CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 219 results for author: <span class="mathjax">Ma, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Ma%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ma, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ma%2C+Z&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ma, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.04621">arXiv:2503.04621</a> <span> [<a href="https://arxiv.org/pdf/2503.04621">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Surface-dominant transport in Weyl semimetal NbAs nanowires for next-generation interconnects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheonj%2C+Y">Yeryun Cheonj</a>, <a href="/search/physics?searchtype=author&query=Kiani%2C+M+T">Mehrdad T. Kiani</a>, <a href="/search/physics?searchtype=author&query=Tu%2C+Y">Yi-Hsin Tu</a>, <a href="/search/physics?searchtype=author&query=Kumar%2C+S">Sushant Kumar</a>, <a href="/search/physics?searchtype=author&query=Duong%2C+N+K">Nghiep Khoan Duong</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">Jiyoung Kim</a>, <a href="/search/physics?searchtype=author&query=Sam%2C+Q+P">Quynh P. Sam</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/physics?searchtype=author&query=Kushwaha%2C+S+K">Satya K. Kushwaha</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+N">Nicolas Ng</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+H">Seng Huat Lee</a>, <a href="/search/physics?searchtype=author&query=Kielar%2C+S">Sam Kielar</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chen Li</a>, <a href="/search/physics?searchtype=author&query=Koumoulis%2C+D">Dimitrios Koumoulis</a>, <a href="/search/physics?searchtype=author&query=Siddique%2C+S">Saif Siddique</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+G">Gangtae Jin</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+Z">Zhiting Tian</a>, <a href="/search/physics?searchtype=author&query=Sundararaman%2C+R">Ravishankar Sundararaman</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+G">Gengchiau Liang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Ching-Tzu Chen</a>, <a href="/search/physics?searchtype=author&query=Cha%2C+J+J">Judy J. Cha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.04621v1-abstract-short" style="display: inline;"> Ongoing demands for smaller and more energy efficient electronic devices necessitate alternative interconnect materials with lower electrical resistivity at reduced dimensions. Despite the emergence of many promising candidates, synthesizing high quality nanostructures remains a major bottleneck in evaluating their performance. Here, we report the successful synthesis of Weyl semimetal NbAs nanowi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04621v1-abstract-full').style.display = 'inline'; document.getElementById('2503.04621v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.04621v1-abstract-full" style="display: none;"> Ongoing demands for smaller and more energy efficient electronic devices necessitate alternative interconnect materials with lower electrical resistivity at reduced dimensions. Despite the emergence of many promising candidates, synthesizing high quality nanostructures remains a major bottleneck in evaluating their performance. Here, we report the successful synthesis of Weyl semimetal NbAs nanowires via thermomechanical nanomolding, achieving single crystallinity and controlled diameters as small as 40 nm. Our NbAs nanowires exhibit a remarkably low room-temperature resistivity of 9.7 +/- 1.6 microOhm-cm, which is three to four times lower than their bulk counterpart. Theoretical calculations corroborate the experimental observations, attributing this exceptional resistivity reduction to surface dominant conduction with long carrier lifetime at finite temperatures. Further characterization of NbAs nanowires and bulk single crystals reveals high breakdown current density, robust stability, and superior thermal conductivity. Collectively, these properties highlight the strong potential of NbAs nanowires as next-generation interconnects, which can surpass the limitations of current copper-based interconnects. Technologically, our findings present a practical application of topological materials, while scientifically showcasing the fundamental properties uniquely accessible in nanoscale platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04621v1-abstract-full').style.display = 'none'; document.getElementById('2503.04621v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.04209">arXiv:2503.04209</a> <span> [<a href="https://arxiv.org/pdf/2503.04209">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Numerical Study On Temperature Variations Of Superheated Steam Flowing Through A Regulation Valve </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhe-hui Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hang-ye Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chuang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+J">Jin-yuan Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.04209v1-abstract-short" style="display: inline;"> Superheated steam is widely employed in various energy systems, particularly in power plants, chemical industries, and other applications where high-temperature and high-pressure steam is essential for efficient energy conversion and process control. In these systems, regulation valves are crucial components that control the flow of steam, adjusting its pressure and temperature to ensure safe and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04209v1-abstract-full').style.display = 'inline'; document.getElementById('2503.04209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.04209v1-abstract-full" style="display: none;"> Superheated steam is widely employed in various energy systems, particularly in power plants, chemical industries, and other applications where high-temperature and high-pressure steam is essential for efficient energy conversion and process control. In these systems, regulation valves are crucial components that control the flow of steam, adjusting its pressure and temperature to ensure safe and efficient operation. Accurate understanding and prediction of temperature variations within regulation valves are essential for optimizing their performance and improving the overall system efficiency. This study investigates the temperature variations of superheated steam flowing through a regulation valve using computational fluid dynamics (CFD) simulations combined with Proper Orthogonal Decomposition (POD) techniques. The analysis begins with an examination of the internal flow field parameters, including temperature and pressure, to understand the overall fluid dynamics within the valve. POD is applied to reduce the dimensionality of the CFD results. Singular Value Decomposition (SVD) is employed to extract the dominant modes that capture the key flow structures responsible for heat transfer and temperature fluctuations. The POD analysis reveals that the most influential modes are associated with regions of high turbulence intensity and significant temperature gradients, which are critical to the thermal performance of the steam flow through the regulation valve. The application of POD to 3D CFD results represents a novel approach, particularly for complex fluid flow models such as steam flow through regulation valves. The insights gained from this study have practical implications for the design and optimization of temperature and pressure regulation valves in energy systems, providing a theoretical foundation for enhancing the efficiency and reliability of these systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04209v1-abstract-full').style.display = 'none'; document.getElementById('2503.04209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06222">arXiv:2502.06222</a> <span> [<a href="https://arxiv.org/pdf/2502.06222">pdf</a>, <a href="https://arxiv.org/format/2502.06222">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Laser intensity noise suppression for space-borne gravitational wave mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+F">Fan Li</a>, <a href="/search/physics?searchtype=author&query=Shang%2C+X">Xin Shang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenglei Ma</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiawei Wang</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+L">Long Tian</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+S">Shaoping Shi</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+W">Wangbao Yin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuhang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yajun Wang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yaohui Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06222v1-abstract-short" style="display: inline;"> Laser intensity noise is a main limitation of measurement and sensing mission represented by gravitational wave detection. We develop a noise decomposition model and design the core elements of the feedback loop independently based on the analysis results. We construct a fiber amplifier system with ultra-low intensity noise in the 0.1 mHz-1 Hz frequency band by the employment of an optoelectronic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06222v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06222v1-abstract-full" style="display: none;"> Laser intensity noise is a main limitation of measurement and sensing mission represented by gravitational wave detection. We develop a noise decomposition model and design the core elements of the feedback loop independently based on the analysis results. We construct a fiber amplifier system with ultra-low intensity noise in the 0.1 mHz-1 Hz frequency band by the employment of an optoelectronic feedback loop that is specially designed. The study provides experimental basis and technologies for precise measurement and sensing system at ultra-low frequency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06222v1-abstract-full').style.display = 'none'; document.getElementById('2502.06222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10515">arXiv:2501.10515</a> <span> [<a href="https://arxiv.org/pdf/2501.10515">pdf</a>, <a href="https://arxiv.org/format/2501.10515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Improving Aufbau Suppressed Coupled Cluster Through Perturbative Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tuckman%2C+H">Harrison Tuckman</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Ziheng Ma</a>, <a href="/search/physics?searchtype=author&query=Neuscamman%2C+E">Eric Neuscamman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10515v1-abstract-short" style="display: inline;"> Guided by perturbative analysis, we improve the accuracy of Aufbau suppressed coupled cluster theory in simple single excitations, multi-configurational single excitations, and charge transfer excitations while keeping the cost of its leading-order terms precisely in line with ground state coupled cluster. Combining these accuracy improvements with a more efficient implementation based on spin-ada… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10515v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10515v1-abstract-full" style="display: none;"> Guided by perturbative analysis, we improve the accuracy of Aufbau suppressed coupled cluster theory in simple single excitations, multi-configurational single excitations, and charge transfer excitations while keeping the cost of its leading-order terms precisely in line with ground state coupled cluster. Combining these accuracy improvements with a more efficient implementation based on spin-adaptation, we observe high accuracy in a large test set of single excitations, and, in particular, a mean unsigned error for charge transfer states that outperforms equation-of-motion coupled cluster theory by 0.25 eV. We discuss how these results are achieved via a systematic identification of which amplitudes to prioritize for single- and multi-configurational excited states, and how this prioritization differs in important ways from the ground state theory. In particular, our data show that a partial linearization of the theory increases accuracy by mitigating unwanted side effects of Aufbau suppression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10515v1-abstract-full').style.display = 'none'; document.getElementById('2501.10515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03592">arXiv:2501.03592</a> <span> [<a href="https://arxiv.org/pdf/2501.03592">pdf</a>, <a href="https://arxiv.org/format/2501.03592">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Value Mapping Virtual Staining Framework for Large-scale Histological Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junjia Wang</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+B">Bo Xiong</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">You Zhou</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+X">Xun Cao</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhan Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03592v1-abstract-short" style="display: inline;"> The emergence of virtual staining technology provides a rapid and efficient alternative for researchers in tissue pathology. It enables the utilization of unlabeled microscopic samples to generate virtual replicas of chemically stained histological slices, or facilitate the transformation of one staining type into another. The remarkable performance of generative networks, such as CycleGAN, offers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03592v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03592v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03592v1-abstract-full" style="display: none;"> The emergence of virtual staining technology provides a rapid and efficient alternative for researchers in tissue pathology. It enables the utilization of unlabeled microscopic samples to generate virtual replicas of chemically stained histological slices, or facilitate the transformation of one staining type into another. The remarkable performance of generative networks, such as CycleGAN, offers an unsupervised learning approach for virtual coloring, overcoming the limitations of high-quality paired data required in supervised learning. Nevertheless, large-scale color transformation necessitates processing large field-of-view images in patches, often resulting in significant boundary inconsistency and artifacts. Additionally, the transformation between different colorized modalities typically needs further efforts to modify loss functions and tune hyperparameters for independent training of networks. In this study, we introduce a general virtual staining framework that is adaptable to various conditions. We propose a loss function based on the value mapping constraint to ensure the accuracy of virtual coloring between different pathological modalities, termed the Value Mapping Generative Adversarial Network (VM-GAN). Meanwhile, we present a confidence-based tiling method to address the challenge of boundary inconsistency arising from patch-wise processing. Experimental results on diverse data with varying staining protocols demonstrate that our method achieves superior quantitative indicators and improved visual perception. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03592v1-abstract-full').style.display = 'none'; document.getElementById('2501.03592v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20675">arXiv:2412.20675</a> <span> [<a href="https://arxiv.org/pdf/2412.20675">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improved ICNN-LSTM Model Classification Based on Attitude Sensor Data for Hazardous State Assessment of Magnetic Adhesion Climbing Wall Robots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhen Ma</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">He Xu</a>, <a href="/search/physics?searchtype=author&query=Dou%2C+J">Jielong Dou</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+Y">Yi Qin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xueyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20675v1-abstract-short" style="display: inline;"> Magnetic adhesion tracked climbing robots are widely utilized in high-altitude inspection, welding, and cleaning tasks due to their ability to perform various operations against gravity on vertical or inclined walls. However, during operation, the robot may experience overturning torque caused by its own weight and load, which can lead to the detachment of magnetic plates and subsequently pose saf… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20675v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20675v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20675v1-abstract-full" style="display: none;"> Magnetic adhesion tracked climbing robots are widely utilized in high-altitude inspection, welding, and cleaning tasks due to their ability to perform various operations against gravity on vertical or inclined walls. However, during operation, the robot may experience overturning torque caused by its own weight and load, which can lead to the detachment of magnetic plates and subsequently pose safety risks. This paper proposes an improved ICNN-LSTM network classification method based on Micro-Electro-Mechanical Systems (MEMS) attitude sensor data for real-time monitoring and assessment of hazardous states in magnetic adhesion tracked climbing robots. Firstly, a data acquisition strategy for attitude sensors capable of capturing minute vibrations is designed. Secondly, a feature extraction and classification model combining an Improved Convolutional Neural Network (ICNN) with a Long Short-Term Memory (LSTM) network is proposed. Experimental validation demonstrates that the proposed minute vibration sensing method achieves significant results, and the proposed classification model consistently exhibits high accuracy compared to other models. The research findings provide effective technical support for the safe operation of climbing robots <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20675v1-abstract-full').style.display = 'none'; document.getElementById('2412.20675v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures, manuscript for Journal of Autonomous Robots</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T05; 68T07; 68T40 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; I.2.7; K.6.