CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 70 results for author: <span class="mathjax">Lhotel, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Lhotel%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lhotel, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lhotel%2C+E&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lhotel, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lhotel%2C+E&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lhotel%2C+E&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lhotel%2C+E&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04127">arXiv:2502.04127</a> <span> [<a href="https://arxiv.org/pdf/2502.04127">pdf</a>, <a href="https://arxiv.org/format/2502.04127">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> An inelastic neutron scattering study of the magnetic field dependence of the quantum dipolar garnet: Yb$_3$Ga$_5$O$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Riordan%2C+E">Edward Riordan</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Lefmann%2C+K">Kim Lefmann</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">Jacques Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Raymond%2C+S">Stephane Raymond</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Deen%2C+a+P+P">and Pascale P. Deen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04127v1-abstract-short" style="display: inline;"> The garnet compound Yb$_3$Ga$_5$O$_{12}$ is a fascinating material that is considered highly suitable for low-temperature refrigeration, via the magnetocaloric effect, in addition to enabling the exploration of quantum states with long-range dipolar interactions. It has previously been theorized that the magnetocaloric effect can be enhanced, in Yb$_3$Ga$_5$O$_{12}$ , via magnetic soft mode excita… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04127v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04127v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04127v1-abstract-full" style="display: none;"> The garnet compound Yb$_3$Ga$_5$O$_{12}$ is a fascinating material that is considered highly suitable for low-temperature refrigeration, via the magnetocaloric effect, in addition to enabling the exploration of quantum states with long-range dipolar interactions. It has previously been theorized that the magnetocaloric effect can be enhanced, in Yb$_3$Ga$_5$O$_{12}$ , via magnetic soft mode excitations which in the hyperkagome structure would be derived from an emergent magnetic structure formed from nanosized 10-spin loops. We study the magnetic field dependence of bands of magnetic soft mode excitations in the effective spin $S = 1/2$ hyperkagome compound Yb$_3$Ga$_5$O$_{12}$ using single crystal inelastic neutron scattering. We probe the magnetically short ranged ordered state, in which we determine magnetic nanoscale structures coexisting with a fluctuating state, and the magnetically saturated state. We determine that Yb$_3$Ga$_5$O$_{12}$ can be described as a quantum dipolar magnet with perturbative weak near-neighbor and inter-hyperkagome exchange interaction. The magnetic excitations, under the application of a magnetic field, reveal highly robust soft modes with distinctive signatures of the quantum nature of the Yb3+ spins. Our results enhance our understanding of soft modes in topological frustrated magnets that drive both the unusual physics of quantum dipolar systems and future refrigerant material design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04127v1-abstract-full').style.display = 'none'; document.getElementById('2502.04127v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04376">arXiv:2412.04376</a> <span> [<a href="https://arxiv.org/pdf/2412.04376">pdf</a>, <a href="https://arxiv.org/format/2412.04376">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Power spectrum of magnetic relaxation in spin ice: anomalous diffusion in a Coulomb fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Billington%2C+D">D. Billington</a>, <a href="/search/cond-mat?searchtype=author&query=Riordan%2C+E">E. Riordan</a>, <a href="/search/cond-mat?searchtype=author&query=Cafolla-Ward%2C+C">C. Cafolla-Ward</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+J">J. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Bramwell%2C+S+T">S. T. Bramwell</a>, <a href="/search/cond-mat?searchtype=author&query=Flicker%2C+F">F. Flicker</a>, <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04376v1-abstract-short" style="display: inline;"> Magnetization noise measurements on the spin ice Dy${}_2$Ti${}_2$O${}_7$ have revealed a remarkable `pink noise' power spectrum $S(f,T)$ below 4 K, including evidence of magnetic monopole excitations diffusing in a fractal landscape. However, at higher temperatures, the reported values of the anomalous exponent $b(T)$ describing the high frequency tail of $S(f,T)$ are not easy to reconcile with ot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04376v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04376v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04376v1-abstract-full" style="display: none;"> Magnetization noise measurements on the spin ice Dy${}_2$Ti${}_2$O${}_7$ have revealed a remarkable `pink noise' power spectrum $S(f,T)$ below 4 K, including evidence of magnetic monopole excitations diffusing in a fractal landscape. However, at higher temperatures, the reported values of the anomalous exponent $b(T)$ describing the high frequency tail of $S(f,T)$ are not easy to reconcile with other results in the literature, which generally suggest significantly smaller deviations from the Brownian motion value of $b=2$, that become negligible above $T=20$ K. We accurately estimate $b(T)$ at temperatures between 2~K and 20~K, using a.c. susceptibility measurements that, crucially, stretch up to the relatively high frequency of $f = 10^6$ Hz. We show that previous noise measurements underestimate $b(T)$ and we suggest reasons for this. Our results establish deviations in $b(T)$ from $b=2$ up to about 20 K. However studies on different samples confirms that $b(T)$ is sample dependent: the details of this dependence agree in part, though not completely, with previous studies of the effect of crystal defects on monopole population and diffusion. Our results establish the form of $b(T)$ which characterises the subtle, and evolving, nature of monopole diffusion in the dense Coulomb fluid, a highly correlated state, where several dynamical processes combine. They do not rule out the importance of a fractal landscape picture emerging at lower temperatures where the monopole gas is dilute. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04376v1-abstract-full').style.display = 'none'; document.getElementById('2412.04376v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10078">arXiv:2411.10078</a> <span> [<a href="https://arxiv.org/pdf/2411.10078">pdf</a>, <a href="https://arxiv.org/format/2411.10078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic fragmented ground state in the pyrochlore Ho$_2$Ru$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Museur%2C+F">F. Museur</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Morineau%2C+F">F. Morineau</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">V. Simonet</a>, <a href="/search/cond-mat?searchtype=author&query=Pachoud%2C+E">E. Pachoud</a>, <a href="/search/cond-mat?searchtype=author&query=Hadj-Azzem%2C+A">A. Hadj-Azzem</a>, <a href="/search/cond-mat?searchtype=author&query=Colin%2C+C">C. Colin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Stewart%2C+J+R">J. R. Stewart</a>, <a href="/search/cond-mat?searchtype=author&query=Holdsworth%2C+P+C+W">P. C. W. Holdsworth</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10078v1-abstract-short" style="display: inline;"> The consecutive magnetic ordering of the Ho and Ru ions in the pyrochlore Ho2Ru2O7 and their interplay are investigated by neutron scattering, magnetic and specific heat measurements. The Ru magnetic moments order at 95 K into an easy-plane antiferromagnetic state, while the Ho moments order at 1.55 K into an unsaturated ferromagnetic state that retains an extensive ground state entropy and presen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10078v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10078v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10078v1-abstract-full" style="display: none;"> The consecutive magnetic ordering of the Ho and Ru ions in the pyrochlore Ho2Ru2O7 and their interplay are investigated by neutron scattering, magnetic and specific heat measurements. The Ru magnetic moments order at 95 K into an easy-plane antiferromagnetic state, while the Ho moments order at 1.55 K into an unsaturated ferromagnetic state that retains an extensive ground state entropy and present complex spin dynamics throughout the low temperature phase. These unexpected features are analyzed in terms of a fragmented ferromagnetic state equivalent to the pyrochlore kagome ice. Selection of this unusual state relies on a subtle compromise between long-range ferromagnetic interactions between holmium moments and a repulsive cubic field, both mediated by the ruthenium lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10078v1-abstract-full').style.display = 'none'; document.getElementById('2411.10078v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12548">arXiv:2410.12548</a> <span> [<a href="https://arxiv.org/pdf/2410.12548">pdf</a>, <a href="https://arxiv.org/format/2410.12548">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Satisfaction and violation of the fluctuation-dissipation relation in spin ice materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Morineau%2C+F">F. Morineau</a>, <a href="/search/cond-mat?searchtype=author&query=Cathelin%2C+V">V. Cathelin</a>, <a href="/search/cond-mat?searchtype=author&query=Holdsworth%2C+P+C+W">P. C. W. Holdsworth</a>, <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&query=Balakhrishnan%2C+G">G. Balakhrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuhira%2C+K">K. Matsuhira</a>, <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12548v1-abstract-short" style="display: inline;"> We test the fluctuation-dissipation relation (FDR) in spin ice materials Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ by measuring both the magnetic noise and the out-of-phase part of the susceptibility and comparing their ratio. We show that it is satisfied at temperatures well into the non-ergodic region below 600 mK, indicating local equilibrium. In both materials, below 400 mK, low frequency violat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12548v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12548v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12548v1-abstract-full" style="display: none;"> We test the fluctuation-dissipation relation (FDR) in spin ice materials Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ by measuring both the magnetic noise and the out-of-phase part of the susceptibility and comparing their ratio. We show that it is satisfied at temperatures well into the non-ergodic region below 600 mK, indicating local equilibrium. In both materials, below 400 mK, low frequency violations develop, showing an excess of noise as in spin glasses, with a frequency threshold of 0.1 Hz. New relaxation pathways and aging properties are unveiled in this frequency range in the ac susceptibility. The FDR remains valid at higher frequencies down to 150 mK. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12548v1-abstract-full').style.display = 'none'; document.getElementById('2410.12548v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00694">arXiv:2406.00694</a> <span> [<a href="https://arxiv.org/pdf/2406.00694">pdf</a>, <a href="https://arxiv.org/format/2406.00694">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.236701">10.1103/PhysRevLett.133.236701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncommon magnetic ordering in the quantum magnet Yb$_{3}$Ga$_{5}$O$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Raymond%2C+S">S. Raymond</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Riordan%2C+E">E. Riordan</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Beauvois%2C+K">K. Beauvois</a>, <a href="/search/cond-mat?searchtype=author&query=Marin%2C+C">C. Marin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhitomirsky%2C+M+E">M. E. Zhitomirsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00694v2-abstract-short" style="display: inline;"> The antiferromagnetic structure of Yb$_{3}$Ga$_{5}$O$_{12}$ is identified by neutron diffraction experiments below the previously-known transition at $T_位=54$ mK. The magnetic propagation vector is found to be ${\bf k}=(1/2, 1/2, 0)$, an unusual wave-vector in the garnet structure. The associated complex magnetic structure highlights the role of exchange interactions in a nearly isotropic system d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00694v2-abstract-full').style.display = 'inline'; document.getElementById('2406.00694v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00694v2-abstract-full" style="display: none;"> The antiferromagnetic structure of Yb$_{3}$Ga$_{5}$O$_{12}$ is identified by neutron diffraction experiments below the previously-known transition at $T_位=54$ mK. The magnetic propagation vector is found to be ${\bf k}=(1/2, 1/2, 0)$, an unusual wave-vector in the garnet structure. The associated complex magnetic structure highlights the role of exchange interactions in a nearly isotropic system dominated by dipolar interactions and finds echos with exotic structures theoretically proposed. Reduced values of the ordered moments may indicate significant quantum fluctuations in this effective spin-1/2 geometrically frustrated magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00694v2-abstract-full').style.display = 'none'; document.getElementById('2406.00694v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 133, 236701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03829">arXiv:2404.03829</a> <span> [<a href="https://arxiv.org/pdf/2404.03829">pdf</a>, <a href="https://arxiv.org/format/2404.03829">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and possible topological magnons in non-stoichiometric pyrochlore iridate Tb$_2$Ir$_2$O$_7$ studied by RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&query=Toschi%2C+A">A. Toschi</a>, <a href="/search/cond-mat?searchtype=author&query=Soh%2C+J+R">J. R. Soh</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Detlefs%2C+B">B. Detlefs</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&query=Sahle%2C+C+J">C. J. Sahle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03829v2-abstract-short" style="display: inline;"> We report a resonant inelastic X-ray scattering study on a single crystal of a non-stoichiometric pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$ ($x \simeq 0.25$) that magnetically orders at $T_{\rm{N}}\simeq 50$ K. We find that the strength of the spin-orbit coupling and the trigonal distortion of the IrO$_6$ octahedra are comparable with the ones obtained in other pyrochlore iridates. We obser… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03829v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03829v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03829v2-abstract-full" style="display: none;"> We report a resonant inelastic X-ray scattering study on a single crystal of a non-stoichiometric pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$ ($x \simeq 0.25$) that magnetically orders at $T_{\rm{N}}\simeq 50$ K. We find that the strength of the spin-orbit coupling and the trigonal distortion of the IrO$_6$ octahedra are comparable with the ones obtained in other pyrochlore iridates. We observe a propagating gapped magnon mode at low energy, and model it using a Hamiltonian consisting of a Heisenberg exchange [$J = 16.2(9)$ meV] and Dzyaloshinskii-Moriya interactions [$D = 5.2(3)$ meV], which shows the robustness of interactions despite Tb-stuffing at the Ir-site. Strikingly, the ratio $D/J = 0.32(3)$ supports possible non-trivial topological magnon band crossing. This material may thus host coexisting fermionic and bosonic topology, with potential for manipulating electronic and magnonic topological bands thanks to the $d-f$ interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03829v2-abstract-full').style.display = 'none'; document.getElementById('2404.03829v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">manuscript: 7 pages, 4 figures; Supplemental Material: 6 pages, 7 figures, 1 table. Accepted at PRB Letters (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08723">arXiv:2402.08723</a> <span> [<a href="https://arxiv.org/pdf/2402.08723">pdf</a>, <a href="https://arxiv.org/format/2402.08723">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamics of the dipole-octupole pyrochlore magnet Ce$_2$Hf$_2$O$_{7}$ in applied magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bhardwaj%2C+A">Anish Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&query=Por%C3%A9e%2C+V">Victor Por茅e</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Han Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+N">Nicolas Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">Sylvain Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Quilliam%2C+J+A">Jeffrey A. Quilliam</a>, <a href="/search/cond-mat?searchtype=author&query=Nevidomskyy%2C+A+H">Andriy H. Nevidomskyy</a>, <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a>, <a href="/search/cond-mat?searchtype=author&query=Changlani%2C+H+J">Hitesh J. Changlani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08723v1-abstract-short" style="display: inline;"> The recently discovered dipole-octupole pyrochlore magnet Ce$_2$Hf$_2$O$_7$ is a promising three-dimensional quantum spin liquid candidate which shows no signs of ordering at low temperature. The low energy effective pseudospin-1/2 description in a magnetic field is characterized by the XYZ Hamiltonian and a Zeeman term where the dipolar local z-component of the pseudospin couples to the local z-c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08723v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08723v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08723v1-abstract-full" style="display: none;"> The recently discovered dipole-octupole pyrochlore magnet Ce$_2$Hf$_2$O$_7$ is a promising three-dimensional quantum spin liquid candidate which shows no signs of ordering at low temperature. The low energy effective pseudospin-1/2 description in a magnetic field is characterized by the XYZ Hamiltonian and a Zeeman term where the dipolar local z-component of the pseudospin couples to the local z-component of the applied magnetic field, while the local x- and y-components of the pseudospin remain decoupled as a consequence of their octupolar character. Using effective parameters determined in V. Poree et al., arXiv:2305.08261 (2023), remarkable experimental features can be reproduced, as for instance the specific heat and magnetization data as well as the continuum of states seen in neutron scattering. Here we investigate the thermodynamic response to magnetic fields applied along the global [110] direction using specific heat measurements and fits using numerical methods, and solve the corresponding magnetic structure using neutron diffraction. Specific heat data in moderate fields are reproduced well, however, at high fields the agreement is not satisfactory. We especially observe a two-step release of entropy, a finding that demands a review of both theory and experiment. We address it within the framework of three possible scenarios, including an analysis of the crystal field Hamiltonian not restricted to the two-dimensional single-ion doublet subspace. We conclusively rule out two of these scenarios and find qualitative agreement with a simple model of field misalignment with respect to the crystalline direction. We discuss the implications of our findings for [111] applied fields and for future experiments on Ce$_2$Hf$_2$O$_7$ and its sister compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08723v1-abstract-full').style.display = 'none'; document.getElementById('2402.08723v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05260">arXiv:2402.05260</a> <span> [<a href="https://arxiv.org/pdf/2402.05260">pdf</a>, <a href="https://arxiv.org/format/2402.05260">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Exploring possible magnetic monopoles-induced magneto-electricity in spin ices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Alexanian%2C+Y">Y. Alexanian</a>, <a href="/search/cond-mat?searchtype=author&query=Saugnier%2C+J">J. Saugnier</a>, <a href="/search/cond-mat?searchtype=author&query=Decorse%2C+C">C. Decorse</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Ballou%2C+R">R. Ballou</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Debray%2C+J">J. Debray</a>, <a href="/search/cond-mat?searchtype=author&query=Gay%2C+F">F. Gay</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">V. Simonet</a>, <a href="/search/cond-mat?searchtype=author&query=de+Brion%2C+S">S. de Brion</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05260v3-abstract-short" style="display: inline;"> The possibilities of combining several degrees of freedom inside a unique material have recently been highlighted in their dynamics and proposed as information carriers in quantum devices where their cross-manipulation by external parameters such as electric and magnetic fields could enhance their functionalities. An emblematic example is that of electromagnons, spin-waves dressed with electric di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05260v3-abstract-full').style.display = 'inline'; document.getElementById('2402.05260v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05260v3-abstract-full" style="display: none;"> The possibilities of combining several degrees of freedom inside a unique material have recently been highlighted in their dynamics and proposed as information carriers in quantum devices where their cross-manipulation by external parameters such as electric and magnetic fields could enhance their functionalities. An emblematic example is that of electromagnons, spin-waves dressed with electric dipoles, that are fingerprints of multiferroics. Point-like objects have also been identified, which may take the form of excited quasiparticles. This is the case for magnetic monopoles, the exotic excitations of spin ices, that have been recently proposed to carry an electric dipole although experimental evidences remain elusive. Presently, we investigate the electrical signature of a classical spin ice and a related compound that supports quantum fluctuations. Our in-depth study clearly attributes magnetoelectricity to the correlated spin ice phase distinguishing it from extrinsic and single-ion effects. Our calculations show that the proposed model conferring magnetoelectricity to monopoles is not sufficient, calling for higher order contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05260v3-abstract-full').style.display = 'none'; document.getElementById('2402.05260v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15027">arXiv:2401.15027</a> <span> [<a href="https://arxiv.org/pdf/2401.15027">pdf</a>, <a href="https://arxiv.org/format/2401.15027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.224416">10.1103/PhysRevB.109.224416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of disorder in Nd-based pyrochlore magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=L%C3%A9ger%2C+M">M茅lanie L茅ger</a>, <a href="/search/cond-mat?searchtype=author&query=Vayer%2C+F">Florianne Vayer</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Damay%2C+F">Fran莽oise Damay</a>, <a href="/search/cond-mat?searchtype=author&query=Decorse%2C+C">Claudia Decorse</a>, <a href="/search/cond-mat?searchtype=author&query=Berardan%2C+D">David Berardan</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%A5k%2C+B">Bj枚rn F氓k</a>, <a href="/search/cond-mat?searchtype=author&query=Zanotti%2C+J">Jean-Marc Zanotti</a>, <a href="/search/cond-mat?searchtype=author&query=Berrod%2C+Q">Quentin Berrod</a>, <a href="/search/cond-mat?searchtype=author&query=Embs%2C+J+O+J+P">Jacques Ollivier Jan P. Embs</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">Sylvain Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15027v2-abstract-short" style="display: inline;"> We study the stability of the antiferromagnetic all-in--all-out state observed in dipolar-octupolar pyrochlores that have neodymium as the magnetic species. Different types of disorder are considered, either affecting the immediate environment of the Nd$^{3+}$ ion, or substituting it with a non-magnetic ion. Starting from the well studied Nd$_2$Zr$_2$O$_7$ compound, Ti substitution on the Zr site… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15027v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15027v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15027v2-abstract-full" style="display: none;"> We study the stability of the antiferromagnetic all-in--all-out state observed in dipolar-octupolar pyrochlores that have neodymium as the magnetic species. Different types of disorder are considered, either affecting the immediate environment of the Nd$^{3+}$ ion, or substituting it with a non-magnetic ion. Starting from the well studied Nd$_2$Zr$_2$O$_7$ compound, Ti substitution on the Zr site and dilution on the Nd magnetic site with La substitution are investigated. The recently discovered entropy stabilized compound NdMox, which exhibits a high degree of disorder on the non magnetic site is also studied. Using a range of experimental techniques, especially very low-temperature magnetization and neutron scattering, we show that the all-in--all-out state is very robust and withstands substitutional disorder up to large rates. From these measurements, we estimate the Hamiltonian parameters and discuss their evolution in the framework of the phase diagram of dipolar-octupolar pyrochlore magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15027v2-abstract-full').style.display = 'none'; document.getElementById('2401.15027v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 20 figures (main text: 12 pages, 13 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 224416 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08261">arXiv:2305.08261</a> <span> [<a href="https://arxiv.org/pdf/2305.08261">pdf</a>, <a href="https://arxiv.org/format/2305.08261">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dipolar-octupolar correlations and hierarchy of exchange interactions in Ce$_2$Hf$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Por%C3%A9e%2C+V">Victor Por茅e</a>, <a href="/search/cond-mat?searchtype=author&query=Bhardwaj%2C+A">Anish Bhardwaj</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">Sylvain Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+N">Nicolas Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Han Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">Jacques Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Quilliam%2C+J+A">Jeffrey A. Quilliam</a>, <a href="/search/cond-mat?searchtype=author&query=Nevidomskyy%2C+A+H">Andriy H. Nevidomskyy</a>, <a href="/search/cond-mat?searchtype=author&query=Changlani%2C+H+J">Hitesh J. Changlani</a>, <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08261v2-abstract-short" style="display: inline;"> We investigate the correlated state of Ce$_2$Hf$_2$O$_7$ using neutron scattering, finding signatures of correlations of both dipolar and octupolar character. A dipolar inelastic signal is also observed, as expected for spinons in a quantum spin ice (QSI). Fits of thermodynamic data using exact diagonalization methods indicate that the largest interaction is an octupolar exchange, with a strength… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08261v2-abstract-full').style.display = 'inline'; document.getElementById('2305.08261v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08261v2-abstract-full" style="display: none;"> We investigate the correlated state of Ce$_2$Hf$_2$O$_7$ using neutron scattering, finding signatures of correlations of both dipolar and octupolar character. A dipolar inelastic signal is also observed, as expected for spinons in a quantum spin ice (QSI). Fits of thermodynamic data using exact diagonalization methods indicate that the largest interaction is an octupolar exchange, with a strength roughly twice as large as other terms. A hierarchy of exchange interactions with dominant octupolar and significant dipolar exchange, still in the octupolar QSI phase, rationalises neutron scattering observations. Our results reveal a `quantum multipolar liquid' where correlations involve multiple terms in moment series expansion, opening questions about their intertwining and possible hierarchy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08261v2-abstract-full').style.display = 'none'; document.getElementById('2305.08261v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05452">arXiv:2304.05452</a> <span> [<a href="https://arxiv.org/pdf/2304.05452">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02711-w">10.1038/s41567-024-02711-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fractional matter coupled to the emergent gauge field in a quantum spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Por%C3%A9e%2C+V">Victor Por茅e</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Han Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Desrochers%2C+F">F茅lix Desrochers</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">Sylvain Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Appel%2C+M">Markus Appel</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">Jacques Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y+B">Yong Baek Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Nevidomskyy%2C+A+H">Andriy H. Nevidomskyy</a>, <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05452v4-abstract-short" style="display: inline;"> Electronic spins can form long-range entangled phases of condensed matter named quantum spin liquids. Their existence is conceptualized in models of two- or three-dimensional frustrated magnets that evade symmetry-breaking order down to zero temperature. Quantum spin ice (QSI) is a theoretically well-established example described by an emergent quantum electrodynamics, with excitations behaving li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05452v4-abstract-full').style.display = 'inline'; document.getElementById('2304.05452v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05452v4-abstract-full" style="display: none;"> Electronic spins can form long-range entangled phases of condensed matter named quantum spin liquids. Their existence is conceptualized in models of two- or three-dimensional frustrated magnets that evade symmetry-breaking order down to zero temperature. Quantum spin ice (QSI) is a theoretically well-established example described by an emergent quantum electrodynamics, with excitations behaving like photon and matter quasiparticles. The latter are fractionally charged and equivalent to the `spinons' emerging from coherent phases of singlets in one dimension, where clear experimental proofs of fractionalization exist. However, in frustrated magnets it remains difficult to establish consensual evidence for quantum spin liquid ground states and their fractional excitations. Here, we use backscattering neutron spectroscopy to achieve extremely high resolution of the time-dependent magnetic response of the candidate QSI material Ce$_2$Sn$_2$O$_7$. We find a gapped spectrum featuring a threshold and peaks that match theories for pair production and propagation of fractional matter excitations (spinons) strongly coupled to a background gauge field. The multiple peaks are a specific signature of the $蟺$-flux phase of QSI, providing spectroscopic evidence for fractionalization in a three-dimensional quantum spin liquid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05452v4-abstract-full').style.display = 'none'; document.getElementById('2304.05452v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, fixes in references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 21, 83-88 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05483">arXiv:2303.05483</a> <span> [<a href="https://arxiv.org/pdf/2303.05483">pdf</a>, <a href="https://arxiv.org/format/2303.05483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.094403">10.1103/PhysRevMaterials.7.094403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective magnetic state induced by charge disorder in the non-Kramers rare-earth pyrochlore Tb$_{2}$ScNbO$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Alexanian%2C+Y">Y. Alexanian</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Ballou%2C+R">R. Ballou</a>, <a href="/search/cond-mat?searchtype=author&query=Colin%2C+C+V">C. V. Colin</a>, <a href="/search/cond-mat?searchtype=author&query=Klein%2C+H">H. Klein</a>, <a href="/search/cond-mat?searchtype=author&query=Priol%2C+A+L">A. Le Priol</a>, <a href="/search/cond-mat?searchtype=author&query=Museur%2C+F">F. Museur</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Pachoud%2C+E">E. Pachoud</a>, <a href="/search/cond-mat?searchtype=author&query=Lejay%2C+P">P. Lejay</a>, <a href="/search/cond-mat?searchtype=author&query=Hadj-Azzem%2C+A">A. Hadj-Azzem</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%A5k%2C+B">B. F氓k</a>, <a href="/search/cond-mat?searchtype=author&query=Berrod%2C+Q">Q. Berrod</a>, <a href="/search/cond-mat?searchtype=author&query=Zanotti%2C+J+-">J. -M. Zanotti</a>, <a href="/search/cond-mat?searchtype=author&query=Suard%2C+E">E. Suard</a>, <a href="/search/cond-mat?searchtype=author&query=Dejoie%2C+C">C. Dejoie</a>, <a href="/search/cond-mat?searchtype=author&query=de+Brion%2C+S">S. de