CINXE.COM

Search results for: synchronous machine parameters

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: synchronous machine parameters</title> <meta name="description" content="Search results for: synchronous machine parameters"> <meta name="keywords" content="synchronous machine parameters"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="synchronous machine parameters" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="synchronous machine parameters"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11376</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: synchronous machine parameters</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11376</span> Synchronous Generator in Case Voltage Sags for Different Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Nadia">Benalia Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensiali%20Nadia"> Bensiali Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zezouri%20Noura"> Zezouri Noura </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effects of voltage sags, both symmetrical and unsymmetrical, on the three-phase Synchronous Machine (SM) when powering an isolate load or infinite bus bar. The vast majority of the electrical power generation systems in the world is consist of synchronous generators coupled to the electrical network though a transformer. Voltage sags on SM cause speed variations, current and torque peaks and hence may cause tripping and equipment damage. The consequences of voltage sags in the machine behavior depends on different factors such as its magnitude (or depth), duration , the parameters of the machine and also the size of load. In this study, we consider the machine feeds an infinite bus bar in the first and the isolate load using symmetric and asymmetric defaults to see the behavior of the machine in both case the simulation have been used on SIMULINK MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20sag" title=" voltage sag"> voltage sag</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generator" title=" synchronous generator"> synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20system" title=" infinite system"> infinite system</a> </p> <a href="https://publications.waset.org/abstracts/21583/synchronous-generator-in-case-voltage-sags-for-different-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11375</span> Design and Performance Evaluation of Synchronous Reluctance Machine (SynRM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Aghazadeh">Hadi Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Naeimi"> Mohammadreza Naeimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ebrahim%20Afjei"> Seyed Ebrahim Afjei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Siadatan"> Alireza Siadatan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Torque ripple, maximum torque and high efficiency are important issues in synchronous reluctance machine (SynRM). This paper presents a view on design of a high efficiency, low torque ripple and high torque density SynRM. To achieve this goal SynRM parameters is calculated (such as insulation ratios in the d-and q-axes and the rotor slot pitch), while the torque ripple can be minimized by determining the best rotor slot pitch in the d-axis. The presented analytical-finite element method (FEM) approach gives the optimum distribution of air gap and iron portion for the maximizing torque density with minimum torque ripple. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torque%20ripple" title="torque ripple">torque ripple</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20ratio" title=" insulation ratio"> insulation ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20reluctance%20machine%20%28SynRM%29" title=" synchronous reluctance machine (SynRM)"> synchronous reluctance machine (SynRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor%20%28IM%29" title=" induction motor (IM)"> induction motor (IM)</a> </p> <a href="https://publications.waset.org/abstracts/85364/design-and-performance-evaluation-of-synchronous-reluctance-machine-synrm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11374</span> Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hassannia">A. Hassannia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ramezani"> S. Ramezani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coreless%20machine" title="coreless machine">coreless machine</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20machine%20design" title=" electrical machine design"> electrical machine design</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20generator" title=" hydraulic generator"> hydraulic generator</a>, <a href="https://publications.waset.org/abstracts/search?q=rim-driven%20machine" title=" rim-driven machine"> rim-driven machine</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20generator" title=" superconducting generator"> superconducting generator</a> </p> <a href="https://publications.waset.org/abstracts/104902/design-and-performance-analysis-of-a-hydro-power-rim-driven-superconducting-synchronous-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11373</span> Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ritonja">J. Ritonja</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Grcar"> B. Grcar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations&rsquo; descriptions and the parameters&rsquo; determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators&rsquo; dynamic behaviour analysis and synchronous generator&rsquo;s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator&rsquo;s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator&rsquo;s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20analysis" title="eigenvalue analysis">eigenvalue analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20stability" title=" power system stability"> power system stability</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generator" title=" synchronous