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03970">arXiv:2412.03970</a> <span> [<a href="https://arxiv.org/pdf/2412.03970">pdf</a>, <a href="https://arxiv.org/format/2412.03970">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+X">Xiangnan Yu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">Hao Xu</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zhiping Mao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">HongGuang Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Dongxiao Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yuntian Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03970v1-abstract-short" style="display: inline;"> In complex physical systems, conventional differential equations often fall short in capturing non-local and memory effects, as they are limited to local dynamics and integer-order interactions. This study introduces a stepwise data-driven framework for discovering fractional differential equations (FDEs) directly from data. FDEs, known for their capacity to model non-local dynamics with fewer par… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03970v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03970v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03970v1-abstract-full" style="display: none;"> In complex physical systems, conventional differential equations often fall short in capturing non-local and memory effects, as they are limited to local dynamics and integer-order interactions. This study introduces a stepwise data-driven framework for discovering fractional differential equations (FDEs) directly from data. FDEs, known for their capacity to model non-local dynamics with fewer parameters than integer-order derivatives, can represent complex systems with long-range interactions. Our framework applies deep neural networks as surrogate models for denoising and reconstructing sparse and noisy observations while using Gaussian-Jacobi quadrature to handle the challenges posed by singularities in fractional derivatives. To optimize both the sparse coefficients and fractional order, we employ an alternating optimization approach that combines sparse regression with global optimization techniques. We validate the framework across various datasets, including synthetic anomalous diffusion data, experimental data on the creep behavior of frozen soils, and single-particle trajectories modeled by L茅vy motion. Results demonstrate the framework's robustness in identifying the structure of FDEs across diverse noise levels and its capacity to capture integer-order dynamics, offering a flexible approach for modeling memory effects in complex systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03970v1-abstract-full').style.display = 'none'; document.getElementById('2412.03970v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09713">arXiv:2411.09713</a> <span> [<a href="https://arxiv.org/pdf/2411.09713">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Semiconductor Grafting: Enabling High-Performance, Lattice-Mismatched Heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qiming Zhang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+H">Haris Abbasi</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+H">Haining Qiu</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">Jisoo Kim</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+W">Wei Lin</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/physics?searchtype=author&query=Jang%2C+H">Hokyung Jang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Haiyan Wang</a>, <a href="/search/physics?searchtype=author&query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09713v1-abstract-short" style="display: inline;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. Howeve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09713v1-abstract-full" style="display: none;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. However, its scalability and uniformity at the wafer level have yet to be demonstrated. This work demonstrates the achievement of highly uniform, reproducible results across silicon, sapphire, and gallium nitride (GaN) substrates using wafer-scale semiconductor grafting. To illustrate this scalability, we conducted an in-depth study of a grafted Si/GaN heterojunction, examining band alignment through X-ray photoelectron spectroscopy and confirming crystallinity and interfacial integrity with scanning transmission electron microscopy. The resulting p-n diodes exhibit significantly enhanced electrical performance and wafer-scale uniformity compared to conventional approaches. This work establishes wafer-scale semiconductor grafting as a versatile and scalable technology, bridging the gap between laboratory-scale research and industrial manufacturing for heterogeneous semiconductor integration, and paving the way for novel, high-performance electronic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'none'; document.getElementById('2411.09713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09707">arXiv:2410.09707</a> <span> [<a href="https://arxiv.org/pdf/2410.09707">pdf</a>, <a href="https://arxiv.org/format/2410.09707">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning from the past: predicting critical transitions with machine learning trained on surrogates of historical data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhiqin Ma</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+C">Chunhua Zeng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yi-Cheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Bury%2C+T+M">Thomas M. Bury</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09707v1-abstract-short" style="display: inline;"> Complex systems can undergo critical transitions, where slowly changing environmental conditions trigger a sudden shift to a new, potentially catastrophic state. Early warning signals for these events are crucial for decision-making in fields such as ecology, biology and climate science. Generic early warning signals motivated by dynamical systems theory have had mixed success on real noisy data.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09707v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09707v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09707v1-abstract-full" style="display: none;"> Complex systems can undergo critical transitions, where slowly changing environmental conditions trigger a sudden shift to a new, potentially catastrophic state. Early warning signals for these events are crucial for decision-making in fields such as ecology, biology and climate science. Generic early warning signals motivated by dynamical systems theory have had mixed success on real noisy data. More recent studies found that deep learning classifiers trained on synthetic data could improve performance. However, neither of these methods take advantage of historical, system-specific data. Here, we introduce an approach that trains machine learning classifiers directly on surrogate data of past transitions, namely surrogate data-based machine learning (SDML). The approach provides early warning signals in empirical and experimental data from geology, climatology, sociology, and cardiology with higher sensitivity and specificity than two widely used generic early warning signals -- variance and lag-1 autocorrelation. Since the approach is trained directly on surrogates of historical data, it is not bound by the restricting assumption of a local bifurcation like previous methods. This system-specific approach can contribute to improved early warning signals to help humans better prepare for or avoid undesirable critical transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09707v1-abstract-full').style.display = 'none'; document.getElementById('2410.09707v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07254">arXiv:2410.07254</a> <span> [<a href="https://arxiv.org/pdf/2410.07254">pdf</a>, <a href="https://arxiv.org/ps/2410.07254">ps</a>, <a href="https://arxiv.org/format/2410.07254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Uniform accuracy of implicit-explicit Runge-Kutta methods for linear hyperbolic relaxation systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhiting Ma</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Juntao Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07254v1-abstract-short" style="display: inline;"> In this paper, we study the uniform accuracy of implicit-explicit (IMEX) Runge-Kutta (RK) schemes for general linear hyperbolic relaxation systems satisfying the structural stability condition proposed in \cite{yong_singular_1999}. We establish the uniform stability and accuracy of a class of IMEX-RK schemes with spatial discretization using a Fourier spectral method. Our results demonstrate that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07254v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07254v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07254v1-abstract-full" style="display: none;"> In this paper, we study the uniform accuracy of implicit-explicit (IMEX) Runge-Kutta (RK) schemes for general linear hyperbolic relaxation systems satisfying the structural stability condition proposed in \cite{yong_singular_1999}. We establish the uniform stability and accuracy of a class of IMEX-RK schemes with spatial discretization using a Fourier spectral method. Our results demonstrate that the accuracy of the fully discretized schemes is independent of the relaxation time across all regimes. Numerical experiments on applications in traffic flows and kinetic theory verify our theoretical analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07254v1-abstract-full').style.display = 'none'; document.getElementById('2410.07254v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2306.08742 by other authors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15789">arXiv:2409.15789</a> <span> [<a href="https://arxiv.org/pdf/2409.15789">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Single-crystalline GaAs/Si Heterojunction Tunnel Diodes Interfaced by an Ultrathin Oxygen-enriched Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yifan Wang</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+Z">Ziqian Yao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qingxiao Wang</a>, <a href="/search/physics?searchtype=author&query=Banda%2C+Y+S">Yara S. Banda</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Adamo%2C+C">Carolina Adamo</a>, <a href="/search/physics?searchtype=author&query=Marshall%2C+P">Patrick Marshall</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+T">Tsung-Han Tsai</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&query=Gambin%2C+V">Vincent Gambin</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/physics?searchtype=author&query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15789v1-abstract-short" style="display: inline;"> We report the fabrication and characteristics of GaAs/Si p+/n+ heterojunction tunnel diodes. These diodes were fabricated via grafting the freestanding single-crystalline p-type degenerately doped GaAs (4E19 cm-3) nanomembrane (NM) onto single-crystalline n-type Si (5E19 cm-3) substrate. At the heterointerface, an amorphous ultrathin oxygen-enriched layer (UOL) was intentionally engineered through… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15789v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15789v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15789v1-abstract-full" style="display: none;"> We report the fabrication and characteristics of GaAs/Si p+/n+ heterojunction tunnel diodes. These diodes were fabricated via grafting the freestanding single-crystalline p-type degenerately doped GaAs (4E19 cm-3) nanomembrane (NM) onto single-crystalline n-type Si (5E19 cm-3) substrate. At the heterointerface, an amorphous ultrathin oxygen-enriched layer (UOL) was intentionally engineered through chemical oxidation and atomic layer deposition (ALD). Scanning transmission electron microscopy (STEM) confirmed the formation of the UOL and the single crystallinity of the grafted junction. The resulting tunnel diodes consistently exhibited negative differential resistance (NDR) behavior at room temperature, with a high maximum peak-to-valley current ratio (PVCR) of 36.38, valley voltages ranging from 1.3 to 1.8 V, and a peak tunneling current density of 0.95 kA/cm2. This study not only highlights the critical roles of the UOL as both an interface improvement layer and a quantum tunneling medium, but also establishes "semiconductor grafting" as an effective and versatile method for high-performance, lattice-mismatched heterojunction devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15789v1-abstract-full').style.display = 'none'; document.getElementById('2409.15789v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09752">arXiv:2409.09752</a> <span> [<a href="https://arxiv.org/pdf/2409.09752">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Grafted AlGaAs/GeSn Optical Pumping Laser Operating up to 130 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Vincent%2C+D">Daniel Vincent</a>, <a href="/search/physics?searchtype=author&query=Acharya%2C+S">Sudip Acharya</a>, <a href="/search/physics?searchtype=author&query=Ojo%2C+S">Solomon Ojo</a>, <a href="/search/physics?searchtype=author&query=Abrand%2C+A">Alireza Abrand</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&query=Haessly%2C+S">Samuel Haessly</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+J">Jianping Shen</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+S">Shining Xu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&query=Stanchu%2C+H">Hryhorii Stanchu</a>, <a href="/search/physics?searchtype=author&query=Mawst%2C+L">Luke Mawst</a>, <a href="/search/physics?searchtype=author&query=Claflin%2C+B">Bruce Claflin</a>, <a href="/search/physics?searchtype=author&query=Mohseni%2C+P+K">Parsian K. Mohseni</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+S">Shui-Qing Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09752v1-abstract-short" style="display: inline;"> Group IV GeSn double-heterostructure (DHS) lasers offer unique advantages of a direct bandgap and CMOS compatibility. However, further improvements in laser performance have been bottlenecked by limited junction properties of GeSn through conventional epitaxy and wafer bonding. This work leverages semiconductor grafting to synthesize and characterize optically pumped ridge edge-emitting lasers (EE… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09752v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09752v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09752v1-abstract-full" style="display: none;"> Group IV GeSn double-heterostructure (DHS) lasers offer unique advantages of a direct bandgap and CMOS compatibility. However, further improvements in laser performance have been bottlenecked by limited junction properties of GeSn through conventional epitaxy and wafer bonding. This work leverages semiconductor grafting to synthesize and characterize optically pumped ridge edge-emitting lasers (EELs) with an AlGaAs nanomembrane (NM) transfer-printed onto an epitaxially grown GeSn substrate, interfaced by an ultrathin Al2O3 layer. The grafted AlGaAs/GeSn DHS lasers show a lasing threshold of 11.06 mW at 77 K and a maximum lasing temperature of 130 K. These results highlight the potential of the grafting technique for enhancing charge carrier and optical field confinements, paving the way for room-temperature electrically injected GeSn lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09752v1-abstract-full').style.display = 'none'; document.getElementById('2409.09752v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures. Supplementary Information included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16884">arXiv:2408.16884</a> <span> [<a href="https://arxiv.org/pdf/2408.16884">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Characterization of AlGaAs/GeSn heterojunction band alignment via X-ray photoelectron spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Acharya%2C+S">Sudip Acharya</a>, <a href="/search/physics?searchtype=author&query=Lia%2C+Y">Yiran Lia</a>, <a href="/search/physics?searchtype=author&query=Abrand%2C+A">Alireza Abrand</a>, <a href="/search/physics?searchtype=author&query=Rudie%2C+J+M">Justin M. Rudie</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+H+N">Haris Naeem Abbasi</a>, <a href="/search/physics?searchtype=author&query=Vincent%2C+D">Daniel Vincent</a>, <a href="/search/physics?searchtype=author&query=Haessly%2C+S">Samuel Haessly</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+T">Tsung-Han Tsai</a>, <a href="/search/physics?searchtype=author&query=Mohseni%2C+P+K">Parsian K. Mohseni</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+S">Shui-Qing Yu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16884v1-abstract-short" style="display: inline;"> GeSn-based SWIR lasers featuring imaging, sensing, and communications has gained dynamic development recently. However, the