Brion</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">V. Simonet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05483v2-abstract-short" style="display: inline;"> Geometrical frustration, as in pyrochlore lattices made of corner-sharing tetrahedra, precludes the onset of conventional magnetic ordering, enabling the stabilization of fluctuating spin states at low temperature. Disorder is a subtle ingredient that can modify the nature of these exotic non-ordered phases. Here, we study the interplay between disorder and magnetic frustration in the new pyrochlo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05483v2-abstract-full').style.display = 'inline'; document.getElementById('2303.05483v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05483v2-abstract-full" style="display: none;"> Geometrical frustration, as in pyrochlore lattices made of corner-sharing tetrahedra, precludes the onset of conventional magnetic ordering, enabling the stabilization of fluctuating spin states at low temperature. Disorder is a subtle ingredient that can modify the nature of these exotic non-ordered phases. Here, we study the interplay between disorder and magnetic frustration in the new pyrochlore Tb$_{2}$ScNbO$_{7}$ where the non magnetic site presents a charge disorder Nb$^{5+}$/Sc$^{3+}$. Its quantification with sophisticated diffraction techniques (electrons, X-rays, neutrons) allows us to estimate the distribution of the splitting of the magnetic Tb$^{3+}$ non-Kramers ground state doublets and to compare it with excitations measured in inelastic neutron scattering. Combining macroscopic and neutron scattering measurements, we show that a clear spin glass transition at 1 K stems out while retaining strong spin liquid correlations. Our results suggest that Tb$_{2}$ScNbO$_{7}$ stabilizes one of the novel disorder induced quantum spin liquid or topological glassy phases recently proposed theoretically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05483v2-abstract-full').style.display = 'none'; document.getElementById('2303.05483v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 9 pages, 5 figures ; Supplemental Material: 6 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10239">arXiv:2209.10239</a> <span> [<a href="https://arxiv.org/pdf/2209.10239">pdf</a>, <a href="https://arxiv.org/format/2209.10239">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.214425">10.1103/PhysRevB.107.214425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron scattering from fragmented frustrated magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Museur%2C+F">F. Museur</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Holdsworth%2C+P+C+W">P. C. W. Holdsworth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10239v2-abstract-short" style="display: inline;"> The fragmentation description is used to analyse calculated neutron scattering intensities from kagom茅 ice and spin ice systems. The longitudinal, transverse and harmonic fragments produce independent contributions to the neutron scattering intensity. This framework is used to analyse the ordering due to quantum fluctuations in the topologically constrained phase of kagom茅 ice and the monopole cry… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10239v2-abstract-full').style.display = 'inline'; document.getElementById('2209.10239v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10239v2-abstract-full" style="display: none;"> The fragmentation description is used to analyse calculated neutron scattering intensities from kagom茅 ice and spin ice systems. The longitudinal, transverse and harmonic fragments produce independent contributions to the neutron scattering intensity. This framework is used to analyse the ordering due to quantum fluctuations in the topologically constrained phase of kagom茅 ice and the monopole crystal phase of spin ice. Here, quantum fluctuations are restricted to the transverse fragment and they drive the system into a double-$q$ structure in which longitudinal and transverse fragments have a different ordering wave vector. The intensity reduction of the Bragg peaks for the transverse fragments, compared with known classical limits can be used as a diagnostic tool for quantum fluctuations. Published quantum Monte Carlo data for spin ice in a $[111]$ field are consistent with the proposed protocol. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10239v2-abstract-full').style.display = 'none'; document.getElementById('2209.10239v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 107 (2023), 214425 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10036">arXiv:2207.10036</a> <span> [<a href="https://arxiv.org/pdf/2207.10036">pdf</a>, <a href="https://arxiv.org/ps/2207.10036">ps</a>, <a href="https://arxiv.org/format/2207.10036">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.224404">10.1103/PhysRevB.107.224404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vibronic collapse of ordered quadrupolar ice in the pyrochore magnet Tb$_{2+x}$Ti$_{2-x}$O$_{7+y}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Alexanian%2C+Y">Yann Alexanian</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">Julien Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">Virginie Simonet</a>, <a href="/search/cond-mat?searchtype=author&query=Lang%C3%A9r%C3%B4me%2C+B">Benjamin Lang茅r么me</a>, <a href="/search/cond-mat?searchtype=author&query=Brubach%2C+J">Jean-Blaise Brubach</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+P">Pascale Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Decorse%2C+C">Claudia Decorse</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Constable%2C+E">Evan Constable</a>, <a href="/search/cond-mat?searchtype=author&query=Ballou%2C+R">Rafik Ballou</a>, <a href="/search/cond-mat?searchtype=author&query=De+Brion%2C+S">Sophie De Brion</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10036v3-abstract-short" style="display: inline;"> While the spin liquid state in the frustrated pyrochlore Tb$_{2+x}$Ti$_{2-x}$O$_{7+y}$ has been studied both experimentally and theoretically for more than two decades, no definite description of this unconventional state has been achieved. Using synchrotron based THz spectroscopy in combination with quantum numerical simulations, we highlight a significant link between two previously unrelated fe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10036v3-abstract-full').style.display = 'inline'; document.getElementById('2207.10036v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10036v3-abstract-full" style="display: none;"> While the spin liquid state in the frustrated pyrochlore Tb$_{2+x}$Ti$_{2-x}$O$_{7+y}$ has been studied both experimentally and theoretically for more than two decades, no definite description of this unconventional state has been achieved. Using synchrotron based THz spectroscopy in combination with quantum numerical simulations, we highlight a significant link between two previously unrelated features: the existence of a quadrupolar order following an ice rule and the presence of strong magneto-elastic coupling in the form of hybridized Tb$^{3+}$ crystal-field and phonon modes. The magnitude of this so-called vibronic process, which involves quadrupolar degrees of freedom, is significantly dependent on small off-stoichiometry $x$ and favors all-in all-out like correlations between quadrupoles. This mechanism competes with the long range ordered quadrupolar ice, and for slightly different stoichiometry, is able to destabilize it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10036v3-abstract-full').style.display = 'none'; document.getElementById('2207.10036v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 3 figures ; Supplemental Material: 6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16295">arXiv:2203.16295</a> <span> [<a href="https://arxiv.org/pdf/2203.16295">pdf</a>, <a href="https://arxiv.org/format/2203.16295">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.044406">10.1103/PhysRevMaterials.6.044406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal-field states and defect levels in candidate quantum spin ice Ce$_{2}$Hf$_{2}$O$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Por%C3%A9e%2C+V">Victor Por茅e</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">Sylvain Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Krajewska%2C+A">Aleksandra Krajewska</a>, <a href="/search/cond-mat?searchtype=author&query=Puphal%2C+P">Pascal Puphal</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+A+H">Adam H. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Walker%2C+H+C">Helen C. Walker</a>, <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+N">Nicolas Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Gawryluk%2C+D+J">Dariusz J. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16295v1-abstract-short" style="display: inline;"> We report the synthesis of powder and single-crystal samples of the cerium pyrohafnate and their characterization using neutron diffraction, thermogravimetry and X-ray absorption spectroscopy. We evaluate the amount of non-magnetic Ce$^{4+}$ defects and use this result to interpret the spectrum of crystal-electric field transitions observed using inelastic neutron scattering. The analysis of these… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16295v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16295v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16295v1-abstract-full" style="display: none;"> We report the synthesis of powder and single-crystal samples of the cerium pyrohafnate and their characterization using neutron diffraction, thermogravimetry and X-ray absorption spectroscopy. We evaluate the amount of non-magnetic Ce$^{4+}$ defects and use this result to interpret the spectrum of crystal-electric field transitions observed using inelastic neutron scattering. The analysis of these single-ion transitions indicates the dipole-octupole nature of the ground state doublet and a significant degree of spin-lattice coupling. The single-ion properties calculated from the crystal-electric field parameters obtained spectroscopically are in good agreement with bulk magnetic susceptibility data down to about 1 K. Below this temperature, the behavior of the magnetic susceptibility indicates a correlated regime without showing any sign of magnetic long-range order or freezing down to 0.08 K. We conclude that Ce$_2$Hf$_2$O$_{7}$ is another candidate to investigate exotic correlated states of quantum matter such as the octupolar quantum spin ice recently argued to exist in the isostructural compounds Ce$_2$Sn$_2$O$_7$ and Ce$_2$Zr$_2$O$_7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16295v1-abstract-full').style.display = 'none'; document.getElementById('2203.16295v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.13092">arXiv:2112.13092</a> <span> [<a href="https://arxiv.org/pdf/2112.13092">pdf</a>, <a href="https://arxiv.org/format/2112.13092">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-020-02521-3">10.1007/s10909-020-02521-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fragmentation in Frustrated Magnets -- A review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Jaubert%2C+L+D+C">L. D. C. Jaubert</a>, <a href="/search/cond-mat?searchtype=author&query=Holdsworth%2C+P+C+W">P. C. W. Holdsworth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.13092v1-abstract-short" style="display: inline;"> Spin liquids are exotic phases of matter that often support emergent gauge fields and quasi-particle excitations. While spin liquids are commonly known for remaining disordered, their definition has been extended to include phases with broken symmetry corresponding to (partial) long-range order, such as chiral and nematic spin liquids for example. For Coulomb spin liquids, this ordering can be qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13092v1-abstract-full').style.display = 'inline'; document.getElementById('2112.13092v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.13092v1-abstract-full" style="display: none;"> Spin liquids are exotic phases of matter that often support emergent gauge fields and quasi-particle excitations. While spin liquids are commonly known for remaining disordered, their definition has been extended to include phases with broken symmetry corresponding to (partial) long-range order, such as chiral and nematic spin liquids for example. For Coulomb spin liquids, this ordering can be quantitatively understood via a Helmholtz decomposition between divergence-free and divergence-full terms. This phenomenon has been coined fragmentation, where spin degrees of freedom fragment into two components; the fluctuating disordered part and the ordered one. In this review, we will cover the theoretical and experimental aspects of this growing field, in particular its relation to magnetic monopoles in spin ice, its phase diagram and the possibility to observe it in solid-state crystal and artificial networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13092v1-abstract-full').style.display = 'none'; document.getElementById('2112.13092v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Low. Temp. Physics 201, 710 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09817">arXiv:2105.09817</a> <span> [<a href="https://arxiv.org/pdf/2105.09817">pdf</a>, <a href="https://arxiv.org/format/2105.09817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.024427">10.1103/PhysRevB.104.024427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics of the quantum dipolar magnet Yb$_3$Ga$_5$O$_{12}$ in an external field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Mangin-Thro%2C+L">L. Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Steffens%2C+P">P. Steffens</a>, <a href="/search/cond-mat?searchtype=author&query=Bichaud%2C+E">E. Bichaud</a>, <a href="/search/cond-mat?searchtype=author&query=Knebel%2C+G">G. Knebel</a>, <a href="/search/cond-mat?searchtype=author&query=Brison%2C+J+-">J. -P. Brison</a>, <a href="/search/cond-mat?searchtype=author&query=Marin%2C+C">C. Marin</a>, <a href="/search/cond-mat?searchtype=author&query=Raymond%2C+S">S. Raymond</a>, <a href="/search/cond-mat?searchtype=author&query=Zhitomirsky%2C+M+E">M. E. Zhitomirsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09817v1-abstract-short" style="display: inline;"> We investigate ytterbium gallium garnet Yb$_{3}$Ga$_{5}$O$_{12}$ in the paramagnetic phase above the supposed magnetic transition at $T_位 \approx 54$ mK. Our study combines susceptibility and specific heat measurements with neutron scattering experiments and theoretical calculations. Below 500 mK, the elastic neutron response is strongly peaked in the momentum space. Along with that the inelastic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09817v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09817v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09817v1-abstract-full" style="display: none;"> We investigate ytterbium gallium garnet Yb$_{3}$Ga$_{5}$O$_{12}$ in the paramagnetic phase above the supposed magnetic transition at $T_位 \approx 54$ mK. Our study combines susceptibility and specific heat measurements with neutron scattering experiments and theoretical calculations. Below 500 mK, the elastic neutron response is strongly peaked in the momentum space. Along with that the inelastic spectrum develops flat excitation modes. In magnetic field, the lowest energy branch follows a Zeeman shift in accordance with the field-dependent specific heat data. An intermediate state with spin canting away from the field direction is evidenced in small magnetic fields. In the field of 2 T, the total magnetization almost saturates and the measured excitation spectrum is well reproduced by the spin-wave calculations taking into account solely the dipole-dipole interactions. The small positive Curie-Weiss temperature derived from the susceptibility measurements is also accounted for by the dipole spin model. Altogether, our results suggest that Yb$_{3}$Ga$_{5}$O$_{12}$ is a quantum dipolar magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09817v1-abstract-full').style.display = 'none'; document.getElementById('2105.09817v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 024427 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02128">arXiv:2105.02128</a> <span> [<a href="https://arxiv.org/pdf/2105.02128">pdf</a>, <a href="https://arxiv.org/format/2105.02128">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.214449">10.1103/PhysRevB.103.214449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-temperature phase diagram of the enigmatic Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=L%C3%A9ger%2C+M">M. L茅ger</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Beauvois%2C+K">K. Beauvois</a>, <a href="/search/cond-mat?searchtype=author&query=Damay%2C+F">F. Damay</a>, <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Al-Mawla%2C+A">A. Al-Mawla</a>, <a href="/search/cond-mat?searchtype=author&query=Suard%2C+E">E. Suard</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02128v1-abstract-short" style="display: inline;"> By combining neutron scattering and magnetization measurements down to 80 mK, we determine the $(H,T)$ phase diagram of the Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnet compounds. In those samples, Zr is partially substituted by Ti, hence tuning the exchange parameters and testing the robustness of the various phases. In all samples, the ground state remains "all in / all out", while the fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02128v1-abstract-full').style.display = 'inline'; document.getElementById('2105.02128v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02128v1-abstract-full" style="display: none;"> By combining neutron scattering and magnetization measurements down to 80 mK, we determine the $(H,T)$ phase diagram of the Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnet compounds. In those samples, Zr is partially substituted by Ti, hence tuning the exchange parameters and testing the robustness of the various phases. In all samples, the ground state remains "all in / all out", while the field induces phase transitions towards new states characterized by "2 in - 2 out" or "1 out - 3 in / 1 in - 3 out" configurations. These transitions manifest as metamagnetic singularities in the magnetization vs field measurements. Strikingly, it is found that moderate substitution reinforces the stability of the "all in / all out" phase: the N茅el temperature, the metamagnetic fields along with the ordered magnetic moment are higher in substituted samples with $x <$ 10\%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02128v1-abstract-full').style.display = 'none'; document.getElementById('2105.02128v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 17 figures + appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 214449 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05987">arXiv:2104.05987</a> <span> [<a href="https://arxiv.org/pdf/2104.05987">pdf</a>, <a href="https://arxiv.org/format/2104.05987">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.054440">10.1103/PhysRevB.104.054440 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics of the director state in frustrated hyperkagome systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jacobsen%2C+H">Henrik Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&query=Florea%2C+O">Ovidiu Florea</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Lefmann%2C+K">Kim Lefmann</a>, <a href="/search/cond-mat?searchtype=author&query=Petrenko%2C+O">Oleg Petrenko</a>, <a href="/search/cond-mat?searchtype=author&query=Knee%2C+C+S">Chris S. Knee</a>, <a href="/search/cond-mat?searchtype=author&query=Seydel%2C+T">Tilo Seydel</a>, <a href="/search/cond-mat?searchtype=author&query=Henry%2C+P+F">Paul F. Henry</a>, <a href="/search/cond-mat?searchtype=author&query=Bewley%2C+R">Robert Bewley</a>, <a href="/search/cond-mat?searchtype=author&query=Voneshen%2C+D">David Voneshen</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Nilsen%2C+G">G酶ran Nilsen</a>, <a href="/search/cond-mat?searchtype=author&query=Deen%2C+P+P">Pascale P. Deen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05987v2-abstract-short" style="display: inline;"> We present an experimental study of the magnetic structure and dynamics of two frustrated hyperkagome compounds, Gd3Ga5O12 and Gd3Al5O12. It has previously been shown that Gd3Ga5O12 exhibits long-range correlations of multipolar directors, that are formed from antiferromagnetic spins on loops of ten ions. Using neutron diffraction and Reverse Monte Carlo simulations we prove the existence of simil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05987v2-abstract-full').style.display = 'inline'; document.getElementById('2104.05987v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05987v2-abstract-full" style="display: none;"> We present an experimental study of the magnetic structure and dynamics of two frustrated hyperkagome compounds, Gd3Ga5O12 and Gd3Al5O12. It has previously been shown that Gd3Ga5O12 exhibits long-range correlations of multipolar directors, that are formed from antiferromagnetic spins on loops of ten ions. Using neutron diffraction and Reverse Monte Carlo simulations we prove the existence of similar magnetic correlations in Gd3Al5O12, showing the ubiquity of these complex structures in frustrated hyperkagome materials. Using inelastic neutron scattering we shed further light on the director state and the associated low lying magnetic excitations. In addition we have measured quasielastic dynamics that show evidence of spin diffusion. Finally, we present AC susceptibility measurements on both Gd3Ga5O12 and Gd3Al5O12, revealing a large difference in the low frequency dynamics between the two otherwise similar compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05987v2-abstract-full').style.display = 'none'; document.getElementById('2104.05987v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures, Accepted by Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 054440 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.11969">arXiv:2102.11969</a> <span> [<a href="https://arxiv.org/pdf/2102.11969">pdf</a>, <a href="https://arxiv.org/format/2102.11969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.014418">10.1103/PhysRevB.104.014418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental measurement of the isolated magnetic susceptibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Billington%2C+D">D. Billington</a>, <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Cannon%2C+J">J. Cannon</a>, <a href="/search/cond-mat?searchtype=author&query=Riordan%2C+E">E. Riordan</a>, <a href="/search/cond-mat?searchtype=author&query=Salman%2C+M">M. Salman</a>, <a href="/search/cond-mat?searchtype=author&query=Klemencic%2C+G">G. Klemencic</a>, <a href="/search/cond-mat?searchtype=author&query=Cafolla-Ward%2C+C">C. Cafolla-Ward</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&query=Bramwell%2C+S+T">S. T. Bramwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.11969v1-abstract-short" style="display: inline;"> The isolated susceptibility $蠂_{\rm I}$ may be defined as a (non-thermodynamic) average over the canonical ensemble, but while it has often been discussed in the literature, it has not been clearly measured. Here, we demonstrate an unambiguous measurement of $蠂_{\rm I}$ at avoided nuclear-electronic level crossings in a dilute spin ice system, containing well-separated holmium ions. We show that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11969v1-abstract-full').style.display = 'inline'; document.getElementById('2102.11969v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.11969v1-abstract-full" style="display: none;"> The isolated susceptibility $蠂_{\rm I}$ may be defined as a (non-thermodynamic) average over the canonical ensemble, but while it has often been discussed in the literature, it has not been clearly measured. Here, we demonstrate an unambiguous measurement of $蠂_{\rm I}$ at avoided nuclear-electronic level crossings in a dilute spin ice system, containing well-separated holmium ions. We show that $蠂_{\rm I}$ quantifies the superposition of quasi-classical spin states at these points, and is a direct measure of state concurrence and populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11969v1-abstract-full').style.display = 'none'; document.getElementById('2102.11969v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, & figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 014418 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09049">arXiv:2101.09049</a> <span> [<a href="https://arxiv.org/pdf/2101.09049">pdf</a>, <a href="https://arxiv.org/format/2101.09049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.247201">10.1103/PhysRevLett.126.247201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and unconventional Coulomb phase in Nd$_2$Zr$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=L%C3%A9ger%2C+M">M. L茅ger</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Raymond%2C+S">S. Raymond</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09049v2-abstract-short" style="display: inline;"> We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an "all in - all out" antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09049v2-abstract-full').style.display = 'inline'; document.getElementById('2101.09049v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09049v2-abstract-full" style="display: none;"> We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an "all in - all out" antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above $T_{\rm N} \approx 300$ mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near $T_{\rm N}$ do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the "all in - all out" order superimposed on a Coulomb phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09049v2-abstract-full').style.display = 'none'; document.getElementById('2101.09049v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + 9 pages supp. mat</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 247201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10361">arXiv:2012.10361</a> <span> [<a href="https://arxiv.org/pdf/2012.10361">pdf</a>, <a href="https://arxiv.org/format/2012.10361">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.177201">10.1103/PhysRevLett.128.177201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometric frustration on the trillium lattice in a magnetic metal-organic framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bulled%2C+J+M">Johnathan M. Bulled</a>, <a href="/search/cond-mat?searchtype=author&query=Paddison%2C+J+A+M">Joseph A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Cassidy%2C+S+J">Simon J. Cassidy</a>, <a href="/search/cond-mat?searchtype=author&query=Pato-Doldan%2C+B">Breogan Pato-Doldan</a>, <a href="/search/cond-mat?searchtype=author&query=Gomez-Aguirre%2C+L+C">L. Claudia Gomez-Aguirre</a>, <a href="/search/cond-mat?searchtype=author&query=Saines%2C+P+J">Paul J. Saines</a>, <a href="/search/cond-mat?searchtype=author&query=Goodwin%2C+A+L">Andrew L. Goodwin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10361v3-abstract-short" style="display: inline;"> In the dense metal-organic framework Na[Mn(HCOO)$_3$], Mn$^{2+}$ ions ($S=\frac{5}{2}$) occupy the nodes of a `trillium' hyperkagome net. We show that this material exhibits a variety of behaviour characteristic of geometric frustration: the N茅el transition is suppressed well below the characteristic magnetic interaction strength; short-range magnetic order persists far above the N茅el temperature;… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10361v3-abstract-full').style.display = 'inline'; document.getElementById('2012.10361v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10361v3-abstract-full" style="display: none;"> In the dense metal-organic framework Na[Mn(HCOO)$_3$], Mn$^{2+}$ ions ($S=\frac{5}{2}$) occupy the nodes of a `trillium' hyperkagome net. We show that this material exhibits a variety of behaviour characteristic of geometric frustration: the N茅el transition is suppressed well below the characteristic magnetic interaction strength; short-range magnetic order persists far above the N茅el temperature; and the magnetic susceptibility exhibits a pseudo-plateau at $\frac{1}{3}$-saturation magnetisation. We demonstrate that a simple nearest-neighbour Heisenberg antiferromagnet model accounts quantitatively for each observation, and hence Na[Mn(HCOO)$_3$] is the first experimental realisation of this model on the trillium net. We develop a mapping between this trillium model and that on the two-dimensional Shastry-Sutherland lattice, and demonstrate how both link geometric frustration within the classical spin liquid regime to a strong magnetocaloric response at low fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10361v3-abstract-full').style.display = 'none'; document.getElementById('2012.10361v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10418">arXiv:2011.10418</a> <span> [<a href="https://arxiv.org/pdf/2011.10418">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Neutron scattering by magnetic octupoles of a quantum liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+N">Nicolas Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Por%C3%A9e%2C+V">Victor Por茅e</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">Sylvain Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10418v1-abstract-short" style="display: inline;"> Neutron scattering is a powerful tool to study magnetic structures and dynamics, benefiting from a precisely established theoretical framework. The neutron dipole moment interacts with electrons in materials via their magnetic field, which can have spin and orbital origins. Yet in most experimentally studied cases the individual degrees of freedom are well described within the dipole approximation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10418v1-abstract-full').style.display = 'inline'; document.getElementById('2011.10418v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10418v1-abstract-full" style="display: none;"> Neutron scattering is a powerful tool to study magnetic structures and dynamics, benefiting from a precisely established theoretical framework. The neutron dipole moment interacts with electrons in materials via their magnetic field, which can have spin and orbital origins. Yet in most experimentally studied cases the individual degrees of freedom are well described within the dipole approximation, sometimes accompanied by further terms of a multipolar expansion that usually act as minor corrections to the dipole form factor. Here we report a unique example of neutrons diffracted mainly by magnetic octupoles. This unusual situation arises in a quantum spin ice where the electronic wavefunction becomes essentially octupolar under the effect of correlations. The discovery of such a new type of quantum spin liquid that comes with a specific experimental signature in neutron scattering is remarkable, because these topical states of matter are notoriously difficult to detect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10418v1-abstract-full').style.display = 'none'; document.getElementById('2011.10418v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Article in Swiss Neutron News, after R. Sibille et al. Nature Physics 16, 546-552 (2020). https://sgn.web.psi.ch/sgn/snn.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Swiss Neutron News 56, 6-19 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14097">arXiv:2010.14097</a> <span> [<a href="https://arxiv.org/pdf/2010.14097">pdf</a>, <a href="https://arxiv.org/format/2010.14097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.195136">10.1103/PhysRevB.102.195136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metastable and localized Ising magnetism in $伪$-CoV$_{2}$O$_{6}$ magnetization plateaus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Edwards%2C+L">L. Edwards</a>, <a href="/search/cond-mat?searchtype=author&query=Lane%2C+H">H. Lane</a>, <a href="/search/cond-mat?searchtype=author&query=Arevalo-Lopez%2C+A+M">A. M. Arevalo-Lopez</a>, <a href="/search/cond-mat?searchtype=author&query=Songvilay%2C+M">M. Songvilay</a>, <a href="/search/cond-mat?searchtype=author&query=Pachoud%2C+E">E. Pachoud</a>, <a href="/search/cond-mat?searchtype=author&query=Niedermayer%2C+C">Ch. Niedermayer</a>, <a href="/search/cond-mat?searchtype=author&query=Tucker%2C+G">G. Tucker</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Attfield%2C+J+P">J. P. Attfield</a>, <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&query=Stock%2C+C">C. Stock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14097v1-abstract-short" style="display: inline;"> $伪$-CoV$_{2}$O$_{6}$ consists of $j_{\mathrm{eff}}={1 \over 2}$ Ising spins located on an anisotropic triangular motif with magnetization plateaus in an applied field. We combine neutron diffraction with low temperature magnetization to investigate the magnetic periodicity in the vicinity of these plateaus. We find these steps to be characterized by metastable and spatially short-range ($尉\sim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14097v1-abstract-full').style.display = 'inline'; document.getElementById('2010.14097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14097v1-abstract-full" style="display: none;"> $伪$-CoV$_{2}$O$_{6}$ consists of $j_{\mathrm{eff}}={1 \over 2}$ Ising spins located on an anisotropic triangular motif with magnetization plateaus in an applied field. We combine neutron diffraction with low temperature magnetization to investigate the magnetic periodicity in the vicinity of these plateaus. We find these steps to be characterized by metastable and spatially short-range ($尉\sim$ 10 $脜$) magnetic correlations with antiphase boundaries defining a local periodicity of $\langle \hat{T}^{2} \rangle =\ \uparrow \downarrow$ to $\langle \hat{T}^{3} \rangle =\ \uparrow \uparrow \downarrow$, and $\langle \hat{T}^{4} \rangle=\ \uparrow \uparrow \downarrow \downarrow$ or $\uparrow \uparrow \uparrow \downarrow$ spin arrangements. This shows the presence of spatially short range and metastable/hysteretic, commensurate magnetism in Ising magnetization steps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14097v1-abstract-full').style.display = 'none'; document.getElementById('2010.14097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, to be published in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08807">arXiv:2005.08807</a> <span> [<a href="https://arxiv.org/pdf/2005.08807">pdf</a>, <a href="https://arxiv.org/format/2005.08807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.032073">10.1103/PhysRevResearch.2.032073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fragmented monopole crystal, dimer entropy and Coulomb interactions in Dy$_2$Ir$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cathelin%2C+V">V. Cathelin</a>, <a href="/search/cond-mat?searchtype=author&query=Lefran%C3%A7ois%2C+E">E. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Guruciaga%2C+P+C">P. C. Guruciaga</a>, <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+1+D">1 D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Lejay%2C+P">P. Lejay</a>, <a href="/search/cond-mat?searchtype=author&query=Damay%2C+F">F. Damay</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%A5k%2C+B">B. F氓k</a>, <a href="/search/cond-mat?searchtype=author&query=Chapon%2C+L+C">L. C. Chapon</a>, <a href="/search/cond-mat?searchtype=author&query=Ballou%2C+R">R. Ballou</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">V. Simonet</a>, <a href="/search/cond-mat?searchtype=author&query=Holdsworth%2C+P+C+W">P. C. W. Holdsworth</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08807v2-abstract-short" style="display: inline;"> Neutron scattering, specific heat and magnetisation measurements on both powders and single crystals reveal that Dy$_2$Ir$_2$O$_7$ realizes the fragmented monopole crystal state in which antiferromagnetic order and a Coulomb phase spin liquid co-inhabit. The measured residual entropy is that of a hard core dimer liquid, as predicted. Inclusion of Coulomb interactions allows for a quantitative desc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08807v2-abstract-full').style.display = 'inline'; document.getElementById('2005.08807v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08807v2-abstract-full" style="display: none;"> Neutron scattering, specific heat and magnetisation measurements on both powders and single crystals reveal that Dy$_2$Ir$_2$O$_7$ realizes the fragmented monopole crystal state in which antiferromagnetic order and a Coulomb phase spin liquid co-inhabit. The measured residual entropy is that of a hard core dimer liquid, as predicted. Inclusion of Coulomb interactions allows for a quantitative description of both the thermodynamic data and the magnetisation dynamics, with the energy scale given by deconfined defects in the emergent ionic crystal. Our data reveal low energy excitations, as well as a large distribution of energy barriers down to low temperatures, while the magnetic response to an applied field suggests that domain wall pinning is important; results that call for further theoretical modelling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08807v2-abstract-full').style.display = 'none'; document.getElementById('2005.08807v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + supp. mat. 6 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 032073 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.00928">arXiv:1912.00928</a> <span> [<a href="https://arxiv.org/pdf/1912.00928">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0827-7">10.1038/s41567-020-0827-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quantum liquid of magnetic octupoles on the pyrochlore lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a>, <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+N">Nicolas Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Por%C3%A9e%2C+V">Victor Por茅e</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Ewings%2C+R+A">Russell A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&query=Perring%2C+T+G">Toby G. Perring</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">Jacques Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A">Andrew Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Ritter%2C+C">Clemens Ritter</a>, <a href="/search/cond-mat?searchtype=author&query=Hansen%2C+T+C">Thomas C. Hansen</a>, <a href="/search/cond-mat?searchtype=author&query=Keen%2C+D+A">David A. Keen</a>, <a href="/search/cond-mat?searchtype=author&query=Nilsen%2C+G+J">G酶ran J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">Lukas Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">Sylvain Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">Tom Fennell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.00928v1-abstract-short" style="display: inline;"> Spin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles$^1$. Theories typically define such states using gauge fields and deconfined quasiparticle excitations that emerge from a simple rule governing the local ground state of a frustrated magnet. For example, the '2-in-2-out' ice rule for dipole moments on a tetrahedron can lead to a quantum spin ice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00928v1-abstract-full').style.display = 'inline'; document.getElementById('1912.00928v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.00928v1-abstract-full" style="display: none;"> Spin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles$^1$. Theories typically define such states using gauge fields and deconfined quasiparticle excitations that emerge from a simple rule governing the local ground state of a frustrated magnet. For example, the '2-in-2-out' ice rule for dipole moments on a tetrahedron can lead to a quantum spin ice in rare-earth pyrochlores - a state described by a lattice gauge theory of quantum electrodynamics$^{2-4}$. However, f-electron ions often carry multipole degrees of freedom of higher rank than dipoles, leading to intriguing behaviours and 'hidden' orders$^{5-6}$. Here we show that the correlated ground state of a Ce$^{3+}$-based pyrochlore, Ce$_2$Sn$_2$O$_7$, is a quantum liquid of magnetic octupoles. Our neutron scattering results are consistent with the formation of a fluid-like state of matter, but the intensity distribution is weighted to larger scattering vectors, which indicates that the correlated degrees of freedom have a more complex magnetization density than that typical of magnetic dipoles in a spin liquid. The temperature evolution of the bulk properties in the correlated regime below 1 Kelvin is well reproduced using a model of dipole-octupole doublets on a pyrochlore lattice$^{7-8}$. The nature and strength of the octupole-octupole couplings, together with the existence of a continuum of excitations attributed to spinons, provides further evidence for a quantum ice of octupoles governed by a '2-plus-2-minus' rule. Our work identifies Ce$_2$Sn$_2$O$_7$ as a unique example of a material where frustrated multipoles form a 'hidden' topological order, thus generalizing observations on quantum spin liquids to multipolar phases that can support novel types of emergent fields and excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00928v1-abstract-full').style.display = 'none'; document.getElementById('1912.00928v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07819">arXiv:1909.07819</a> <span> [<a href="https://arxiv.org/pdf/1909.07819">pdf</a>, <a href="https://arxiv.org/format/1909.07819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.104404">10.1103/PhysRevB.101.104404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong quantum fluctuations due to competition between magnetic phases in a pyrochlore iridate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jacobsen%2C+H">Henrik Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&query=Dashwood%2C+C+D">Cameron D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D">Dmitry Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Stewart%2C+R">Ross Stewart</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=McMorrow%2C+D+F">Desmond F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&query=Boothroyd%2C+A+T">Andrew. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07819v3-abstract-short" style="display: inline;"> We report neutron diffraction measurements of the magnetic structures in two pyrochlore iridates, Yb2Ir2O7 and Lu2Ir2O7. Both samples exhibit the all-in-all-out magnetic structure on the Ir4+ sites below TN~ 150,K, with a low temperature moment of around 0.45 muB/Ir. Below 2\,K, the Yb moments in Yb2Ir2O7 begin to order ferromagnetically. However, even at 40 mK the ordered moment is only 0.57(3)mu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07819v3-abstract-full').style.display = 'inline'; document.getElementById('1909.07819v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07819v3-abstract-full" style="display: none;"> We report neutron diffraction measurements of the magnetic structures in two pyrochlore iridates, Yb2Ir2O7 and Lu2Ir2O7. Both samples exhibit the all-in-all-out magnetic structure on the Ir4+ sites below TN~ 150,K, with a low temperature moment of around 0.45 muB/Ir. Below 2\,K, the Yb moments in Yb2Ir2O7 begin to order ferromagnetically. However, even at 40 mK the ordered moment is only 0.57(3)muB/Yb, well below the saturated moment of the ground state doublet of Yb3+ (1.9 muB/Yb), deduced from magnetization measurements and from a refined model of the crystal field environment, and also significantly smaller than the ordered moment of Yb in Yb2Ti2O7 (0.9 muB/Yb). A mean-field analysis shows that the reduced moment on Yb is a consequence of enhanced phase competition caused by coupling to the all-in-all-out magnetic order on the Ir sublattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07819v3-abstract-full').style.display = 'none'; document.getElementById('1909.07819v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, resubmitted to PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 104404 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.11122">arXiv:1903.11122</a> <span> [<a href="https://arxiv.org/pdf/1903.11122">pdf</a>, <a href="https://arxiv.org/format/1903.11122">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-09323-6">10.1038/s41467-019-09323-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear spin assisted quantum tunnelling of magnetic monopoles in spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuhira%2C+K">K. Matsuhira</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Bramwell%2C+S+T">S. T. Bramwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.11122v1-abstract-short" style="display: inline;"> Extensive work on single molecule magnets has identified a fundamental mode of relaxation arising from the nuclear-spin assisted quantum tunnelling of nearly independent and quasi-classical magnetic dipoles. Here we show that nuclear-spin assisted quantum tunnelling can also control the dynamics of purely emergent excitations: magnetic monopoles in spin ice. Our low temperature experiments were co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11122v1-abstract-full').style.display = 'inline'; document.getElementById('1903.11122v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.11122v1-abstract-full" style="display: none;"> Extensive work on single molecule magnets has identified a fundamental mode of relaxation arising from the nuclear-spin assisted quantum tunnelling of nearly independent and quasi-classical magnetic dipoles. Here we show that nuclear-spin assisted quantum tunnelling can also control the dynamics of purely emergent excitations: magnetic monopoles in spin ice. Our low temperature experiments were conducted on canonical spin ice materials with a broad range of nuclear spin values. By measuring the magnetic relaxation, or monopole current, we demonstrate strong evidence that dynamical coupling with the hyperfine fields bring the electronic spins associated with magnetic monopoles to resonance, allowing the monopoles to hop and transport magnetic charge. Our result shows how the coupling of electronic spins with nuclear spins may be used to control the monopole current. It broadens the relevance of the assisted quantum tunnelling mechanism from single molecular spins to emergent excitations in a strongly correlated system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11122v1-abstract-full').style.display = 'none'; document.getElementById('1903.11122v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures + supp. information. Accepted in Nature Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.08756">arXiv:1808.08756</a> <span> [<a href="https://arxiv.org/pdf/1808.08756">pdf</a>, <a href="https://arxiv.org/format/1808.08756">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.060401">10.1103/PhysRevB.99.060401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gd pyrochlore under a staggered molecular field in Gd$_2$Ir$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lefran%C3%A7ois%2C+E">E. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&query=Mangin-Thro%2C+L">L. Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Cathelin%2C+V">V. Cathelin</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+H+E">H. E. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Colin%2C+C+V">C. V. Colin</a>, <a href="/search/cond-mat?searchtype=author&query=Damay%2C+F">F. Damay</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Lejay%2C+P">P. Lejay</a>, <a href="/search/cond-mat?searchtype=author&query=Chapon%2C+L+C">L. C. Chapon</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">V. Simonet</a>, <a href="/search/cond-mat?searchtype=author&query=Ballou%2C+R">R. Ballou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.08756v1-abstract-short" style="display: inline;"> The influence of a staggered molecular field in frustrated rare-earth pyrochlores, produced via the magnetic iridium occupying the transition metal site, can generate exotic ground states, such as the fragmentation of the magnetization in the Ho compound. At variance with the Ising Ho$^{3+}$ moment, we focus on the behavior of the quasi isotropic magnetic moment of the Gd$^{3+}$ ion at the rare-ea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08756v1-abstract-full').style.display = 'inline'; document.getElementById('1808.08756v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.08756v1-abstract-full" style="display: none;"> The influence of a staggered molecular field in frustrated rare-earth pyrochlores, produced via the magnetic iridium occupying the transition metal site, can generate exotic ground states, such as the fragmentation of the magnetization in the Ho compound. At variance with the Ising Ho$^{3+}$ moment, we focus on the behavior of the quasi isotropic magnetic moment of the Gd$^{3+}$ ion at the rare-earth site. By means of macroscopic measurements and neutron scattering, we find a complex situation where different components of the magnetic moment contribute to two antiferromagnetic non-collinear arrangements: a high temperature all in - all out order induced by the Ir molecular field, and Palmer and Chalker correlations that tend to order at much lower temperatures. This is enabled by the anisotropic nature of the Gd-Gd interactions and requires a weak easy-plane anisotropy of the Gd$^{3+}$ moment due to the mixing of the ground state with multiplets of higher spectral terms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08756v1-abstract-full').style.display = 'none'; document.getElementById('1808.08756v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 060401 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.08970">arXiv:1804.08970</a> <span> [<a href="https://arxiv.org/pdf/1804.08970">pdf</a>, <a href="https://arxiv.org/format/1804.08970">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.067202">10.1103/PhysRevLett.121.067202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pauling entropy, metastability and equilibrium in Dy$_2$Ti$_2$O$_7$ spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&query=Twengstr%C3%B6m%2C+M">M. Twengstr枚m</a>, <a href="/search/cond-mat?searchtype=author&query=Bovo%2C+L">L. Bovo</a>, <a href="/search/cond-mat?searchtype=author&query=Ruminy%2C+M">M. Ruminy</a>, <a href="/search/cond-mat?searchtype=author&query=Bartkowiak%2C+M">M. Bartkowiak</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Andresen%2C+J+C">J. C. Andresen</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Frontzek%2C+M">M. Frontzek</a>, <a href="/search/cond-mat?searchtype=author&query=Capelli%2C+S+C">S. C. Capelli</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=McClarty%2C+P+A">P. A. McClarty</a>, <a href="/search/cond-mat?searchtype=author&query=Bramwell%2C+S+T">S. T. Bramwell</a>, <a href="/search/cond-mat?searchtype=author&query=Henelius%2C+P">P. Henelius</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">T. Fennell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.08970v1-abstract-short" style="display: inline;"> Determining the fate of the Pauling entropy in the classical spin ice material Dy$_2$Ti$_2$O$_7$ with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice - the dipolar spin ice model - predicts an ordering transition at $T\approx 0.15$ K, but recent experiments by Po… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08970v1-abstract-full').style.display = 'inline'; document.getElementById('1804.08970v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.08970v1-abstract-full" style="display: none;"> Determining the fate of the Pauling entropy in the classical spin ice material Dy$_2$Ti$_2$O$_7$ with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice - the dipolar spin ice model - predicts an ordering transition at $T\approx 0.15$ K, but recent experiments by Pomaranski $et\ al.