CINXE.COM

Search results for: microenvironment

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microenvironment</title> <meta name="description" content="Search results for: microenvironment"> <meta name="keywords" content="microenvironment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microenvironment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microenvironment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 99</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microenvironment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Evaluation of Tumor Microenvironment Using Molecular Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakhrosadat%20Sajjadian">Fakhrosadat Sajjadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Ghasemi%20Shayan"> Ramin Ghasemi Shayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tumor microenvironment plays an fundamental part in tumor start, movement, metastasis, and treatment resistance. It varies from ordinary tissue in terms of its extracellular network, vascular and lymphatic arrange, as well as physiological conditions. The clinical application of atomic cancer imaging is regularly prevented by the tall commercialization costs of focused on imaging operators as well as the constrained clinical applications and little showcase measure of a few operators. . Since numerous cancer types share comparable characteristics of the tumor microenvironment, the capacity to target these biomarkers has the potential to supply clinically translatable atomic imaging advances for numerous types encompassing cancer and broad clinical applications. Noteworthy advance has been made in focusing on the tumor microenvironment for atomic cancer imaging. In this survey, we summarize the standards and methodologies of later progresses in atomic imaging of the tumor microenvironment, utilizing distinctive imaging modalities for early discovery and conclusion of cancer. To conclude, The tumor microenvironment (TME) encompassing tumor cells could be a profoundly energetic and heterogeneous composition of safe cells, fibroblasts, forerunner cells, endothelial cells, flagging atoms and extracellular network (ECM) components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular" title="molecular">molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=TME" title=" TME"> TME</a>, <a href="https://publications.waset.org/abstracts/search?q=medicine" title=" medicine"> medicine</a> </p> <a href="https://publications.waset.org/abstracts/182733/evaluation-of-tumor-microenvironment-using-molecular-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Hsa-miR-192-5p, and Hsa-miR-129-5p Prominent Biomarkers in Regulation Glioblastoma Cancer Stem Cells Genes Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Ahmadi">Rasha Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma is one of the most frequent brain malignancies, having a high mortality rate and limited survival in individuals with this malignancy. Despite different treatments and surgery, recurrence of glioblastoma cancer stem cells may arise as a subsequent tumor. For this reason, it is crucial to research the markers associated with glioblastoma stem cells and specifically their microenvironment. In this study, using bioinformatics analysis, we analyzed and nominated genes in the microenvironment pathways of glioblastoma stem cells. In this study, an appropriate database was selected for analysis by referring to the GEO database. This dataset comprised gene expression patterns in stem cells derived from glioblastoma patients. Gene clusters were divided as high and low expression. Enrichment databases such as Enrichr, STRING, and GEPIA were utilized to analyze the data appropriately. Finally, we extracted the potential genes 2700 high-expression and 1100 low-expression genes are implicated in the metabolic pathways of glioblastoma cancer progression. Cellular senescence, MAPK, TNF, hypoxia, zimosterol biosynthesis, and phosphatidylinositol metabolism pathways were substantially expressed and the metabolic pathways were downregulated. After assessing the association between protein networks, MSMP, SOX2, FGD4 ,and CNTNAP3 genes with high expression and DMKN and SBSN genes with low were selected. All of these genes were observed in the survival curve, with a survival of fewer than 10 percent over around 15 months. hsa-mir-192-5p, hsa-mir-129-5p, hsa-mir-215-5p, hsa-mir-335-5p, and hsa-mir-340-5p played key function in glioblastoma cancer stem cells microenviroments. We introduced critical genes through integrated and regular bioinformatics studies by assessing the amount of gene expression profile data that can play an important role in targeting genes involved in the energy and microenvironment of glioblastoma cancer stem cells. Have. This study indicated that hsa-mir-192-5p, and hsa-mir-129-5p are appropriate candidates for this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glioblastoma" title="Glioblastoma">Glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Cancer%20Stem%20Cells" title="Cancer Stem Cells">Cancer Stem Cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Biomarker%20Discovery" title="Biomarker Discovery">Biomarker Discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Gene%20Expression%20Profiles" title="Gene Expression Profiles">Gene Expression Profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Bioinformatics%20Analysis" title="Bioinformatics Analysis">Bioinformatics Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumor%20Microenvironment" title="Tumor Microenvironment">Tumor Microenvironment</a> </p> <a href="https://publications.waset.org/abstracts/147739/hsa-mir-192-5p-and-hsa-mir-129-5p-prominent-biomarkers-in-regulation-glioblastoma-cancer-stem-cells-genes-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Coppo">Roberto Coppo</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Orso"> Francesca Orso</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Dettori"> Daniela Dettori</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Quaglino"> Elena Quaglino</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Nie"> Lei Nie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehran%20M.%20Sadeghi"> Mehran M. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Taverna"> Daniela Taverna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanoma" title="melanoma">melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=extravasation" title=" extravasation"> extravasation</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20molecules" title=" cell surface molecules"> cell surface molecules</a> </p> <a href="https://publications.waset.org/abstracts/44830/esdn-expression-in-the-tumor-microenvironment-coordinates-melanoma-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Indoleamine 2,3 Dioxygenase and Regulatory T Cells in Acute Myeloid Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20M.%20Mansour">Iman M. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Rania%20A.%20Zayed"> Rania A. Zayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadwa%20S.%20Abdel-Azim"> Fadwa S. Abdel-Azim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamyaa%20H.%20Abdel-Latif"> Lamyaa H. Abdel-Latif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objectives: The microenvironment of acute myeloid leukemia (AML) is suppressive for immune cells. Regulatory T cells (Tregs) have been recognized to play a role in helping leukemic cells to evade immunesurveillance. The mesenchymal stem cells (MSCs) are essential contributors in immunomodulation of the microenvironment as they can promote differentiation of Tregs via the indoleamine 2,3-dioxygenase (IDO) pathway. The aim of the present work was to evaluate the expression of IDO in bone marrow derived MSCs and to study its correlation to percentage of Tregs. Methods: 37 adult bone marrow samples were cultured in appropriate culture medium to isolate MSCs. Successful harvest of MSCs was determined by plastic adherence, morphology and positive expression of CD271 and CD105; negative expression of CD34 and CD45 using flowcytometry. MSCs were examined for IDO expression by immunocytochemistry using anti-IDO monoclonal antibody. CD4+ CD25+ cells (Tregs) were measured in bone marrow samples by flowcytometry. Results: MSCs were successfully isolated from 20 of the 37 bone marrow samples cultured. MSCs showed higher expression of IDO and Tregs percentage was higher in AML patients compared to control subjects (p=0.002 and p<0.001 respectively). A positive correlation was found between IDO expression and Tregs percentage (p value=0.012, r=0.5). Conclusion: In this study, we revealed an association between high IDO expression in MSCs and elevated levels of Tregs which has an important role in the pathogenesis of AML, providing immunosuppressive microenvironment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20myeloid%20leukemia" title="acute myeloid leukemia">acute myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=indoleamine%202" title=" indoleamine 2"> indoleamine 2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-dioxygenase" title="3-dioxygenase">3-dioxygenase</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=T%20regulatory%20cells" title=" T regulatory cells"> T regulatory cells</a> </p> <a href="https://publications.waset.org/abstracts/24445/indoleamine-23-dioxygenase-and-regulatory-t-cells-in-acute-myeloid-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Analysis