existing SiGeSn/GeSn double heterostructure lacks adequate electron confinement and is insufficient for room temperature lasing. The recently demonstrated semiconductor grafting technique provides a viable approach towards AlGaAs/GeSn p-i-n heterojunctions with better electro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16884v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16884v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16884v1-abstract-full" style="display: none;"> GeSn-based SWIR lasers featuring imaging, sensing, and communications has gained dynamic development recently. However, the existing SiGeSn/GeSn double heterostructure lacks adequate electron confinement and is insufficient for room temperature lasing. The recently demonstrated semiconductor grafting technique provides a viable approach towards AlGaAs/GeSn p-i-n heterojunctions with better electron confinement and high-quality interfaces, promising for room temperature electrically pumped GeSn laser devices. Therefore, understanding and quantitatively characterizing the band alignment in this grafted heterojunction is crucial. In this study, we explore the band alignment in the grafted monocrystalline Al0.3Ga0.7As /Ge0.853Sn0.147 p-i-n heterojunction. We determined the bandgap values of AlGaAs and GeSn to be 1.81 eV and 0.434 eV by photoluminescence measurements, respectively. We further conducted X-ray photoelectron spectroscopy measurements and extracted a valence band offset of 0.19 eV and a conduction band offset of 1.186 eV. A Type-I band alignment was confirmed which effectively confining electrons at the AlGaAs/GeSn interface. This study improves our understanding of the interfacial band structure in grafted AlGaAs/GeSn heterostructure, providing experimental evidence of the Type-I band alignment between AlGaAs and GeSn, and paving the way for their application in laser technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16884v1-abstract-full').style.display = 'none'; document.getElementById('2408.16884v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12075">arXiv:2408.12075</a> <span> [<a href="https://arxiv.org/pdf/2408.12075">pdf</a>, <a href="https://arxiv.org/format/2408.12075">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.113204">10.1103/PhysRevLett.133.113204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetically-Induced-Transparency Cooling of High-Nuclear-Spin Ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+C">Chuanxin Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chenxi Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hongxuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+H">Hongyuan Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zuqing Wang</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zhichao Mao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shijiao Li</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+P">Panyu Hou</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Yukai Wu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zichao Zhou</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+L">Luming Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12075v1-abstract-short" style="display: inline;"> We report the electromagnetically-induced-transparency (EIT) cooling of $^{137}\mathrm{Ba}^{+}$ ions with a nuclear spin of $I=3/2$, which are a good candidate of qubits for future large-scale trapped ion quantum computing. EIT cooling of atoms or ions with a complex ground-state level structure is challenging due to the lack of an isolated $螞$ system, as the population can escape from the $螞$ sys… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12075v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12075v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12075v1-abstract-full" style="display: none;"> We report the electromagnetically-induced-transparency (EIT) cooling of $^{137}\mathrm{Ba}^{+}$ ions with a nuclear spin of $I=3/2$, which are a good candidate of qubits for future large-scale trapped ion quantum computing. EIT cooling of atoms or ions with a complex ground-state level structure is challenging due to the lack of an isolated $螞$ system, as the population can escape from the $螞$ system to reduce the cooling efficiency. We overcome this issue by leveraging an EIT pumping laser to repopulate the cooling subspace, ensuring continuous and effective EIT cooling. We cool the two radial modes of a single $^{137}\mathrm{Ba}^{+}$ ion to average motional occupations of 0.08(5) and 0.15(7) respectively. Using the same laser parameters, we also cool all the ten radial modes of a five-ion chain to near their ground states. Our approach can be adapted to atomic species possessing similar level structures. It allows engineering of the EIT Fano-like spectrum, which can be useful for simultaneous cooling of modes across a wide frequency range, aiding in large-scale trapped-ion quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12075v1-abstract-full').style.display = 'none'; document.getElementById('2408.12075v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevLett.133.113204 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10696">arXiv:2408.10696</a> <span> [<a href="https://arxiv.org/pdf/2408.10696">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Impact of ALD-Deposited Ultrathin Nitride Layers on Carrier Lifetimes and Photoluminescence Efficiency in CdTe/MgCdTe Double Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbasi%2C+H+N">Haris Naeem Abbasi</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+X">Xin Qi</a>, <a href="/search/physics?searchtype=author&query=Ju%2C+Z">Zheng Ju</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yong-Hang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10696v1-abstract-short" style="display: inline;"> This work evaluates the passivation effectiveness of ultrathin nitride layers (SiNx, AlN, TiN) deposited via atomic layer deposition on CdTe/MgCdTe double heterostructures for solar cell applications. Time-resolved photoluminescence and photoluminescence measurements revealed enhanced carrier lifetimes and reduced surface recombination, indicating improved passivation effectiveness. These results… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10696v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10696v1-abstract-full" style="display: none;"> This work evaluates the passivation effectiveness of ultrathin nitride layers (SiNx, AlN, TiN) deposited via atomic layer deposition on CdTe/MgCdTe double heterostructures for solar cell applications. Time-resolved photoluminescence and photoluminescence measurements revealed enhanced carrier lifetimes and reduced surface recombination, indicating improved passivation effectiveness. These results underscore the potential of SiNx as a promising passivation material to improve the efficiency of CdTe solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10696v1-abstract-full').style.display = 'none'; document.getElementById('2408.10696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08451">arXiv:2408.08451</a> <span> [<a href="https://arxiv.org/pdf/2408.08451">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> AlGaAs/GeSn p-i-n diode interfaced with ultrathin Al$_2$O$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&query=Acharya%2C+S">Sudip Acharya</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Abrand%2C+A">Alireza Abrand</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&query=Vincent%2C+D">Daniel Vincent</a>, <a href="/search/physics?searchtype=author&query=Haessly%2C+S">Samuel Haessly</a>, <a href="/search/physics?searchtype=author&query=Mohseni%2C+P+K">Parsian K. Mohseni</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+S">Shui-Qing Yu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08451v1-abstract-short" style="display: inline;"> This study presents the fabrication and characterizations of an Al$_{0.3}$Ga$_{0.7}$As/Ge$_{0.87}$Sn$_{0.13}$/GeSn p-i-n double heterostructure (DHS) diode following the grafting approach for enhanced optoelectronic applications. By integrating ultra-thin Al$_2$O$_3$ as a quantum tunneling layer and enhancing interfacial double-side passivation, we achieved a heterostructure with a substantial 1.1… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08451v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08451v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08451v1-abstract-full" style="display: none;"> This study presents the fabrication and characterizations of an Al$_{0.3}$Ga$_{0.7}$As/Ge$_{0.87}$Sn$_{0.13}$/GeSn p-i-n double heterostructure (DHS) diode following the grafting approach for enhanced optoelectronic applications. By integrating ultra-thin Al$_2$O$_3$ as a quantum tunneling layer and enhancing interfacial double-side passivation, we achieved a heterostructure with a substantial 1.186 eV conduction band barrier between AlGaAs and GeSn, along with a low interfacial density of states. The diode demonstrated impressive electrical characteristics with high uniformity, including a mean ideality factor of 1.47 and a mean rectification ratio of 2.95E103 at +/-2 V across 326 devices, indicating high-quality device fabrication. Comprehensive electrical characterizations, including C-V and I-V profiling, affirm the diode's capability to provide robust electrical confinement and efficient carrier injection. These properties make the Al$_{0.3}$Ga$_{0.7}$As/Ge$_{0.87}$Sn$_{0.13}$/GeSn DHS a promising candidate for next-generation electrically pumped GeSn lasers, potentially operable at higher temperatures. Our results provide a viable pathway for further advancements in various GeSn-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08451v1-abstract-full').style.display = 'none'; document.getElementById('2408.08451v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21709">arXiv:2407.21709</a> <span> [<a href="https://arxiv.org/pdf/2407.21709">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ad994c">10.1088/1361-6587/ad994c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influences of $未$B Contribution and Parallel Inertial Term of Energetic Particles on MHD-Kinetic Hybrid Simulations: A Case Study of the 1/1 Internal Kink Mode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H+X">H. X. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H+W">H. W. Zhang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z+W">Z. W. Ma</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">C. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21709v2-abstract-short" style="display: inline;"> The magnetohydrodynamic-kinetic (MHD-kinetic) hybrid model [Park et. al., 1992] has been widely applied in studying energetic particles (EPs) problems in fusion plasmas for past decades. The pressure-coupling scheme or the current-coupling scheme is adopted in this model. However, two noteworthy issues arise in the model application: firstly, the coupled term introduced in the pressure-coupling sc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21709v2-abstract-full').style.display = 'inline'; document.getElementById('2407.21709v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21709v2-abstract-full" style="display: none;"> The magnetohydrodynamic-kinetic (MHD-kinetic) hybrid model [Park et. al., 1992] has been widely applied in studying energetic particles (EPs) problems in fusion plasmas for past decades. The pressure-coupling scheme or the current-coupling scheme is adopted in this model. However, two noteworthy issues arise in the model application: firstly, the coupled term introduced in the pressure-coupling scheme, $\left( \nabla \cdot \mathbf{P}_{\mathrm{h}} \right)_{\bot}$, is often simplified by $\nabla \cdot \mathbf{P}_{\mathrm{h}}$, which is equivalent to neglecting the parallel inertial term of EPs; secondly, besides the $未f $ contribution caused by changing in the EP distribution function, the magnetic field perturbation (the $未\mathbf{B} $ contribution) generated during development of the instabilities should also be considered, but it is often ignored in existing hybrid simulations. In this paper, we derive the analytical formulations under these two coupling schemes and then numerically study the representative case of the linear stability of the m/n=1/1 internal kink mode (IKM) [Fu et. al., 2006] by using the CLT-K code. It is found that the approximated models can still yield reasonable results when EPs are isotopically distributed. But it fails completely in cases with anisotropic EP distributions. In addition, we further investigate the influence of EP's orbit width on the stability of IKM and verify the equivalence between pressure-coupling scheme and the current-coupling scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21709v2-abstract-full').style.display = 'none'; document.getElementById('2407.21709v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 17 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17360">arXiv:2407.17360</a> <span> [<a href="https://arxiv.org/pdf/2407.17360">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Si/AlN p-n heterojunction interfaced with ultrathin SiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbasi%2C+H+N">Haris Naeem Abbasi</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Ding Wang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Ping Wang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+R">Ranveer Singh</a>, <a href="/search/physics?searchtype=author&query=Mi%2C+Z">Zetian Mi</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17360v2-abstract-short" style="display: inline;"> Ultra-wide bandgap (UWBG) materials hold immense potential for high-power RF electronics and deep ultraviolet photonics. Among these, AlGaN emerges as a promising candidate, offering a tunable bandgap from 3.4 eV (GaN) to 6.1 eV (AlN) and remarkable material characteristics. However, achieving efficient p-type doping in high aluminum composition AlGaN remains a formidable challenge. This study pre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17360v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17360v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17360v2-abstract-full" style="display: none;"> Ultra-wide bandgap (UWBG) materials hold immense potential for high-power RF electronics and deep ultraviolet photonics. Among these, AlGaN emerges as a promising candidate, offering a tunable bandgap from 3.4 eV (GaN) to 6.1 eV (AlN) and remarkable material characteristics. However, achieving efficient p-type doping in high aluminum composition AlGaN remains a formidable challenge. This study presents an alternative approach to address this issue by fabricating a p+ Si/n-AlN/n+ AlGaN heterojunction structure by following the semiconductor grafting technique. Atomic force microscopy (AFM) analysis revealed that the AlN and the nanomembrane surface exhibited a smooth topography with a roughness of 1.96 nm and 0.545 nm, respectively. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirmed a sharp and well-defined Si/AlN interface, with minimal defects and strong chemical bonding, crucial for efficient carrier transport. X-ray photoelectron spectroscopy (XPS) measurements demonstrated a type-I heterojunction with a valence band offset of 2.73 eV-2.84 eV and a conduction band offset of 2.22 eV -2.11 eV. The pn diode devices exhibited a linear current-voltage (I-V) characteristic, an ideality factor of 1.92, and a rectification ratio of 3.3E4, with a turn-on voltage of indicating effective p-n heterojunction. Temperature-dependent I-V measurements showed stable operation up to 90 C. The heterojunction's high-quality interface and electrical performance showcase its potential for advanced AlGaN-based optoelectronic and electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17360v2-abstract-full').style.display = 'none'; document.getElementById('2407.17360v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11086">arXiv:2407.11086</a> <span> [<a href="https://arxiv.org/pdf/2407.11086">pdf</a>, <a href="https://arxiv.org/format/2407.11086">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Pre-training with Fractional Denoising to Enhance Molecular Property Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ni%2C+Y">Yuyan Ni</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+S">Shikun Feng</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+X">Xin Hong</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yuancheng Sun</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+W">Wei-Ying Ma</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhi-Ming Ma</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Q">Qiwei Ye</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+Y">Yanyan Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11086v1-abstract-short" style="display: inline;"> Deep learning methods have been considered promising for accelerating molecular screening in drug discovery and material design. Due to the limited availability of labelled data, various self-supervised molecular pre-training methods have been presented. While many existing methods utilize common pre-training tasks in computer vision (CV) and natural language processing (NLP), they often overlook… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11086v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11086v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11086v1-abstract-full" style="display: none;"> Deep learning methods have been considered promising for accelerating molecular screening in drug discovery and material design. Due to the limited availability of labelled data, various self-supervised molecular pre-training methods have been presented. While many existing methods