generator"> synchronous generator</a> </p> <a href="https://publications.waset.org/abstracts/52086/applicability-of-linearized-model-of-synchronous-generator-for-power-system-stability-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11372</span> Finite Element Analysis of a Modular Brushless Wound Rotor Synchronous Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Le%20Luong">H. T. Le Luong</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H%C3%A9naux"> C. H茅naux</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Messine"> F. Messine</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bueno-Mariani"> G. Bueno-Mariani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mollov"> S. Mollov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Voyer"> N. Voyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative study of different modular brushless wound rotor synchronous machine (MB-WRSM). The goal of the study is to highlight the structure which offers the best fault tolerant capability and the highest output performances. The fundamental winding factor is calculated by using the method based on EMF phasors as a significant criterion to select the preferred number of phases, stator slots, and poles. With the limited number of poles for a small machine (3.67kW/7000rpm), 15 different machines for preferred phase/slot/pole combinations are analyzed using two-dimensional (2-D) finite element method and compared according to three criteria: torque density, torque ripple and efficiency. The 7phase/7slot/6pole machine is chosen with the best compromise of high torque density, small torque ripple (3.89%) and high nominal efficiency (95%). This machine is then compared with a reference design surface permanent magnet synchronous machine (SPMSM). In conclusion, this paper provides an electromagnetic analysis of a new brushless wound-rotor synchronous machine using multiphase non-overlapping fractional slot double layer winding. The simulation results are discussed and demonstrate that the MB-WRSM presents interesting performance features, with overall performance closely matching that of an equivalent SPMSM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title="finite element method (FEM)">finite element method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20performance" title=" machine performance"> machine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20wound%20rotor%20synchronous%20machine" title=" modular wound rotor synchronous machine"> modular wound rotor synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=non-overlapping%20concentrated%20winding" title=" non-overlapping concentrated winding"> non-overlapping concentrated winding</a> </p> <a href="https://publications.waset.org/abstracts/73364/finite-element-analysis-of-a-modular-brushless-wound-rotor-synchronous-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11371</span> A Method to Saturation Modeling of Synchronous Machines in d-q Axes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Arbi%20Khlifi">Mohamed Arbi Khlifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Badr%20M.%20Alshammari"> Badr M. Alshammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-magnetizing" title="cross-magnetizing">cross-magnetizing</a>, <a href="https://publications.waset.org/abstracts/search?q=models%20synthesis" title=" models synthesis"> models synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine" title=" synchronous machine"> synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=saturated%20modeling" title=" saturated modeling"> saturated modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=state-space%20vectors" title=" state-space vectors"> state-space vectors</a> </p> <a href="https://publications.waset.org/abstracts/31947/a-method-to-saturation-modeling-of-synchronous-machines-in-d-q-axes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11370</span> Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20EL-Naggar">Khaled M. EL-Naggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous" title=" synchronous"> synchronous</a>, <a href="https://publications.waset.org/abstracts/search?q=machine" title=" machine"> machine</a>, <a href="https://publications.waset.org/abstracts/search?q=crow%20search" title=" crow search"> crow search</a> </p> <a href="https://publications.waset.org/abstracts/110946/estimation-of-synchronous-machine-synchronizing-and-damping-torque-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11369</span> Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yi-Fei">Yang Yi-Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Luo%20Min-Zhou"> Luo Min-Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Fu-Chun"> Zhang Fu-Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Nai-Bao"> He Nai-Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing%20Shao-Bang"> Xing Shao-Bang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20linear%20motor" title="permanent magnet synchronous linear motor">permanent magnet synchronous linear motor</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20search" title=" chaotic search"> chaotic search</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a> </p> <a href="https://publications.waset.org/abstracts/48599/chaotic-search-optimal-design-and-modeling-of-permanent-magnet-synchronous-linear-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11368</span> Comparison of Instantaneous Short Circuit versus Step DC Voltage to Determine PMG Inductances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walter%20Evaldo%20Kuchenbecker">Walter Evaldo Kuchenbecker</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Carlos%20Teixeira"> Julio Carlos Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since efficiency became a challenge to reduce energy consumption of all electrical machines applications, the permanent magnet machine raises up as a better option, because its performance, robustness and simple control. Even though, the