of Adipose Tissue-Derived Mesenchymal Stem Cells under Atherosclerosis Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do%20Khanh%20Vy">Do Khanh Vy</a>, <a href="https://publications.waset.org/abstracts/search?q=Vuong%20Cat%20Khanh"> Vuong Cat Khanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Osamu%20Ohneda"> Osamu Ohneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During atherosclerosis (AS) progression, perivascular adipose tissue-derived mesenchymal stem cells (PVAT-MSCs) are exposed to the hypoxic environment due to the oxygenic deprivation which might influence the adipose tissue-derived mesenchymal stem cells (AT-MSCs) function. Additionally, it has been reported that the angiogenic ability of subcutaneous AT-MSCs (SAT-MSCs) was impaired in the AS patients. However, up to now, the effects of AS on the characteristics and function of PVAT-MSCs have not been clarified yet. In the present study, we analyzed the AS microenvironment effects on the characteristics and function of AT-MSCs. We found that there was no significant difference in cellular morphology and differentiation ability between SAT-MSCs and PVAT-MSCs in AS patients. However, the proliferation of AS-derived PVAT-MSCs was less than those of AS-derived SAT-MSCs. Importantly, the migration of AS-derived PVAT-MSCs was faster than AS-derived SAT-MSCs. Of note, AS-derived PVAT-MSCs showed the upregulation of SDF1, which is related to the homing, and VEGF, which is related to the angiogenesis compared to those of AS-derived SAT-MSCs. Consistent with these results, AS-derived PVAT-MSCs showed the higher ability to recruit EPCs and ECs than AS-derived SAT-MSCs. In addition, EPCs and ECs which cultured in the presence of AS-derived PVAT-MSC conditioned medium showed the higher angiogenic function of the tube formation compared to those cultured in AS-derived SAT-MSC conditioned medium. This result suggests that the higher paracrine effects of AS-derived PVAT-MSCs support the angiogenic function of the target cells. Our data showed the different characteristics and functions of AT-MSCs derived from different sources of tissues. Under the AS microenvironment, it seems that the characteristics and functions of PVAT-MSCs might reflect the progression of AS. Further study will be necessary to clarify the mechanism in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title="atherosclerosis">atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=perivascular%20adipose%20tissue" title=" perivascular adipose tissue"> perivascular adipose tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=subcutaneous%20adipose%20tissue" title=" subcutaneous adipose tissue"> subcutaneous adipose tissue</a> </p> <a href="https://publications.waset.org/abstracts/101561/analysis-of-adipose-tissue-derived-mesenchymal-stem-cells-under-atherosclerosis-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Towards a Biologically Relevant Tumor-on-a-Chip: Multiplex Microfluidic Platform to Study Breast Cancer Drug Response </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soroosh%20Torabi">Soroosh Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Berron"> Brad Berron</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%20Xu"> Ren Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Trinkle"> Christine Trinkle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidics integrated with 3D cell culture is a powerful technology to mimic cellular environment, and can be used to study cell activities such as proliferation, migration and response to drugs. This technology has gained more attention in cancer studies over the past years, and many organ-on-a-chip systems have been developed to study cancer cell behaviors in an ex-vivo tumor microenvironment. However, there are still some barriers to adoption which include low throughput, complexity in 3D cell culture integration and limitations on non-optical analysis of cells. In this study, a user-friendly microfluidic multi-well plate was developed to mimic the in vivo tumor microenvironment. The microfluidic platform feeds multiple 3D cell culture sites at the same time which enhances the throughput of the system. The platform uses hydrophobic Cassie-Baxter surfaces created by microchannels to enable convenient loading of hydrogel/cell suspensions into the device, while providing barrier free placement of the hydrogel and cells adjacent to the fluidic path. The microchannels support convective flow and diffusion of nutrients to the cells and a removable lid is used to enable further chemical and physiological analysis on the cells. Different breast cancer cell lines were cultured in the device and then monitored to characterize nutrient delivery to the cells as well as cell invasion and proliferation. In addition, the drug response of breast cancer cell lines cultured in the device was compared to the response in xenograft models to the same drugs to analyze relevance of this platform for use in future drug-response studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-well%203d%20cell%20culture" title=" multi-well 3d cell culture"> multi-well 3d cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor-on-a-chip" title=" tumor-on-a-chip"> tumor-on-a-chip</a> </p> <a href="https://publications.waset.org/abstracts/91076/towards-a-biologically-relevant-tumor-on-a-chip-multiplex-microfluidic-platform-to-study-breast-cancer-drug-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Suggested Role for Neutrophil Extracellular Traps Formation in Ewing Sarcoma Immune Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Shukrun">Rachel Shukrun</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Baron"> Szilvia Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Fidel"> Victoria Fidel</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Shusterman"> Anna Shusterman</a>, <a href="https://publications.waset.org/abstracts/search?q=Osnat%20Sher"> Osnat Sher</a>, <a href="https://publications.waset.org/abstracts/search?q=Netanya%20Kollender"> Netanya Kollender</a>, <a href="https://publications.waset.org/abstracts/search?q=Dror%20Levin"> Dror Levin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yair%20Peled"> Yair Peled</a>, <a href="https://publications.waset.org/abstracts/search?q=Yair%20Gortzak"> Yair Gortzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoav%20Ben-Shahar"> Yoav Ben-Shahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Revital%20Caspi"> Revital Caspi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagi%20Gordon"> Sagi Gordon</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Manisterski"> Michal Manisterski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronit%20Elhasid"> Ronit Elhasid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ewing sarcoma (EWS) is a highly aggressive cancer with a survival rate of 70–80% for patients with localized disease and under 30% for those with metastatic disease. Tumor-infiltrating neutrophils (TIN) can generate extracellular net-like DNA structures known as neutrophil extracellular traps (NETs). However, little is known about the presence and prognostic significance of tumor-infiltrating NETs in EWS. Herein, we investigated 46 patients diagnosed with EWS and treated in the Tel Aviv Medical Center between 2010 and 2021. TINs and NETs were identified in diagnostic biopsies of EWS by immunofluorescent. In addition, NETs were investigated in neutrophils isolated from peripheral blood samples of EWS patients at diagnosis and following neoadjuvant chemotherapy. The relationships between the presence of TINs and NETs, pathological and clinical features, and outcomes were analyzed. Our results demonstrate that TIN and NETs at diagnosis were higher in EWS patients with metastatic disease compared to those with local disease. High NETs formation at diagnosis predicted poor response to neo-adjuvant chemotherapy, relapse, and death from disease (P < .05). NETs formation in peripheral blood samples at diagnosis was significantly elevated among patients with EWS compared to pediatric controls and decreased significantly following neoadjuvant chemotherapy. In conclusion, NETs formation seems to have a role in the EWS immune microenvironment. Their presence can refine risk stratification, predict chemotherapy resistance and survival, and serve as a therapeutic target in patients with EWS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewing%20sarcoma" title="Ewing sarcoma">Ewing sarcoma</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil%20extracellular%20traps%20%28NETs%29" title=" neutrophil extracellular traps (NETs)"> neutrophil extracellular traps (NETs)</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a> </p> <a href="https://publications.waset.org/abstracts/177507/suggested-role-for-neutrophil-extracellular-traps-formation-in-ewing-sarcoma-immune-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Dexamethasone Treatment Deregulates Proteoglycans Expression in Normal Brain Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Tsidulko">A. Y. Tsidulko</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Pankova"> T. M. Pankova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Grigorieva"> E. V. Grigorieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-grade gliomas are the most frequent and most aggressive brain tumors which are characterized by active invasion of tumor cells into the surrounding brain tissue, where the extracellular matrix (ECM) plays a crucial role. Disruption of ECM