utilize common pre-training tasks in computer vision (CV) and natural language processing (NLP), they often overlook the fundamental physical principles governing molecules. In contrast, applying denoising in pre-training can be interpreted as an equivalent force learning, but the limited noise distribution introduces bias into the molecular distribution. To address this issue, we introduce a molecular pre-training framework called fractional denoising (Frad), which decouples noise design from the constraints imposed by force learning equivalence. In this way, the noise becomes customizable, allowing for incorporating chemical priors to significantly improve molecular distribution modeling. Experiments demonstrate that our framework consistently outperforms existing methods, establishing state-of-the-art results across force prediction, quantum chemical properties, and binding affinity tasks. The refined noise design enhances force accuracy and sampling coverage, which contribute to the creation of physically consistent molecular representations, ultimately leading to superior predictive performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11086v1-abstract-full').style.display = 'none'; document.getElementById('2407.11086v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10093">arXiv:2407.10093</a> <span> [<a href="https://arxiv.org/pdf/2407.10093">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Non-uniform mesh based FDM simulation of lid-driven cavity problem governed by N-S equations in stream function-vorticity formulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zirui Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10093v1-abstract-short" style="display: inline;"> In this paper, the driven cavity problem was solved using finite difference scheme in stream function-vorticity formulation. A variable grid is adopted to capture more details and information in the area nearby the wall. The Navier-Stokes equation is rewritten as a particular form suitable to the variable grids. In simulation, Reynolds number is set 100 as an example. The velocity, vorticity and s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10093v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10093v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10093v1-abstract-full" style="display: none;"> In this paper, the driven cavity problem was solved using finite difference scheme in stream function-vorticity formulation. A variable grid is adopted to capture more details and information in the area nearby the wall. The Navier-Stokes equation is rewritten as a particular form suitable to the variable grids. In simulation, Reynolds number is set 100 as an example. The velocity, vorticity and streamline contour are produced by the CFD scheme developed in this paper and then are compared with those by Ghia et. al. (1982) to validate this numerical scheme. It shows that the numerical CFD scheme developed in this paper works very well for both uniform grids and variable grids. The numerical tests with different grids setting show that a) the variable grids have advantages in capturing the reversed flow and separation bubbles produced in the corners associated with a good efficiency, b) the numerical schemes with symmetric and dense grids gives a more accurate solution than those with non-symmetric and sparse grids, and c) both the vorticity and stream function have a better accuracy than velocity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10093v1-abstract-full').style.display = 'none'; document.getElementById('2407.10093v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02247">arXiv:2407.02247</a> <span> [<a href="https://arxiv.org/pdf/2407.02247">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adom.202401169">10.1002/adom.202401169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hypermultiplexed off-chip hologram by on-chip integrated metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xianjin Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhanying Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Dasen Zhang</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+Q">Qiwen Bao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhenzhen Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+J">Jun-Jun Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02247v1-abstract-short" style="display: inline;"> The waveguide-integrated metasurface introduces a novel photonic chip capable of converting guided modes into free-space light. This enables functions such as off-chip beam focusing, steering, and imaging. The challenge lies in achieving hypermultiplexing across diverse parameters, including guided-wave mode type, direction, polarization, and notably, multiple wavelengths. Here, we introduce a com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02247v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02247v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02247v1-abstract-full" style="display: none;"> The waveguide-integrated metasurface introduces a novel photonic chip capable of converting guided modes into free-space light. This enables functions such as off-chip beam focusing, steering, and imaging. The challenge lies in achieving hypermultiplexing across diverse parameters, including guided-wave mode type, direction, polarization, and notably, multiple wavelengths. Here, we introduce a comprehensive end-to-end inverse design framework, rooted in a physical model, for the multifunctional design of on-chip metasurfaces. This framework allows for metasurface optimization through a target-field-driven iteration process. We demonstrate a hypermultiplexed on-chip metasurface capable of generating red-green-blue holograms at multiple target planes, with both independent and cooperative control over guided-wave direction. Significantly, the proposed method streamlines the design process utilizing only the positions of meta-atoms as the design variable. We demonstrate 9 independent holographic channels through a combination of wavelength and distance multiplexing. Moreover, by incorporating the excitation direction into the design, the metasurface produces a total of 36 distinct holograms. The robustness of these results against fabrication discrepancies is validated through 3D full-wave electromagnetic simulations, aligning well with advanced manufacturing techniques. Our research presents a universal design framework for the development of multifunctional on-chip metasurfaces, opening up new avenues for a wide range of applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02247v1-abstract-full').style.display = 'none'; document.getElementById('2407.02247v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02214">arXiv:2407.02214</a> <span> [<a href="https://arxiv.org/pdf/2407.02214">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Second-Harmonic Generation in Thin-Film Lithium Niobate Circular Bragg Nanocavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zengya Li</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Zhuoran Hu</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+X">Xiaona Ye</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zhengyang Mao</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J">Juan Feng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shijie Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+B">Bo Wang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yuanlin Zheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02214v2-abstract-short" style="display: inline;"> Second-order nonlinearity gives rise to many distinctive physical phenomena, e.g., second-harmonic generation, which plays an important role in fundamental science and various applications. Lithium niobate, one of the most widely used nonlinear crystals, exhibits strong second-order nonlinear effects and electro-optic properties. However, its moderate refractive index and etching sidewall angle li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02214v2-abstract-full').style.display = 'inline'; document.getElementById('2407.02214v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02214v2-abstract-full" style="display: none;"> Second-order nonlinearity gives rise to many distinctive physical phenomena, e.g., second-harmonic generation, which plays an important role in fundamental science and various applications. Lithium niobate, one of the most widely used nonlinear crystals, exhibits strong second-order nonlinear effects and electro-optic properties. However, its moderate refractive index and etching sidewall angle limit its capability in confining light into nanoscales, restricting its application in nanophotonics. Here, we exploit nanocavities formed by second-order circular Bragg gratings, which support resonant anapole modes to achieve highly enhanced SHG in thin film lithium niobate. The CBG nanocavity exhibits a record-high normalized conversion efficiency of $1.21\times10^{-2}\mathrm{cm^2/GW}$ under the pump intensity of $1.9$ $\mathrm{MW/cm^2}$. An SHG enhancement of $42,000$ is realized compared to TFLN. Besides, we also show s- and p-polarization independent SHG in elliptical Bragg nanocavities. This work could inspire studying nonlinear optics at the nanoscale on TFLN as well as other novel photonic platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02214v2-abstract-full').style.display = 'none'; document.getElementById('2407.02214v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14433">arXiv:2406.14433</a> <span> [<a href="https://arxiv.org/pdf/2406.14433">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural and Electrical Properties of Grafted Si/GaAsSb Heterojunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbasi%2C+H+N">Haris Naeem Abbasi</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S">Seunghyun Lee</a>, <a href="/search/physics?searchtype=author&query=Jung%2C+H">Hyemin Jung</a>, <a href="/search/physics?searchtype=author&query=Gajowski%2C+N">Nathan Gajowski</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Linus Wang</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Chae%2C+C">Chris Chae</a>, <a href="/search/physics?searchtype=author&query=Hwang%2C+J">Jinwoo Hwang</a>, <a href="/search/physics?searchtype=author&query=Muduli%2C+M">Manisha Muduli</a>, <a href="/search/physics?searchtype=author&query=Nookala%2C+S">Subramanya Nookala</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a>, <a href="/search/physics?searchtype=author&query=Krishna%2C+S">Sanjay Krishna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14433v2-abstract-short" style="display: inline;"> The short-wave infrared (SWIR) wavelength, especially 1.55 um, has attracted significant attention in various areas such as high-speed optical communication and LiDAR systems. Avalanche photodiodes (APDs) are a critical component as a receiver in these systems due to their internal gain which enhances the system performance. Silicon-based APDs are promising since they are CMOS compatible, but they… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14433v2-abstract-full').style.display = 'inline'; document.getElementById('2406.14433v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14433v2-abstract-full" style="display: none;"> The short-wave infrared (SWIR) wavelength, especially 1.55 um, has attracted significant attention in various areas such as high-speed optical communication and LiDAR systems. Avalanche photodiodes (APDs) are a critical component as a receiver in these systems due to their internal gain which enhances the system performance. Silicon-based APDs are promising since they are CMOS compatible, but they are limited in detecting 1.55 um light detection. This study proposes a p-type Si on n-type GaAs0.51Sb0.49 (GaAsSb) lattice matched to InP substrates heterojunction formed using a grafting technique for future GaAsSb/Si APD technology. A p+Si nanomembrane is transferred onto the GaAsSb/AlInAs/InP substrate, with an ultrathin ALD-Al2O3 oxide at the interface, which behaves as both double-side passivation and quantum tunneling layers. The devices exhibit excellent surface morphology and interface quality, confirmed by atomic force microscope (AFM) and transmission electron microscope (TEM). Also, the current-voltage (I-V) of the p+Si/n-GaAsSb heterojunction shows ideal rectifying characteristics with an ideality factor of 1.15. The I-V tests across multiple devices confirm high consistency and yield. Furthermore, the X-ray photoelectron spectroscopy (XPS) measurement reveals that GaAsSb and Si are found to have type-II band alignment with a conduction band offset of 50 meV which is favorable for the high-bandwidth APD application. The demonstration of the GaAsSb/Si heterojunction highlights the potential to advance current SWIR PD technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14433v2-abstract-full').style.display = 'none'; document.getElementById('2406.14433v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12910">arXiv:2406.12910</a> <span> [<a href="https://arxiv.org/pdf/2406.12910">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Human-level molecular optimization driven by mol-gene evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fang%2C+J">Jiebin Fang</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+C">Churu Mao</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiaoming Chen</a>, <a href="/search/physics?searchtype=author&query=Hsieh%2C+C">Chang-Yu Hsieh</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhongjun Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12910v1-abstract-short" style="display: inline;"> De novo molecule generation allows the search for more drug-like hits across a vast chemical space. However, lead optimization is still required, and the process of optimizing molecular structures faces the challenge of balancing structural novelty with pharmacological properties. This study introduces the Deep Genetic Molecular Modification Algorithm (DGMM), which brings structure modification to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12910v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12910v1-abstract-full" style="display: none;"> De novo molecule generation allows the search for more drug-like hits across a vast chemical space. However, lead optimization is still required, and the process of optimizing molecular structures faces the challenge of balancing structural novelty with pharmacological properties. This study introduces the Deep Genetic Molecular Modification Algorithm (DGMM), which brings structure modification to the level of medicinal chemists. A discrete variational autoencoder (D-VAE) is used in DGMM to encode molecules as quantization code, mol-gene, which incorporates deep learning into genetic algorithms for flexible structural optimization. The mol-gene allows for the discovery of pharmacologically similar but structurally distinct compounds, and reveals the trade-offs of structural optimization in drug discovery. We demonstrate the effectiveness of the DGMM in several applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12910v1-abstract-full').style.display = 'none'; document.getElementById('2406.12910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18736">arXiv:2405.18736</a> <span> [<a href="https://arxiv.org/pdf/2405.18736">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effects of alloying elements on carbon diffusion in the austenite (f.c.c.) and ferrite (b.c.c.) phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zugang Mao</a>, <a href="/search/physics?searchtype=author&query=Farkoosh%2C+A+R">Amir R. Farkoosh</a>, <a href="/search/physics?searchtype=author&query=Seidman%2C+D+N">David N. Seidman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18736v2-abstract-short" style="display: inline;"> TThe effects of alloying elements on diffusion pathways and migration energies of interstitial carbon in austenite (f.c.c.) and ferrite (b.c.c.) are studied using density functional theory first-principles calculations. The binding energies between carbon and alloying elements are determined through 6th nearest-neighbor (NN) distances. The elements studied are Ni, Mo, V, Cr, Mn, Cu, Al, Ti, and Si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18736v2-abstract-full').style.display = 'inline'; document.getElementById('2405.18736v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18736v2-abstract-full" style="display: none;"> TThe effects of alloying elements on diffusion pathways and migration energies of interstitial carbon in austenite (f.c.c.) and ferrite (b.c.c.) are studied using density functional theory first-principles calculations. The binding energies between carbon and alloying elements are determined through 6th nearest-neighbor (NN) distances. The elements studied are Ni, Mo, V, Cr, Mn, Cu, Al, Ti, and Si, relevant to most high-strength steels. Nickel, Mn, Al, and Si have repulsive binding energies; Mo, V, Cr, Cu, and Ti have attractive binding energies in austenite and ferrite. Alloying elements at 1st NN sites of a C atom in an octahedral site introduce asymmetry into the minimum energy diffusion pathway, causing up to about 1 eV changes in saddle-point energies. This pathway goes from one octahedral site to another via intermediate energy states, differing for austenite and ferrite. We find that the elements with attractive binding energies increase the energy barrier for C migration resulting in decelerated carbon diffusion, while the elements with repulsive binding energies decrease the energy barrier for C migration leading to accelerated C diffusion. The magnitude of changes in C migration energies is proportional to the binding energies between C and alloying elements. Among