electrical machine was developed through analyses of magnetism effect, permanent magnet machines still not well dominated. As permanent magnet machines are becoming popular in most applications, the pressure to standardize this type of electrical machine increases. However, due limited domain, it is still nowadays without any standard to manufacture, test and application. In order to determine an inductance of the machine, a new method is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generators%20%28pmg%29" title="permanent magnet generators (pmg)">permanent magnet generators (pmg)</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters" title=" synchronous machine parameters"> synchronous machine parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20procedures" title=" test procedures"> test procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=inductances" title=" inductances"> inductances</a> </p> <a href="https://publications.waset.org/abstracts/53174/comparison-of-instantaneous-short-circuit-versus-step-dc-voltage-to-determine-pmg-inductances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11367</span> A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mohammed%20Chikouche">T. Mohammed Chikouche</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Hartani"> K. Hartani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-machine%20single-inverter%20system" title=" multi-machine single-inverter system"> multi-machine single-inverter system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-machine%20multi-inverter%20control" title=" multi-machine multi-inverter control"> multi-machine multi-inverter control</a>, <a href="https://publications.waset.org/abstracts/search?q=in-wheel%20motor" title=" in-wheel motor"> in-wheel motor</a>, <a href="https://publications.waset.org/abstracts/search?q=master-slave%20control" title=" master-slave control"> master-slave control</a> </p> <a href="https://publications.waset.org/abstracts/87696/a-strategy-of-direct-power-control-for-pwm-rectifier-reducing-ripple-in-instantaneous-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11366</span> Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Lehr">Marcel Lehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder"> Andreas Binder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly-salient-permanent-magnet-machine" title="doubly-salient-permanent-magnet-machine">doubly-salient-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-reversal-permanent-magnet-machine" title=" flux-reversal-permanent-magnet-machine"> flux-reversal-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-switching-permanent-magnet-machine" title=" flux-switching-permanent-magnet-machine"> flux-switching-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20drive" title=" industrial drive"> industrial drive</a> </p> <a href="https://publications.waset.org/abstracts/61399/comparison-of-different-electrical-machines-with-permanent-magnets-in-the-stator-for-use-as-an-industrial-drive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11365</span> High Frequency Rotary Transformer Used in Synchronous Motor/Generator of Flywheel Energy Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Lu">J. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Li"> H. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Cole"> F. Cole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a high-frequency rotary transformer (HFRT) for a separately excited synchronous machine (SESM) used in a flywheel energy storage system. The SESM can eliminate and reduce rare earth permanent magnet (REPM) usage and provide a better performance in renewable energy systems. However, the major drawback of such SESM is the necessity of brushes and slip rings to supply the field current, which increases the maintenance cost and operation reliability. To overcome these problems, an HFRT integrated with SiC semiconductor devices can replace brushes and slip rings in the SESM. The proposed HFRT features a high-frequency magnetic ferrite for both the stationary part as the transformer primary and the rotating part as the transformer secondary, as well as an air gap, allowing safe operation at high rotational speeds. Hence, this rotary transformer can enable the adoption of a wound rotor synchronous machine (WRSM). The HFRT, working at over 100kHz operating frequency, exhibits excellent performance of power efficiency and significant size reduction. The experimental validations to support the theoretical findings have been provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brushes%20and%20slip%20rings" title="brushes and slip rings">brushes and slip rings</a>, <a href="https://publications.waset.org/abstracts/search?q=flywheel%20energy%20storage" title=" flywheel energy storage"> flywheel energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20rotary%20transformer" title=" high frequency rotary transformer"> high frequency rotary transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=separately%20excited%20synchronous%20machine" title=" separately excited synchronous machine"> separately excited synchronous machine</a> </p> <a href="https://publications.waset.org/abstracts/188753/high-frequency-rotary-transformer-used-in-synchronous-motorgenerator-of-flywheel-energy-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11364</span> Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezio%20Bassi">Ezio Bassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Vercesi"> Francesco Vercesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Benzi"> Francesco Benzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20reluctance%20motor" title="synchronous reluctance motor">synchronous reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-acoustic" title=" vibro-acoustic"> vibro-acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20systems" title=" lift systems"> lift