can be involved in anticancer drugs effectiveness, side-effects and also in tumor relapses. The anti-inflammatory agent dexamethasone is a common drug used during high-grade glioma treatment for alleviating cerebral edema. Although dexamethasone is widely used in the clinic, its effects on normal brain tissue ECM remain poorly investigated. It is known that proteoglycans (PGs) are a major component of the extracellular matrix in the central nervous system. In our work, we studied the effects of dexamethasone on the ECM proteoglycans (syndecan-1, glypican-1, perlecan, versican, brevican, NG2, decorin, biglican, lumican) using RT-PCR in the experimental animal model. It was shown that proteoglycans in rat brain have age-specific expression patterns. In early post-natal rat brain (8 days old rat pups) overall PGs expression was quite high and mainly expressed PGs were biglycan, decorin, and syndecan-1. The overall transcriptional activity of PGs in adult rat brain is 1.5-fold decreased compared to post-natal brain. The expression pattern was changed as well with biglycan, decorin, syndecan-1, glypican-1 and brevican becoming almost equally expressed. PGs expression patterns create a specific tissue microenvironment that differs in developing and adult brain. Dexamethasone regimen close to the one used in the clinic during high-grade glioma treatment significantly affects proteoglycans expression. It was shown that overall PGs transcription activity is 1.5-2-folds increased after dexamethasone treatment. The most up-regulated PGs were biglycan, decorin, and lumican. The PGs expression pattern in adult brain changed after treatment becoming quite close to the expression pattern in developing brain. It is known that microenvironment in developing tissues promotes cells proliferation while in adult tissues proliferation is usually suppressed. The changes occurring in the adult brain after dexamethasone treatment may lead to re-activation of cell proliferation due to signals from changed microenvironment. Taken together obtained data show that dexamethasone treatment significantly affects the normal brain ECM, creating the appropriate microenvironment for tumor cells proliferation and thus can reduce the effectiveness of anticancer treatment and promote tumor relapses. This work has been supported by a Russian Science Foundation (RSF Grant 16-15-10243) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dexamthasone" title="dexamthasone">dexamthasone</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20matrix" title=" extracellular matrix"> extracellular matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=glioma" title=" glioma"> glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=proteoglycan" title=" proteoglycan"> proteoglycan</a> </p> <a href="https://publications.waset.org/abstracts/53326/dexamethasone-treatment-deregulates-proteoglycans-expression-in-normal-brain-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samineh%20Barmaki">Samineh Barmaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ville%20Jokinen"> Ville Jokinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Esko%20Kankuri"> Esko Kankuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypoxia" title="hypoxia">hypoxia</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=microenvironment" title=" microenvironment"> microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20chip" title=" microfluidic chip"> microfluidic chip</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20nitroprusside" title=" sodium nitroprusside"> sodium nitroprusside</a>, <a href="https://publications.waset.org/abstracts/search?q=SNP" title=" SNP"> SNP</a> </p> <a href="https://publications.waset.org/abstracts/99133/cellular-targeting-to-dual-gaseous-microenvironments-by-polydimethylsiloxane-microchip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Atherosclerotic Plagues and Immune Microenvironment: From Lipid-Lowering to Anti-inflammatory and Immunomodulatory Drug Approaches in Cardiovascular Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Husham%20Bayazed">Husham Bayazed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing number of studies indicate that atherosclerotic coronary artery disease (CAD) has a complex pathogenesis that extends beyond cholesterol intimal infiltration. The atherosclerosis process may involve an immune micro-environmental condition driven by local activation of the adaptive and innate immunity arrays, resulting in the formation of atherosclerotic plaques. Therefore, despite the wide usage of lipid-lowering agents, these devastating coronary diseases are not averted either at primary or secondary prevention levels. Many trials have recently shown an interest in the immune targeting of the inflammatory process of atherosclerotic plaques, with the promised improvement in atherosclerotic cardiovascular disease outcomes. This recently includes the immune-modulatory drug “Canakinumab” as an anti-interleukin-1 beta monoclonal antibody in addition to "Colchicine,” which's established as a broad-effect drug in the management of other inflammatory conditions. Recent trials and studies highlight the importance of inflammation and immune reactions in the pathogenesis of atherosclerosis and plaque formation. This provides an insight to discuss and extend the therapies from old lipid-lowering drugs (statins) to anti-inflammatory drugs (colchicine) and new targeted immune-modulatory therapies like inhibitors of IL-1 beta (canakinumab) currently under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerotic%20plagues" title="atherosclerotic plagues">atherosclerotic plagues</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20microenvironment" title=" immune microenvironment"> immune microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid-lowering%20agents" title=" lipid-lowering agents"> lipid-lowering agents</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20immunomodulatory%20drugs" title=" and immunomodulatory drugs"> and immunomodulatory drugs</a> </p> <a href="https://publications.waset.org/abstracts/178083/atherosclerotic-plagues-and-immune-microenvironment-from-lipid-lowering-to-anti-inflammatory-and-immunomodulatory-drug-approaches-in-cardiovascular-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Park">Jung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Anca%20Mazare"> Anca Mazare</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Von%20Der%20Mark"> Klaus Von Der Mark</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrik%20Schmuki"> Patrik Schmuki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanotube" title="TiO2 nanotube">TiO2 nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20fate%20decision" title=" stem cell fate decision"> stem cell fate decision</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-scale%20microenvironment" title=" nano-scale microenvironment"> nano-scale microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a> </p> <a href="https://publications.waset.org/abstracts/12191/stem-cell-fate-decision-depending-on-tio2-nanotubular-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Deciphering Tumor Stroma Interactions in Retinoblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeswari%20Raguraman">Rajeswari Raguraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sowmya%20Parameswaran"> Sowmya Parameswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnakumar%20Subramanian"> Krishnakumar Subramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagat%20Kanwar"> Jagat Kanwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kanwar"> Rupinder Kanwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Tumor microenvironment has been implicated in several cancers to regulate cell growth, invasion and metastasis culminating in outcome of therapy. Tumor stroma consists of multiple cell types that are in constant cross-talk with the tumor cells to favour a pro-tumorigenic environment. Not much is known about the existence of tumor microenvironment in the pediatric intraocular malignancy, Retinoblastoma (RB). In the present study, we aim to understand the multiple stromal cellular subtypes and tumor stromal interactions expressed in RB tumors. Materials and Methods: Immunohistochemistry for stromal cell markers CD31, CD68, alpha-smooth muscle (α-SMA), vimentin and glial fibrillary acidic protein (GFAP) was performed on formalin fixed paraffin embedded tissues sections of RB (n=12). The differential expression of stromal target molecules; fibroblast activation protein (FAP), tenascin-C (TNC), osteopontin (SPP1), bone marrow stromal antigen 2 (BST2), stromal derived factor 2 and 4 (SDF2 and SDF4) in primary RB tumors (n=20) and normal retina (n=5) was studied by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. The differential expression was correlated with the histopathological features of RB. The interaction between RB cell lines (Weri-Rb-1, NCC-RbC-51) and Bone marrow stromal cells (BMSC) was also studied using direct co-culture and indirect co-culture methods. The functional effect of the co-culture methods on the RB cells was evaluated by invasion and proliferation assays. Global gene expression was studied by using Affymetrix 3’ IVT microarray. Pathway prediction was performed using KEGG and the key molecules were validated using qRT-PCR. Results: The immunohistochemistry revealed the presence of several stromal cell types such as endothelial cells (CD31+;Vim+/-); macrophages (CD68+;Vim+/-); Fibroblasts (Vim+; CD31-;CD68- );myofibroblasts (α-SMA+/ Vim+) and invading retinal astrocytes/ differentiated retinal glia (GFAP+; Vim+). A characteristic distribution of these stromal cell types was observed in the tumor microenvironment, with endothelial cells predominantly seen in blood vessels and macrophages near actively proliferating tumor or necrotic areas. Retinal astrocytes and glia were predominant near the optic nerve regions in invasive tumors with sparse distribution in tumor foci. Fibroblasts were widely distributed with rare evidence of myofibroblasts in the tumor. Both gene and protein expression revealed statistically significant (P<0.05) up-regulation of FAP, TNC and BST2 in primary RB tumors compared to the normal retina. Co-culture of BMSC with RB cells promoted invasion and proliferation of RB cells in direct and indirect contact methods respectively. Direct co-culture of RB cell lines with BMSC resulted in gene expression changes in ECM-receptor interaction, focal adhesion, IL-8 and TGF-β signaling pathways associated with cancer. In contrast, various metabolic pathways such a glucose, fructose and amino acid metabolism were significantly altered under the indirect co-culture condition. Conclusion: The study suggests that the close interaction between RB cells and the stroma might be involved in RB tumor invasion and progression which is likely to be mediated by ECM-receptor interactions and secretory factors. Targeting the tumor stroma would be an attractive option for redesigning treatment strategies for RB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20expression%20profiles" title="gene expression profiles">gene expression profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=retinoblastoma" title=" retinoblastoma"> retinoblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=stromal%20cells" title=" stromal cells"> stromal cells</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a> </p> <a href="https://publications.waset.org/abstracts/65598/deciphering-tumor-stroma-interactions-in-retinoblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deybith%20Venegas-Rojas">Deybith Venegas-Rojas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Budde"> Jens Budde</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20N%C3%B6rz"> Dominik Nörz</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfred%20J%C3%BCcker"> Manfred Jücker</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoc%20Khiem%20Trieu"> Hoc Khiem Trieu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title="cell culture">cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-bioreactor" title=" micro-bioreactor"> micro-bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=micropillars" title=" micropillars"> micropillars</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20concentration" title=" oxygen concentration"> oxygen concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a> </p> <a href="https://publications.waset.org/abstracts/69676/shear-stress-and-oxygen-concentration-manipulation-in-a-micropillars-microfluidic-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Nanoscale Mapping of the Mechanical Modifications Occurring in the Brain Tumour Microenvironment by Atomic Force Microscopy: The Case of the Highly Aggressive Glioblastoma and the Slowly Growing Meningioma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Ciasca">Gabriele Ciasca</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanya%20E.%20Sassun"> Tanya E. Sassun</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Minelli"> Eleonora Minelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Manila%20Antonelli"> Manila Antonelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimiliano%20Papi"> Massimiliano Papi</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Santoro"> Antonio Santoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Felice%20Giangaspero"> Felice Giangaspero</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Delfini"> Roberto Delfini</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20De%20Spirito"> Marco De Spirito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by a diffuse infiltration of neoplastic cells into the brain parenchyma. Although rarely considered, mechanical cues play a key role in the infiltration process that is extensively mediated by the tumor microenvironment stiffness and, more in general, by the occurrence of aberrant interactions between neoplastic cells and the extracellular matrix (ECM). Here we provide a nano-mechanical characterization of the viscoelastic response of human GBM tissues by indentation-type atomic force microscopy. High-resolution elasticity maps show a large difference between the biomechanics of GBM tissues and the healthy peritumoral regions, opening possibilities to optimize the tumor resection area. Moreover, we unveil the nanomechanical signature of necrotic regions and anomalous vasculature, that are two major hallmarks useful for glioma staging. Actually, the morphological grading of GBM relies mainly on histopathological findings that make extensive use of qualitative parameters. Our findings have the potential to positively impact on the development of novel quantitative methods to assess the tumor grade, which can be used in combination with conventional histopathological examinations. In order to provide a more in-depth description of the role of mechanical cues in tumor progression, we compared the nano-mechanical fingerprint of GBM tissues with that of grade-I (WHO) meningioma, a benign lesion characterized by a completely different growth pathway with the respect to GBM, that, in turn hints at a completely different role of the biomechanical interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFM" title="AFM">AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-mechanics" title=" nano-mechanics"> nano-mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma" title=" glioblastoma"> glioblastoma</a> </p> <a href="https://publications.waset.org/abstracts/63186/nanoscale-mapping-of-the-mechanical-modifications-occurring-in-the-brain-tumour-microenvironment-by-atomic-force-microscopy-the-case-of-the-highly-aggressive-glioblastoma-and-the-slowly-growing-meningioma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Angiogenic Potential of Collagen Based Biomaterials Implanted on Chick Embryo Chorioallantoic Membrane as Alternative Microenvironment for in Vitro and in Vivo Angiogenesis Assays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anca%20Maria%20Cimpean">Anca Maria Cimpean</a>, <a href="https://publications.waset.org/abstracts/search?q=Serban%20Comsa"> Serban Comsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chick embryo chorioallantoic membrane (CAM) is a well vascularised in vivo experimental model used as a platform for testing the behavior of different implants inserted on it from tumor fragments to therapeutic agents or various biomaterials. Five types of collagen-based biomaterials with 2D and 3D structure (MotifMesh, Optimaix2D, Optimaix3D, Dual Layer Collagen and Xenoderm) were implanted on CAM and continuously evaluated by stereomicroscope for up to 5 days post-implant with an emphasis of their ability to requisite and develop new blood vessels (BVs) followed by microscopic analysis. MotifMEsh did not induce any angiogenic response lacking to be invaded by BVs from the CAM, but it induced intense inflammatory response necrosis and fibroblastic reaction around the implant. Optimaix2D has good adherence. CAM with minimal or no inflammatory reaction, a good integration of the CAM between the collagen mesh’s fibers, consistent adhesion of the cells to the collagen fibers,and a good ability to form pseudo-vascular channels filled with cells. Optimaix3D induced the highest angiogenic effects on CAM. The material shows good integration on CAM. The collagen fibers of the material show the ability to organize themselves into linear and tubular structures. It is possible to see blood elements, especially at the periphery of the implant. Dual-layer collagen behaves similar to Optimaix 3D, while Xenoderm induced a moderate angiogenic effect on CAM. Based on these data, we may conclude that collagen-based materials have variable ability to requisite and develop new blood vessels. A proper selection of collagen-based biomaterial scaffolds may crucially influence the acquisition and development of blood vessels during angiogenesis assays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chick%20embryo%20chorioallantoic%20membrane" title="chick embryo chorioallantoic membrane">chick embryo chorioallantoic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen%20scaffolds" title=" collagen scaffolds"> collagen scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20vessels" title=" blood vessels"> blood vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20microenvironment" title=" vascular microenvironment"> vascular microenvironment</a> </p> <a href="https://publications.waset.org/abstracts/143642/angiogenic-potential-of-collagen-based-biomaterials-implanted-on-chick-embryo-chorioallantoic-membrane-as-alternative-microenvironment-for-in-vitro-and-in-vivo-angiogenesis-assays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Malignant Ovarian Cancer Ascites Confers Platinum Chemoresistance to Ovarian Cancer Cells: A Combination Treatment with Crizotinib and 2 Hydroxyestradiol Restore Platinum Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yifat%20Koren%20Carmi">Yifat