CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 1,490 results for author: <span class="mathjax">Liu, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Liu%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17665">arXiv:2502.17665</a> <span> [<a href="https://arxiv.org/pdf/2502.17665">pdf</a>, <a href="https://arxiv.org/format/2502.17665">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Effective Field Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xi Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yujun Zhao</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+C+Y">Chun Yu Wan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Junwei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17665v1-abstract-short" style="display: inline;"> In recent years, with the rapid development of machine learning, physicists have been exploring its new applications in solving or alleviating the curse of dimensionality in many-body problems. In order to accurately reflect the underlying physics of the problem, domain knowledge must be encoded into the machine learning algorithms. In this work, inspired by field theory, we propose a new set of m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17665v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17665v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17665v1-abstract-full" style="display: none;"> In recent years, with the rapid development of machine learning, physicists have been exploring its new applications in solving or alleviating the curse of dimensionality in many-body problems. In order to accurately reflect the underlying physics of the problem, domain knowledge must be encoded into the machine learning algorithms. In this work, inspired by field theory, we propose a new set of machine learning models called effective field neural networks (EFNNs) that can automatically and efficiently capture important many-body interactions through multiple self-refining processes. Taking the classical $3$-spin infinite-range model and the quantum double exchange model as case studies, we explicitly demonstrate that EFNNs significantly outperform fully-connected deep neural networks (DNNs) and the effective model. Furthermore, with the help of convolution operations, the EFNNs learned in a small system can be seamlessly used in a larger system without additional training and the relative errors even decrease, which further demonstrates the efficacy of EFNNs in representing core physical behaviors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17665v1-abstract-full').style.display = 'none'; document.getElementById('2502.17665v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16444">arXiv:2502.16444</a> <span> [<a href="https://arxiv.org/pdf/2502.16444">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Update hydrological states or meteorological forcings? Comparing data assimilation methods for differentiable hydrologic models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jamaat%2C+A">Amirmoez Jamaat</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yalan Song</a>, <a href="/search/physics?searchtype=author&query=Rahmani%2C+F">Farshid Rahmani</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiangtao Liu</a>, <a href="/search/physics?searchtype=author&query=Lawson%2C+K">Kathryn Lawson</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chaopeng Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16444v1-abstract-short" style="display: inline;"> Data assimilation (DA) enables hydrologic models to update their internal states using near-real-time observations for more accurate forecasts. With deep neural networks like long short-term memory (LSTM), using either lagged observations as inputs (called "data integration") or variational DA has shown success in improving forecasts. However, it is unclear which methods are performant or optimal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16444v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16444v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16444v1-abstract-full" style="display: none;"> Data assimilation (DA) enables hydrologic models to update their internal states using near-real-time observations for more accurate forecasts. With deep neural networks like long short-term memory (LSTM), using either lagged observations as inputs (called "data integration") or variational DA has shown success in improving forecasts. However, it is unclear which methods are performant or optimal for physics-informed machine learning ("differentiable") models, which represent only a small amount of physically-meaningful states while using deep networks to supply parameters or missing processes. Here we developed variational DA methods for differentiable models, including optimizing adjusters for just precipitation data, just model internal hydrological states, or both. Our results demonstrated that differentiable streamflow models using the CAMELS dataset can benefit strongly and equivalently from variational DA as LSTM, with one-day lead time median Nash-Sutcliffe efficiency (NSE) elevated from 0.75 to 0.82. The resulting forecast matched or outperformed LSTM with DA in the eastern, northwestern, and central Great Plains regions of the conterminous United States. Both precipitation and state adjusters were needed to achieve these results, with the latter being substantially more effective on its own, and the former adding moderate benefits for high flows. Our DA framework does not need systematic training data and could serve as a practical DA scheme for whole river networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16444v1-abstract-full').style.display = 'none'; document.getElementById('2502.16444v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14386">arXiv:2502.14386</a> <span> [<a href="https://arxiv.org/pdf/2502.14386">pdf</a>, <a href="https://arxiv.org/format/2502.14386">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Perspective of high-speed Mach-Zehnder modulators based on nonlinear optics and complex band structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+S">Shuyi Li</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+W">Wei Luo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Junqiu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14386v1-abstract-short" style="display: inline;"> Optical modulators are essential building blocks for high-capacity optical communication and