$ suggest an entropy recovery over long time scales at temperatures as high as $0.5$ K, much too high to be compatible with theory. Using neutron scattering and specific heat measurements at low temperatures and with long time scales ($0.35$ K$/10^6$ s and $0.5$ K$/10^5$ s respectively) on several isotopically enriched samples we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Further, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez $et\ al.$ are, after all, essentially correct: the short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08970v1-abstract-full').style.display = 'none'; document.getElementById('1804.08970v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82-08 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.6.1; I.6.5 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 067202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.02836">arXiv:1801.02836</a> <span> [<a href="https://arxiv.org/pdf/1801.02836">pdf</a>, <a href="https://arxiv.org/format/1801.02836">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.220413">10.1103/PhysRevB.96.220413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of magnetic ordering and field induced phase diagram in the Gadolinium Aluminium garnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Florea%2C+O">O. Florea</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Jacobsen%2C+H">H. Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&query=Knee%2C+C+S">C. S. Knee</a>, <a href="/search/cond-mat?searchtype=author&query=Deen%2C+P+P">P. P. Deen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.02836v1-abstract-short" style="display: inline;"> The robustness of spin liquids with respect to small perturbations, and the way magnetic frustration can be lifted by slight changes in the balance between competing magnetic interactions remains a rich and open issue. We address this question through the study of the Gadolinium Aluminium garnet Gd$_3$Al$_5$O$_{12}$, a related compound to the extensively studied Gd$_3$Ga$_5$O$_{12}$. We report on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02836v1-abstract-full').style.display = 'inline'; document.getElementById('1801.02836v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.02836v1-abstract-full" style="display: none;"> The robustness of spin liquids with respect to small perturbations, and the way magnetic frustration can be lifted by slight changes in the balance between competing magnetic interactions remains a rich and open issue. We address this question through the study of the Gadolinium Aluminium garnet Gd$_3$Al$_5$O$_{12}$, a related compound to the extensively studied Gd$_3$Ga$_5$O$_{12}$. We report on its magnetic properties at very low temperature. We show that despite a freezing at about 300 mK, no magnetic transition is observed, suggesting the presence of a spin liquid state down to the lowest temperatures similarly to Gd$_3$Ga$_5$O$_{12}$, in spite of a larger ratio between exchange and dipolar interactions. Finally, the phase diagram as a function of field and temperature is strongly reminiscent from the one reported in Gd$_3$Ga$_5$O$_{12}$. This study reveals the robust nature of the spin liquid phase for Gd ions on the garnet lattice in stark contrast to Gd ions on the pyrochlore lattice for which a slight perturbation drives the compound into a range of magnetically ordered states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02836v1-abstract-full').style.display = 'none'; document.getElementById('1801.02836v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 220413(R) (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02418">arXiv:1712.02418</a> <span> [<a href="https://arxiv.org/pdf/1712.02418">pdf</a>, <a href="https://arxiv.org/format/1712.02418">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-06212-2">10.1038/s41467-018-06212-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic quantum kagome ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Mutka%2C+H">H. Mutka</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02418v2-abstract-short" style="display: inline;"> The search for two dimensional quantum spin liquids, exotic magnetic states with an entangled ground state remaining disordered down to zero temperature, has been a great challenge in frustrated magnetism during the last decades. Recently, fractionalized excitations, called spinons, emerging from these states, have been evidenced in kagome and triangular antiferromagnets. In contrast, quantum ferr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02418v2-abstract-full').style.display = 'inline'; document.getElementById('1712.02418v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02418v2-abstract-full" style="display: none;"> The search for two dimensional quantum spin liquids, exotic magnetic states with an entangled ground state remaining disordered down to zero temperature, has been a great challenge in frustrated magnetism during the last decades. Recently, fractionalized excitations, called spinons, emerging from these states, have been evidenced in kagome and triangular antiferromagnets. In contrast, quantum ferromagnetic spin liquids in two dimensions, namely quantum kagome ices, have been less investigated, yet their classical counterparts exhibit amazing properties, magnetic monopole crystals as well as magnetic fragmentation. Here we show that, by applying a magnetic field on the pyrochlore oxide Nd$_2$Zr$_2$O$_7$, which has been shown to develop three dimensional quantum magnetic fragmentation in zero field, we are able to reduce the dimension of the system and to create a dynamic kagome ice state. Our results open the way to the observation of the quantum kagome ice state which was recently investigated theoretically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02418v2-abstract-full').style.display = 'none'; document.getElementById('1712.02418v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + Supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 9, 3786 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01845">arXiv:1708.01845</a> <span> [<a href="https://arxiv.org/pdf/1708.01845">pdf</a>, <a href="https://arxiv.org/format/1708.01845">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Disorder and Quantum spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Martin%2C+N">N. Martin</a>, <a href="/search/cond-mat?searchtype=author&query=Bonville%2C+P">P. Bonville</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Guitteny%2C+S">S. Guitteny</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Decorse%2C+C">C. Decorse</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Mirebeau%2C+I">I. Mirebeau</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01845v1-abstract-short" style="display: inline;"> We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin ice candidate Pr2Zr2O7. Since Pr is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01845v1-abstract-full').style.display = 'inline'; document.getElementById('1708.01845v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01845v1-abstract-full" style="display: none;"> We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin ice candidate Pr2Zr2O7. Since Pr is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin excitation spectra. Taking advantage of mean field and spin dynamics simulations, we argue that the randomness in Pr2Zr2O7, promotes a new state of matter, which is disordered, yet characterized by short range antiferroquadrupolar correlations, and from which emerge spin-ice like excitations. This study thus opens an original research route in the field of quantum spin ice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01845v1-abstract-full').style.display = 'none'; document.getElementById('1708.01845v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.04462">arXiv:1705.04462</a> <span> [<a href="https://arxiv.org/pdf/1705.04462">pdf</a>, <a href="https://arxiv.org/format/1705.04462">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.187202">10.1103/PhysRevLett.119.187202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long range order in the dipolar XY antiferromagnet Er$_2$Sn$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Damay%2C+F">F. Damay</a>, <a href="/search/cond-mat?searchtype=author&query=Boutrouille%2C+P">P. Boutrouille</a>, <a href="/search/cond-mat?searchtype=author&query=Forget%2C+A">A. Forget</a>, <a href="/search/cond-mat?searchtype=author&query=Colson%2C+D">D. Colson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.04462v2-abstract-short" style="display: inline;"> Er$_2$Sn$_2$O$_7$ remains a puzzling case among the extensively studied frustrated compounds of the rare-earth pyrochlore family. Indeed, while a first order transition towards a long-range antiferromagnetic state with the so-called Palmer-Chalker structure is theoretically predicted, it has not been observed yet, leaving the issue, as to whether it is a spin-liquid candidate, open. We report on n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.04462v2-abstract-full').style.display = 'inline'; document.getElementById('1705.04462v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.04462v2-abstract-full" style="display: none;"> Er$_2$Sn$_2$O$_7$ remains a puzzling case among the extensively studied frustrated compounds of the rare-earth pyrochlore family. Indeed, while a first order transition towards a long-range antiferromagnetic state with the so-called Palmer-Chalker structure is theoretically predicted, it has not been observed yet, leaving the issue, as to whether it is a spin-liquid candidate, open. We report on neutron scattering and magnetization measurements which evidence a second order transition towards this Palmer-Chalker ordered state around 108 mK. Extreme care was taken to ensure a proper thermalization of the sample, which has proved to be crucial to successfully observe the magnetic Bragg peaks. At the transition, a gap opens in the excitations, superimposed on a strong quasielastic signal. The exchange parameters, refined from a spin wave analysis in applied magnetic field, confirm that Er$_2$Sn$_2$O$_7$ is a realization of the dipolar XY pyrochlore antiferromagnet. The proximity of competing phases and the strong XY anisotropy of the Er$^{3+}$ magnetic moment might be at the origin of enhanced fluctuations, leading to the unexpected nature of the transition, the low ordering temperature, and the observed multi-scale dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.04462v2-abstract-full').style.display = 'none'; document.getElementById('1705.04462v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 187202 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.02864">arXiv:1702.02864</a> <span> [<a href="https://arxiv.org/pdf/1702.02864">pdf</a>, <a href="https://arxiv.org/format/1702.02864">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic charge injection in spin ice: a new way to fragmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lefran%C3%A7ois%2C+E">E. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&query=Cathelin%2C+V">V. Cathelin</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Lejay%2C+P">P. Lejay</a>, <a href="/search/cond-mat?searchtype=author&query=Colin%2C+C+V">C. V. Colin</a>, <a href="/search/cond-mat?searchtype=author&query=Canals%2C+B">B. Canals</a>, <a href="/search/cond-mat?searchtype=author&query=Damay%2C+F">F. Damay</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%A5k%2C+B">B. F氓k</a>, <a href="/search/cond-mat?searchtype=author&query=Chapon%2C+L+C">L. C. Chapon</a>, <a href="/search/cond-mat?searchtype=author&query=Ballou%2C+R">R. Ballou</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">V. Simonet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.02864v1-abstract-short" style="display: inline;"> The complexity embedded in condensed matter fertilizes the discovery of new states of matter, enriched by ingredients like frustration. Illustrating examples in magnetic systems are Kitaev spin liquids, skyrmions phases, or spin ices. These unconventional ground states support exotic excitations, for example the magnetic charges in spin ices, also called monopoles. Beyond their discovery, an impor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02864v1-abstract-full').style.display = 'inline'; document.getElementById('1702.02864v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.02864v1-abstract-full" style="display: none;"> The complexity embedded in condensed matter fertilizes the discovery of new states of matter, enriched by ingredients like frustration. Illustrating examples in magnetic systems are Kitaev spin liquids, skyrmions phases, or spin ices. These unconventional ground states support exotic excitations, for example the magnetic charges in spin ices, also called monopoles. Beyond their discovery, an important challenge is to be able to control and manipulate them. Here, we propose a new mechanism to inject monopoles in a spin ice through a staggered magnetic field. We show theoretically, and demonstrate experimentally in the Ho$_2$Ir$_2$O$_7$ pyrochlore iridate, that it results in the stabilization of a monopole crystal, which exhibits magnetic fragmentation. In this new state of matter, the magnetic moment fragments into an ordered part and a persistently fluctuating one. Compared to conventional spin ices, the different nature of the excitations in this fragmented state opens the way to novel tunable field-induced and dynamical behaviors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02864v1-abstract-full').style.display = 'none'; document.getElementById('1702.02864v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.07220">arXiv:1701.07220</a> <span> [<a href="https://arxiv.org/pdf/1701.07220">pdf</a>, <a href="https://arxiv.org/format/1701.07220">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.134426">10.1103/PhysRevB.95.134426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field induced phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Damay%2C+F">F. Damay</a>, <a href="/search/cond-mat?searchtype=author&query=Mirebeau%2C+I">I. Mirebeau</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Mutka%2C+H">H. Mutka</a>, <a href="/search/cond-mat?searchtype=author&query=de+R%C3%A9otier%2C+P+D">P. Dalmas de R茅otier</a>, <a href="/search/cond-mat?searchtype=author&query=Yaouanc%2C+A">A. Yaouanc</a>, <a href="/search/cond-mat?searchtype=author&query=Marin%2C+C">C. Marin</a>, <a href="/search/cond-mat?searchtype=author&query=Decorse%2C+C">C. Decorse</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.07220v2-abstract-short" style="display: inline;"> We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic directions $[001], [1\bar{1}0]$ and $[111]$, the refined field induced magnetic structures are derived from the zero field $蠄_2$ and $蠄_3$ states of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.07220v2-abstract-full').style.display = 'inline'; document.getElementById('1701.07220v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.07220v2-abstract-full" style="display: none;"> We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic directions $[001], [1\bar{1}0]$ and $[111]$, the refined field induced magnetic structures are derived from the zero field $蠄_2$ and $蠄_3$ states of the $螕_5$ irreducible representation which describes the ground state of XY pyrochlore antiferromagnets. At low field, domain selection effects are systematically at play. In addition, for $[001]$, a phase transition is reported towards a $蠄_3$ structure at a characteristic field $H_c^{001}=$ 43 mT. For $[1\bar{1}0]$ and $[111]$, the spins are continuously tilted by the field from the $蠄_2$ state, and no phase transition is found while domain selection gives rise to sharp anomalies in the field dependence of the Bragg peaks intensity. For $[1\bar{1}0]$, these results are confirmed by high resolution inelastic neutron scattering experiments, which in addition allow us to determine the field dependence of the spin gap. This study agrees qualitatively with the scenario proposed theoretically by Maryasin {\it et al.