CINXE.COM

Search results for: wrinkling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wrinkling</title> <meta name="description" content="Search results for: wrinkling"> <meta name="keywords" content="wrinkling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wrinkling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wrinkling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wrinkling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Scanning Electronic Microscopy for Analysis of the Effects of Surfactants on De-Wrinkling and Dispersion of Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kostandinos%20Katsamangas">Kostandinos Katsamangas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Inam"> Fawad Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene was dispersed using a tip sonicator and the effect of surfactants were analysed. Sodium Dodecyl Sulphate (SDS) and Polyvinyl Alcohol (PVA) were compared to observe whether or not they had any effect on any de-wrinkling, and secondly whether they aided to achieve better dispersions. There is a huge demand for wrinkle free graphene as this will greatly increase its usefulness in various engineering applications. A comprehensive literature on de-wrinkling graphene has been discussed. Low magnification Scanning Electronic Microscopy (SEM) was conducted to assess the quality of graphene de-wrinkling. The utilization of the PVA has a significant effect on de-wrinkling whereas SDS had minimal effect on the de-wrinkling of graphene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graphene" title="Graphene">Graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=de-wrinkling" title=" de-wrinkling"> de-wrinkling</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electronic%20microscopy" title=" scanning electronic microscopy"> scanning electronic microscopy</a> </p> <a href="https://publications.waset.org/abstracts/26054/scanning-electronic-microscopy-for-analysis-of-the-effects-of-surfactants-on-de-wrinkling-and-dispersion-of-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Multi-Scale Modelling of Thermal Wrinkling of Thin Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20Belouettar">Salim Belouettar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kodjo%20Attipou"> Kodjo Attipou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal wrinkling behavior of thin membranes is investigated. The Fourier double scale series are used to deduce the macroscopic membrane wrinkling equations. The obtained equations account for the global and local wrinkling modes. Numerical examples are conducted to assess the validity of the approach developed. Compared to the finite element full model, the present model needs only few degrees of freedom to recover accurately the bifurcation curves and wrinkling paths. Different parameters such as membrane’s aspect ratio, wave number, pre-stressed membranes are discussed from a numerical point of view and the properties of the wrinkles (critical load, wavelength, size and location) are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title="wrinkling">wrinkling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stresses" title=" thermal stresses"> thermal stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20series" title=" Fourier series"> Fourier series</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20membranes" title=" thin membranes"> thin membranes</a> </p> <a href="https://publications.waset.org/abstracts/17997/multi-scale-modelling-of-thermal-wrinkling-of-thin-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Sabri">F. Sabri</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Jamali"> J. Jamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/88781/wrinkling-prediction-of-membrane-composite-of-varying-orientation-under-in-plane-shear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhende%20Hou">Zhende Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yang"> Fan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoli%20Zhang"> Guoli Zhang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomers" title="elastomers">elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20stretch" title=" uniaxial stretch"> uniaxial stretch</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20area" title=" electrode area"> electrode area</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/93758/study-on-the-voltage-induced-wrinkling-of-elastomer-with-different-electrode-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Optimization of Pressure in Deep Drawing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey">Ajay Kumar Choubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Geeta%20Agnihotri"> Geeta Agnihotri</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sasikumar"> C. Sasikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Dwivedi"> Rashmi Dwivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20drawing" title=" deep drawing"> deep drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=BHP" title=" BHP"> BHP</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/24550/optimization-of-pressure-in-deep-drawing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Reversible and Irreversible Wrinkling in Tube Hydroforming Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abd%20El-Aty">Ali Abd El-Aty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tauseef"> Ahmed Tauseef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Farooq"> Ahmad Farooq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims at analyzing and optimizing the hydroforming process parameters to achieve a sound bulged tube without failure. Theoretical constitutive model is formulated to develop a working diagram including process window, which represents the optimize region to carry out the hydroforming process and predict the type of tube failure during the process accurately. The model is applied into different bulging ratios for low carbon steel (C1010). From this