massively parallel computing. Among all types of optical modulators, travelling-wave Mach-Zehnder modulators (TW-MZMs) featuring high speed and efficiency are widely used, and have been developed on a variety of integrated material platforms. Existing methods to design and simulate TW-MZMs so far strongly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14386v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14386v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14386v1-abstract-full" style="display: none;"> Optical modulators are essential building blocks for high-capacity optical communication and massively parallel computing. Among all types of optical modulators, travelling-wave Mach-Zehnder modulators (TW-MZMs) featuring high speed and efficiency are widely used, and have been developed on a variety of integrated material platforms. Existing methods to design and simulate TW-MZMs so far strongly rely on the peculiar material properties, and thus inevitably involve complicated electrical-circuit models. As a result, these methods diverge significantly. In addition, they become increasingly inefficient and inaccurate for TW-MZMs with extending length and levitating modulation speed, posing formidable challenges for millimeter-wave and terahertz operation. Here, we present an innovative perspective to understand and analyze high-speed TW-MZMs. Our perspective leverages nonlinear optics and complex band structures of RF photonic crystals, and is thus entirely electromagnetic-wave-based. Under this perspective, we showcase the design, optoelectronic simulation and experimental validation of high-speed TW-MZMs based on Si and LiNbO$_3$, and further demonstrate unambiguous advantages in simplicity, accuracy and efficiency over conventional methods. Our approach can essentially be applied to nearly any integrated material platform, including those based on semiconductors and electro-absorption materials. With high-frequency electrode designs and optoelectronic co-simulation, our approach facilitates the synergy and convergence of electronics and photonics, and offers a viable route to constructing future high-speed millimeter-wave and terahertz photonics and quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14386v1-abstract-full').style.display = 'none'; document.getElementById('2502.14386v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13546">arXiv:2502.13546</a> <span> [<a href="https://arxiv.org/pdf/2502.13546">pdf</a>, <a href="https://arxiv.org/format/2502.13546">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Power dependence of density limit due to plasma-wall interaction in a burning plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiaxing Liu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&query=Escande%2C+D+F">Dominique Franck Escande</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13546v1-abstract-short" style="display: inline;"> The density limit is one of the major obstacles to achieving the desired fusion performance in tokamaks. However, the underlying physics mechanism for its recently observed power dependence in experiments has not been well understood or predicted in theory. In this work, the power dependent scalings of density limit are obtained based on the plasma-wall self-organization model [D.F. Escande 2022 N… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13546v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13546v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13546v1-abstract-full" style="display: none;"> The density limit is one of the major obstacles to achieving the desired fusion performance in tokamaks. However, the underlying physics mechanism for its recently observed power dependence in experiments has not been well understood or predicted in theory. In this work, the power dependent scalings of density limit are obtained based on the plasma-wall self-organization model [D.F. Escande 2022 NF], which are able to match the power dependence of density limits in multiple tokamak devices. The key factors influencing the power dependence are found to be the plasma-wall sputtering and the particle confinement time. The effects of non-sputtered impurities and fusion products are further evaluated. This PWSO-density limit model is then extended to the burning plasma regime and used to predict the conditions for entering burning plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13546v1-abstract-full').style.display = 'none'; document.getElementById('2502.13546v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11769">arXiv:2502.11769</a> <span> [<a href="https://arxiv.org/pdf/2502.11769">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quasi-perfect spatiotemporal optical vortex with suppressed mode degradation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+S">Shunlin Huang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiong Shen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renjing Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11769v1-abstract-short" style="display: inline;"> Spatiotemporal optical vortex (STOV) carrying transverse orbital angular momentum (OAM) enriches the family of vortex beams and exhibit unique properties. Typically, a high-order STOV with an intensity null degrades into multiple first-order STOVs embedded within a single wave packet during propagation, a phenomenon known as time diffraction or mode degradation. However, this degradation limits th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11769v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11769v1-abstract-full" style="display: none;"> Spatiotemporal optical vortex (STOV) carrying transverse orbital angular momentum (OAM) enriches the family of vortex beams and exhibit unique properties. Typically, a high-order STOV with an intensity null degrades into multiple first-order STOVs embedded within a single wave packet during propagation, a phenomenon known as time diffraction or mode degradation. However, this degradation limits the applicability of STOVs in specialized fields. Therefore, the generation of mode degradation-suppressed STOVs (MDS-STOVs) is of significant for both practical applications and theoretical studies. Herein, we theoretically analyze the generation of MDS-STOVs by utilizing a conical phase to localize the energy of the STOV into a ring-shaped structure. For MDS-STOVs with large topological charges (TCs), the ring-shaped profile can be