} [Phys. Rev. B {\bf 93}, 100406(R) (2016)], yet the strength of the field induced anisotropies is significantly different from theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.07220v2-abstract-full').style.display = 'none'; document.getElementById('1701.07220v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 134426 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08714">arXiv:1610.08714</a> <span> [<a href="https://arxiv.org/pdf/1610.08714">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-00905-w">10.1038/s41467-017-00905-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coulomb spin liquid in anion-disordered pyrochlore Tb$_2$Hf$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Nilsen%2C+G">G酶ran Nilsen</a>, <a href="/search/cond-mat?searchtype=author&query=Ehlers%2C+G">Georg Ehlers</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">Eric Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Frontzek%2C+M">Matthias Frontzek</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">Oksana Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Stuhr%2C+U">Uwe Stuhr</a>, <a href="/search/cond-mat?searchtype=author&query=Walker%2C+H+C">Helen C. Walker</a>, <a href="/search/cond-mat?searchtype=author&query=Adroja%2C+D">Devashibhai Adroja</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">Hubertus Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">Chris Baines</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">Alex Amato</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08714v3-abstract-short" style="display: inline;"> The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground state… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08714v3-abstract-full').style.display = 'inline'; document.getElementById('1610.08714v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08714v3-abstract-full" style="display: none;"> The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. In the pyrochlore Tb$_2$Hf$_2$O$_7$, we demonstrate that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cations remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly-fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08714v3-abstract-full').style.display = 'none'; document.getElementById('1610.08714v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, + Supplementary Information (4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.01895">arXiv:1609.01895</a> <span> [<a href="https://arxiv.org/pdf/1609.01895">pdf</a>, <a href="https://arxiv.org/format/1609.01895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.020415">10.1103/PhysRevB.95.020415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double Vibronic process in the quantum spin ice candidate Tb$_2$Ti$_2$O$_7$ revealed by terahertz spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Constable%2C+E">E. Constable</a>, <a href="/search/cond-mat?searchtype=author&query=Ballou%2C+R">R. Ballou</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Decorse%2C+C">C. Decorse</a>, <a href="/search/cond-mat?searchtype=author&query=Brubach%2C+J+-">J. -B. Brubach</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+P">P. Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Del-Rey%2C+L">L. Del-Rey</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">V. Simonet</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&query=deBrion%2C+S">S. deBrion</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.01895v2-abstract-short" style="display: inline;"> The origin of quantum fluctuations responsible for the spin liquid state in Tb$_2$Ti$_2$O$_7$ has remained a long standing problem. By synchrotron-based terahertz measurements, we show evidence of strong coupling between the magnetic and lattice degrees of freedom that provides a path to the quantum melting process. As revealed by hybrid crystal electric field-phonon excitations that appear at 0.6… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01895v2-abstract-full').style.display = 'inline'; document.getElementById('1609.01895v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.01895v2-abstract-full" style="display: none;"> The origin of quantum fluctuations responsible for the spin liquid state in Tb$_2$Ti$_2$O$_7$ has remained a long standing problem. By synchrotron-based terahertz measurements, we show evidence of strong coupling between the magnetic and lattice degrees of freedom that provides a path to the quantum melting process. As revealed by hybrid crystal electric field-phonon excitations that appear at 0.67 THz below 200 K, and around 0.42 THz below 50 K, the double vibronic process is unique for Tb$^{3+}$ in the titanate family due to adequate energy matching and strong quadrupolar moments. The results suggest that lattice motion can indeed be the driving force behind spin flips within the hybridized ground and first excited states, promoting quantum terms in the effective Hamiltonian that describes Tb$_2$Ti$_2$O$_7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01895v2-abstract-full').style.display = 'none'; document.getElementById('1609.01895v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 020415 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.01391">arXiv:1609.01391</a> <span> [<a href="https://arxiv.org/pdf/1609.01391">pdf</a>, <a href="https://arxiv.org/format/1609.01391">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.165153">10.1103/PhysRevB.94.165153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferro-quadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Florea%2C+S+G+O">S. Guitteny O. Florea</a>, <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Bonville%2C+P">P. Bonville</a>, <a href="/search/cond-mat?searchtype=author&query=Mirebeau%2C+I">I. Mirebeau</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Mutka%2C+H">H. Mutka</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Decorse%2C+C">C. Decorse</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.01391v1-abstract-short" style="display: inline;"> We present an experimental study of the quantum spin ice candidate pyrochlore coumpound \przr\ by means of magnetization measurements, specific heat and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the $[111]$ and $[1\bar{1}0]$ directions, ${\bf k}=0$ field induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01391v1-abstract-full').style.display = 'inline'; document.getElementById('1609.01391v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.01391v1-abstract-full" style="display: none;"> We present an experimental study of the quantum spin ice candidate pyrochlore coumpound \przr\ by means of magnetization measurements, specific heat and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the $[111]$ and $[1\bar{1}0]$ directions, ${\bf k}=0$ field induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization. Interestingly, for $H \parallel [1\bar{1}0]$, the ordered moment appears on the so called $伪$ chains only. The spin excitation spectrum is essentially {\it inelastic} and consists in a broad flat mode centered at about 0.4 meV with a magnetic structure factor which resembles the spin ice pattern. For $H \parallel [1\bar{1}0]$ (at least up to 2.5 T), we find that a well defined mode forms from this broad response, whose energy increases with $H$, in the same way as the temperature of the specific heat anomaly. We finally discuss these results in the light of mean field calculations and propose a new interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this picture, the spin ice pattern appears shifted up to finite energy because of those new interactions. We then propose a range of acceptable parameters for \przr\, that allow to reproduce several experimental features observed under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar liquid with spin-ice like excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01391v1-abstract-full').style.display = 'none'; document.getElementById('1609.01391v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 165153 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.09720">arXiv:1603.09720</a> <span> [<a href="https://arxiv.org/pdf/1603.09720">pdf</a>, <a href="https://arxiv.org/format/1603.09720">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3704">10.1038/nphys3704 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuhira%2C+G+B+K">G. Balakrishnan K. Matsuhira</a>, <a href="/search/cond-mat?searchtype=author&query=Bramwell%2C+S+T">S. T. Bramwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.09720v2-abstract-short" style="display: inline;"> A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect), electrolytes (the second Wien effect) and semiconductors (the Poole-Frenkel effect). It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.09720v2-abstract-full').style.display = 'inline'; document.getElementById('1603.09720v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.09720v2-abstract-full" style="display: none;"> A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect), electrolytes (the second Wien effect) and semiconductors (the Poole-Frenkel effect). It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches to spin ice to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole-Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high field Wien effect for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from equilibrium response in complex systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.09720v2-abstract-full').style.display = 'none'; document.getElementById('1603.09720v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In Nature Physics (2016)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.05008">arXiv:1603.05008</a> <span> [<a href="https://arxiv.org/pdf/1603.05008">pdf</a>, <a href="https://arxiv.org/format/1603.05008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of magnetic fragmentation in spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Canals%2C+B">B. Canals</a>, <a href="/search/cond-mat?searchtype=author&query=Ciomaga-Hatnean%2C+M">M. Ciomaga-Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Mutka%2C+H">H. Mutka</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.05008v1-abstract-short" style="display: inline;"> Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05008v1-abstract-full').style.display = 'inline'; document.getElementById('1603.05008v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.05008v1-abstract-full" style="display: none;"> Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd$_2$Zr$_2$O$_7$. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallisation and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself via the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05008v1-abstract-full').style.display = 'none'; document.getElementById('1603.05008v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted in Nature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.05071">arXiv:1601.05071</a> <span> [<a href="https://arxiv.org/pdf/1601.05071">pdf</a>, <a href="https://arxiv.org/format/1601.05071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.024436">10.1103/PhysRevB.94.024436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Candidate quantum spin ice in the pyrochlore Pr$_2$Hf$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%A5k%2C+B">Bj枚rn F氓k</a>, <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+N">Nicolas Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.05071v2-abstract-short" style="display: inline;"> We report the low temperature magnetic properties of the pyrochlore Pr$_2$Hf$_2$O$_7$. Polycrystalline and single-crystal samples are investigated using time-of-flight neutron spectroscopy and macroscopic measurements, respectively. The crystal-field splitting produces a non-Kramers doublet ground state for Pr$^{3+}$, with Ising-like anisotropy. Below 0.5 K ferromagnetic correlations develop, whic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05071v2-abstract-full').style.display = 'inline'; document.getElementById('1601.05071v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.05071v2-abstract-full" style="display: none;"> We report the low temperature magnetic properties of the pyrochlore Pr$_2$Hf$_2$O$_7$. Polycrystalline and single-crystal samples are investigated using time-of-flight neutron spectroscopy and macroscopic measurements, respectively. The crystal-field splitting produces a non-Kramers doublet ground state for Pr$^{3+}$, with Ising-like anisotropy. Below 0.5 K ferromagnetic correlations develop, which suggests that the system enters a spin ice-like state associated with the metamagnetic behavior observed at $渭_0H_c\sim2.4$~T. In this regime, the development of a discrete inelastic excitation in the neutron spectra indicates the appearance of spin dynamics which are likely related to cooperative quantum fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05071v2-abstract-full').style.display = 'none'; document.getElementById('1601.05071v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 024436 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.00544">arXiv:1510.00544</a> <span> [<a href="https://arxiv.org/pdf/1510.00544">pdf</a>, <a href="https://arxiv.org/ps/1510.00544">ps</a>, <a href="https://arxiv.org/format/1510.00544">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.104427">10.1103/PhysRevB.91.104427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for unidimensional low-energy excitations as the origin of persistent spin dynamics in geometrically frustrated magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yaouanc%2C+A">A. Yaouanc</a>, <a href="/search/cond-mat?searchtype=author&query=de+Reotier%2C+P+D">P. Dalmas de Reotier</a>, <a href="/search/cond-mat?searchtype=author&query=Bertin%2C+A">A. Bertin</a>, <a href="/search/cond-mat?searchtype=author&query=Marin%2C+C">C. Marin</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">C. Baines</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.00544v1-abstract-short" style="display: inline;"> We report specific heat, magnetic, and muon spin relaxation measurements performed on a polycrystalline sample of the normal spinel CdHo2S4. The rare-earth ions sit on a lattice of corner-sharing regular tetrahedra as in pyrochlore compounds. Magnetic ordering is detected at Tc ~ 0.87 K. From spin-lattice relaxation rate measurements on both sides of Tc we uncover similar magnetic excitation modes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00544v1-abstract-full').style.display = 'inline'; document.getElementById('1510.00544v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.00544v1-abstract-full" style="display: none;"> We report specific heat, magnetic, and muon spin relaxation measurements performed on a polycrystalline sample of the normal spinel CdHo2S4. The rare-earth ions sit on a lattice of corner-sharing regular tetrahedra as in pyrochlore compounds. Magnetic ordering is detected at Tc ~ 0.87 K. From spin-lattice relaxation rate measurements on both sides of Tc we uncover similar magnetic excitation modes driving the so-called persistent spin dynamics at T < Tc. Unidimensional excitations are argued to be at its origin. Often observed spin loop structures are suggested to support these excitations. The possibility of a generic mechanism for their existence is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00544v1-abstract-full').style.display = 'none'; document.getElementById('1510.00544v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 104427 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.01801">arXiv:1507.01801</a> <span> [<a href="https://arxiv.org/pdf/1507.01801">pdf</a>, <a href="https://arxiv.org/format/1507.01801">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.197202">10.1103/PhysRevLett.115.197202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuations and all-in$-$all-out ordering in dipole-octupole Nd2Zr2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Guitteny%2C+S">S. Guitteny</a>, <a href="/search/cond-mat?searchtype=author&query=Florea%2C+O">O. Florea</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Colin%2C+C">C. Colin</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.01801v1-abstract-short" style="display: inline;"> We present an experimental study of the pyrochlore coumpound Nd2Zr2O7 by means of neutron scattering and magnetization measurements down to 90 mK. The Nd$^{3+}$ magnetic moments exhibit a strong local $\langle$111$\rangle$ Ising anisotropy together with a dipolar-octupolar nature, different from the standard Kramers-doublet studied so far. We show that, despite the positive Curie-Weiss temperature… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01801v1-abstract-full').style.display = 'inline'; document.getElementById('1507.01801v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.01801v1-abstract-full" style="display: none;"> We present an experimental study of the pyrochlore