study, it is concluded that the tubes with bulging ratios up to 50% and 70% are successfully formed without defects. The tubes with bulging ratio of 90% are successfully formed by hydroforming with optimized the loading path (axial feed versus internal pressure) within the process window. The working diagram is modified due to different types of formation of wrinkling during the hydroforming process. The formation of wrinkles with increasing axial feed can be useful in terms of the achievement of higher bulging ratio and/or less thinning and this type of wrinkles can be overcome through the internal pressure in the later stage of the hydroforming process. On the other hand, the formation of wrinkles may be harmful, if it cannot be reversed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroforming" title=" hydroforming"> hydroforming</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20window" title=" process window"> process window</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/65487/reversible-and-irreversible-wrinkling-in-tube-hydroforming-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misganaw%20Abebe%20Baye">Misganaw Abebe Baye</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Woo%20Park"> Ji-Woo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Beom-Soo%20Kang"> Beom-Soo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimpling" title="dimpling">dimpling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-point%20dieless%20forming" title=" multi-point dieless forming"> multi-point dieless forming</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability-based%20robust%20optimization" title=" reliability-based robust optimization"> reliability-based robust optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20error" title=" shape error"> shape error</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/54851/multi-point-dieless-forming-product-defect-reduction-using-reliability-based-robust-process-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Resin Finishing of Cotton: Teaching and Learning Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=resin" title=" resin"> resin</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle" title=" wrinkle"> wrinkle</a> </p> <a href="https://publications.waset.org/abstracts/60219/resin-finishing-of-cotton-teaching-and-learning-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Experimental and FEA Study for Reduction of Damage in Sheet Metal Forming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amitkumar%20R.%20Shelar">Amitkumar R. Shelar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20P.%20Ronge"> B. P. Ronge</a>, <a href="https://publications.waset.org/abstracts/search?q=Sridevi%20Seshabhattar"> Sridevi Seshabhattar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Wabale"> R. M. Wabale </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives knowledge about the behavior of cold rolled steel IS 513_2008 CR2_D having grade D for the reduction of ductile damage. CR specifies Cold Rolled and D for Drawing grade. Problems encountered during sheet metal forming operations are dent, wrinkles, thinning, spring back, insufficient stretching etc. In this paper, wrinkle defect was studied experimentally and by using FE software on one of the auto components due to which its functionality was decreased. Experimental result and simulation result were found to be in agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20drawing" title="deep drawing">deep drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20software-LS%20DYNA" title=" FE software-LS DYNA"> FE software-LS DYNA</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/9145/experimental-and-fea-study-for-reduction-of-damage-in-sheet-metal-forming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20A.%20Alshahrani">Hassan A. Alshahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20H.%20Hojjati"> Mehdi H. Hojjati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bending%20stiffness" title="Bending stiffness">Bending stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-autoclave%20prepreg" title=" out-of-autoclave prepreg"> out-of-autoclave prepreg</a>, <a href="https://publications.waset.org/abstracts/search?q=forming%20process" title=" forming process"> forming process</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation." title=" numerical simulation."> numerical simulation.</a> </p> <a href="https://publications.waset.org/abstracts/44861/out-of-plane-bending-properties-of-out-of-autoclave-thermosetting-prepregs-during-forming-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Dyeing on the Cotton/Polyester Blended Fabric Treated by Tetra Carboxylic Acid (BTCA) and Nano TiO2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aryan%20Azad">Aryan Azad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Jae%20Kim"> Sun Jae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton fabric is particularly prone to wrinkling. BTCA has been confirmed as the most effective reagent with sodium hypophosphite (SHP) as catalyst for decreasing the wrinkle issue. Using nano TiO2 as aco-catalyst could improve the catalytic reaction of the BTCA as well. In this study, the effect of dying process using reactive/disperse on the cotton/polyester blended fabric (65/35%) which is previously treated by nano TiO2 and BTCA, were investigated. Results were compared by samples which were not treated by nano TiO2 and BTCA by scanning electronic microscopy (SEM). Results showed, samples which were treated by mixing nano TiO2 and BTCA have not absorbed dye as much as untreated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester" title="cotton/polyester">cotton/polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing%20process" title=" dyeing process"> dyeing process</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20titanium%20dioxide%20%28TiO2%29" title=" nano titanium dioxide (TiO2)"> nano titanium dioxide (TiO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hypophosphite%20%28SHP%29" title=" sodium hypophosphite (SHP)"> sodium hypophosphite (SHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetra%20carboxylic%20acid%20%28BTCA%29" title=" Tetra carboxylic acid (BTCA)"> Tetra carboxylic acid (BTCA)</a> </p> <a href="https://publications.waset.org/abstracts/57849/effect-of-dyeing-on-the-cottonpolyester-blended-fabric-treated-by-tetra-carboxylic-acid-btca-and-nano-tio2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure%20plasma%20treatment" title=" atmospheric pressure plasma treatment"> atmospheric pressure plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle-resistant" title=" wrinkle-resistant"> wrinkle-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=BTCA" title=" BTCA"> BTCA</a> </p> <a href="https://publications.waset.org/abstracts/49532/learning-materials-of-atmospheric-pressure-plasma-process-application-in-wrinkle-resistant-finishing-of-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> High-Speed LIF-OH Imaging of H2-Air Turbulent Premixed Flames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Al-Harbi">Ahmed A. Al-Harbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative study of effects of the repeated solid obstacles on the propagation of H2-Air premixed flames. Pressure, speed of the flame front as well as structure of reaction zones are studied for hydrogen. Two equivalence ratios are examined for different configurations of three baffle plates and two obstacles with a square cross-section having blockage ratios of either 0.24 or 0.5. Hydrogen fuel mixtures with two equivalence ratios of 0.7 and 0.8 are studied and this is limited by the excessive overpressures. The results show that the peak pressure and its rate of change can be increased by increasing the blockage ratio or by decreasing the space between successive baffles. As illustrated by the high speed images of LIF-OH, the degree of wrinkling and contortion in the flame front increase as the blockages increase. The images also show how the flame front relaminarises with increasing distances between obstacles, which accounts for the pressure decrease with increasing separation. It is also found that more than one obstacle is needed to achieve a turbulent flame structure with intense corrugations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=premixed%20propagating%20flames" title="premixed propagating flames">premixed propagating flames</a>, <a href="https://publications.waset.org/abstracts/search?q=flame-obstacle%20interaction" title=" flame-obstacle interaction"> flame-obstacle interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20premixed%20flames" title=" turbulent premixed flames"> turbulent premixed flames</a>, <a href="https://publications.waset.org/abstracts/search?q=overpressure" title=" overpressure"> overpressure</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20flames" title=" transient flames"> transient flames</a> </p> <a href="https://publications.waset.org/abstracts/34974/high-speed-lif-oh-imaging-of-h2-air-turbulent-premixed-flames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Design of Process Parameters in Electromagnetic Forming Apparatus by FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeong-Gyu%20Park">Hyeong-Gyu Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-Gon%20Noh"> Hak-Gon Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=Beom-Soo%20Kang"> Beom-Soo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Kim"> Jeong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20forming" title="electromagnetic forming">electromagnetic forming</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20forming" title=" high-speed forming"> high-speed forming</a>, <a href="https://publications.waset.org/abstracts/search?q=RLC%20circuit" title=" RLC circuit"> RLC circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentz%20force" title=" Lorentz force"> Lorentz force</a> </p> <a href="https://publications.waset.org/abstracts/7042/design-of-process-parameters-in-electromagnetic-forming-apparatus-by-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Ageing, the Reality, and Its Gender Dimension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Forhana%20Rahman%20Noor">Forhana Rahman Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafia%20Jannat%20Khanam"> Shafia Jannat Khanam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The image of old age in Bangladesh is associated with graying of hair, wrinkling of skin, with poor physical health, and decreased ability to work. The common expression “bura hoechi”, to be aged, means to be limited in terms of performing economically productive activities, known as ‘work’. For ‘old-old’ age, there is a saying, “uthan akhon onek dure”, which literally means “even the courtyard is like a very distant place (for an old person).” Traditionally, Bengali society had a structure caring the life of older people. It was common in the joint families of Bangladeshi culture. The situation has been changing. Complexities of the societies with growing rapid urbanization are influencing the traditional respects and caring structure of the elderly persons and facing social challenges. Bangladesh is projected to have 10 percent of its population of age 60 years and above in the year 2025. The ageing process is expected to accelerate in the next century, mainly because the large cohorts born in 1950s and 1960s respectively will be joining the ranks of 60 years and over during this period. The decline in mortality, particularly at young ages, also means that a higher proportion of the large cohorts will survive to old age. The country does not have enough policy or strategy to face this upcoming challenge for the aged persons which needs immediate attention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ageing" title="ageing">ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=dimension" title=" dimension"> dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20population" title=" elderly population"> elderly population</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a> </p> <a href="https://publications.waset.org/abstracts/19942/ageing-the-reality-and-its-gender-dimension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Numerical and Experimental Approach to Evaluate Forming Coil of Electromagnetic Forming Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Noh">H. G. Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Park"> H. G. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Kang"> B. S. Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kim"> J. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic forming process (EMF) is one of high-velocity forming processes using Lorentz force. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for EMF process. A 2-D axis-symmetric electromagnetic model was considered based on the spiral type forming coil. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. In order to deform the sheet in the patter shape die, two types of spiral shape coil were considered to deform the pattern shape sheet. One is a spiral coil that has 6turns with dead zone at centre point. Another is a normal spiral coil without dead zone that has 8 turns. In the electric analysis, input current and magnetic force were compared and then plastic deformation was treated in the mechanical analysis for two coil cases. Deformation behaviour of dead zone coil case has good agreement with pattern shape die. As a result, deformation behaviour could be controlled by giving dead zone at centre of the coil in spiral shape coil case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20forming" title="electromagnetic forming">electromagnetic forming</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20coil" title=" spiral coil"> spiral coil</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentz%20force" title=" Lorentz force"> Lorentz force</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/7002/numerical-and-experimental-approach-to-evaluate-forming-coil-of-electromagnetic-forming-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Characterization of Ethanol-Air Combustion in a Constant Volume Combustion Bomb Under Cellularity Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Reyes">M. Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sastre"> R. Sastre</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Gabana"> P. Gabana</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20V.%20Tinaut"> F. V. Tinaut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, an optical characterization of the ethanol-air laminar combustion is presented in order to investigate the origin of the instabilities developed during the combustion, the onset of the cellular structure and the laminar burning velocity. Experimental tests of ethanol-air have been developed in an optical cylindrical constant volume combustion bomb equipped with a Schlieren technique to record the flame development and the flame front surface wrinkling. With this procedure, it is possible to obtain the flame radius and characterize the time when the instabilities are visible through the cell's apparition and the cellular structure development. Ethanol is an aliphatic alcohol with interesting characteristics to be used as a fuel in Internal Combustion Engines and can be biologically synthesized from biomass. Laminar burning velocity is an important parameter used in simulations to obtain the turbulent flame speed, whereas the flame front structure and the instabilities developed during the combustion are important to understand the transition to turbulent combustion and characterize the increment in the flame propagation speed in premixed flames. The cellular structure is spontaneously generated by volume forces, diffusional-thermal and hydrodynamic instabilities. Many authors have studied the combustion of ethanol air and mixtures of ethanol with other fuels. However, there is a lack of works that investigate the instabilities and the development of a cellular structure in ethanol flames, a few works as characterized the ethanol-air combustion instabilities in spherical flames. In the present work, a parametrical study is made by varying the fuel/air equivalence ratio (0.8-1.4), initial pressure (0.15-0.3 MPa) and initial temperature (343-373K), using a design of experiments type I-optimal. In reach mixtures, it is possible to distinguish the cellular structure formed by the hydrodynamic effect and by from the thermo-diffusive. Results show that ethanol-air flames tend to stabilize as the equivalence ratio decreases in lean mixtures and develop a cellular structure with the increment of initial pressure and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethanol" title="ethanol">ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities" title=" instabilities"> instabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=premixed%20combustion" title=" premixed combustion"> premixed combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=schlieren%20technique" title=" schlieren technique"> schlieren technique</a>, <a href="https://publications.waset.org/abstracts/search?q=cellularity" title=" cellularity"> cellularity</a> </p> <a href="https://publications.waset.org/abstracts/161908/characterization-of-ethanol-air-combustion-in-a-constant-volume-combustion-bomb-under-cellularity-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Effect of Punch Diameter on Optimal Loading Profiles in Hydromechanical Deep Drawing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Halkaci">Mehmet Halkaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekrem%20%C3%96zt%C3%BCrk"> Ekrem Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Mevl%C3%BCt%20T%C3%BCrk%C3%B6z"> Mevlüt Türköz</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sel%C3%A7uk%20Halkac%C4%B1"> H. Selçuk