well-maintained, and the rapid expansion of the beam size with increasing TC is significantly suppressed compared to conventional STOVs. As a result, these MDS-STOVs can be regarded as quasi-perfect STOVs (QPSTOVs). Furthermore, QPSTOVs exhibit strong resistance to group delay dispersion (GDD), eliminating the need for precise dispersion control and facilitating their generation and application. This work advances our understanding of the physical properties of light carrying transverse OAM and opens up exciting avenues for the application of STOVs in diverse fields, such as optical communication and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11769v1-abstract-full').style.display = 'none'; document.getElementById('2502.11769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10963">arXiv:2502.10963</a> <span> [<a href="https://arxiv.org/pdf/2502.10963">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&query=Shou%2C+Y">Yichang Shou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiawei Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qiang Yang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shizhen Chen</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+W">Weixing Shu</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+S">Shuangchun Wen</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+H">Hailu Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10963v1-abstract-short" style="display: inline;"> Quantum entanglement, a fundamental concept in quantum mechanics, lies at the heart of many current and future quantum technologies. A pivotal task is generation and control of diverse quantum entangled states in a more compact and flexible manner. Here, we introduce an approach to achieve diverse path entanglement by exploiting the interaction between noncommutative metasurfaces and entangled pho… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10963v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10963v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10963v1-abstract-full" style="display: none;"> Quantum entanglement, a fundamental concept in quantum mechanics, lies at the heart of many current and future quantum technologies. A pivotal task is generation and control of diverse quantum entangled states in a more compact and flexible manner. Here, we introduce an approach to achieve diverse path entanglement by exploiting the interaction between noncommutative metasurfaces and entangled photons. Different from other path entanglement, our quantum path entanglement is evolvement path entanglement of photons on Poincar茅 sphere. Due to quantum entanglement between idler photons and structured signal photons, evolvement path of idler photons on the fundamental Poincar茅 sphere can be nonlocally mirrored by structured signal photons on any high-order Poincar茅 sphere, resulting in quantum path entanglement. Benefiting from noncommutative metasurfaces, diverse quantum path entanglement can be switched across different higher-order Poincar茅 spheres using distinct combination sequences of metasurfaces. Our method allows for the tuning of diverse quantum path entanglement across a broad spectrum of quantum states, offering a significant advancement in the manipulation of quantum entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10963v1-abstract-full').style.display = 'none'; document.getElementById('2502.10963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10941">arXiv:2502.10941</a> <span> [<a href="https://arxiv.org/pdf/2502.10941">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Compact Turnkey Soliton Microcombs at Microwave Rates via Wafer-Scale Fabrication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuanlei Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Ze Wang</a>, <a href="/search/physics?searchtype=author&query=Lao%2C+C">Chenghao Lao</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+T">Tianyu Xu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Yinke Cheng</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhenyu Xie</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junqi Wang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+H">Haoyang Luo</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xin Zhou</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+B">Bo Ni</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+K">Kaixuan Zhu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yanwu Liu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+X">Xing Jin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Min Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jian-Fei Liu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+X">Xuening Cao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Ting Wang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+B">Bei-Bei Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Fangxing Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Y">Yun-Feng Xiao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qi-Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10941v1-abstract-short" style="display: inline;"> Soliton microcombs generated in nonlinear microresonators facilitate the photonic integration of timing, frequency synthesis, and astronomical calibration functionalities. For these applications, low-repetition-rate soliton microcombs are essential as they establish a coherent link between optical and microwave signals. However, the required pump power typically scales with the inverse of the repe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10941v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10941v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10941v1-abstract-full" style="display: none;"> Soliton microcombs generated in nonlinear microresonators facilitate the photonic integration of timing, frequency synthesis, and astronomical calibration functionalities. For these applications, low-repetition-rate soliton microcombs are essential as they establish a coherent link between optical and microwave signals. However, the required pump power typically scales with the inverse of the repetition rate, and the device footprint scales with the inverse of square of the repetition rate, rendering low-repetition-rate soliton microcombs challenging to integrate within photonic circuits. This study designs and fabricates silicon nitride microresonators on 4-inch wafers with highly compact form factors. The resonator geometries