the three austenite stabilizers, Ni and Mn are C diffusion accelerators, while Cu decelerates C diffusion in austenite. Among the four ferrite stabilizers, Si is a C diffusion accelerator, while V and Ti serve as C diffusion decelerators in ferrite. Aluminum has no significant effect on C's diffusivity, while Mo and Cr decelerate C diffusion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18736v2-abstract-full').style.display = 'none'; document.getElementById('2405.18736v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10104">arXiv:2405.10104</a> <span> [<a href="https://arxiv.org/pdf/2405.10104">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> On-chip integrated metasystem for spin-dependent multi-channel colour holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhan-Ying Ma</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xian-Jin Liu</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+Y">Yu-Qi Peng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Da-Sen Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhen-Zhen Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+J">Jun-Jun Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10104v1-abstract-short" style="display: inline;"> On-chip integrated metasurface driven by in-plane guided waves is of great interests in various light field manipulation applications such as colorful augmented reality and holographic display. However, it remains a challenge to design colorful multichannel holography by a single on-chip metasurface. Here we present metasurfaces integrated on top of guided-wave photonic slab that achieves multi-ch… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10104v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10104v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10104v1-abstract-full" style="display: none;"> On-chip integrated metasurface driven by in-plane guided waves is of great interests in various light field manipulation applications such as colorful augmented reality and holographic display. However, it remains a challenge to design colorful multichannel holography by a single on-chip metasurface. Here we present metasurfaces integrated on top of guided-wave photonic slab that achieves multi-channel colorful holographic light display. An end-to-end scheme is used to inverse design the metasurface for projecting off-chip preset multiple patterns. Particular examples are presented for customized patterns that were encoded into the metasurface with a single-cell meta-atom, working simultaneously at RGB color channels and for several different diffractive distance, with polarization dependence. Holographic images are generated at 18 independent channels with such a single-cell metasurface. The proposed design scheme is easy to implement and the resulting device is viable to fabrication, promising a plenty of applications in nanophotonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10104v1-abstract-full').style.display = 'none'; document.getElementById('2405.10104v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages and 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09844">arXiv:2405.09844</a> <span> [<a href="https://arxiv.org/pdf/2405.09844">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrically switchable $2^N$-channel wave-front control with N cascaded polarization-dependent metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhiyao Ma</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+T">Tian Tian</a>, <a href="/search/physics?searchtype=author&query=Liao%2C+Y">Yuxuan Liao</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+X">Xue Feng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yongzhuo Li</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+K">Kaiyu Cui</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fang Liu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hao Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yidong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09844v2-abstract-short" style="display: inline;"> Metasurfaces with tunable functionalities are greatly desired for modern optical system and various applications. To increase the operating channels of polarization-multiplexed metasurfaces, we proposed a structure of N cascaded dual-channel metasurfaces to achieve 2^N electrically switchable functional channels without intrinsic noise or cross-talk. As proof of principles, we have implemented a 3… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09844v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09844v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09844v2-abstract-full" style="display: none;"> Metasurfaces with tunable functionalities are greatly desired for modern optical system and various applications. To increase the operating channels of polarization-multiplexed metasurfaces, we proposed a structure of N cascaded dual-channel metasurfaces to achieve 2^N electrically switchable functional channels without intrinsic noise or cross-talk. As proof of principles, we have implemented a 3-layer setup to achieve 8 channels. In success, we have demonstrated two typical functionalities of vortex beam generation with switchable topological charge of l=-3 ~ +4 or l=-1~ -8, and beam steering with the deflecting direction switchable in an 8*1 line or a 4*2 grid. We believe that our proposal would provide a practical way to significantly increase the scalability and extend the functionality of polarization-multiplexed metasurfaces, which are potential for the applications of LiDAR, glasses-free 3D display, OAM (de)multiplexing, and varifocal meta-lens. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09844v2-abstract-full').style.display = 'none'; document.getElementById('2405.09844v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00150">arXiv:2405.00150</a> <span> [<a href="https://arxiv.org/pdf/2405.00150">pdf</a>, <a href="https://arxiv.org/format/2405.00150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> An Invertible All-optical Logic Gate on Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhan Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jiayang Chen</a>, <a href="/search/physics?searchtype=author&query=Sua%2C+Y">Yongmeng Sua</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhaohui Ma</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+C">Chao Tang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yu-ping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00150v1-abstract-short" style="display: inline;"> We demonstrate an invertible all-optical gate on chip, with the roles of control and signal switchable by slightly adjusting their relative arrival time at the gate. It is based on quantum Zeno blockade driven by sum-frequency generation in a periodic-poled lithium niobate microring resonator. For two nearly-identical nanosecond pulses, the later arriving pulse is modulated by the earlier arriving… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00150v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00150v1-abstract-full" style="display: none;"> We demonstrate an invertible all-optical gate on chip, with the roles of control and signal switchable by slightly adjusting their relative arrival time at the gate. It is based on quantum Zeno blockade driven by sum-frequency generation in a periodic-poled lithium niobate microring resonator. For two nearly-identical nanosecond pulses, the later arriving pulse is modulated by the earlier arriving one, resulting in 2.4 and 3.9 power extinction between the two, respectively, when their peak power is 1 mW and 2 mW. Our results, while to be improved and enriched, herald a new paradigm of logical gates and circuits for exotic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00150v1-abstract-full').style.display = 'none'; document.getElementById('2405.00150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12582">arXiv:2404.12582</a> <span> [<a href="https://arxiv.org/pdf/2404.12582">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Effective Sorting of Fractional Optical Vortex Modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zhengyang Mao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haigang Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12582v1-abstract-short" style="display: inline;"> Mode sorter is the crucial component of the communication systems based on orbital angular momentum (OAM). However, schemes proposed so far can only effectively sort integer OAM (IOAM) modes. Here, we demonstrate the effective sorting of fractional OAM (FOAM) modes by utilizing the coordinate transformation method, which can convert FOAM modes to IOAM modes. The transformed IOAM modes are subseque… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12582v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12582v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12582v1-abstract-full" style="display: none;"> Mode sorter is the crucial component of the communication systems based on orbital angular momentum (OAM). However, schemes proposed so far can only effectively sort integer OAM (IOAM) modes. Here, we demonstrate the effective sorting of fractional OAM (FOAM) modes by utilizing the coordinate transformation method, which can convert FOAM modes to IOAM modes. The transformed IOAM modes are subsequently sorted by using a mode conversion method called topological charge matching. The validation of our scheme is verified by implementing two sorting processes and corresponding mode purity analyses, both theoretically and experimentally. This new sorting method exhibits a huge potential of implementing a highly confidential and high-capacity FOAM-based communication system, which may inspire further applications in both classical and quantum regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12582v1-abstract-full').style.display = 'none'; document.getElementById('2404.12582v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13722">arXiv:2403.13722</a> <span> [<a href="https://arxiv.org/pdf/2403.13722">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Magneto-Ionic Vortices: Voltage-Reconfigurable Swirling-Spin Analog-Memory Nanomagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Spasojevic%2C+I">Irena Spasojevic</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zheng Ma</a>, <a href="/search/physics?searchtype=author&query=Barrera%2C+A">Aleix Barrera</a>, <a href="/search/physics?searchtype=author&query=Celegato%2C+F">Federica Celegato</a>, <a href="/search/physics?searchtype=author&query=Palau%2C+A">Ana Palau</a>, <a href="/search/physics?searchtype=author&query=Tiberto%2C+P">Paola Tiberto</a>, <a href="/search/physics?searchtype=author&query=Buchanan%2C+K+S">Kristen S. Buchanan</a>, <a href="/search/physics?searchtype=author&query=Sort%2C+J">Jordi Sort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13722v1-abstract-short" style="display: inline;"> Rapid progress in information technologies has spurred the need for innovative memory concepts, for which advanced data-processing methods and tailor-made materials are required. Here we introduce a previously unexplored nanoscale magnetic object: an analog magnetic vortex controlled by electric-field-induced ion motion, termed magneto-ionic vortex or "vortion". This state arises from paramagnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13722v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13722v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13722v1-abstract-full" style="display: none;"> Rapid progress in information technologies has spurred the need for innovative memory concepts, for which advanced data-processing methods and tailor-made materials are required. Here we introduce a previously unexplored nanoscale magnetic object: an analog magnetic vortex controlled by electric-field-induced ion motion, termed magneto-ionic vortex or "vortion". This state arises from paramagnetic FeCoN through voltage gating and gradual N3-ion extraction within patterned nanodots. Unlike traditional vortex states, vortions offer comprehensive analog adjustment of key properties such as magnetization amplitude, nucleation/annihilation fields, or coercivity using voltage as an energy-efficient tuning knob. This manipulation occurs post-synthesis, obviating the need for energy-demanding methods like laser pulses or spin-torque currents. By leveraging an overlooked aspect of N3-magneto-ionics -- planar ion migration within nanodots -- precise control of the magnetic layer's thickness is achieved, which enables reversible transitions among paramagnetic, single-domain, and vortion states, offering future prospects for analog computing, multi-state data storage, or brain-inspired devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13722v1-abstract-full').style.display = 'none'; document.getElementById('2403.13722v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10367">arXiv:2402.10367</a> <span> [<a href="https://arxiv.org/pdf/2402.10367">pdf</a>, <a href="https://arxiv.org/format/2402.10367">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Parametric All-Optical Modulation on Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhan Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jiayang Chen</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhaohui Ma</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+C">Chao Tang</a>, <a href="/search/physics?searchtype=author&query=Sua%2C+Y+M">Yong Meng Sua</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yu-Ping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10367v2-abstract-short" style="display: inline;"> We demonstrate parametric all-optical modulation in a periodically-poled lithium niobate microring resonator on chip. It employs quantum Zeno blockade between two distinct waves, a signal and a pump, through their sum-frequency generation at a large per-photon efficiency of 8.2 MHz. With nanosecond pump pulses at 6 mW peak power, 85.7% modulation extinction is observed, marking over 30~times effic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10367v2-abstract-full').style.display = 'inline'; document.getElementById('2402.10367v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10367v2-abstract-full" style="display: none;"> We demonstrate parametric all-optical modulation in a periodically-poled lithium niobate microring resonator on chip. It employs quantum Zeno blockade between two distinct waves, a signal and a pump, through their sum-frequency generation at a large per-photon efficiency of 8.2 MHz. With nanosecond pump pulses at 6 mW peak power, 85.7% modulation extinction is observed, marking over 30~times efficiency improvement across various previous implementations. With only 2 mW pump peak power, 43.0% modulation extinction is observed for a doubly-stronger signal at 4 mW. This demonstrates, for the first time, that optical transistors with cascadability and fan-out are possible with just parametric nonlinear optics. These results, together with inherent advantages in such photonic integrated circuits, open the door to scalable technology for all-optical and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10367v2-abstract-full').style.display = 'none'; document.getElementById('2402.10367v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04886">arXiv:2401.04886</a> <span> [<a href="https://arxiv.org/pdf/2401.04886">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamics of Ionic Thermoelectrics for Low-Grade Heat Harvesting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qian%2C+X">Xin Qian</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhihao Ma</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Q">Qiangqiang Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Haoran Jiang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+R">Ronggui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04886v1-abstract-short" style="display: inline;"> More than half of the waste heat rejected into the environment has temperatures lower than 100 $^\circ C$, which accounts for nearly 85 PWh/year worldwide. Efficiently harvesting low-grade heat could be a promising step toward carbon neutrality. Recent developments of ionic thermoelectrics (i-TE) with giant thermopower have provoked intensive interest in using ions as energy and charge carriers fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04886v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04886v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04886v1-abstract-full" style="display: none;"> More than half of the waste heat rejected into the environment has temperatures lower than 100 $^\circ C$, which accounts for nearly 85 PWh/year worldwide. Efficiently harvesting low-grade heat could be a promising step toward carbon neutrality. Recent developments of ionic thermoelectrics (i-TE) with giant thermopower have provoked intensive interest in using ions as energy and charge carriers for efficient thermal energy harvesting. However, current literature primarily focuses on improving thermopower only, while the ion transport and thermodynamics affecting the efficiencies have been largely neglected. This review article clarifies the fundamentals of electrochemistry and thermodynamics for developing highly efficient i-TE devices. Two major types of i-TE devices, thermo-ionic capacitors (TIC) and thermogalvanic cells (TGC), are discussed in detail. The article analyzes the methods of enhancing ionic thermopower in the literature by taking an entropic point of view. We also derived modified thermoelectric factor Z for both TICs and TGCs that fully incorporate the dynamics of ion transport and electrochemical reactions. Recent developments of hybrid devices showing improved efficiencies, power density, and multifunctionality are reviewed. Finally, we comment on the remaining challenges and provide an outlook on future directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04886v1-abstract-full').style.display = 'none'; document.getElementById('2401.04886v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This review article is accepted by ACS Energy Letters. (76 manuscript pages, 23 Figures.)