systems</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/137796/computer-aided-engineering-optimization-of-synchronous-reluctance-motor-and-vibro-acoustic-analysis-for-lift-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11363</span> Vector Control of Two Five Phase PMSM Connected in Series Powered by Matrix Converter Application to the Rail Traction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Meguenni">S. Meguenni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djahbar"> A. Djahbar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Tounsi"> K. Tounsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric railway traction systems are complex; they have electrical couplings, magnetic and solid mechanics. These couplings impose several constraints that complicate the modeling and analysis of these systems. An example of drive systems, which combine the advantages of the use of multiphase machines, power electronics and computing means, is mono convert isseur multi-machine system which can control a fully decoupled so many machines whose electric windings are connected in series. In this approach, our attention especially on modeling and independent control of two five phase synchronous machine with permanent magnet connected in series and fed by a matrix converter application to the rail traction (bogie of a locomotive BB 36000). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine" title="synchronous machine">synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20control%20Multi-machine%2F%20Multi-inverter" title=" vector control Multi-machine/ Multi-inverter"> vector control Multi-machine/ Multi-inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20inverter" title=" matrix inverter"> matrix inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=Railway%20traction" title=" Railway traction"> Railway traction</a> </p> <a href="https://publications.waset.org/abstracts/49131/vector-control-of-two-five-phase-pmsm-connected-in-series-powered-by-matrix-converter-application-to-the-rail-traction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11362</span> Task Space Synchronization Control of Multi-Robot Arms with Position Synchronous Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zijian%20Zhang">Zijian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangyang%20Dong"> Yangyang Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synchronization is of great importance to ensure the multi-arm robot to complete the task. Therefore, a synchronous controller is designed to coordinate task space motion of the multi-arm in the paper. The position error, the synchronous position error, and the coupling position error are all considered in the controller. Besides, an adaptive control method is used to adjust parameters of the controller to improve the effectiveness of coordinated control performance. Simulation in the Matlab shows the effectiveness of the method. At last, a robot experiment platform with two 7-DOF (Degree of Freedom) robot arms has been established and the synchronous controller simplified to control dual-arm robot has been validated on the experimental set-up. Experiment results show the position error decreased 10% and the corresponding frequency is also greatly improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20control" title="synchronous control">synchronous control</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20robot" title=" space robot"> space robot</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20space%20control" title=" task space control"> task space control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-arm%20robot" title=" multi-arm robot"> multi-arm robot</a> </p> <a href="https://publications.waset.org/abstracts/97448/task-space-synchronization-control-of-multi-robot-arms-with-position-synchronous-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11361</span> Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Lamichhane">Shishir Lamichhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurav%20Dulal"> Saurav Dulal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bibek%20Gautam"> Bibek Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Madan%20Thapa%20Magar"> Madan Thapa Magar</a>, <a href="https://publications.waset.org/abstracts/search?q=Indraman%20Tamrakar"> Indraman Tamrakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20constant" title="damping constant">damping constant</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia%E2%80%93constant" title=" inertia鈥揷onstant"> inertia鈥揷onstant</a>, <a href="https://publications.waset.org/abstracts/search?q=ROCOF" title=" ROCOF"> ROCOF</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20stability" title=" transient stability"> transient stability</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20sources" title=" distributed sources"> distributed sources</a> </p> <a href="https://publications.waset.org/abstracts/141846/power-angle-control-strategy-of-virtual-synchronous-machine-a-novel-approach-to-control-virtual-synchronous-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11360</span> Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Ladghem%20Chikouche">B. Ladghem Chikouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exact%20analytical%20calculation" title="exact analytical calculation">exact analytical calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20method" title=" finite-element method"> finite-element method</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20distribution" title=" magnetic field distribution"> magnetic field distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machines%20performance" title=" permanent magnet machines performance"> permanent magnet machines performance</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20slot%20wedges%20permeability" title=" stator slot wedges permeability"> stator slot wedges permeability</a> </p> <a