Koren Carmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20Agbarya"> Abed Agbarya</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Khamaisi"> Hazem Khamaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Farah"> Raymond Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelena%20Shechtman"> Yelena Shechtman</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Korobochka"> Roman Korobochka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Gopas"> Jacob Gopas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Mahajna"> Jamal Mahajna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ovarian cancer (OC), the second most common form of gynecological malignancy, has a poor prognosis and is frequently identified in its late stages. The recommended treatment for OC typically includes a platinum-based chemotherapy, like carboplatin. Nonetheless, OC treatment has proven challenging due to toxicity and development of acquired resistance to therapy. Chemoresistance is a significant obstacle to a long-lasting response in OC patients, believed to arise from alterations within the cancer cells as well as within the tumor microenvironments (TME). Malignant ascites is a presenting feature in more than one-third of OC patients. It serves as a reservoir for a complex mixture of soluble factors, metabolites, and cellular components, providing a pro-inflammatory and tumor-promoting microenvironment for the OC cells. Malignant ascites is also associated with metastasis and chemoresistance. In an attempt to elucidate the role of TME in chemoresistance of OC, we monitored the ability of soluble factors derived from ascites fluids to affect platinum sensitivity of OC cells. This research, compared ascites fluids from non-malignant cirrhotic patients to those from OC patients in terms of their ability to alter the platinum sensitivity of OC cells. Our findings indicated that exposure to OC ascites induces platinum chemoresistance on OC cells in 11 out of 13 cases (85%). In contrast, 75% of cirrhosis ascites (3 out of 4) failed to confer platinum chemoresistance to OC cells. Cytokine array analysis revealed that IL-6, and to a lesser extent HGF were enriched in OC ascites, whereas IL-22 was enriched in cirrhosis ascites. Pharmaceutical inhibitors that target the IL-6/JAK signaling pathway were mildly effective in overcoming the platinum chemoresistance induced by malignant ascites. In contrast, Crizotinib an HGF/c-MET inhibitor, and 2-hydroxyestradiol (2HE2) were effective in restoring platinum chemoresistance to OC. Our findings demonstrate the importance of OC ascites in supporting platinum chemoresistance as well as the potential of a combination therapy with Crizotinib and the estradiol metabolite 2HE2 to regain OC cells chemosensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ovarian%20cancer" title="ovarian cancer">ovarian cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum%20chemoresistance" title=" platinum chemoresistance"> platinum chemoresistance</a>, <a href="https://publications.waset.org/abstracts/search?q=malignant%20ascites" title=" malignant ascites"> malignant ascites</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-6" title=" IL-6"> IL-6</a>, <a href="https://publications.waset.org/abstracts/search?q=2-hydroxyestradiol" title=" 2-hydroxyestradiol"> 2-hydroxyestradiol</a>, <a href="https://publications.waset.org/abstracts/search?q=HGF" title=" HGF"> HGF</a>, <a href="https://publications.waset.org/abstracts/search?q=crizotinib" title=" crizotinib"> crizotinib</a> </p> <a href="https://publications.waset.org/abstracts/170418/malignant-ovarian-cancer-ascites-confers-platinum-chemoresistance-to-ovarian-cancer-cells-a-combination-treatment-with-crizotinib-and-2-hydroxyestradiol-restore-platinum-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Value of FOXP3 Expression in Prediction of Neoadjuvant Chemotherapy Effect in Triple Negative Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badawia%20Ibrahim">Badawia Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Hussein"> Iman Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Samar%20El%20Sheikh"> Samar El Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Abou%20Elkasem"> Fatma Abou Elkasem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Abo%20Ismael"> Hazem Abo Ismael</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Response of breast carcinoma to neoadjuvant chemotherapy (NAC) varies regarding many factors including hormonal receptor status. Breast cancer is a heterogenous disease with different outcomes, hence a need arises for new markers predicting the outcome of NAC especially for the triple negative group when estrogen, progesterone receptors and Her2/neu are negative. FOXP3 is a promising target with unclear role. Aim: To examine the value of FOXP3 expression in locally advanced triple negative breast cancer tumoral cells as well as tumor infiltrating lymphocytes (TILs) and to elucidate its relation to the extent of NAC response. Material and Methods: Forty five cases of immunohistochemically confirmed to be triple negative breast carcinoma were evaluated for NAC (Doxorubicin, Cyclophosphamide AC x 4 cycles + Paclitaxel x 12 weeks, patients with ejection fraction less than 60% received Taxotere or Cyclophosphamide, Methotrexate, Fluorouracil CMF) response in both tumour and lymph nodes status according to Miller & Payne's and Sataloff's systems. FOXP3 expression in tumor as well as TILs evaluated in the pretherapy biopsies was correlated with NAC response in breast tumor and lymph nodes as well as other clinicopathological factors. Results: Breast tumour cells showed FOXP3 positive cytoplasmic expression in (42%) of cases. High FOXP3 expression percentage was detected in (47%) of cases. High infiltration by FOXP3+TILs was detected in (49%) of cases. Positive FOXP3 expression was associated with negative lymph node metastasis. High FOXP3 expression percentage and high infiltration by FOXP3+TILs were significantly associated with complete therapy response in axillary lymph nodes. High FOXP3 expression in tumour cells was associated with high infiltration by FOXP3+TILs. Conclusion: This result may provide evidence that FOXP3 marker is a good prognostic and predictive marker for triple negative breast cancer (TNBC) indicated for neoadjuvant chemotherapy and can be used for stratifications of TNBC cases indicated for NAC. As well, this study confirmed the fact that the tumour cells and the surrounding microenvironment interact with each other and the tumour microenvironment can influence the treatment outcomes of TNBC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=FOXP3%20expression" title=" FOXP3 expression"> FOXP3 expression</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20of%20neoadjuvant%20chemotherapy%20effect" title=" prediction of neoadjuvant chemotherapy effect"> prediction of neoadjuvant chemotherapy effect</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20negative" title=" triple negative "> triple negative </a> </p> <a href="https://publications.waset.org/abstracts/60312/value-of-foxp3-expression-in-prediction-of-neoadjuvant-chemotherapy-effect-in-triple-negative-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Cameron">Anna Cameron</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunxia%20Zhao"> Chunxia Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Haofei%20Wang"> Haofei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Liu"> Yun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guang%20Ze%20Yang"> Guang Ze Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20matrix" title=" extracellular matrix"> extracellular matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title=" microfluidic"> microfluidic</a> </p> <a href="https://publications.waset.org/abstracts/123573/engineering-a-tumor-extracellular-matrix-towards-an-in-vivo-mimicking-3d-tumor-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> A Single Cell Omics Experiments as Tool for Benchmarking Bioinformatics Oncology Data Analysis Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maddalena%20Arigoni">Maddalena Arigoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Luisa%20Ratto"> Maria Luisa Ratto</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaele%20A.