipole-octupole doublets on a pyrochlore lattice$^{7-8}$. The nature and strength of the octupole-octupole couplings, together with the existence of a continuum of excitations attributed to spinons, provides further evidence for a quantum ice of octupoles governed by a &#39;2-plus-2-minus&#39; rule. Our work identifies Ce$_2$Sn$_2$O$_7$ as a unique example of a material where frustrated multipoles form a &#39;hidden&#39; topological order, thus generalizing observations on quantum spin liquids to multipolar phases that can support novel types of emergent fields and excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00928v1-abstract-full').style.display = 'none'; document.getElementById('1912.00928v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.10971">arXiv:1903.10971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.10971">pdf</a>, <a href="https://arxiv.org/format/1903.10971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Isostructural Mott Transition in 2D honeycomb antiferromagnet V$_{0.9}$PS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Coak%2C+M+J">M. J. Coak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+S">S. Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daisenberger%2C+D">D. Daisenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamidov%2C+H">H. Hamidov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haines%2C+C+R+S">C. R. S. Haines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alireza%2C+P+L">P. L. Alireza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">C. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+S+S">S. S. Saxena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+-">J. -G. Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.10971v1-abstract-short" style="display: inline;"> We present the observation of an isostructural Mott insulator-metal transition in van-der-Waals honeycomb antiferromagnet V$_{0.9}$PS$_3$ through high-pressure x-ray diffraction and transport measurements. The MPX$_3$ family of magnetic van-der-Waals materials (M denotes a first row transition metal and X either S or Se) are currently the subject of broad and intense attention, but the vanadium co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.10971v1-abstract-full').style.display = 'inline'; document.getElementById('1903.10971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.10971v1-abstract-full" style="display: none;"> We present the observation of an isostructural Mott insulator-metal transition in van-der-Waals honeycomb antiferromagnet V$_{0.9}$PS$_3$ through high-pressure x-ray diffraction and transport measurements. The MPX$_3$ family of magnetic van-der-Waals materials (M denotes a first row transition metal and X either S or Se) are currently the subject of broad and intense attention, but the vanadium compounds have until this point not been studied beyond their basic properties. We observe insulating variable-range-hopping type resistivity in V$_{0.9}$PS$_3$, with a gradual increase in effective dimensionality with increasing pressure, followed by a transition to a metallic resistivity temperature dependence between 112 and 124 kbar. The metallic state additionally shows a low-temperature upturn we tentatively attribute to the Kondo Effect. A gradual structural distortion is seen between 26-80 kbar, but no structural change at higher pressures corresponding to the insulator-metal transition. We conclude that the insulator-metal transition occurs in the absence of any distortions to the lattice - an isostructural Mott transition in a new class of two-dimensional material, and in strong contrast to the behavior of the other MPX$_3$ compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.10971v1-abstract-full').style.display = 'none'; document.getElementById('1903.10971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, including appended supplementary section. Manuscript submitted to NPJ Quantum Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07179">arXiv:1902.07179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07179">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-08598-z">10.1038/s41467-019-08598-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of defects in determining the magnetic ground state of ytterbium titanate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bowman%2C+D+F">D. F. Bowman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cemal%2C+E">E. Cemal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lehner%2C+T">T. Lehner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin-Thro%2C+L">L. Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G. J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutmann%2C+M+J">M. J. Gutmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voneshen%2C+D+J">D. J. Voneshen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+D+G">D. G. Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castelnovo%2C+C">C. Castelnovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refson%2C+K">K. Refson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goff%2C+J+P">J. P. Goff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07179v1-abstract-short" style="display: inline;"> Pyrochlore systems are ideally suited to the exploration of geometrical frustration in three dimensions, and their rich phenomenology encompasses topological order and fractional excitations. Classical spin ices provide the first context in which it is possible to control emergent magnetic monopoles, and anisotropic exchange leads to even richer behaviour associated with large quantum fluctuations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07179v1-abstract-full').style.display = 'inline'; document.getElementById('1902.07179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07179v1-abstract-full" style="display: none;"> Pyrochlore systems are ideally suited to the exploration of geometrical frustration in three dimensions, and their rich phenomenology encompasses topological order and fractional excitations. Classical spin ices provide the first context in which it is possible to control emergent magnetic monopoles, and anisotropic exchange leads to even richer behaviour associated with large quantum fluctuations. Whether the magnetic ground state of Yb2Ti2O7 is a quantum spin liquid or a ferromagnetic phase induced by a Higgs transition appears to be sample dependent. Here we have determined the role of structural defects on the magnetic ground state via the diffuse scattering of neutrons. We find that oxygen vacancies stabilise the spin liquid phase and the stuffing of Ti sites by Yb suppresses it. Samples in which the oxygen vacancies have been eliminated by annealing in oxygen exhibit a transition to a ferromagnetic phase, and this is the true magnetic ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07179v1-abstract-full').style.display = 'none'; document.getElementById('1902.07179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 1 table, 4 figures, journal article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10:637 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09335">arXiv:1809.09335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.09335">pdf</a>, <a href="https://arxiv.org/ps/1809.09335">ps</a>, <a