href="https://publications.waset.org/abstracts/43206/analysis-of-effects-of-magnetic-slot-wedges-on-characteristics-of-permanent-magnet-synchronous-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11359</span> The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Solomon">Olusegun Solomon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator" title="permanent magnet synchronous generator">permanent magnet synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20system" title=" wind power system"> wind power system</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/65956/the-design-control-and-dynamic-performance-of-an-interior-permanent-magnet-synchronous-generator-for-wind-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11358</span> Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ritonja">J. Ritonja</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Brezovnik"> R. Brezovnik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Petrun"> M. Petrun</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Polaj%C5%BEer"> B. Polaj啪er</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator&rsquo;s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20theory" title="control theory">control theory</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20stabilizer" title=" power system stabilizer"> power system stabilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generator" title=" synchronous generator"> synchronous generator</a> </p> <a href="https://publications.waset.org/abstracts/99856/sliding-mode-power-system-stabilizer-for-synchronous-generator-stability-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11357</span> An Algorithm for Preventing the Irregular Operation Modes of the Drive Synchronous Motor Providing the Ore Grinding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdasaryan%20Marinka">Baghdasaryan Marinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current scientific and engineering interest concerning the problems of preventing the emergency manifestations of drive synchronous motors, ensuring the ore grinding technological process has been justified. The analysis of the known works devoted to the abnormal operation modes of synchronous motors and possibilities of protection against them, has shown that their application is inexpedient for preventing the impermissible displays arising in the electrical drive synchronous motors ensuring the ore-grinding process. The main energy and technological factors affecting the technical condition of synchronous motors are evaluated. An algorithm for preventing the irregular operation modes of the electrical drive synchronous motor applied in the ore-grinding technological process has been developed and proposed for further application which gives an opportunity to provide smart solutions, ensuring the safe operation of the drive synchronous motor by a comprehensive consideration of the energy and technological factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20motor" title="synchronous motor">synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20operating%20mode" title=" abnormal operating mode"> abnormal operating mode</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20drive" title=" electric drive"> electric drive</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20factor" title=" energy factor"> energy factor</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20factor" title=" technological factor"> technological factor</a> </p> <a href="https://publications.waset.org/abstracts/122065/an-algorithm-for-preventing-the-irregular-operation-modes-of-the-drive-synchronous-motor-providing-the-ore-grinding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11356</span> Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ritonja">J. Ritonja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Available commercial applications of power system stabilizers assure optimal damping of synchronous generator&rsquo;s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator&rsquo;s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator&rsquo;s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator&rsquo;s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator&rsquo;s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator&rsquo;s damping and power system stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20quadratic%20regulator" title=" linear quadratic regulator"> linear quadratic regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20stabilizer" title=" power system stabilizer"> power system stabilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=recursive%20least%20square%20identification" title=" recursive least square identification"> recursive least square identification</a> </p> <a href="https://publications.waset.org/abstracts/52084/self-tuning-power-system-stabilizer-based-on-recursive-least-square-identification-and-linear-quadratic-regulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11355</span> Developing a Regulator for Improving the Operation Modes of the Electrical Drive Motor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdasaryan%20Marinka">Baghdasaryan Marinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The operation modes of the synchronous motors used in the production processes are greatly conditioned by the accidentally changing technological and power indices.