%20Calogero"> Raffaele A. Calogero</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Alessandri"> Luca Alessandri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of tumor heterogeneity, where distinct cancer cells exhibit diverse morphological and phenotypic profiles, including gene expression, metabolism, and proliferation, poses challenges for molecular prognostic markers and patient classification for targeted therapies. Understanding the causes and progression of cancer requires research efforts aimed at characterizing heterogeneity, which can be facilitated by evolving single-cell sequencing technologies. However, analyzing single-cell data necessitates computational methods that often lack objective validation. Therefore, the establishment of benchmarking datasets is necessary to provide a controlled environment for validating bioinformatics tools in the field of single-cell oncology. Benchmarking bioinformatics tools for single-cell experiments can be costly due to the high expense involved. Therefore, datasets used for benchmarking are typically sourced from publicly available experiments, which often lack a comprehensive cell annotation. This limitation can affect the accuracy and effectiveness of such experiments as benchmarking tools. To address this issue, we introduce omics benchmark experiments designed to evaluate bioinformatics tools to depict the heterogeneity in single-cell tumor experiments. We conducted single-cell RNA sequencing on six lung cancer tumor cell lines that display resistant clones upon treatment of EGFR mutated tumors and are characterized by driver genes, namely ROS1, ALK, HER2, MET, KRAS, and BRAF. These driver genes are associated with downstream networks controlled by EGFR mutations, such as JAK-STAT, PI3K-AKT-mTOR, and MEK-ERK. The experiment also featured an EGFR-mutated cell line. Using 10XGenomics platform with cellplex technology, we analyzed the seven cell lines together with a pseudo-immunological microenvironment consisting of PBMC cells labeled with the Biolegend TotalSeq™-B Human Universal Cocktail (CITEseq). This technology allowed for independent labeling of each cell line and single-cell analysis of the pooled seven cell lines and the pseudo-microenvironment. The data generated from the aforementioned experiments are available as part of an online tool, which allows users to define cell heterogeneity and generates count tables as an output. The tool provides the cell line derivation for each cell and cell annotations for the pseudo-microenvironment based on CITEseq data by an experienced immunologist. Additionally, we created a range of pseudo-tumor tissues using different ratios of the aforementioned cells embedded in matrigel. These tissues were analyzed using 10XGenomics (FFPE samples) and Curio Bioscience (fresh frozen samples) platforms for spatial transcriptomics, further expanding the scope of our benchmark experiments. The benchmark experiments we conducted provide a unique opportunity to evaluate the performance of bioinformatics tools for detecting and characterizing tumor heterogeneity at the single-cell level. Overall, our experiments provide a controlled and standardized environment for assessing the accuracy and robustness of bioinformatics tools for studying tumor heterogeneity at the single-cell level, which can ultimately lead to more precise and effective cancer diagnosis and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20cell%20omics" title="single cell omics">single cell omics</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmark" title=" benchmark"> benchmark</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20transcriptomics" title=" spatial transcriptomics"> spatial transcriptomics</a>, <a href="https://publications.waset.org/abstracts/search?q=CITEseq" title=" CITEseq"> CITEseq</a> </p> <a href="https://publications.waset.org/abstracts/165999/a-single-cell-omics-experiments-as-tool-for-benchmarking-bioinformatics-oncology-data-analysis-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Effects of Bone Marrow Derived Mesenchymal Stem Cells (MSC) in Acute Respiratory Distress Syndrome (ARDS) Lung Remodeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20Islam">Diana Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Fang"> Juan Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Vito%20Fanelli"> Vito Fanelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Han"> Bing Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Khang"> Julie Khang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianfeng%20Wu"> Jianfeng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20S.%20Slutsky"> Arthur S. Slutsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Zhang"> Haibo Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: MSC delivery in preclinical models of ARDS has demonstrated significant improvements in lung function and recovery from acute injury. However, the role of MSC delivery in ARDS associated pulmonary fibrosis is not well understood. Some animal studies using bleomycin, asbestos, and silica-induced pulmonary fibrosis show that MSC delivery can suppress fibrosis. While other animal studies using radiation induced pulmonary fibrosis, liver, and kidney fibrosis models show that MSC delivery can contribute to fibrosis. Hypothesis: The beneficial and deleterious effects of MSC in ARDS are modulated by the lung microenvironment at the time of MSC delivery. Methods: To induce ARDS a two-hit mouse model of Hydrochloric acid (HCl) aspiration (day 0) and mechanical ventilation (MV) (day 2) was used. HCl and injurious MV generated fibrosis within 14-28 days. 0.5x106 mouse MSCs were delivered (via both intratracheal and intravenous routes) either in the active inflammatory phase (day 2) or during the remodeling phase (day 14) of ARDS (mouse fibroblasts or PBS used as a control). Lung injury accessed using inflammation score and elastance measurement. Pulmonary fibrosis was accessed using histological score, tissue collagen level, and collagen expression. In addition alveolar epithelial (E) and mesenchymal (M) marker expression profile was also measured. All measurements were taken at day 2, 14, and 28. Results: MSC delivery 2 days after HCl exacerbated lung injury and fibrosis compared to HCl alone, while the day 14 delivery showed protective effects. However in the absence of HCl, MSC significantly reduced the injurious MV-induced fibrosis. HCl injury suppressed E markers and up-regulated M markers. MSC delivery 2 days after HCl further amplified M marker expression, indicating their role in myofibroblast proliferation/activation. While with 14-day delivery E marker up-regulation was observed indicating their role in epithelial restoration. Conclusions: Early MSC delivery can be protective of injurious MV. Late MSC delivery during repair phase may also aid in recovery. However, early MSC delivery during the exudative inflammatory phase of HCl-induced ARDS can result in pro-fibrotic profiles. It is critical to understand the interaction between MSC and the lung microenvironment before MSC-based therapies are utilized for ARDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20respiratory%20distress%20syndrome%20%28ARDS%29" title="acute respiratory distress syndrome (ARDS)">acute respiratory distress syndrome (ARDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells%20%28MSC%29" title=" mesenchymal stem cells (MSC)"> mesenchymal stem cells (MSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochloric%20acid%20%28HCl%29" title=" hydrochloric acid (HCl)"> hydrochloric acid (HCl)</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20ventilation%20%28MV%29" title=" mechanical ventilation (MV) "> mechanical ventilation (MV) </a> </p> <a href="https://publications.waset.org/abstracts/22549/effects-of-bone-marrow-derived-mesenchymal-stem-cells-msc-in-acute-respiratory-distress-syndrome-ards-lung-remodeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20E.%20Sukovataya">Irina E. Sukovataya</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20S.%20Sutormin"> Oleg S. Sutormin</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20A.%20Kratasyuk"> Valentina A. Kratasyuk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research, and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20enzyme%20system%20of%20bioluminescence%20bacteria%20NAD%28P%29H%3AFMN-oxidoreductase%E2%80%93luciferase" title="coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase">coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization%20of%20enzymes" title=" stabilization of enzymes"> stabilization of enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=sucrose" title=" sucrose"> sucrose</a> </p> <a href="https://publications.waset.org/abstracts/2372/the-modeling-of-viscous-microenvironment-for-the-coupled-enzyme-system-of-bioluminescence-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Nanowire Substrate to Control Differentiation of Mesenchymal Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ainur%20Sharip">Ainur Sharip</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20E.%20Perez"> Jose E. Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Alsharif"> Nouf Alsharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldo%20I.%20M.%20Bandeas"> Aldo I. M. Bandeas</a>, <a href="https://publications.waset.org/abstracts/search?q=Enzo%20D.%20Fabrizio"> Enzo D. Fabrizio</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Ravasi"> Timothy Ravasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmeen%20S.