href="https://arxiv.org/format/1809.09335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.98.042417">10.1103/PhysRevE.98.042417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinky DNA in solution: Small angle scattering study of a nucleosome positioning sequence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schindler%2C+T">Torben Schindler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonz%C3%A1lez%2C+A">Adri谩n Gonz谩lez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boopathi%2C+R">Ramachandran Boopathi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roda%2C+M+M">Marta Marty Roda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romero-Santacreu%2C+L">Lorena Romero-Santacreu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porcar%2C+L">Lionel Porcar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martel%2C+A">Anne Martel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Theodorakopoulos%2C+N">Nikos Theodorakopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuesta-L%C3%B3pez%2C+S">Santiago Cuesta-L贸pez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Angelov%2C+D">Dimitar Angelov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Unruh%2C+T">Tobias Unruh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peyrard%2C+M">Michel Peyrard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09335v1-abstract-short" style="display: inline;"> DNA is a flexible molecule, but the degree of its flexibility is subject to debate. The commonly-accepted persistence length of $l_p \approx 500\,$脜 is inconsistent with recent studies on short-chain DNA that show much greater flexibility but do not probe its origin. We have performed X-ray and neutron small-angle scattering on a short DNA sequence containing a strong nucleosome positioning elemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09335v1-abstract-full').style.display = 'inline'; document.getElementById('1809.09335v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09335v1-abstract-full" style="display: none;"> DNA is a flexible molecule, but the degree of its flexibility is subject to debate. The commonly-accepted persistence length of $l_p \approx 500\,$脜 is inconsistent with recent studies on short-chain DNA that show much greater flexibility but do not probe its origin. We have performed X-ray and neutron small-angle scattering on a short DNA sequence containing a strong nucleosome positioning element, and analyzed the results using a modified Kratky-Porod model to determine possible conformations. Our results support a hypothesis from Crick and Klug in 1975 that some DNA sequences in solution can have sharp kinks, potentially resolving the discrepancy. Our conclusions are supported by measurements on a radiation-damaged sample, where single-strand breaks lead to increased flexibility and by an analysis of data from another sequence, which does not have kinks, but where our method can detect a locally enhanced flexibility due to an $AT$-domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09335v1-abstract-full').style.display = 'none'; document.getElementById('1809.09335v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 98, 042417 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01480">arXiv:1808.01480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.01480">pdf</a>, <a href="https://arxiv.org/ps/1808.01480">ps</a>, <a href="https://arxiv.org/format/1808.01480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.134414">10.1103/PhysRevB.98.134414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The magnetic exchange parameters and anisotropy of the quasi-two dimensional antiferromagnet NiPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lan%C3%A7on%2C+D">D. Lan莽on</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ewings%2C+R+A">R. A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guidi%2C+T">T. Guidi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Formisano%2C+F">F. Formisano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01480v1-abstract-short" style="display: inline;"> Neutron inelastic scattering has been used to measure the magnetic excitations in powdered NiPS$_3$, a quasi-two dimensional antiferromagnet with spin $S = 1$ on a honeycomb lattice. The spectra show clear, dispersive magnons with a $\sim 7$ meV gap at the Brillouin zone center. The data were fitted using a Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01480v1-abstract-full').style.display = 'inline'; document.getElementById('1808.01480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01480v1-abstract-full" style="display: none;"> Neutron inelastic scattering has been used to measure the magnetic excitations in powdered NiPS$_3$, a quasi-two dimensional antiferromagnet with spin $S = 1$ on a honeycomb lattice. The spectra show clear, dispersive magnons with a $\sim 7$ meV gap at the Brillouin zone center. The data were fitted using a Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb planes. Magnetic exchange interactions up to the third intraplanar nearest-neighbour were required. The fits show robustly that NiPS$_3$ has an easy axis anisotropy with $螖= 0.3$ meV and that the third nearest-neighbour has a strong antiferromagnetic exchange of $J_3 = -6.90$ meV. The data can be fitted reasonably well with either $J_1 &lt; 0$ or $J_1 &gt; 0$, however the best quantitative agreement with high-resolution data indicate that the nearest-neighbour interaction is ferromagnetic with $J_1 = 1.9$ meV and that the second nearest-neighbour exchange is small and antiferromagnetic with $J_2 = -0.1$ meV. The dispersion has a minimum in the Brillouin zone corner that is slightly larger than that at the Brillouin zone center, indicating that the magnetic structure of NiPS$_3$ is close to being unstable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01480v1-abstract-full').style.display = 'none'; document.getElementById('1808.01480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures, 33 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 134414 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.09472">arXiv:1805.09472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.09472">pdf</a>, <a href="https://arxiv.org/format/1805.09472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.100401">10.1103/PhysRevB.98.100401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dipolar-Octupolar Ising Antiferromagnetism in Sm$_2$Ti$_2$O$_7$: A Moment Fragmentation Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mauws%2C+C">C. Mauws</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallas%2C+A+M">A. M. Hallas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">G. Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">P. M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaudet%2C+J">J. Gaudet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ziat%2C+D">D. Ziat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quilliam%2C+J+A">J. A. Quilliam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lussier%2C+J+A">J. A. Lussier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bieringer%2C+M">M. Bieringer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">M. B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+D">D. Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luke%2C+G+M">G. M. Luke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">C. R. Wiebe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.09472v1-abstract-short" style="display: inline;"> Over the past two decades, the magnetic ground states of all rare earth titanate pyrochlores have been extensively studied, with the exception of Sm$_2$Ti$_2$O$_7$. This is, in large part, due to the very high absorption cross-section of naturally-occurring samarium, which renders neutron scattering infeasible. To combat this, we have grown a large, isotopically-enriched single crystal of Sm$_2$Ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09472v1-abstract-full').style.display = 'inline'; document.getElementById('1805.09472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.09472v1-abstract-full" style="display: none;"> Over the past two decades, the magnetic ground states of all rare earth titanate pyrochlores have been extensively studied, with the exception of Sm$_2$Ti$_2$O$_7$. This is, in large part, due to the very high absorption cross-section of naturally-occurring samarium, which renders neutron scattering infeasible. To combat this, we have grown a large, isotopically-enriched single crystal of Sm$_2$Ti$_2$O$_7$. Using inelastic neutron scattering, we determine that the crystal field ground state for Sm$^{3+}$ is a dipolar-octupolar doublet with Ising anisotropy. Neutron diffraction experiments reveal that Sm$_2$Ti$_2$O$_7$ orders into the all-in, all-out magnetic structure with an ordered moment of 0.44(7) $渭_B$ below $T_N=0.35$ K, consistent with expectations for antiferromagnetically-coupled Ising spins on the pyrochlore lattice. Zero-field muon spin relaxation measurements reveal an absence of spontaneous oscillations and persistent spin fluctuations down to 0.03 K. The combination of the dipolar-octupolar nature of the Sm$^{3+}$ moment, the all-in, all-out ordered state, and the low-temperature persistent spin dynamics make this material an intriguing candidate for moment fragmentation physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09472v1-abstract-full').style.display = 'none'; document.getElementById('1805.09472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Supplemental Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 100401 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.02063">arXiv:1805.02063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.02063">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.214418">10.1103/PhysRevB.98.214418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orientation of the intra-unit-cell magnetic moment in the high-Tc superconductor HgBa2CuO$_{4+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yang Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin-Thro%2C+L">Lucile Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+M+K">Mun K. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dorow%2C+C+J">Chelsey J. Dorow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+J">Jaehong Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sidis%2C+Y">Yvan Sidis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">Martin Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourges%2C+P">Philippe Bourges</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.02063v1-abstract-short" style="display: inline;"> Polarized-neutron diffraction experiments (PND) have revealed that the pseudogap state of the cuprates exhibits unusual intra-unit-cell (IUC) magnetism. At a qualitative level, the data indicate a moment direction that is neither perpendicular nor parallel to the CuO2 layers, yet an accurate measurement of a structurally simple compound has been lacking. Here we report PND results with unprecedent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02063v1-abstract-full').style.display = 'inline'; document.getElementById('1805.02063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.02063v1-abstract-full" style="display: none;"> Polarized-neutron diffraction experiments (PND) have revealed that the pseudogap state of the cuprates exhibits unusual intra-unit-cell (IUC) magnetism. At a qualitative level, the data indicate a moment direction that is neither perpendicular nor parallel to the CuO2 layers, yet an accurate measurement of a structurally simple compound has been lacking. Here we report PND results with unprecedented accuracy for the IUC magnetic order in the simple-tetragonal single-CuO$_2$-layer compound HgBa2CuO$_{4+未}$. At the transition temperature, we find evidence for magnetic critical scattering. Deep in the ordered state, we determine the moment direction to be 70掳 $\pm$ 10掳 away from the normal to the CuO$_2$ layers, which rules out both purely planar loop currents and high-symmetry Dirac multipoles, the two most prominent theoretical proposals for the microscopic origin of the IUC magnetism. However, the data are consistent with Dirac multipoles of lower symmetry or, alternatively, with a particular configuration of loop currents that flow on the faces of the CuO$_6$ octahedra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02063v1-abstract-full').style.display = 'none'; document.getElementById('1805.02063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary materials included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 214418 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.10089">arXiv:1801.10089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.10089">pdf</a>, <a href="https://arxiv.org/ps/1801.10089">ps</a>, <a href="https://arxiv.org/format/1801.10089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.266801">10.1103/PhysRevLett.121.266801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural and electronic phase transitions in FePS$_3$ under the application of pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Haines%2C+C+R+S">C. R. S. Haines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coak%2C+M+J">M. J. Coak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lampronti%2C+G+I">G. I. Lampronti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">C. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamidov%2C+H">H. Hamidov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daisenberger%2C+D">D. Daisenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nahai-Williamson%2C+P">P. Nahai-Williamson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+S+S">S. S. Saxena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.10089v2-abstract-short" style="display: inline;"> Two-dimensional materials have proven to be a prolific breeding ground of new and unstudied forms of magnetism and unusual metallic states, particularly when tuned between their insulating and metallic phases. In this paper we present work on a new metal to insulator transition system FePS$_3$ . This compound is a two-dimensional van-der-Waals antiferromagnetic Mott insulator. Here we report the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.10089v2-abstract-full').style.display = 'inline'; document.getElementById('1801.10089v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.10089v2-abstract-full" style="display: none;"> Two-dimensional materials have proven to be a prolific breeding ground of new and unstudied forms of magnetism and unusual metallic states, particularly when tuned between their insulating and metallic phases. In this paper we present work on a new metal to