&nbsp; As a result, the electrical drive synchronous motor may appear in irregular operation regimes. Although there are numerous works devoted to the development of the regulator for the synchronous motor operation modes, their application for the motors working in the irregular modes is not expedient. In this work, to estimate the issues concerning the stability of the synchronous electrical drive system, the transfer functions of the electrical drive synchronous motors operating in the synchronous and induction modes have been obtained. &nbsp;For that purpose, a model for investigating the frequency characteristics has been developed in the LabView environment. Frequency characteristics for assessing the transient process of the electrical drive system, operating in the synchronous and induction modes have been obtained, and based on their assessment, a regulator for improving the operation modes of the motor has been proposed. The proposed regulator can be successfully used to prevent the irregular modes of the electrical drive synchronous motor, as well as to estimate the operation state of the drive motor of the mechanism with a changing load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20drive%20system" title="electrical drive system">electrical drive system</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20motor" title=" synchronous motor"> synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=regulator" title=" regulator"> regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20process" title=" transition process"> transition process</a> </p> <a href="https://publications.waset.org/abstracts/105307/developing-a-regulator-for-improving-the-operation-modes-of-the-electrical-drive-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11354</span> Static Eccentricity Fault Diagnosis in Synchronous Reluctance Motor and Permanent Magnet Assisted Synchronous Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naeimi">M. Naeimi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aghazadeh"> H. Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Afjei"> E. Afjei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siadatan"> A. Siadatan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel view of air gap magnetic field analysis of synchronous reluctance motor and permanent magnet assisted synchronous reluctance motor under static eccentricity to provide the precise fault diagnosis based on three-dimensional finite element method is presented. Analytical nature of this method makes it possible to simulate reliable and precise model by considering the end effects and axial fringing effects. The results of the three-dimensional finite element analysis of synchronous reluctance motor and permanent magnet synchronous reluctance motor such as flux linkage, flux density, and compression both of SynRM and PM-SynRM for various eccentric motor conditions are obtained and analyzed. These results present useful information regarding to the detection of static eccentricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20reluctance%20motor%20%28SynRM%29" title="synchronous reluctance motor (SynRM)">synchronous reluctance motor (SynRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20assisted%20synchronous%20reluctance%20motor%20%28PMaSynRM%29" title=" permanent magnet assisted synchronous reluctance motor (PMaSynRM)"> permanent magnet assisted synchronous reluctance motor (PMaSynRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20eccentricity" title=" static eccentricity"> static eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20analysis" title=" fault analysis"> fault analysis</a> </p> <a href="https://publications.waset.org/abstracts/87636/static-eccentricity-fault-diagnosis-in-synchronous-reluctance-motor-and-permanent-magnet-assisted-synchronous-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11353</span> Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Abubakar">Usman Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyuan%20Wang"> Xiaoyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayyed%20Haleem%20Shah"> Sayyed Haleem Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20Ur%20Rahman"> Sadiq Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabiu%20Saleh%20Zakariyya"> Rabiu Saleh Zakariyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding鈥檚 potting material and sleeve鈥檚 material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine鈥檚 electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine鈥檚 cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine鈥檚 winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airflow%20network" title="airflow network">airflow network</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20ventilation" title=" axial ventilation"> axial ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20PMSM" title=" high-speed PMSM"> high-speed PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20network" title=" thermal network"> thermal network</a> </p> <a href="https://publications.waset.org/abstracts/139686/comparative-analysis-of-hybrid-and-non-hybrid-cooled-185-kw-high-speed-permanent-magnet-synchronous-machine-for-air-suspension-blower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11352</span> Development of an Analytical Model for a Synchronous Permanent Magnet Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Sahbani">T. Sahbani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouteraa"> M. Bouteraa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wamkeue"> R. Wamkeue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20permanent%20magnet%20generator" title=" synchronous permanent magnet generator"> synchronous permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a> </p> <a href="https://publications.waset.org/abstracts/23479/development-of-an-analytical-model-for-a-synchronous-permanent-magnet-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11351</span> Diagnosis Of Static, Dynamic, And Mixed Eccentricity In Line Start Permanent Magnet Synchronous Motor By Using FEM </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moustafa%20Mahmoud%20Sedky">Mohamed Moustafa Mahmoud Sedky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In line start permanent magnet synchronous motor, eccentricity is a common fault that can make it necessary to remove the motor from the production line. However, because the motor may be inaccessible, diagnosing the fault is not easy. This paper presents an FEM that identifies different models, static eccentricity, dynamic eccentricity, and mixed eccentricity, at no load and full load. The method