coumpound Nd2Zr2O7 by means of neutron scattering and magnetization measurements down to 90 mK. The Nd$^{3+}$ magnetic moments exhibit a strong local $\langle$111$\rangle$ Ising anisotropy together with a dipolar-octupolar nature, different from the standard Kramers-doublet studied so far. We show that, despite the positive Curie-Weiss temperature, \ndzr\ undergoes a transition around 285 mK towards an all-in$-$all-out antiferromagnetic state. We establish the $(H,T)$ phase diagram in the three directions of the applied field and reveal a metamagnetic transition around 0.1 T. The strongly reduced ordered magnetic moment as well as the unexpected shape of the magnetization curves demonstrate that Nd2Zr2O7 , is not a standard Ising antiferromagnet. We propose that the peculiar nature of the Nd doublet combined with competing interactions explain these findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01801v1-abstract-full').style.display = 'none'; document.getElementById('1507.01801v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 197202 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.01729">arXiv:1506.01729</a> <span> [<a href="https://arxiv.org/pdf/1506.01729">pdf</a>, <a href="https://arxiv.org/format/1506.01729">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.064425">10.1103/PhysRevB.92.064425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics in the presence of competing ferro- and antiferro-magnetic correlations in Yb2Ti2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Robert%2C+J">J. Robert</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Remenyi%2C+G">G. Remenyi</a>, <a href="/search/cond-mat?searchtype=author&query=Sahling%2C+S">S. Sahling</a>, <a href="/search/cond-mat?searchtype=author&query=Mirebeau%2C+I">I. Mirebeau</a>, <a href="/search/cond-mat?searchtype=author&query=Decorse%2C+C">C. Decorse</a>, <a href="/search/cond-mat?searchtype=author&query=Canals%2C+B">B. Canals</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.01729v1-abstract-short" style="display: inline;"> In this work, we show that the zero field excitation spectra in the quantum spin ice candidate pyrochlore compound \ybti\ is a continuum characterized by a very broad and almost flat dynamical response which extends up to $1-1.5$ meV, coexisting or not with a quasi-elastic response depending on the wave-vector. The spectra do not evolve between 50 mK and 2 K, indicating that the spin dynamics is o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.01729v1-abstract-full').style.display = 'inline'; document.getElementById('1506.01729v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.01729v1-abstract-full" style="display: none;"> In this work, we show that the zero field excitation spectra in the quantum spin ice candidate pyrochlore compound \ybti\ is a continuum characterized by a very broad and almost flat dynamical response which extends up to $1-1.5$ meV, coexisting or not with a quasi-elastic response depending on the wave-vector. The spectra do not evolve between 50 mK and 2 K, indicating that the spin dynamics is only little affected by the temperature in both the short-range correlated and ordered regimes. Although classical spin dynamics simulations qualitatively capture some of the experimental observations, we show that they fail to reproduce this broad continuum. In particular, the simulations predict an energy scale twice smaller than the experimental observations. This analysis is based on a careful determination of the exchange couplings, able to reproduce both the zero field diffuse scattering and the spin wave spectrum rising in the field polarized state. According to this analysis, \ybti\ lies at the border between a ferro and an antiferromagnetic phase. These results suggest that the unconventional ground state of \ybti\ is governed by strong quantum fluctuations arising from the competition between those phases. The observed spectra may correspond to a continuum of deconfined spinons as expected in quantum spin liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.01729v1-abstract-full').style.display = 'none'; document.getElementById('1506.01729v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00787">arXiv:1502.00787</a> <span> [<a href="https://arxiv.org/pdf/1502.00787">pdf</a>, <a href="https://arxiv.org/format/1502.00787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.247202">10.1103/PhysRevLett.114.247202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropy tuned magnetic order in pyrochlore iridates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lefran%C3%A7ois%2C+E">E. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&query=Simonet%2C+V">V. Simonet</a>, <a href="/search/cond-mat?searchtype=author&query=Ballou%2C+R">R. Ballou</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Hadj-Azzem%2C+A">A. Hadj-Azzem</a>, <a href="/search/cond-mat?searchtype=author&query=Kodjikian%2C+S">S. Kodjikian</a>, <a href="/search/cond-mat?searchtype=author&query=Lejay%2C+P">P. Lejay</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D">D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Chapon%2C+L+C">L. C. Chapon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00787v1-abstract-short" style="display: inline;"> The magnetic behavior of polycrystalline samples of Er$_2$Ir$_2$O$_7$ and Tb$_2$Ir$_2$O$_7$ pyrochlores is studied by magnetization measurements and neutron diffraction. Both compounds undergo a magnetic transition at 140 and 130 K respectively, associated with an ordering of the Ir sublattice, signaled by thermomagnetic hysteresis. In Tb$_2$Ir$_2$O$_7$, we show that the Ir molecular field leads t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00787v1-abstract-full').style.display = 'inline'; document.getElementById('1502.00787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00787v1-abstract-full" style="display: none;"> The magnetic behavior of polycrystalline samples of Er$_2$Ir$_2$O$_7$ and Tb$_2$Ir$_2$O$_7$ pyrochlores is studied by magnetization measurements and neutron diffraction. Both compounds undergo a magnetic transition at 140 and 130 K respectively, associated with an ordering of the Ir sublattice, signaled by thermomagnetic hysteresis. In Tb$_2$Ir$_2$O$_7$, we show that the Ir molecular field leads the Tb magnetic moments to order below 40 K in the all-in/all-out magnetic arrangement. No sign of magnetic long range order on the Er sublattice is evidenced in Er$_2$Ir$_2$O$_7$ down to 0.6 K where a spin freezing is detected. These contrasting behaviors result from the competition between the Ir molecular field and the different single-ion anisotropy of the rare-earths on which it is acting. Additionally, this strongly supports the all-in/all-out iridium magnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00787v1-abstract-full').style.display = 'none'; document.getElementById('1502.00787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00662">arXiv:1502.00662</a> <span> [<a href="https://arxiv.org/pdf/1502.00662">pdf</a>, <a href="https://arxiv.org/format/1502.00662">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.097202">10.1103/PhysRevLett.115.097202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Candidate Quantum Spin Liquid in the Ce\textsuperscript{3+} Pyrochlore Stannate Ce$_2$Sn$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">Chris Baines</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00662v2-abstract-short" style="display: inline;"> We report the low temperature magnetic properties of Ce$_2$Sn$_2$O$_7$, a rare-earth pyrochlore. Our susceptibility and magnetization measurements show that due to the thermal isolation of a Kramers doublet ground state, Ce$_2$Sn$_2$O$_7$ has Ising-like magnetic moments of $\sim1.18$ $渭_\mathrm{B}$. The magnetic moments are confined to the local trigonal axes, as in a spin ice, but the exchange in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00662v2-abstract-full').style.display = 'inline'; document.getElementById('1502.00662v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00662v2-abstract-full" style="display: none;"> We report the low temperature magnetic properties of Ce$_2$Sn$_2$O$_7$, a rare-earth pyrochlore. Our susceptibility and magnetization measurements show that due to the thermal isolation of a Kramers doublet ground state, Ce$_2$Sn$_2$O$_7$ has Ising-like magnetic moments of $\sim1.18$ $渭_\mathrm{B}$. The magnetic moments are confined to the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K the system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical $\langle 111 \rangle$-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results suggest that Ce$_2$Sn$_2$O$_7$ features an antiferromagnetic liquid ground state with strong quantum fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00662v2-abstract-full').style.display = 'none'; document.getElementById('1502.00662v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115 097202 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.03361">arXiv:1501.03361</a> <span> [<a href="https://arxiv.org/pdf/1501.03361">pdf</a>, <a href="https://arxiv.org/format/1501.03361">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.014419">10.1103/PhysRevB.91.014419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Updating the phase diagram of the archetypal frustrated magnet Gd3Ga5O12 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deen%2C+P+P">P. P. Deen</a>, <a href="/search/cond-mat?searchtype=author&query=Florea%2C+O">O. Florea</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Jacobsen%2C+H">H. Jacobsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.03361v1-abstract-short" style="display: inline;"> The applied magnetic field and temperature phase diagram of the archetypal frustrated magnet, Gd3Ga5O12, has been reinvestigated using single crystal magnetometry and polarised neutron diffraction. The updated phase diagram is substantially more complicated than previously reported and can be understood in terms of competing interactions with loops of spins, trimers and decagons, in addition to co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03361v1-abstract-full').style.display = 'inline'; document.getElementById('1501.03361v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.03361v1-abstract-full" style="display: none;"> The applied magnetic field and temperature phase diagram of the archetypal frustrated magnet, Gd3Ga5O12, has been reinvestigated using single crystal magnetometry and polarised neutron diffraction. The updated phase diagram is substantially more complicated than previously reported and can be understood in terms of competing interactions with loops of spins, trimers and decagons, in addition to competition and interplay between antiferromagnetic, incommensurate and ferromagnetic order. Several additional distinct phase boundaries are presented. The phase diagram centers around a multiphase convergence to a single point at 0.9 T and ~ 0.35 K, below which, in temperature, a very narrow magnetically disordered region exists. These data illustrate the richness and diversity that arises from frustrated exchange on the 3 dimensional hyperkagome lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03361v1-abstract-full').style.display = 'none'; document.getElementById('1501.03361v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.2954">arXiv:1406.2954</a> <span> [<a href="https://arxiv.org/pdf/1406.2954">pdf</a>, <a href="https://arxiv.org/format/1406.2954">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.064427">10.1103/PhysRevB.90.064427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic behavior of magnetic avalanches in the spin-ice compound Dy$_2$Ti$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jackson%2C+M+J">M. J. Jackson</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&query=Bramwell%2C+S+T">S. T. Bramwell</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuhira%2C+K">K. Matsuhira</a>, <a href="/search/cond-mat?searchtype=author&query=Hiroi%2C+Z">Z. Hiroi</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Q">Q. Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Paulsen%2C+C">C. Paulsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.2954v1-abstract-short" style="display: inline;"> Avalanches of the magnetization, that is to say an abrupt reversal of the magnetization at a given field, have been previously reported in the spin-ice compound Dy$_{2}$Ti$_{2}$O$_{7}$. This out-of-equilibrium process, induced by magneto-thermal heating, is quite usual in low temperature magnetization studies. A key point is to determine the physical origin of the avalanche process. In particular,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.2954v1-abstract-full').style.display = 'inline'; document.getElementById('1406.2954v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.2954v1-abstract-full" style="display: none;"> Avalanches of the magnetization, that is to say an abrupt reversal of the magnetization at a given field, have been previously reported in the spin-ice compound Dy$_{2}$Ti$_{2}$O$_{7}$. This out-of-equilibrium process, induced by magneto-thermal heating, is quite usual in low temperature magnetization studies. A key point is to determine the physical origin of the avalanche process. In particular, in spin-ice compounds, the origin of the avalanches might be related to the monopole physics inherent to the system. We have performed a detailed study of the avalanche phenomena in three single crystals, with the field oriented along the [111] direction, perpendicular to [111] and along the [100] directions. We have measured the changing magnetization during the avalanches and conclude that avalanches in spin ice are quite slow compared to the avalanches reported in other systems such as molecular magnets. Our measurements show that the avalanches trigger after a delay of about 500 ms and that the reversal of the magnetization then occurs in a few hundreds of milliseconds. These features suggest an unusual propagation of the reversal, which might be due to the monopole motion. The avalanche fields seem to be reproducible in a given direction for different samples, but they strongly depend on the initial state of magnetization and on how the initial state was achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.2954v1-abstract-full').style.display = 'none'; document.getElementById('1406.2954v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2704">arXiv:1405.2704</a> <span> [<a href="https://arxiv.org/pdf/1405.2704">pdf</a>, <a href="https://arxiv.org/format/1405.2704">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Mapping the first order magnetic transition in Yb$_2$Ti$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Giblin%2C+S+R">S. R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+L+J">L. J. Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yasui%2C+Y">Y. Yasui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2704v1-abstract-short" style="display: inline;"> The very nature of the ground state of the pyrochlore compound Yb$_2$Ti$_2$O$_7$ is much debated, as experimental results demonstrate evidence for both a disordered or a long-range ordered ground state. Indeed, the delicate balance of exchange interactions and anisotropy is believed to lead to competing states, such as a Quantum Spin Liquid state or a ferromagnetic state which may originate from a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2704v1-abstract-full').style.display = 'inline'; document.getElementById('1405.2704v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2704v1-abstract-full" style="display: none;"> The very nature of the ground state of the pyrochlore compound Yb$_2$Ti$_2$O$_7$ is much debated, as experimental results demonstrate evidence for both a disordered or a long-range ordered ground state. Indeed, the delicate balance of exchange interactions and anisotropy is believed to lead to competing states, such as a Quantum Spin Liquid state or a ferromagnetic state which may originate from an Anderson-Higgs transition. We present a detailed magnetization study demonstrating a first order ferromagnetic transition at 245 mK and 150 mK in a powder and a single crystal sample respectively. Its first-order character is preserved up to applied fields of $\sim$ 200 Oe. The transition stabilizes a ferromagnetic component and involves slow dynamics in the magnetization. Residual fluctuations are also evidenced, the presence of which might explain some of the discrepancies between previously published data for Yb$_2$Ti$_2$O$_7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2704v1-abstract-full').style.display = 'none'; document.getElementById('1405.2704v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + Sup. Mat</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lhotel%2C+E&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lhotel%2C+E&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lhotel%2C+E&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>