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06133">arXiv:2312.06133</a> <span> [<a href="https://arxiv.org/pdf/2312.06133">pdf</a>, <a href="https://arxiv.org/ps/2312.06133">ps</a>, <a href="https://arxiv.org/format/2312.06133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Characterization of an $\rm ^{27}Al^+$ ion optical clock laser with three independent methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhiyu Ma</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+W">Wenzhe Wei</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J">Jialu Chang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jingxuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qiyue Wu</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+W">Wenhao Yuan</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+K">Ke Deng</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zehuang Lu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06133v1-abstract-short" style="display: inline;"> We report on the development and performance evaluation of an ultra-stable clock laser for an $\rm ^{27}Al^+$ optical clock. The thermal noise limited ultra-stable laser is developed based on a 30 cm long ultra-stable cavity. Three independent evaluation methods, including the frequency noise summation method, the three-cornered hat (TCH) method, and the optical clock transition detection method,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06133v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06133v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06133v1-abstract-full" style="display: none;"> We report on the development and performance evaluation of an ultra-stable clock laser for an $\rm ^{27}Al^+$ optical clock. The thermal noise limited ultra-stable laser is developed based on a 30 cm long ultra-stable cavity. Three independent evaluation methods, including the frequency noise summation method, the three-cornered hat (TCH) method, and the optical clock transition detection method, are used to evaluate the clock laser performance. The summation result of various frequency noise terms is compared with the result of the TCH method. In addition, the $\rm ^{27}Al^+$ ion optical clock transition with ultra-narrow linewidth is also used to detect the frequency noise of the laser at lower Fourier frequencies. The results of the three methods show good agreements, showing a frequency instability level of $1.3\times10^{-16}$, and giving us confidence that these evaluation methods may provides guidance for accurate evaluations of high stability laser sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06133v1-abstract-full').style.display = 'none'; document.getElementById('2312.06133v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14361">arXiv:2311.14361</a> <span> [<a href="https://arxiv.org/pdf/2311.14361">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwad336">10.1093/nsr/nwad336 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deciphering and integrating invariants for neural operator learning with various physical mechanisms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhi-Ming Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14361v2-abstract-short" style="display: inline;"> Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Inv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14361v2-abstract-full').style.display = 'inline'; document.getElementById('2311.14361v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14361v2-abstract-full" style="display: none;"> Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Invariant Attention Neural Operator (PIANO) to decipher and integrate the physical invariants (PI) for operator learning from the PDE series with various physical mechanisms. PIANO employs self-supervised learning to extract physical knowledge and attention mechanisms to integrate them into dynamic convolutional layers. Compared to existing techniques, PIANO can reduce the relative error by 13.6\%-82.2\% on PDE forecasting tasks across varying coefficients, forces, or boundary conditions. Additionally, varied downstream tasks reveal that the PI embeddings deciphered by PIANO align well with the underlying invariants in the PDE systems, verifying the physical significance of PIANO. The source code will be publicly available at: https://github.com/optray/PIANO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14361v2-abstract-full').style.display = 'none'; document.getElementById('2311.14361v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02553">arXiv:2311.02553</a> <span> [<a href="https://arxiv.org/pdf/2311.02553">pdf</a>, <a href="https://arxiv.org/ps/2311.02553">ps</a>, <a href="https://arxiv.org/format/2311.02553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Separating micrometer-sized particles utilizing a dusty plasma ratchet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+Z">Zhi-min Cai</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zong-bo Ma</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">You-kai Zhao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fu-cheng Liu</a>, <a href="/search/physics?searchtype=author&query=He%2C+Y">Ya-feng He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02553v1-abstract-short" style="display: inline;"> Directional transport-dominated particle separation presents major challenges in many technological applications. The Feynman ratchet can convert the random perturbation into directional transport of particles, offering innovative separation schemes. Here, we propose the design of a dusty plasma ratchet system to accomplish the separation of micron-sized particles. The dust particles are charged a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02553v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02553v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02553v1-abstract-full" style="display: none;"> Directional transport-dominated particle separation presents major challenges in many technological applications. The Feynman ratchet can convert the random perturbation into directional transport of particles, offering innovative separation schemes. Here, we propose the design of a dusty plasma ratchet system to accomplish the separation of micron-sized particles. The dust particles are charged and suspended at specific heights within the saw channel, depending on their sizes. Bi-dispersed dust particles can flow along the saw channel in opposite directions, resulting in a perfect purity of particle separation. We discuss the underlying mechanism of particle separation, wherein dust particles of different sizes are suspended at distinctive heights and experience electric ratchet potentials with opposite orientations, leading to their contrary flows. Our results demonstrate a feasible and highly efficient method for separating micron-sized particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02553v1-abstract-full').style.display = 'none'; document.getElementById('2311.02553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters,123,2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07718">arXiv:2310.07718</a> <span> [<a href="https://arxiv.org/pdf/2310.07718">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/MCOM.001.2300461">10.1109/MCOM.001.2300461 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-term and Real-time High-speed Underwater Wireless Optical Communications in Deep Sea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jialiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Sujing Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Ziqi Ma</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+G">Guanjun Gao</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yonggang Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Fei Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+S">Shanguo Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07718v2-abstract-short" style="display: inline;"> Seafloor observation network can perform all-weather, long-term, continuous, real-time, and in-situ observation of the ocean by combing various observation methods including cabled seafloor nodes, self-contained nodes, as well as mobile platforms, where reliable and long-term high-speed underwater wireless communication becomes an essential demand. Recently, underwater wireless optical communicati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07718v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07718v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07718v2-abstract-full" style="display: none;"> Seafloor observation network can perform all-weather, long-term, continuous, real-time, and in-situ observation of the ocean by combing various observation methods including cabled seafloor nodes, self-contained nodes, as well as mobile platforms, where reliable and long-term high-speed underwater wireless communication becomes an essential demand. Recently, underwater wireless optical communication (UWOC) has emerged as a highly promising solution and is rapidly becoming a research hotspot for meeting this requirement. In this article, we demonstrate the experiment and application of high-speed UWOC system for deep sea seafloor observation network. To the best of our knowledge this is the first long-term real-time deep-sea UWOC link with bitrate as high as 125 Mbps. Between 30 m distance and at a depth of 1650 m, two-way Ethernet UWOC links are realized with 125 Mbps direction-adjustable green light link and 6.25 Mbps non-line-of-sight (NLOS) blue light link. High quality video transmission of 8K 30 FPS and 4K 120 FPS are realized through high-speed 125 Mbps green light link, with 100% peak signal-to-noise ratio (PSNR) agreement, showing the capability of transmitting high-quality videos lossless. The 30-day long-term measurement results show that the BER performance of both 125 Mbps and 6.25 Mbps links is lower than 10-5, proving the stability and reliability of this UWOC system at depth of 1650 m. The maximum transmission distance for the green and blue light links are estimated to be 117.7 and 128.3 m with considering the geometry loss, which can be extended to 231.6 and 337.5 m without geometry loss. As the first long-term and real-time UWOC system in deep sea, we believe this demonstration can provide valuable experience for further UWOC studies and converged ocean observation networking with cabled and cable-less observation platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07718v2-abstract-full').style.display = 'none'; document.getElementById('2310.07718v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03886">arXiv:2310.03886</a> <span> [<a href="https://arxiv.org/pdf/2310.03886">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Demonstration of a monocrystalline GaAs-$尾$-Ga$_2$O$_3$ p-n heterojunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Sheikhi%2C+M">Moheb Sheikhi</a>, <a href="/search/physics?searchtype=author&query=Dheenan%2C+A">Ashok Dheenan</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+H">Haris Abbasi</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Adamo%2C+C">Carolina Adamo</a>, <a href="/search/physics?searchtype=author&query=Marshall%2C+P">Patrick Marshall</a>, <a href="/search/physics?searchtype=author&query=Wriedt%2C+N">Nathan Wriedt</a>, <a href="/search/physics?searchtype=author&query=Cheung%2C+C">Clincy Cheung</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+S">Shuoyang Qiu</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+Q">Qiaoqiang Gan</a>, <a href="/search/physics?searchtype=author&query=Gambin%2C+V">Vincent Gambin</a>, <a href="/search/physics?searchtype=author&query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/physics?searchtype=author&query=Rajan%2C+S">Siddharth Rajan</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03886v1-abstract-short" style="display: inline;"> In this work, we report the fabrication and characterizations of a monocrystalline GaAs/$尾$-Ga$_2$O$_3$ p-n heterojunction by employing semiconductor grafting technology. The heterojunction was created by lifting off and transfer printing a p-type GaAs single crystal nanomembrane to an Al$_2$O$_3$-coated n-type$尾$-Ga$_2$O$_3$ epitaxial substrate. The resultant heterojunction diodes exhibit remarka… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03886v1-abstract-full').style.display = 'inline'; document.getElementById('2310.03886v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03886v1-abstract-full" style="display: none;"> In this work, we report the fabrication and characterizations of a monocrystalline GaAs/$尾$-Ga$_2$O$_3$ p-n heterojunction by employing semiconductor grafting technology. The heterojunction was created by lifting off and transfer printing a p-type GaAs single crystal nanomembrane to an Al$_2$O$_3$-coated n-type$尾$-Ga$_2$O$_3$ epitaxial substrate. The resultant heterojunction diodes exhibit remarkable performance metrics, including an ideality factor of 1.23, a high rectification ratio of 8.04E9 at +/- 4V, and a turn on voltage of 2.35 V. Furthermore, at +5 V, the diode displays a large current density of 2500 A/cm$^2$ along with a low ON resistance of 2 m$惟\cdot$cm$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03886v1-abstract-full').style.display = 'none'; document.getElementById('2310.03886v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06575">arXiv:2308.06575</a> <span> [<a href="https://arxiv.org/pdf/2308.06575">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Initial demonstration of AlGaAs-GaAsP-beta-Ga2O3 n-p-n double heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Dheenan%2C+A">Ashok Dheenan</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Adamo%2C+C">Carolina Adamo</a>, <a href="/search/physics?searchtype=author&query=Marshall%2C+P">Patrick Marshall</a>, <a href="/search/physics?searchtype=author&query=Sheikhi%2C+M">Moheb Sheikhi</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+T">Tsung-Han Tsai</a>, <a href="/search/physics?searchtype=author&query=Wriedt%2C+N">Nathan Wriedt</a>, <a href="/search/physics?searchtype=author&query=Cheung%2C+C">Clincy Cheung</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+S">Shuoyang Qiu</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+Q">Qiaoqiang Gan</a>, <a href="/search/physics?searchtype=author&query=Vincent%2C+G">Gambin Vincent</a>, <a href="/search/physics?searchtype=author&query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/physics?searchtype=author&query=Rajan%2C+S">Siddharth Rajan</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06575v2-abstract-short" style="display: inline;"> Beta phase gallium oxides, an ultrawide-bandgap semiconductor, has great potential for future power and RF electronics applications but faces challenges in bipolar device applications due to the lack of p-type dopants. In this work, we demonstrate monocrystalline AlGaAs_GaAsP_beta phase gallium oxides n-p-n double-heterojunctions, synthesized using semiconductor grafting technology. By transfer pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06575v2-abstract-full').style.display = 'inline'; document.getElementById('2308.06575v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06575v2-abstract-full" style="display: none;"> Beta phase gallium oxides, an ultrawide-bandgap semiconductor, has great potential for future power and RF electronics applications but faces challenges in bipolar device applications due to the lack of p-type dopants. In this work, we demonstrate monocrystalline AlGaAs_GaAsP_beta phase gallium oxides n-p-n double-heterojunctions, synthesized using semiconductor grafting technology. By transfer printing an n-AlGaAs_p-GaAsP nanomembrane to the n-beta phase-Ga$_2$O$_3$ epitaxial substrate, we simultaneously achieved AlGaAs_GaAsP epitaxial n-p junction diode with an ideality factor of 1.29 and a rectification ratio of 2.57E3 at +/- 2 V, and grafted GaAsP_beta_phase_gallium oxides p-n junction diode exhibiting an ideality factor of 1.36 and a rectification ratio of 4.85E2 at +/- 2 V. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06575v2-abstract-full').style.display = 'none'; document.getElementById('2308.06575v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10683">arXiv:2307.10683</a> <span> [<a href="https://arxiv.org/pdf/2307.10683">pdf</a>, <a href="https://arxiv.org/format/2307.10683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Fractional Denoising for 3D Molecular Pre-training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+S">Shikun Feng</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+Y">Yuyan Ni</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+Y">Yanyan Lan</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhi-Ming Ma</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+W">Wei-Ying Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10683v3-abstract-short" style="display: inline;"> Coordinate denoising is a promising 3D molecular pre-training method, which has achieved remarkable performance in various downstream drug discovery tasks. Theoretically, the objective is equivalent to learning the force field, which is revealed helpful for downstream tasks. Nevertheless, there are two challenges for coordinate denoising to learn an effective force field, i.e. low coverage samples… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10683v3-abstract-full').style.display = 'inline'; document.getElementById('2307.10683v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10683v3-abstract-full" style="display: none;"> Coordinate denoising is a promising 3D molecular pre-training method, which has achieved remarkable performance in various downstream drug discovery tasks. Theoretically, the objective is equivalent to learning the force field, which is revealed helpful for downstream tasks. Nevertheless, there are two challenges for coordinate denoising to learn an effective force field, i.e. low coverage samples and isotropic force field. The underlying reason is that molecular distributions assumed by existing denoising methods fail to capture the anisotropic characteristic of molecules. To tackle these challenges, we propose a novel hybrid noise strategy, including noises on both dihedral angel and coordinate. However, denoising such hybrid noise in a traditional way is no more equivalent to learning the force field. Through theoretical deductions, we find that the problem is caused by the dependency of the input conformation for covariance. To this end, we propose to decouple the two types of noise and design a novel fractional denoising method (Frad), which only denoises the latter coordinate part. In this way, Frad enjoys both the merits of sampling more low-energy structures and the force field equivalence. Extensive experiments show the effectiveness of Frad in molecular representation, with a new state-of-the-art on 9 out of 12 tasks of QM9 and on 7 out of 8 targets of MD17. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10683v3-abstract-full').style.display = 'none'; document.getElementById('2307.10683v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09375">arXiv:2306.09375</a> <span> [<a href="https://arxiv.org/pdf/2306.09375">pdf</a>, <a href="https://arxiv.org/format/2306.09375">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shengchao Liu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+W">Weitao Du</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yanjing Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhuoxinran Li</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Z">Zhiling Zheng</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+C">Chenru Duan</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhiming Ma</a>, <a href="/search/physics?searchtype=author&query=Yaghi%2C+O">Omar Yaghi</a>, <a href="/search/physics?searchtype=author&query=Anandkumar%2C+A">Anima Anandkumar</a>, <a href="/search/physics?searchtype=author&query=Borgs%2C+C">Christian Borgs</a>, <a href="/search/physics?searchtype=author&query=Chayes%2C+J">Jennifer Chayes</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+H">Hongyu Guo</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09375v1-abstract-short" style="display: inline;"> Artificial intelligence for scientific discovery has recently generated significant interest within the machine learning and scientific communities, particularly in the domains of chemistry, biology, and material discovery. For these scientific problems, molecules serve as the fundamental building blocks, and machine learning has emerged as a highly effective and powerful tool for modeling their g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09375v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09375v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09375v1-abstract-full" style="display: none;"> Artificial intelligence for scientific discovery has recently generated significant interest within the machine learning and scientific communities, particularly in the domains of chemistry, biology, and material discovery. For these scientific problems, molecules serve as the fundamental building blocks, and machine learning has emerged as a highly effective and powerful tool for modeling their geometric structures. Nevertheless, due to the rapidly evolving process of the field and the knowledge gap between science (e.g., physics, chemistry, & biology) and machine learning communities, a benchmarking study on geometrical representation for such data has not been conducted. To address such an issue, in this paper, we first provide a unified view of the current symmetry-informed geometric methods, classifying them into three main categories: invariance, equivariance with spherical frame basis, and equivariance with vector frame basis. Then we propose a platform, coined Geom3D, which enables benchmarking the effectiveness of geometric strategies. Geom3D contains 16 advanced symmetry-informed geometric representation models and 14 geometric pretraining methods over 46 diverse datasets, including small molecules, proteins, and crystalline materials. We hope that Geom3D can, on the one hand, eliminate barriers for machine learning researchers interested in exploring scientific problems; and, on the other hand, provide valuable guidance for researchers in computational chemistry, structural biology, and materials science, aiding in the informed selection of representation techniques for specific applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09375v1-abstract-full').style.display = 'none'; document.getElementById('2306.09375v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19138">arXiv:2305.19138</a> <span> [<a href="https://arxiv.org/pdf/2305.19138">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Monocrystalline Si/$尾$-Ga$_2$O$_3$ p-n heterojunction diodes fabricated via grafting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/physics?searchtype=author&query=Jang%2C+H">Hokyung Jang</a>, <a href="/search/physics?searchtype=author&query=Alema%2C+F">Fikadu Alema</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qingxiao Wang</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+S">Shuoyang Qiu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Su%2C+X">Xin Su</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Q">Qinchen Lin</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+R">Ranveer Singh</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+H">Haris Abbasi</a>, <a href="/search/physics?searchtype=author&query=Chabak%2C+K">Kelson Chabak</a>, <a href="/search/physics?searchtype=author&query=Jessen%2C+G">Gregg Jessen</a>, <a href="/search/physics?searchtype=author&query=Cheung%2C+C">Clincy Cheung</a>, <a href="/search/physics?searchtype=author&query=Gambin%2C+V">Vincent Gambin</a>, <a href="/search/physics?searchtype=author&query=Pasayat%2C+S+S">Shubhra S. Pasayat</a>, <a href="/search/physics?searchtype=author&query=Osinsky%2C+A">Andrei Osinsky</a>, <a href="/search/physics?searchtype=author&query=Boon"> Boon</a>, <a href="/search/physics?searchtype=author&query=Ooi%2C+S">S. Ooi</a>, <a href="/search/physics?searchtype=author&query=Gupta%2C+C">Chirag Gupta</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19138v1-abstract-short" style="display: inline;"> The $尾$-Ga$_2$O$_3$ has exceptional electronic properties with vast potential in power and RF electronics. Despite the excellent demonstrations of high-performance unipolar devices, the lack of p-type doping in $尾$-Ga$_2$O$_3$ has hindered the development of Ga$_2$O$_3$-based bipolar devices. The approach of p-n diodes formed by polycrystalline p-type oxides with n-type $尾$-Ga$_2$O$_3$ can face se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19138v1-abstract-full').style.display = 'inline'; document.getElementById('2305.19138v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19138v1-abstract-full" style="display: none;"> The $尾$-Ga$_2$O$_3$ has exceptional electronic properties with vast potential in power and RF electronics. Despite the excellent demonstrations of high-performance unipolar devices, the lack of p-type doping in $尾$-Ga$_2$O$_3$ has hindered the development of Ga$_2$O$_3$-based bipolar devices. The approach of p-n diodes formed by polycrystalline p-type oxides with n-type $尾$-Ga$_2$O$_3$ can face severe challenges in further advancing the $尾$-Ga$_2$O$_3$ bipolar devices due to their unfavorable band alignment and the poor p-type oxide crystal quality. In this work, we applied the semiconductor grafting approach to fabricate monocrystalline Si/$尾$-Ga$_2$O$_3$ p-n diodes for the first time. With enhanced concentration of oxygen atoms at the interface of Si/$尾$-Ga$_2$O$_3$, double side surface passivation was achieved for both Si and $尾$-Ga$_2$O$_3$ with an interface Dit value of 1-3 x 1012 /cm2 eV. A Si/$尾$-Ga$_2$O$_3$ p-n diode array with high fabrication yield was demonstrated along with a diode rectification of 1.3 x 107 at +/- 2 V, a diode ideality factor of 1.13 and avalanche reverse breakdown characteristics. The diodes C-V shows frequency dispersion-free characteristics from 10 kHz to 2 MHz. Our work has set the foundation toward future development of $尾$-Ga$_2$O$_3$-based transistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19138v1-abstract-full').style.display = 'none'; document.getElementById('2305.19138v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 10 figures. The preliminary data were presented as a poster in the 5th US Gallium Oxide Workshop, Washington, DC. August 07-10, 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18209">arXiv:2305.18209</a> <span> [<a href="https://arxiv.org/pdf/2305.18209">pdf</a>, <a href="https://arxiv.org/format/2305.18209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Complex-valued neural operator assisted soliton identification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Deng Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Guanghui Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhiming Ma</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">Tie-Yan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18209v1-abstract-short" style="display: inline;"> The numerical determination of solitary states is an important topic for such research areas as Bose-Einstein condensates, nonlinear optics, plasma physics, etc. In this paper, we propose a data-driven approach for identifying solitons based on dynamical solutions of real-time differential equations. Our approach combines a machine-learning architecture called the complex-valued neural operator (C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18209v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18209v1-abstract-full" style="display: none;"> The numerical determination of solitary states is an important topic for such research areas as Bose-Einstein condensates, nonlinear optics, plasma physics, etc. In this paper, we propose a data-driven approach for identifying solitons based on dynamical solutions of real-time differential equations. Our approach combines a machine-learning architecture called the complex-valued neural operator (CNO) with an energy-restricted gradient optimization. The former serves as a generalization of the traditional neural operator to the complex domain, and constructs a smooth mapping between the initial and final states; the latter facilitates the search for solitons by constraining the energy space. We concretely demonstrate this approach on the quasi-one-dimensional Bose-Einstein condensate with homogeneous and inhomogeneous nonlinearities. Our work offers a new idea for data-driven effective modeling and studies of solitary waves in nonlinear physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18209v1-abstract-full').style.display = 'none'; document.getElementById('2305.18209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11992">arXiv:2305.11992</a> <span> [<a href="https://arxiv.org/pdf/2305.11992">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> 2D material-based mode confinement engineering in electro-optic modulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhizhen Ma</a>, <a href="/search/physics?searchtype=author&query=Nouri%2C+B+M">Behrouz Movahhed Nouri</a>, <a href="/search/physics?searchtype=author&query=Tahersima%2C+M">Mohammad Tahersima</a>, <a href="/search/physics?searchtype=author&query=Khan%2C+S">Sikandar Khan</a>, <a href="/search/physics?searchtype=author&query=Dalir%2C+H">Hamed Dalir</a>, <a href="/search/physics?searchtype=author&query=Sorger%2C+V+J">Volker J. Sorger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11992v1-abstract-short" style="display: inline;"> The ability to modulate light using 2-dimensional (2D) materials is fundamentally challenged by their small optical cross-section leading to miniscule modal confinements in diffraction-limited photonics despite intrinsically high electro-optic absorption modulation (EAM) potential given by their strong exciton binding energies. However the inherent polarization anisotropy in 2D-materials and devic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11992v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11992v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11992v1-abstract-full" style="display: none;"> The ability to modulate light using 2-dimensional (2D) materials is fundamentally challenged by their small optical cross-section leading to miniscule modal confinements in diffraction-limited photonics despite intrinsically high electro-optic absorption modulation (EAM) potential given by their strong exciton binding energies. However the inherent polarization anisotropy in 2D-materials and device tradeoffs lead to additional requirements with respect to electric field directions and modal confinement. A detailed relationship between modal confinement factor and obtainable modulation strength including definitions on bounding limits are outstanding. Here we show that the modal confinement factor is a key parameter determining both the modulation strength and the modulator extinction ratio-to-insertion loss metric. We show that the modal confinement and hence the modulation strength of a single-layer modulated 2D material in a plasmonically confined mode is able to improve by more than 10x compared to diffraction-limited modes. Combined with the strong-index modulation of graphene the modulation strength can be more than 2-orders of magnitude higher compared to Silicon-based EAMs. Furthermore modal confinement was found to be synergistic with performance optimization via enhanced light-matter-interactions. These results show that there is room for scaling 2D material EAMs with respect to modal engineering towards realizing synergistic designs leading to high-performance modulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11992v1-abstract-full').style.display = 'none'; document.getElementById('2305.11992v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10639">arXiv:2305.10639</a> <span> [<a href="https://arxiv.org/pdf/2305.10639">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Indium-Tin-Oxide for High-performance Electro-optic Modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhizhen Ma</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhuoran Li</a>, <a href="/search/physics?searchtype=author&query=Nouri%2C+B+M">Behrouz Movahhed Nouri</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Ke Liu</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+C">Chenran Ye</a>, <a href="/search/physics?searchtype=author&query=Dalir%2C+H">Hamed Dalir</a>, <a href="/search/physics?searchtype=author&query=Sorger%2C+V+J">Volker J. Sorger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10639v1-abstract-short" style="display: inline;"> Advances in opto-electronics are often led by discovery and development of materials featuring unique properties. Recently the material class of transparent conductive oxides (TCO) has attracted attention for active photonic devices on-chip. In particular Indium Tin Oxide (ITO) is found to have refractive index changes on the order of unity. This property makes it possible to achieve electro-optic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10639v1-abstract-full').style.display = 'inline'; document.getElementById('2305.10639v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10639v1-abstract-full" style="display: none;"> Advances in opto-electronics are often led by discovery and development of materials featuring unique properties. Recently the material class of transparent conductive oxides (TCO) has attracted attention for active photonic devices on-chip. In particular Indium Tin Oxide (ITO) is found to have refractive index changes on the order of unity. This property makes it possible to achieve electro-optic modulation of sub-wavelength device scales, when thin ITO films are interfaced with optical light confinement techniques such as found in plasmonics; optical modes are compressed to nanometer scale to create strong light-matter-interactions. Here we review efforts towards utilizing this novel material for high-performance and ultra-compact modulation. While high performance metrics are achieved experimentally, there are open questions pertaining the permittivity modulation mechanism of ITO. Furthermore, we show that a footprint-saving waveguide inline cavity can enhance obtainable extinction-ratio to insertion-loss ratios by about one order of magnitude over non-cavity based version. Moreover, we offer a speed analysis that shows that the device is resistance limited, but not capacitance or drift-carrier limited. Interestingly, two bias options exist for ITO and we find that a side-connection enables devices that should in principle enable several hundred of GHz fast devices, using our routinely achievable ITO film resistivities. Finally, we offer a brief discuss about footprint savings of compact ITO modulators showing a 3-orders of magnitude smaller footprint over Silicon photonic MZI-based modulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10639v1-abstract-full').style.display = 