Halkacı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydromechanical deep drawing (HMD) process is an advanced manufacturing process used to form deep parts with only one forming step. In this process, sheet metal blank can be drawn deeper by means of fluid pressure acting on sheet surface in the opposite direction of punch movement. High limiting drawing ratio, good surface quality, less springback characteristic and high dimensional accuracy are some of the advantages of this process. The performance of the HMD process is affected by various process parameters such as fluid pressure, blank holder force, punch-die radius, pre-bulging pressure and height, punch diameter, friction between sheet-die and sheet-punch. The fluid pressure and bank older force are the main loading parameters and affect the formability of HMD process significantly. The punch diameter also influences the limiting drawing ratio (the ratio of initial sheet diameter to punch diameter) of the sheet metal blank. In this research, optimal loading (fluid pressure and blank holder force) profiles were determined for AA 5754-O sheet material through fuzzy control algorithm developed in previous study using LS-DYNA finite element analysis (FEA) software. In the preceding study, the fuzzy control algorithm was developed utilizing geometrical criteria such as thinning and wrinkling. In order to obtain the final desired part with the developed algorithm in terms of the punch diameter requested, the effect of punch diameter, which is the one of the process parameters, on loading profiles was investigated separately using blank thickness of 1 mm. Thus, the practicality of the previously developed fuzzy control algorithm with different punch diameters was clarified. Also, thickness distributions of the sheet metal blank along a curvilinear distance were compared for the FEA in which different punch diameters were used. Consequently, it was found that the use of different punch diameters did not affect the optimal loading profiles too much. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis%20%28FEA%29" title="Finite Element Analysis (FEA)">Finite Element Analysis (FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=hydromechanical%20deep%20drawing" title=" hydromechanical deep drawing"> hydromechanical deep drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20loading%20profiles" title=" optimal loading profiles"> optimal loading profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=punch%20diameter" title=" punch diameter"> punch diameter</a> </p> <a href="https://publications.waset.org/abstracts/37109/effect-of-punch-diameter-on-optimal-loading-profiles-in-hydromechanical-deep-drawing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%CC%87smail%20Kavd%C4%B1r">İsmail Kavdır</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Burak%20B%C3%BCy%C3%BCkcan"> M. Burak Büyükcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Kurtulmu%C5%9F"> Ferhat Kurtulmuş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20classifiers" title=" statistical classifiers"> statistical classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=NIR%20spectroscopy" title=" NIR spectroscopy"> NIR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a> </p> <a href="https://publications.waset.org/abstracts/74775/comparison-of-artificial-neural-networks-and-statistical-classifiers-in-olive-sorting-using-near-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> High-Resolution Facial Electromyography in Freely Behaving Humans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilah%20Inzelberg">Lilah Inzelberg</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Rand"> David Rand</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Steinberg"> Stanislav Steinberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Moshe%20David%20Pur"> Moshe David Pur</a>, <a href="https://publications.waset.org/abstracts/search?q=Yael%20Hanein"> Yael Hanein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human facial expressions carry important psychological and neurological information. Facial expressions involve the co-activation of diverse muscles. They depend strongly on personal affective interpretation and on social context and vary between spontaneous and voluntary activations. Smiling, as a special case, is among the most complex facial emotional expressions, involving no fewer than 7 different unilateral muscles. Despite their ubiquitous nature, smiles remain an elusive and debated topic. Smiles are associated with happiness and greeting on one hand and anger or disgust-masking on the other. Accordingly, while high-resolution recording of muscle activation patterns, in a non-interfering setting, offers exciting opportunities, it remains an unmet challenge, as contemporary surface facial electromyography (EMG) methodologies are cumbersome, restricted to the laboratory settings, and are limited in time and resolution. Here we present a wearable and non-invasive method for objective mapping of facial muscle activation and demonstrate its application in a natural setting. The technology is based on a recently developed dry and soft electrode array, specially designed for surface facial EMG technique. Eighteen healthy volunteers (31.58 ± 3.41 years, 13 females), participated in the study. Surface EMG arrays were adhered to participant left and right cheeks. Participants were instructed to imitate three facial expressions: closing the eyes, wrinkling the nose and smiling voluntary and to watch a funny video while their EMG signal is recorded. We focused on muscles associated with 'enjoyment', 'social' and 'masked' smiles; three categories with distinct social meanings. We developed a customized independent component analysis algorithm to construct the desired facial musculature mapping. First, identification of the Orbicularis oculi and the Levator labii superioris muscles was demonstrated from voluntary expressions. Second, recordings of voluntary and spontaneous smiles