%20Merzaban"> Jasmeen S. Merzaban</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%BCrgen%20Kosel"> Jürgen Kosel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone marrow-derived human mesenchymal stem cells (MSCs) are attractive candidates for tissue engineering and regenerative medicine, due to their ability to differentiate into osteoblasts, chondrocytes or adipocytes. Differentiation is influenced by biochemical and biophysical stimuli provided by the microenvironment of the cell. Thus, altering the mechanical characteristics of a cell culture scaffold can directly influence a cell’s microenvironment and lead to stem cell differentiation. Mesenchymal stem cells were cultured on densely packed, vertically aligned magnetic iron nanowires (NWs) and the effect of NWs on the cell cytoskeleton rearrangement and differentiation were studied. An electrochemical deposition method was employed to fabricate NWs into nanoporous alumina templates, followed by a partial release to reveal the NW array. This created a cell growth substrate with free-standing NWs. The Fe NWs possessed a length of 2-3 µm, with each NW having a diameter of 33 nm on average. Mechanical stimuli generated by the physical movement of these iron NWs, in response to a magnetic field, can stimulate osteogenic differentiation. Induction of osteogenesis was estimated using an osteogenic marker, osteopontin, and a reduction of stem cell markers, CD73 and CD105. MSCs were grown on the NWs, and fluorescent microscopy was employed to monitor the expression of markers. A magnetic field with an intensity of 250 mT and a frequency of 0.1 Hz was applied for 12 hours/day over a period of one week and two weeks. The magnetically activated substrate enhanced the osteogenic differentiation of the MSCs compared to the culture conditions without magnetic field. Quantification of the osteopontin signal revealed approximately a seven-fold increase in the expression of this protein after two weeks of culture. Immunostaining staining against CD73 and CD105 revealed the expression of antibodies at the earlier time point (two days) and a considerable reduction after one-week exposure to a magnetic field. Overall, these results demonstrate the application of a magnetic NW substrate in stimulating the osteogenic differentiation of MSCs. This method significantly decreases the time needed to induce osteogenic differentiation compared to commercial biochemical methods, such as osteogenic differentiation kits, that usually require more than two weeks. Contact-free stimulation of MSC differentiation using a magnetic field has potential uses in tissue engineering, regenerative medicine, and bone formation therapies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20substrate" title="cell substrate">cell substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanowire" title=" magnetic nanowire"> magnetic nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20differentiation" title=" stem cell differentiation"> stem cell differentiation</a> </p> <a href="https://publications.waset.org/abstracts/100255/nanowire-substrate-to-control-differentiation-of-mesenchymal-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Physical Contact Modulation of Macrophage-Mediated Anti-Inflammatory Response in Osteoimmune Microenvironment by Pollen-Like Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qing%20Zhang">Qing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Janak%20L.%20Pathak"> Janak L. Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Macro%20N.%20Helder"> Macro N. Helder</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20T.%20Jaspers"> Richard T. Jaspers</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Xiao"> Yin Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Nanomaterial-based bone regeneration is greatly influenced by the immune microenvironment. Tissue-engineered nanomaterials mediate the inflammatory response of macrophages to regulate bone regeneration. Silica nanoparticles have been widely used in tissue engineering-related preclinical studies. However, the effect of topological features on the surface of silica nanoparticles on the immune response of macrophages remains unknown. Purposes: The aims of this research are to compare the influences of normal and pollen-like silica nano-surface topography on macrophage immune responses and to obtain insight into their potential regulatory mechanisms. Method: Macrophages (RAW 264.7 cells) were exposed to mesoporous silica nanoparticles with normal morphology (MSNs) and pollen-like morphology (PMSNs). RNA-seq, RT-qPCR, and LSCM were used to assess the changes in expression levels of immune response-related genes and proteins. SEM and TEM were executed to evaluate the contact and adherence of silica nanoparticles by macrophages. For the assessment of the immunomodulation-mediated osteogenic potential, BMSCs were cultured with conditioned medium (CM) from LPS pre-stimulated macrophage cultures treated with MSNs or PMSNs. Osteoimmunomodulatory potential of MSNs and PMSNs in vivo was tested in a mouse cranial bone osteolysis model. Results: The results of the RNA-seq, RT-qPCR, and LSCM assays showed that PMSNs inhibited the expression of pro-inflammatory genes and proteins in macrophages. SEM images showed distinct macrophage membrane surface binding patterns of MSNs and PMSNs. MSNs were more evenly dispersed across the macrophage cell membrane, while PMSNs were aggregated. PMSNs-induced macrophage anti-inflammatory response was associated with upregulation of the cell surface receptor CD28 and inhibition of ERK phosphorylation. TEM images showed that both MSNs and PMSNs could be phagocytosed by macrophages, and inhibiting nanoparticle phagocytosis did not affect the expression of anti-inflammatory genes and proteins. Moreover, PMSNs-induced conditioned medium from macrophages enhanced BMP-2 expression and osteogenic differentiation mBMSCs. Similarly, PMSNs prevented LPS-induced bone resorption via downregulation of inflammatory reaction. Conclusions: PMSNs can promote bone regeneration by modulating osteoimmunological processes through surface topography. The study offers insights into how surface physical contact cues can modulate the regulation of osteoimmunology and provides a basis for the application of nanoparticles with pollen-like morphology to affect immunomodulation in bone tissue engineering and regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20contact" title="physical contact">physical contact</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoimmunology" title=" osteoimmunology"> osteoimmunology</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophages" title=" macrophages"> macrophages</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title=" silica nanoparticles"> silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20receptor" title=" membrane receptor"> membrane receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenesis" title=" osteogenesis"> osteogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a> </p> <a href="https://publications.waset.org/abstracts/183429/physical-contact-modulation-of-macrophage-mediated-anti-inflammatory-response-in-osteoimmune-microenvironment-by-pollen-like-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> DEKA-1 a Dose-Finding Phase 1 Trial: Observing Safety and Biomarkers using DK210 (EGFR) for Inoperable Locally Advanced and/or Metastatic EGFR+ Tumors with Progressive Disease Failing Systemic Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spira%20A.">Spira A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Marabelle%20A."> Marabelle A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kientop%20D."> Kientop D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Moser%20E."> Moser E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumm%20J."> Mumm J.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Both interleukin-2 (IL-2) and interleukin-10 (IL-10) have been extensively studied for their stimulatory function on T cells and their potential to obtain sustainable tumor control in RCC, melanoma, lung, and pancreatic cancer as monotherapy, as well as combination with PD-1 blockers, radiation, and chemotherapy. While approved, IL-2 retains significant toxicity, preventing its widespread use. The significant efforts undertaken to uncouple IL-2 toxicity from its anti-tumor function have been unsuccessful, and early phase clinical safety observed with PEGylated IL-10 was not met in a blinded Phase 3 trial. Deka Biosciences has engineered a novel molecule coupling wild-type IL-2 to a high affinity variant of Epstein Barr Viral (EBV) IL-10 via a scaffold (scFv) that binds to epidermal growth factor receptors (EGFR). This patented molecule, termed DK210 (EGFR), is retained at high levels within the tumor microenvironment for days after dosing. In addition to overlapping and non-redundant anti-tumor function, IL-10 reduces IL-2 mediated cytokine release syndrome risks and inhibits IL-2 mediated T regulatory cell proliferation. Methods: DK210 (EGFR) is being evaluated in an open-label, dose-escalation (Phase 1) study with 5 (0.025-0.3 mg/kg) monotherapy dose levels and (expansion cohorts) in combination with PD-1 blockers, or radiation or chemotherapy in patients with advanced solid tumors overexpressing EGFR. Key eligibility criteria include 1) confirmed progressive disease on at least one line of systemic treatment, 2) EGFR overexpression or amplification documented in histology reports, 3) at least a 4 week or 5 half-lives window since last treatment, and 4) excluding subjects with long QT syndrome, multiple myeloma, multiple sclerosis, myasthenia gravis or uncontrolled infectious, psychiatric, neurologic, or cancer disease. Plasma and tissue samples will be investigated for pharmacodynamic and predictive biomarkers and genetic signatures associated with IFN-gamma secretion, aiming to select subjects for treatment in Phase 2. Conclusion: Through successful coupling of wild-type IL-2 with a high affinity IL-10 and targeting directly to the tumor microenvironment, DK210 (EGFR) has the potential to harness IL-2 and IL-10’s known anti-cancer promise while reducing immunogenicity and toxicity risks enabling safe concomitant cytokine treatment with other anti-cancer modalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytokine" title="cytokine">cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=EGFR%20over%20expression" title=" EGFR over expression"> EGFR over