'none'; document.getElementById('2305.10639v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10011">arXiv:2305.10011</a> <span> [<a href="https://arxiv.org/pdf/2305.10011">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Super-Resolution Imaging via Angular Magnification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/physics?searchtype=author&query=Liao%2C+D">Dingpeng Liao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kun Zhang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zijie Ma</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+S">Shikai Wu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jun Ma</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+X">Xuemei Dai</a>, <a href="/search/physics?searchtype=author&query=Shang%2C+Z">Zhengguo Shang</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+Z">Zhongquan Wen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+G">Gang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10011v1-abstract-short" style="display: inline;"> The far-field resolution of optical imaging systems is restricted by the Abbe diffraction limit, a direct result of the wave nature of light. One successful technological approach to circumventing this limit is to reduce the effective size of a point-spread-function. In the past decades, great endeavors have been made to engineer an effective point-spread-function by exploiting different mechanism… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10011v1-abstract-full').style.display = 'inline'; document.getElementById('2305.10011v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10011v1-abstract-full" style="display: none;"> The far-field resolution of optical imaging systems is restricted by the Abbe diffraction limit, a direct result of the wave nature of light. One successful technological approach to circumventing this limit is to reduce the effective size of a point-spread-function. In the past decades, great endeavors have been made to engineer an effective point-spread-function by exploiting different mechanisms, including optical nonlinearities and structured light illumination. However, these methods are hard to be applied to objects in a far distance. Here, we propose a new way to achieve super-resolution in a far field by utilizing angular magnification. We present the first proof-of-concept demonstration of such an idea and demonstrate a new class of lenses with angular magnification for far-field super-resolution imaging. Both theoretical and experimental results demonstrate a more than two-fold enhancement beyond the angular-resolution limit in the far-field imaging. The proposed approach can be applied to super-resolution imaging of objects in far distance. It has promising potential applications in super-resolution telescopes and remote sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10011v1-abstract-full').style.display = 'none'; document.getElementById('2305.10011v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09347">arXiv:2305.09347</a> <span> [<a href="https://arxiv.org/pdf/2305.09347">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adpr.202200029">10.1002/adpr.202200029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A simplified method characterizing magnetic ordering modulated photo-thermoelectric response in noncentrosymmetric semimetal Ca3Ru2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Q">Qiang Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jialin Li</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+H">Huanfeng Zhu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tian Zhang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+W">Wei Tang</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+H">Hui Xing</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+J">Jin Peng</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Linjun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09347v1-abstract-short" style="display: inline;"> Photo-Thermoelectric (PTE) response is usually one of the main working mechanisms for photodetectors. However, as another fast and easier way to measure thermoelectric characteristics of materials, it can also reveal important physics such as electric-phonon coupling, electron-electron correlation, etc. Recently, the spin entropy related to magnetic order transition which contributes to thermoelec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09347v1-abstract-full').style.display = 'inline'; document.getElementById('2305.09347v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09347v1-abstract-full" style="display: none;"> Photo-Thermoelectric (PTE) response is usually one of the main working mechanisms for photodetectors. However, as another fast and easier way to measure thermoelectric characteristics of materials, it can also reveal important physics such as electric-phonon coupling, electron-electron correlation, etc. Recently, the spin entropy related to magnetic order transition which contributes to thermoelectric power is attracting more and more attention. Here, we demonstrate the PTE response can be reshaped when Ca3Ru2O7 undergoes meta-magnetic phase (MMP) transition driven by both temperature and magnetic field. Firstly, a sign change is observed crossing TS = 48 K and the linear polarization angle dependent PTE current maximizes along a-axis above TS while maximizes along b-axis below TS, which indicates that the antiferromagnetic spin order contributes to such spatial anisotropy. Secondly, in the temperature range of around 40 ~ 50 K, the PTE current is found to be sharply suppressed when external magnetic field is applied in plane along a-axis but is only gradually suppressed when applied field is along b-axis which gives out two critical fields. We attribute such suppression of PTE current under magnetic field to the suppression of the spin entropy in the phase transition between the antiferromagnetic state and the MMP state and the H-T phase diagrams of Ca3Ru2O7 is redrawn accordingly. Compared to previously work which trying to understand the magnetic phase transition in Ca3Ru2O7, such as neutron scattering, specific heat, and other advanced transport measurements, our work provides a more convenient yet efficient method, which may also find applications in other correlated spin materials in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09347v1-abstract-full').style.display = 'none'; document.getElementById('2305.09347v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Photonics Res. 2022, 3, 2200029 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03957">arXiv:2305.03957</a> <span> [<a href="https://arxiv.org/pdf/2305.03957">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A study of the limits of imaging capability due to water scattering effects in underwater ghost imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuliang Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">Mingliang Chen</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+J">Jinquan Qi</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+C">Chenjin Deng</a>, <a href="/search/physics?searchtype=author&query=Du%2C+L">Longkun Du</a>, <a href="/search/physics?searchtype=author&query=Bo%2C+Z">Zunwang Bo</a>, <a href="/search/physics?searchtype=author&query=Han%2C+C">Chang Han</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Z">Zhihua Mao</a>, <a href="/search/physics?searchtype=author&query=He%2C+Y">Yan He</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+X">Xuehui Shao</a>, <a href="/search/physics?searchtype=author&query=Han%2C+S">Shensheng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03957v1-abstract-short" style="display: inline;"> Underwater ghost imaging is an effective means of underwater detection. In this paper, a theoretical and experimental study of underwater ghost imaging is carried out by combining the description of underwater optical field transmission with the inherent optical parameters of the water body. This paper utilizes the Wells model and the approximate S-S scattering phase function to create a model for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03957v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03957v1-abstract-full" style="display: none;"> Underwater ghost imaging is an effective means of underwater detection. In this paper, a theoretical and experimental study of underwater ghost imaging is carried out by combining the description of underwater optical field transmission with the inherent optical parameters of the water body. This paper utilizes the Wells model and the approximate S-S scattering phase function to create a model for optical transmission underwater. The second-order Glauber function of the optical field is then employed to analyze the scattering field's degradation during the transmission process. This analysis is used to evaluate the impact of the water body on ghost imaging. The simulation and experimental results verify that the proposed underwater ghost imaging model can better describe the degradation effect of water bodies on ghost imaging. A series of experiments comparing underwater ghost imaging at different detection distances are also carried out in this paper. In the experiments, cooperative targets can be imaged up to 65.2m (9.3AL, at attenuation coefficient c=0.1426m-1 and the scattering coefficient b=0.052m-1) and non-cooperative targets up to 41.2m (6.4AL, at c=0.1569m-1 and b=0.081m-1) . By equating the experimental maximum imaged attenuation length for cooperative targets to Jerlov-I water (b=0.002m-1 and a=0.046m-1), the system will have a maximum imaging distance of 193m. Underwater ghost imaging is expected to achieve longer-range imaging by optimizing the system emission energy and detection sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03957v1-abstract-full').style.display = 'none'; document.getElementById('2305.03957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.12866">arXiv:2304.12866</a> <span> [<a href="https://arxiv.org/pdf/2304.12866">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/aisy.202300399">10.1002/aisy.202300399 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Binary stochasticity enabled highly efficient neuromorphic deep learning achieves better-than-software accuracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Ming Wang</a>, <a href="/search/physics?searchtype=author&query=Dou%2C+C">Chunmeng Dou</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhengyu Ma</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Huihui Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/physics?searchtype=author&query=Lepri%2C+N">Nicola Lepri</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xumeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Q">Qing Luo</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xiaoxin Xu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+G">Guanhua Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Feng Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Ling Li</a>, <a href="/search/physics?searchtype=author&query=Ielmini%2C+D">Daniele Ielmini</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Ming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.12866v1-abstract-short" style="display: inline;"> Deep learning needs high-precision handling of forwarding signals, backpropagating errors, and updating weights. This is inherently required by the learning algorithm since the gradient descent learning rule relies on the chain product of partial derivatives. However, it is challenging to implement deep learning in hardware systems that use noisy analog memristors as artificial synapses, as well a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12866v1-abstract-full').style.display = 'inline'; document.getElementById('2304.12866v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.12866v1-abstract-full" style="display: none;"> Deep learning needs high-precision handling of forwarding signals, backpropagating errors, and updating weights. This is inherently required by the learning algorithm since the gradient descent learning rule relies on the chain product of partial derivatives. However, it is challenging to implement deep learning in hardware systems that use noisy analog memristors as artificial synapses, as well as not being biologically plausible. Memristor-based implementations generally result in an excessive cost of neuronal circuits and stringent demands for idealized synaptic devices. Here, we demonstrate that the requirement for high precision is not necessary and that more efficient deep learning can be achieved when this requirement is lifted. We propose a binary stochastic learning algorithm that modifies all elementary neural network operations, by introducing (i) stochastic binarization of both the forwarding signals and the activation function derivatives, (ii) signed binarization of the backpropagating errors, and (iii) step-wised weight updates. Through an extensive hybrid approach of software simulation and hardware experiments, we find that binary stochastic deep learning systems can provide better performance than the software-based benchmarks using the high-precision learning algorithm. Also, the binary stochastic algorithm strongly simplifies the neural network operations in hardware, resulting in an improvement of the energy efficiency for the multiply-and-accumulate operations by more than three orders of magnitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12866v1-abstract-full').style.display = 'none'; document.getElementById('2304.12866v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Intel. Sys., 6(1), 2300399, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02217">arXiv:2304.02217</a> <span> [<a href="https://arxiv.org/pdf/2304.02217">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> XPS analysis of molecular contamination and sp2 amorphous carbon on oxidized (100) diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vidrio%2C+R">Ricardo Vidrio</a>, <a href="/search/physics?searchtype=author&query=Vincent%2C+D">Daniel Vincent</a>, <a href="/search/physics?searchtype=author&query=Bachman%2C+B">Benjamin Bachman</a>, <a href="/search/physics?searchtype=author&query=Saucedo%2C+C">Cesar Saucedo</a>, <a href="/search/physics?searchtype=author&query=Zahedian%2C+M">Maryam Zahedian</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zihong Xu</a>, <a href="/search/physics?searchtype=author&query=Lai%2C+J">Junyu Lai</a>, <a href="/search/physics?searchtype=author&query=Grotjohn%2C+T+A">Timothy A. Grotjohn</a>, <a href="/search/physics?searchtype=author&query=Kolkowitz%2C+S">Shimon Kolkowitz</a>, <a href="/search/physics?searchtype=author&query=Seo%2C+J">Jung-Hun Seo</a>, <a href="/search/physics?searchtype=author&query=Hamers%2C+R+J">Robert J. Hamers</a>, <a href="/search/physics?searchtype=author&query=Ray%2C+K+G">Keith G. Ray</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a>, <a href="/search/physics?searchtype=author&query=Choy%2C+J+T">Jennifer T. Choy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02217v2-abstract-short" style="display: inline;"> The efficacy of oxygen (O) surface terminations on diamond is an important factor for the performance and stability for diamond-based quantum sensors and electronics. Given the wide breadth of O-termination techniques, it can be difficult to discern which method would yield the highest and most consistent O coverage. Furthermore, the interpretation of surface characterization techniques is complic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02217v2-abstract-full').style.display = 'inline'; document.getElementById('2304.02217v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02217v2-abstract-full" style="display: none;"> The efficacy of oxygen (O) surface terminations on diamond is an important factor for the performance and stability for diamond-based quantum sensors and electronics. Given the wide breadth of O-termination techniques, it can be difficult to discern which method would yield the highest and most consistent O coverage. Furthermore, the interpretation of surface characterization techniques is complicated by surface morphology and purity, which if not accounted for will yield inconsistent determination of the oxygen coverage. We present a comprehensive approach to consistently prepare and analyze oxygen termination of surfaces on (100) single-crystalline diamond. We report on X-ray Photoelectron Spectroscopy (XPS) characterization of diamond surfaces treated with six oxidation methods that include various wet chemical oxidation techniques, photochemical oxidation with UV illumination, and steam oxidation using atomic layer deposition (ALD). Our analysis entails a rigorous XPS peak-fitting procedure for measuring the functionalization of O-terminated diamond. The findings herein have provided molecular-level insights on oxidized surfaces in (100) diamond, including the demonstration of clear correlation between the measured oxygen atomic percentage and the presence of molecular contaminants containing nitrogen, silicon, and sulfur. We also provide a comparison of the sp2 carbon content with the O1s atomic percentage and discern a correlation with the diamond samples treated with dry oxidation which eventually tapers off at a max O1s atomic percentage value of 7.09 +/- 0.40%. Given these results, we conclude that the dry oxidation methods yield some of the highest oxygen amounts, with the ALD water vapor technique proving to be the cleanest technique out of all the oxidation methods explored in this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02217v2-abstract-full').style.display = 'none'; document.getElementById('2304.02217v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>