were used to locate the Zygomaticus major muscle activated in Duchenne and non-Duchenne smiles. Finally, recording with a wireless device in an unmodified natural work setting revealed expressions of neutral, positive and negative emotions in face-to-face interaction. The algorithm outlined here identifies the activation sources in a subject-specific manner, insensitive to electrode placement and anatomical diversity. Our high-resolution and cross-talk free mapping performances, along with excellent user convenience, open new opportunities for affective processing and objective evaluation of facial expressivity, objective psychological and neurological assessment as well as gaming, virtual reality, bio-feedback and brain-machine interface applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=affective%20expressions" title="affective expressions">affective expressions</a>, <a href="https://publications.waset.org/abstracts/search?q=affective%20processing" title=" affective processing"> affective processing</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20EMG" title=" facial EMG"> facial EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=high-resolution%20electromyography" title=" high-resolution electromyography"> high-resolution electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20electrodes" title=" wireless electrodes"> wireless electrodes</a> </p> <a href="https://publications.waset.org/abstracts/79674/high-resolution-facial-electromyography-in-freely-behaving-humans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Clinico-pathological Study of Xeroderma Pigmentosa: A Case Series of Eight Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kakali%20Roy">Kakali Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahana%20P.%20Raju"> Sahana P. Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhra%20Dhar"> Subhra Dhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandipan%20Dhar"> Sandipan Dhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Xeroderma pigmentosa (XP) is a rare inherited (autosomal recessive) disease resulting from impairment in DNA repair that involves recognition and repair of ultraviolet radiation (UVR) induced DNA damage in the nucleotide excision repair pathway. Which results in increased photosensitivity, UVR induced damage to skin and eye, increased susceptibility of skin and ocular cancer, and progressive neurodegeneration in some patients. XP is present worldwide, with higher incidence in areas having frequent consanguinity. Being extremely rare, there is limited literature on XP and associated complications. Here, the clinico-pathological experience (spectrum of clinical presentation, histopathological findings of malignant skin lesions, and progression) of managing 8 cases of XP is presented. Methodology: A retrospective study was conducted in a pediatric tertiary care hospital in eastern India during a ten-year period from 2013 to 2022. A clinical diagnosis was made based on severe sun burn or premature photo-aging and/or onset of cutaneous malignancies at early age (1st decade) in background of consanguinity and autosomal recessive inheritance pattern in family. Results: The mean age of presentation was 1.2 years (range of 7month-3years), while three children presented during their infancy. Male to female ratio was 5:3, and all were born of consanguineous marriage. They presented with dermatological manifestations (100%) followed by ophthalmic (75%) and/or neurological symptoms (25%). Patients had normal skin at birth but soon developed extreme sensitivity to UVR in the form of exaggerated sun tanning, burning, and blistering on minimal sun exposure, followed by abnormal skin pigmentation like freckles and lentiginosis. Subsequently, over time there was progressive xerosis, atrophy, wrinkling, and poikiloderma. Six patients had varied degree of ocular involvement, while three of them had severe manifestation, including madarosis, tylosis, ectropion, Lagopthalmos, Pthysis bulbi, clouding and scarring of the cornea with complete or partial loss of vision, and ophthalmic malignancies. 50% (n=4) cases had skin and ocular pre-malignant (actinic keratosis) and malignant lesions, including melanoma and non melanoma skin cancer (NMSC) like squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in their early childhood. One patient had simultaneous occurrence of multiple malignancies together (SCC, BCC, and melanoma). Subnormal intelligence was noticed as neurological feature, and none had sensory neural hearing loss, microcephaly, neuroregression, or neurdeficit. All the patients had been being managed by a multidisciplinary team of pediatricians, dermatologists, ophthalmologists, neurologists and psychiatrists. Conclusion: Although till date there is no complete cure for XP and the disease is ultimately fatal. But increased awareness, early diagnosis followed by persistent vigorous protection from UVR, and regular screening for early detection of malignancies along with psychological support can drastically improve patients’ quality of life and life expectancy. Further research is required on formulating optimal management of XP, specifically the role and possibilities of gene therapy in XP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=childhood%20malignancies" title="childhood malignancies">childhood malignancies</a>, <a href="https://publications.waset.org/abstracts/search?q=dermato-pathological%20findings" title=" dermato-pathological findings"> dermato-pathological findings</a>, <a href="https://publications.waset.org/abstracts/search?q=eastern%20India" title=" eastern India"> eastern India</a>, <a href="https://publications.waset.org/abstracts/search?q=Xeroderma%20pigmentosa" title=" Xeroderma pigmentosa"> Xeroderma pigmentosa</a> </p> <a href="https://publications.waset.org/abstracts/162111/clinico-pathological-study-of-xeroderma-pigmentosa-a-case-series-of-eight-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10