insulator transition system FePS$_3$ . This compound is a two-dimensional van-der-Waals antiferromagnetic Mott insulator. Here we report the discovery of an insulator-metal transition in FePS$_3$, as evidenced by x-ray diffraction and electrical transport measurements, using high pressure as a tuning parameter. Two structural phase transitions are observed in the x-ray diffraction data as a function of pressure and resistivity measurements show evidence of onset of a metallic state at high pressures. We propose models for the two new structures that can successfully explain the x-ray diffraction patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.10089v2-abstract-full').style.display = 'none'; document.getElementById('1801.10089v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 266801 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.05527">arXiv:1708.05527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.05527">pdf</a>, <a href="https://arxiv.org/format/1708.05527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.1.074412">10.1103/PhysRevMaterials.1.074412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$ with magnetic pair distribution function analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Frandsen%2C+B+A">Benjamin A. Frandsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+K+A">Kate A. Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krizan%2C+J+W">Jason W. Krizan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G酶ran J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Billinge%2C+S+J+L">Simon J. L. Billinge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.05527v3-abstract-short" style="display: inline;"> We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05527v3-abstract-full').style.display = 'inline'; document.getElementById('1708.05527v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.05527v3-abstract-full" style="display: none;"> We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 脜, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05527v3-abstract-full').style.display = 'none'; document.getElementById('1708.05527v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 1, 074412 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01845">arXiv:1708.01845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.01845">pdf</a>, <a href="https://arxiv.org/format/1708.01845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Disorder and Quantum spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+N">N. Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonville%2C+P">P. Bonville</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guitteny%2C+S">S. Guitteny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Decorse%2C+C">C. Decorse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mirebeau%2C+I">I. Mirebeau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01845v1-abstract-short" style="display: inline;"> We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin ice candidate Pr2Zr2O7. Since Pr is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01845v1-abstract-full').style.display = 'inline'; document.getElementById('1708.01845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01845v1-abstract-full" style="display: none;"> We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin ice candidate Pr2Zr2O7. Since Pr is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin excitation spectra. Taking advantage of mean field and spin dynamics simulations, we argue that the randomness in Pr2Zr2O7, promotes a new state of matter, which is disordered, yet characterized by short range antiferroquadrupolar correlations, and from which emerge spin-ice like excitations. This study thus opens an original research route in the field of quantum spin ice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01845v1-abstract-full').style.display = 'none'; document.getElementById('1708.01845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.07989">arXiv:1706.07989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.07989">pdf</a>, <a href="https://arxiv.org/ps/1706.07989">ps</a>, <a href="https://arxiv.org/format/1706.07989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aa8a43">10.1088/1361-648X/aa8a43 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simonet%2C+V">V. Simonet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballou%2C+R">R. Ballou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McIntyre%2C+G+J">G. J. McIntyre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.07989v1-abstract-short" style="display: inline;"> The magnetic properties and magnetic structure are presented for CoPS$_3$, a quasi-two-dimensional antiferromagnet on a honeycomb lattice with a N茅el temperature of $T_N \sim 120$ K. The compound is shown to have XY-like anisotropy in its susceptibility, and the anisotropy is analysed to extract crystal field parameters. For temperatures between 2 K and 300 K, no phase transitions were observed in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.07989v1-abstract-full').style.display = 'inline'; document.getElementById('1706.07989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.07989v1-abstract-full" style="display: none;"> The magnetic properties and magnetic structure are presented for CoPS$_3$, a quasi-two-dimensional antiferromagnet on a honeycomb lattice with a N茅el temperature of $T_N \sim 120$ K. The compound is shown to have XY-like anisotropy in its susceptibility, and the anisotropy is analysed to extract crystal field parameters. For temperatures between 2 K and 300 K, no phase transitions were observed in the field-dependent magnetization up to 10 Tesla. Single-crystal neutron diffraction shows that the magnetic propagation vector is {\bf{k}}= $\left[010\right]$ with the moments mostly along the $\mathbf{a}$ axis and with a small component along the $\mathbf{c}$ axis, which largely verifies the previously-published magnetic structure for this compound. The magnetic Bragg peak intensity decreases with increasing temperature as a power law with exponent $2尾= 0.60 \pm 0.01$ for $T &gt; 0.9~T_N$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.07989v1-abstract-full').style.display = 'none'; document.getElementById('1706.07989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.04735">arXiv:1706.04735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.04735">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-017-0048-1">10.1038/s41535-017-0048-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The low-temperature highly correlated quantum phase in the charge-density-wave 1T-TaS_2 compound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kratochvilova%2C+M">Marie Kratochvilova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillier%2C+A+D">Adrian D. Hillier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lihai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.04735v1-abstract-short" style="display: inline;"> A prototypical quasi-2D metallic compound, 1T-TaS_2 has been extensively studied due to an intricate interplay between a Mott-insulating ground state and a charge density-wave (CDW) order. In the low-temperature phase, 12 out of 13 Ta_{4+} 5\textit{d}-electrons form molecular orbitals in hexagonal star-of-David patterns, leaving one 5\textit{d}-electron with \textit{S} = 1/2 spin free. This orphan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04735v1-abstract-full').style.display = 'inline'; document.getElementById('1706.04735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.04735v1-abstract-full" style="display: none;"> A prototypical quasi-2D metallic compound, 1T-TaS_2 has been extensively studied due to an intricate interplay between a Mott-insulating ground state and a charge density-wave (CDW) order. In the low-temperature phase, 12 out of 13 Ta_{4+} 5\textit{d}-electrons form molecular orbitals in hexagonal star-of-David patterns, leaving one 5\textit{d}-electron with \textit{S} = 1/2 spin free. This orphan quantum spin with a large spin-orbit interaction is expected to form a highly correlated phase of its own. And it is most likely that they will form some kind of a short-range order out of a strongly spin-orbit coupled Hilbert space. In order to investigate the low-temperature magnetic properties, we performed a series of measurements including neutron scattering and muon experiments. The obtained data clearly indicate the presence of the short-ranged phase and put the upper bound on ~ 0.4 \textit渭_B for the size of the magnetic moment, consistent with the orphan-spin scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04735v1-abstract-full').style.display = 'none'; document.getElementById('1706.04735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures + supplemental material. Accepted by npj Quantum Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10737">arXiv:1705.10737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.10737">pdf</a>, <a href="https://arxiv.org/format/1705.10737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.137201">10.1103/PhysRevLett.120.137201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dipolar spin ice states with fast monopole hopping rate in CdEr$_2$X$_4$ (X = Se, S) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+S">Shang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaharko%2C+O">Oksana Zaharko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsurkan%2C+V">Vladimir Tsurkan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prodan%2C+L">Lilian Prodan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riordan%2C+E">Edward Riordan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lago%2C+J">Jorge Lago</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A5k%2C+B">Bj枚rn F氓k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koza%2C+M+M">Marek M. Koza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">Clemens Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fouquet%2C+P">Peter Fouquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+L">Lukas Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Can%C3%A9vet%2C+E">Emmanuel Can茅vet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">Marisa Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blomgren%2C+J">Jakob Blomgren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johansson%2C+C">Christer Johansson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giblin%2C+S+R">Sean R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vrtnik%2C+S">Stanislav Vrtnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luzar%2C+J">Jo啪e Luzar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loidl%2C+A">Alois Loidl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Christian R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennell%2C+T">Tom Fennell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10737v3-abstract-short" style="display: inline;"> Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr$_2$Se$_4$ is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three-orders of magnitude faster than the canonical spin ice Dy$_2$Ti$_2$O$_7$. In this letter we use diffuse neutron scattering to show that both Cd&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10737v3-abstract-full').style.display = 'inline'; document.getElementById('1705.10737v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10737v3-abstract-full" style="display: none;"> Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr$_2$Se$_4$ is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three-orders of magnitude faster than the canonical spin ice Dy$_2$Ti$_2$O$_7$. In this letter we use diffuse neutron scattering to show that both CdEr$_2$Se$_4$ and CdEr$_2$S$_4$ support a dipolar spin ice state -- the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to that in Dy$_2$Ti$_2$O$_7$, i.e. dilute and uncorrelated, so cannot provide three-orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er$^{3+}$ ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr$_2$X$_4$ (X = Se, S) are primarily due to much faster monopole hopping. Our work suggests that CdEr$_2$X$_4$ offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10737v3-abstract-full').style.display = 'none'; document.getElementById('1705.10737v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 137201 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05699">arXiv:1705.05699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.05699">pdf</a>, <a href="https://arxiv.org/format/1705.05699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strong exchange anisotropy in YbMgGaO$_4$ from polarized neutron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=T%C3%B3th%2C+S">S谩ndor T贸th</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rolfs%2C+K">Katharina Rolfs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Christian R眉egg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05699v1-abstract-short" style="display: inline;"> We measured the magnetic correlations in the triangular lattice spin-liquid candidate material YbMgGaO$_4$ via polarized neutron diffraction. The extracted in-plane and out-of-plane components of the magnetic structure factor show clear anisotropy. We found that short-range correlations persist at the lowest measured temperature of 52 mK and neutron scattering intensity is centered at the $M$ midd&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05699v1-abstract-full').style.display = 'inline'; document.getElementById('1705.05699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05699v1-abstract-full" style="display: none;"> We measured the magnetic correlations in the triangular lattice spin-liquid candidate material YbMgGaO$_4$ via polarized neutron diffraction. The extracted in-plane and out-of-plane components of the magnetic structure factor show clear anisotropy. We found that short-range correlations persist at the lowest measured temperature of 52 mK and neutron scattering intensity is centered at the $M$ middle-point of the hexagonal Brillouin-zone edge. Moreover, we found pronounced spin anisotropy, with different correlation lengths for the in-plane and out-of-plane spin components. When comparing to a self-consistent Gaussian appoximation, our data clearly support a model with only first-neighbor coupling and strongly anisotropic exchanges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05699v1-abstract-full').style.display = 'none'; document.getElementById('1705.05699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04312">arXiv:1702.04312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.04312">pdf</a>, <a href="https://arxiv.org/ps/1702.04312">ps</a>, <a href="https://arxiv.org/format/1702.04312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.134427">10.1103/PhysRevB.95.134427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism of monomer MnO and heterodimer FePt@MnO nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">X. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klapper%2C+A">A. Klapper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Y. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nemkovski%2C+K">K. Nemkovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+H">H. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6hler%2C+O">O. K枚hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schilmann%2C+A">A. Schilmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tremel%2C+W">W. Tremel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petracic%2C+O">O. Petracic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Br%C3%BCckel%2C+T">Th. Br眉ckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04312v1-abstract-short" style="display: inline;"> We report about the magnetic properties of antiferromagnetic (AF) MnO nanoparticles (NPs) with different sizes (6-19nm). Using a combination of polarized neutron scattering and magnetometry we were able to resolve previously observed peculiarities. Magnetometry, on the one hand, reveals a peak in the zero field cooled (ZFC) magnetization curves at low temperatures (~25K) but no feature around the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04312v1-abstract-full').style.display = 'inline'; document.getElementById('1702.04312v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04312v1-abstract-full" style="display: none;"> We report about the magnetic properties of antiferromagnetic (AF) MnO nanoparticles (NPs) with different sizes (6-19nm). Using a combination of polarized neutron scattering and magnetometry we were able to resolve previously observed peculiarities. Magnetometry, on the one hand, reveals a peak in the zero field cooled (ZFC) magnetization curves at low temperatures (~25K) but no feature around the N茅el temperature at 118K. On the other hand, polarized neutron scattering shows the expected behavior of the AF order parameter vanishing around 118K. Moreover, hysteresis curves measured at various temperatures reveal an exchange bias effect indicating a coupling of an AF core to a ferromagnetic (FM)-like shell. ZFC data measured at various fields exclude a purely superparamagnetic (SPM) scenario. We conclude that the magnetic behavior of MnO particles can be explained by a superposition of SPM-like thermal fluctuations of the AF-N茅el vector inside the AF core and a strong magnetic coupling to a ferrimagnetic Mn$_2$O$_3$ or Mn$_3$O$_4$ shell. In addition, we have studied heterodimer (&#39;Janus&#39;) particles, where a FM FePt particle is attached to the AF MnO particle. Via the exchange bias effect, the magnetic moment of the FePt subunit is stabilized by the MnO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04312v1-abstract-full').style.display = 'none'; document.getElementById('1702.04312v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 134427 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.08025">arXiv:1612.08025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.08025">pdf</a>, <a href="https://arxiv.org/format/1612.08025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.024410">10.1103/PhysRevB.95.024410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field Induced Magnetic States in Holmium Tetraboride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brunt%2C+D">Daniel Brunt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouladdiaf%2C+B">Bachir Ouladdiaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qureshi%2C+N">Navid Qureshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">Oleg A. Petrenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.08025v1-abstract-short" style="display: inline;"> A study of the zero field and field induced magnetic states of the frustrated rare earth tetraboride, HoB$_4$, has been carried out using single crystal neutron diffraction complemented by magnetisation measurements. In zero field, HoB$_4$ shows magnetic phase transitions at $T_{\mathrm{N1}}$ = 7.1 K to an incommensurate state with a propagation vector ($未$, $未$, $未&#39;$), where $未$ = 0.02 and $未&#39;$ =&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.08025v1-abstract-full').style.display = 'inline'; document.getElementById('1612.08025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.08025v1-abstract-full" style="display: none;"> A study of the zero field and field induced magnetic states of the frustrated rare earth tetraboride, HoB$_4$, has been carried out using single crystal neutron diffraction complemented by magnetisation measurements. In zero field, HoB$_4$ shows magnetic phase transitions at $T_{\mathrm{N1}}$ = 7.1 K to an incommensurate state with a propagation vector ($未$, $未$, $未&#39;$), where $未$ = 0.02 and $未&#39;$ = 0.43 and at $T_{\mathrm{N2}}$ = 5.7 K to a non-collinear commensurate antiferromagnetic structure. Polarised neutron diffraction measurements in zero field have revealed that the incommensurate reflections, albeit much reduced in intensity, persist down to 1.5 K despite antiferromagnetic ordering at 5.7 K. At lower temperatures, application of a magnetic field along the $c$-axis initially re-establishes the incommensurate phase as the dominant magnetic state in a narrow field range, just prior to HoB$_4$ ordering with an up-up-down ferrimagnetic structure characterised by the $(h,k,\frac{1}{3})$-type reflections between 18 and 24 kOe. This field range is marked by the previously reported $M/M_{\mathrm{sat}}$= $\frac{1}{3}$ magnetisation plateau, which we also see in our magnetisation measurements. The region between 21 and 33 kOe is characterised by the increase in the intensity of the antiferromagnetic reflections, such as (100), the maximum of which coincides with the appearance of the narrow magnetisation plateau with $M/M_{\mathrm{sat}}\approx$ $\frac{3}{5}$. Further increase of the magnetic field results in the stabilisation of a polarised state above 33 kOe, while the incommensurate reflections are clearly present in all fields up to 59 kOe. We propose the $H-T$ phase diagram of HoB$_4$ for the $H \parallel c$ containing both stationary and transitionary magnetic phases which overlap and show significant history dependence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.08025v1-abstract-full').style.display = 'none'; document.getElementById('1612.08025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures, Accepted Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05062">arXiv:1608.05062</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.05062">pdf</a>, <a href="https://arxiv.org/format/1608.05062">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aa5d2e">10.1088/1361-648X/aa5d2e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Correlations in the Dipolar Pyrochlore Antiferromagnet Gd2Sn2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">Joseph A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">Georg Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">Oleg A. Petrenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gardner%2C+J+S">Jason