expression</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukine-2" title=" interleukine-2"> interleukine-2</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukine-10" title=" interleukine-10"> interleukine-10</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20trial" title=" clinical trial"> clinical trial</a> </p> <a href="https://publications.waset.org/abstracts/162970/deka-1-a-dose-finding-phase-1-trial-observing-safety-and-biomarkers-using-dk210-egfr-for-inoperable-locally-advanced-andor-metastatic-egfr-tumors-with-progressive-disease-failing-systemic-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Delphine%20Morales">Delphine Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Lombart"> Florian Lombart</a>, <a href="https://publications.waset.org/abstracts/search?q=Agathe%20Truchot"> Agathe Truchot</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20Maire"> Pauline Maire</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20%20Vigneron"> Pascale Vigneron</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Galmiche"> Antoine Galmiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Lok"> Catherine Lok</a>, <a href="https://publications.waset.org/abstracts/search?q=Muriel%20Vayssade"> Muriel Vayssade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20human%20skin%20model" title="3D human skin model">3D human skin model</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=vemurafenib%20efficiency" title=" vemurafenib efficiency"> vemurafenib efficiency</a> </p> <a href="https://publications.waset.org/abstracts/61595/human-3d-metastatic-melanoma-models-for-in-vitro-evaluation-of-targeted-therapy-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almudena%20Espin%20Perez">Almudena Espin Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tyler%20Risom"> Tyler Risom</a>, <a href="https://publications.waset.org/abstracts/search?q=Carl%20Pelz"> Carl Pelz</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20English"> Isabel English</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Angelo"> Robert M. Angelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosalie%20%20Sears"> Rosalie Sears</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20J.%20Gentles"> Andrew J. Gentles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deconvolution" title="deconvolution">deconvolution</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=microenvironment" title=" microenvironment"> microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=PDAC" title=" PDAC"> PDAC</a> </p> <a href="https://publications.waset.org/abstracts/122441/computational-approaches-to-study-lineage-plasticity-in-human-pancreatic-ductal-adenocarcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Ancelim: Health System Restoration Protocol for Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Berry">Mark Berry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of studies have identified several factors involved in the malignant progression of cancer cells. The Primary modulator in driving inflammation to these transformed cells has been identified as the transcription factor known as nuclear factor-κB. This essential regulator of inflammation and the development of cancer, combined with a microenvironment of inflammation and signaling molecules, plays a major role in the malignant progression of cancer, and this progression is the result of the mutagenic predisposition of persistent substances that combat infection at tumor sites and other areas of chronic inflammation. Inflammation-induced tumors, and their inflammatory cells and regulators may be the primary source of metastasis of tumor cells through angiogenesis. Previous research on cytokines and chemokines, including their downstream targets, has been the focus of the cancer/inflammation connection. The identification of the biological mechanisms of other proteins vital to the inflammation cascade and their interactions are crucial to novel and effective therapeutic protocols for the treatment of inflammation-induced cancers. The Ancelim HSRP Protocol is just such a therapeutic intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancelim" title="ancelim">ancelim</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a> </p> <a href="https://publications.waset.org/abstracts/37512/ancelim-health-system-restoration-protocol-for-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Mathematical Modeling of Avascular Tumor Growth and Invasion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meitham%20Amereh">Meitham Amereh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Akbari"> Mohsen Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Nadler"> Ben Nadler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=invasion" title=" invasion"> invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20chip" title=" microfluidic chip"> microfluidic chip</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20spheroids" title=" tumor spheroids"> tumor spheroids</a> </p> <a href="https://publications.waset.org/abstracts/125134/mathematical-modeling-of-avascular-tumor-growth-and-invasion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Bobyleva">P. I. Bobyleva</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20R.%20Andreeva"> E. R. Andreeva</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Andrianova"> I. V. Andrianova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Maslova"> E. V. Maslova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20B.%20Buravkova"> L. B. Buravkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work studied the ability of adipose tissue-derived mesenchymal stromal cells (MSCs) to form stroma for expansion of cord blood hematopoietic cells. We showed that 72-hour interaction of MSCs with cord blood mononuclear cells (MNCs) in vitro at atmospheric (20%) and low (5%) O2 conditions increased the expression of ICAM-1, HCAM (at the beginning of interaction) on MSCs. Viability of MSCs and MNCs were maintained at high level. Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted the proliferation of adhered MNCs to form the suspension containing great number of hematopoietic colony-forming units, and this effect was more pronounced at 5% O2. Thus, adipose-derived MSCs supplied sufficient stromal support to cord blood MNCs both at 20% and 5% О2, providing their adhesion with further expansion of new generation of different hematopoietic lineages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20and%20progenitor%20cells" title="hematopoietic stem and progenitor cells">hematopoietic stem and progenitor cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stromal%20cells" title=" mesenchymal stromal cells"> mesenchymal stromal cells</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue-related%20oxygen" title=" tissue-related oxygen"> tissue-related oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20tissue" title=" adipose tissue"> adipose tissue</a> </p> <a href="https://publications.waset.org/abstracts/13129/stroma-providing-activity-of-adipose-derived-mesenchymal-stromal-cells-in-tissue-related-o2-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Dicarbonyl Methylglyoxal Induces Structural Perturbations, Aggregation and Immunogenicity in IgG with Implications in Auto-Immune Response in Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidra%20Islam">Sidra Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Moin%20Uddin"> Moin Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20A.%20%20Rouf"> Mir A. Rouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wide variety of pathological disorders owing to hyperglycemic conditions involves structural rearrangements and condensations of proteins. The implication of methylglyoxal (MG) modified immunoglobulin G (IgG) in the onset and progression of diabetes type 2 (T2DM) is studied in the present study. Using biophysical and biochemical approaches MG was found to perturb the structure of IgG, effect its microenvironment and leads to aggregate formation. Furthermore, MG-IgG was found to be highly immunogenic inducing high titre antibodies in female rabbits. Clinical studies revealed the presence of circulating anti-MG-IgG antibodies as analyzed by direct binding ELISA. The circulating auto antibodies were highly specific for MG-IgG as revealed by inhibition ELISA. Thus it can be concluded that MG is a powerful agent with a high damaging potential. To IgG. It is highly capable of generating immune response that contributes to the immunopathology associated with diabetes. Dicarbonyl adducts may emerge as potential biomarkers for T2DM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immunogenicity" title="immunogenicity">immunogenicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Immunoglobulin%20G" title=" Immunoglobulin G"> Immunoglobulin G</a>, <a href="https://publications.waset.org/abstracts/search?q=methylglyoxal" title=" methylglyoxal"> methylglyoxal</a>, <a href="https://publications.waset.org/abstracts/search?q=Type%202%20Diabetes%20Mellitus" title=" Type 2 Diabetes Mellitus"> Type 2 Diabetes Mellitus</a> </p> <a href="https://publications.waset.org/abstracts/60401/dicarbonyl-methylglyoxal-induces-structural-perturbations-aggregation-and-immunogenicity-in-igg-with-implications-in-auto-immune-response-in-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microenvironment&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microenvironment&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microenvironment&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microenvironment&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10