overcomes the difficulty of applying FEMs to transient behavior. It simulates motor speed, torque and flux density distribution along the air gap for SE, DE, and ME. This paper represents the various effects of different eccentricities types on the transient performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=line%20start%20permanent%20magnet" title="line start permanent magnet">line start permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine" title=" synchronous machine"> synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20eccentricity" title=" static eccentricity"> static eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20eccentricity" title=" dynamic eccentricity"> dynamic eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20eccentricity" title=" mixed eccentricity"> mixed eccentricity</a> </p> <a href="https://publications.waset.org/abstracts/4065/diagnosis-of-static-dynamic-and-mixed-eccentricity-in-line-start-permanent-magnet-synchronous-motor-by-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11350</span> Intelligent Production Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20%C5%9Eahino%C4%9Flu">A. 艦ahino臒lu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G%C3%BCrb%C3%BCz"> R. G眉rb眉z</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%BCll%C3%BC"> A. G眉ll眉</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karhan"> M. Karhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound鈥檚 features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20process" title="cutting process">cutting process</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20processing" title=" sound processing"> sound processing</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20late" title=" intelligent late"> intelligent late</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20analysis" title=" sound analysis"> sound analysis</a> </p> <a href="https://publications.waset.org/abstracts/28796/intelligent-production-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11349</span> Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emir%20Alaca">Emir Alaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasbi%20Apaydin"> Hasbi Apaydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohullah%20Rahmatullah"> Rohullah Rahmatullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Necibe%20Fusun%20Oyman%20Serteller"> Necibe Fusun Oyman Serteller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnet%20synchronous%20motor" title="magnet synchronous motor">magnet synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20tools" title=" education tools"> education tools</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20inter-turn%20fault" title=" winding inter-turn fault"> winding inter-turn fault</a> </p> <a href="https://publications.waset.org/abstracts/182165/education-based-graphical-user-interface-design-for-analyzing-phase-winding-inter-turn-faults-in-permanent-magnet-synchronous-motors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11348</span> Core Loss Influence on MTPA Current Vector Variation of Synchronous Reluctance Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huai-Cong%20Liu">Huai-Cong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Chul%20Jeong"> Tae Chul Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to develop an electric circuit method (ECM) to ascertain the core loss influence on a Synchronous Reluctance Motor (SynRM) in the condition of the maximum torque per ampere (MTPA). SynRM for fan usually operates on the constant torque region, at synchronous speed the MTPA control is adopted due to current vector. However, finite element analysis (FEA) program is not sufficient exactly to reflect how the core loss influenced on the current vector. This paper proposed a method to calculate the current vector with consideration of core loss. The precision of current vector by ECM is useful for MTPA control. The result shows that ECM analysis is closer to the actual motor鈥檚 characteristics by testing with a 7.5kW SynRM drive System. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20loss" title="core loss">core loss</a>, <a href="https://publications.waset.org/abstracts/search?q=SynRM" title=" SynRM"> SynRM</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20vector" title=" current vector"> current vector</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20saturation" title=" magnetic saturation"> magnetic saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20torque%20per%20ampere%20%28MTPA%29" title=" maximum torque per ampere (MTPA)"> maximum torque per ampere (MTPA)</a> </p> <a href="https://publications.waset.org/abstracts/25312/core-loss-influence-on-mtpa-current-vector-variation-of-synchronous-reluctance-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11347</span> Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tahir">K. Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Belfedal"> C. Belfedal</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Allaoui"> T. Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gerard"> C. Gerard</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Doumi"> M. Doumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20rotor%20synchronous%20generator" title=" wound rotor synchronous generator"> wound rotor synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20control" title=" power control"> power control</a>, <a href="https://publications.waset.org/abstracts/search?q=RST%20controller" title=" RST controller"> RST controller</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a> </p> <a href="https://publications.waset.org/abstracts/12646/optimal-tuning-of-rst-controller-using-pso-optimization-for-synchronous-generator-based-wind-turbine-under-three-phase-voltage-dips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=379">379</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=380">380</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10