S. Gardner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+J+R">J. Ross Stewart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05062v1-abstract-short" style="display: inline;"> We investigate spin correlations in the dipolar Heisenberg antiferromagnet Gd2Sn2O7 using polarised neutron-scattering measurements in the correlated paramagnetic regime. Using Monte Carlo methods, we show that our data are sensitive to weak further-neighbour exchange interactions of magnitude ~0.5% of the nearest-neighbour interaction, and are compatible with either antiferromagnetic next-nearest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05062v1-abstract-full').style.display = 'inline'; document.getElementById('1608.05062v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05062v1-abstract-full" style="display: none;"> We investigate spin correlations in the dipolar Heisenberg antiferromagnet Gd2Sn2O7 using polarised neutron-scattering measurements in the correlated paramagnetic regime. Using Monte Carlo methods, we show that our data are sensitive to weak further-neighbour exchange interactions of magnitude ~0.5% of the nearest-neighbour interaction, and are compatible with either antiferromagnetic next-nearest neighbour interactions, or ferromagnetic third-neighbour interactions that connect spins across hexagonal loops. Calculations of the magnetic scattering intensity reveal rods of diffuse scattering along [111] reciprocal-space directions, which we explain in terms of strong antiferromagnetic correlations parallel to the set of &lt;110&gt; directions that connect a given spin with its nearest neighbours. Finally, we demonstrate that the spin correlations in Gd2Sn2O7 are highly anisotropic, and correlations parallel to third-neighbour separations are particularly sensitive to critical fluctuations associated with incipient long-range order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05062v1-abstract-full').style.display = 'none'; document.getElementById('1608.05062v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.06319">arXiv:1603.06319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.06319">pdf</a>, <a href="https://arxiv.org/format/1603.06319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.134431">10.1103/PhysRevB.86.134431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statics and dynamics of the highly correlated spin ice Ho2Ge2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hallas%2C+A+M">A. M. Hallas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">J. A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silverstein%2C+H+J">H. J. Silverstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodwin%2C+A+L">A. L. Goodwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+J+R">J. R. Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J+G">J. G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+S">J. S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodenough%2C+J+B">J. B. Goodenough</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">G. Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gardner%2C+J+S">J. S. Gardner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">C. R. Wiebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.06319v1-abstract-short" style="display: inline;"> The pyrochlore Ho2Ge2O7 is a new highly correlated spin ice material. Physical property measurements including x-ray diffraction, dc susceptibility and ac susceptibility, confirm that it shares the distinctive characteristics of other known spin ices. Polarized neutron scattering measurements on a powder sample, combined with reverse Monte Carlo (RMC) refinements, give unique information about the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06319v1-abstract-full').style.display = 'inline'; document.getElementById('1603.06319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.06319v1-abstract-full" style="display: none;"> The pyrochlore Ho2Ge2O7 is a new highly correlated spin ice material. Physical property measurements including x-ray diffraction, dc susceptibility and ac susceptibility, confirm that it shares the distinctive characteristics of other known spin ices. Polarized neutron scattering measurements on a powder sample, combined with reverse Monte Carlo (RMC) refinements, give unique information about the spin ice state in Ho2Ge2O7. RMC refinements are used to fit the powder magnetic diffuse scattering and predict the single crystal magnetic scattering of Ho2Ge2O7, demonstrating consistency with spin ice behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06319v1-abstract-full').style.display = 'none'; document.getElementById('1603.06319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 134431 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.05008">arXiv:1603.05008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.05008">pdf</a>, <a href="https://arxiv.org/format/1603.05008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of magnetic fragmentation in spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canals%2C+B">B. Canals</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciomaga-Hatnean%2C+M">M. Ciomaga-Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mutka%2C+H">H. Mutka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.05008v1-abstract-short" style="display: inline;"> Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05008v1-abstract-full').style.display = 'inline'; document.getElementById('1603.05008v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.05008v1-abstract-full" style="display: none;"> Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd$_2$Zr$_2$O$_7$. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallisation and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself via the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05008v1-abstract-full').style.display = 'none'; document.getElementById('1603.05008v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted in Nature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.05339">arXiv:1505.05339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.05339">pdf</a>, <a href="https://arxiv.org/format/1505.05339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.045202">10.1103/PhysRevB.92.045202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The elevated Curie temperature and half-metallicity in the ferromagnetic semiconductor La$_{x}$Eu$_{1-x}$O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Monteiro%2C+P+M+S">Pedro M. S. Monteiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+P+J">Peter J. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hine%2C+N+D+M">Nicholas D. M. Hine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinke%2C+N">Nina-J. Steinke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ionescu%2C+A">Adrian Ionescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooper%2C+J+F+K">Joshaniel F. K. Cooper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barnes%2C+C+H+W">Crispin H. W. Barnes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kinane%2C+C+J">Christian J. Kinane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Zaher Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langridge%2C+S">Sean Langridge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.05339v1-abstract-short" style="display: inline;"> Here we study the effect of La doping in EuO thin films using SQUID magnetometry, muon spin rotation ($渭$SR), polarized neutron reflectivity (PNR), and density functional theory (DFT). The $渭$SR data shows that the La$_{0.15}$Eu$_{0.85}$O is homogeneously magnetically ordered up to its elevated $T_{\rm C}$. It is concluded that bound magnetic polaron behavior does not explain the increase in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.05339v1-abstract-full').style.display = 'inline'; document.getElementById('1505.05339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.05339v1-abstract-full" style="display: none;"> Here we study the effect of La doping in EuO thin films using SQUID magnetometry, muon spin rotation ($渭$SR), polarized neutron reflectivity (PNR), and density functional theory (DFT). The $渭$SR data shows that the La$_{0.15}$Eu$_{0.85}$O is homogeneously magnetically ordered up to its elevated $T_{\rm C}$. It is concluded that bound magnetic polaron behavior does not explain the increase in $T_{\rm C}$ and an RKKY-like interaction is consistent with the $渭$SR data. The estimation of the magnetic moment by DFT simulations concurs with the results obtained by PNR, showing a reduction of the magnetic moment per La$_{x}$Eu$_{1-x}$O for increasing lanthanum doping. This reduction of the magnetic moment is explained by the reduction of the number of Eu-4$f$ electrons present in all the magnetic interactions in EuO films. Finally, we show that an upwards shift of the Fermi energy with La or Gd doping gives rise to half-metallicity for doping levels as high as 3.2 %. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.05339v1-abstract-full').style.display = 'none'; document.getElementById('1505.05339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 045202 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00773">arXiv:1502.00773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.00773">pdf</a>, <a href="https://arxiv.org/format/1502.00773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep07968">10.1038/srep07968 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinct itinerant spin-density waves and local-moment antiferromagnetism in an intermetallic ErPd$_2$Si$_2$ single crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hai-Feng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chongde Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+W">Wolfgang Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmalzl%2C+K">Karin Schmalzl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+B">Binyang Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+L">Louis-Pierre Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meuffels%2C+P">Paul Meuffels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B6ser%2C+W">Wolfgang L枚ser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+G">Georg Roth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00773v1-abstract-short" style="display: inline;"> Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00773v1-abstract-full').style.display = 'inline'; document.getElementById('1502.00773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00773v1-abstract-full" style="display: none;"> Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors of $Q_{\pm}$ = ($H \pm 0.557(1)$, 0, $L \pm 0.150(1)$) and $Q_\text{C}$ = ($H \pm 0.564(1)$, 0, $L$), where $\left(H, L\right)$ are allowed Miller indices, in an ErPd$_2$Si$_2$ single crystal by neutron scattering and establish their respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also compete depending on temperature or applied field strength. They couple differently with the underlying lattice albeit with associated moments in a common direction. The $Q_{\pm}$ modulation may be attributed to localized 4\emph{f} moments while the $Q_\text{C}$ correlates well with itinerant conduction bands, supported by our transport studies. Hence, ErPd$_2$Si$_2$ represents a new model compound that displays clearly-separated itinerant and localized moments, substantiating early theoretical predictions and providing a unique platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00773v1-abstract-full').style.display = 'none'; document.getElementById('1502.00773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 Figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 5, Article number: 7968, Pages: 1-7, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.04919">arXiv:1501.04919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.04919">pdf</a>, <a href="https://arxiv.org/ps/1501.04919">ps</a>, <a href="https://arxiv.org/format/1501.04919">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms8705">10.1038/ncomms8705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intra-Unit-Cell magnetic correlations near optimal doping in $\rm YBa_2Cu_3O_{6.85}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mangin-Thro%2C+L">L. Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sidis%2C+Y">Y. Sidis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourges%2C+P">P. Bourges</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.04919v1-abstract-short" style="display: inline;"> Understanding high-temperature superconductivity requires a prior knowledge of the nature of the enigmatic pseudogap metallic state, out of which the superconducting state condenses. In addition to the electronic orders involving charge degrees of freedoms recently reported inside the pseudogap state, a magnetic intra-unit-cell (IUC) order was discovered in various cuprates to set in just at the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04919v1-abstract-full').style.display = 'inline'; document.getElementById('1501.04919v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.04919v1-abstract-full" style="display: none;"> Understanding high-temperature superconductivity requires a prior knowledge of the nature of the enigmatic pseudogap metallic state, out of which the superconducting state condenses. In addition to the electronic orders involving charge degrees of freedoms recently reported inside the pseudogap state, a magnetic intra-unit-cell (IUC) order was discovered in various cuprates to set in just at the pseudogap temperature, T*. In nearly optimally doped YBa$_2$Cu$_3$O$_{6.85}$, polarized neutron scattering measurements, carried out on two different spectrometers, reveal new features. The order is made of finite size planar domains, hardly correlated along the c-axis. At high temperature, only the out-of-plane magnetic components correlate, revealing a strong Ising anistropy, as originally predicted in the loop current model. Below T*, a correlated in-plane response develops, giving rise the apparent tilt of the magnetic moment at low temperature. The discovery of these two regimes put stringent constraints on the intrinsict nature of IUC order, tightly bound to the pseudogap physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04919v1-abstract-full').style.display = 'none'; document.getElementById('1501.04919v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 6, 7705 (2015) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wildes%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wildes%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wildes%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10