are engineered from ring to finger and spiral shapes to enhance integration density while attaining quality factors over 10^7. Driven directly by an integrated laser, soliton microcombs with repetition rates below 10 GHz are demonstrated via turnkey initiation. The phase noise performance of the synthesized microwave signals reaches -130 dBc/Hz at 100 kHz offset frequency for 10 GHz carrier frequencies. This work enables the high-density integration of soliton microcombs for chip-based microwave photonics and spectroscopy applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10941v1-abstract-full').style.display = 'none'; document.getElementById('2502.10941v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09308">arXiv:2502.09308</a> <span> [<a href="https://arxiv.org/pdf/2502.09308">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Natural van der Waals canalization lens for non-destructive nanoelectronic circuit imaging and inspection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ou%2C+Q">Qingdong Ou</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+S">Shuwen Xue</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+W">Weiliang Ma</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jiong Yang</a>, <a href="/search/physics?searchtype=author&query=Si%2C+G">Guangyuan Si</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+G">Gang Zhong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jingying Liu</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zongyuan Xie</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Y">Ying Xiao</a>, <a href="/search/physics?searchtype=author&query=Kalantar-Zadeh%2C+K">Kourosh Kalantar-Zadeh</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+X">Xiang Qi</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peining Li</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+Z">Zhigao Dai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Huanyang Chen</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+Q">Qiaoliang Bao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09308v1-abstract-short" style="display: inline;"> Optical inspection has long served as a cornerstone non-destructive method in semiconductor wafer manufacturing, particularly for surface and defect analysis. However, conventional techniques such as bright-field and dark-field scattering optics face significant limitations, including insufficient resolution and the inability to penetrate and detect buried structures. Atomic force microscopy (AFM)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09308v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09308v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09308v1-abstract-full" style="display: none;"> Optical inspection has long served as a cornerstone non-destructive method in semiconductor wafer manufacturing, particularly for surface and defect analysis. However, conventional techniques such as bright-field and dark-field scattering optics face significant limitations, including insufficient resolution and the inability to penetrate and detect buried structures. Atomic force microscopy (AFM), while offering higher resolution and precise surface characterization, is constrained by slow speed, limited to surface-level imaging, and incapable of resolving subsurface features. Here, we propose an approach that integrates the strengths of dark-field scattering optics and AFM by leveraging a van der Waals (vdW) canalization lens based on natural biaxial 伪-MoO3 crystals. This method enables ultrahigh-resolution subwavelength imaging with the ability to visualize both surface and buried structures, achieving a spatial resolution of 15 nm and grating pitch detection down to 100 nm. The underlying mechanism relies on the unique anisotropic properties of 伪-MoO3, where its atomic-scale unit cells and biaxial symmetry facilitate the diffraction-free propagation of both evanescent and propagating waves via a flat-band canalization regime. Unlike metamaterial-based superlenses and hyperlenses, which suffer from high plasmonic losses, fabrication imperfections, and uniaxial constraints, 伪-MoO3 provides robust and aberration-free imaging in multiple directions. We successfully applied this approach to high-resolution inspection of buried nanoscale electronic circuits, offering unprecedented capabilities essential for next-generation semiconductor manufacturing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09308v1-abstract-full').style.display = 'none'; document.getElementById('2502.09308v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08537">arXiv:2502.08537</a> <span> [<a href="https://arxiv.org/pdf/2502.08537">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Broken symmetries associated with a Kagome chiral charge order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/physics?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+S">Sen Shao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yilin Zhao</a>, <a href="/search/physics?searchtype=author&query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xian Yang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yongkai Li</a>, <a href="/search/physics?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/physics?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/physics?searchtype=author&query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/physics?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08537v1-abstract-short" style="display: inline;"> Chirality or handedness manifests in all fields of science, ranging from cell biology, molecular interaction, and catalysis to different branches of physics. In condensed matter physics, chirality is intrinsic to enigmatic quantum phases, such as chiral charge density waves and chiral superconductivity. Here, the underlying chiral response is subtle and leads to broken symmetries in the ground sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08537v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08537v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08537v1-abstract-full" style="display: none;"> Chirality or handedness manifests in all fields of science, ranging from cell biology, molecular interaction, and catalysis to different branches of physics. In condensed matter physics, chirality is intrinsic to enigmatic quantum phases, such as chiral charge density waves and chiral superconductivity. Here, the underlying chiral response is subtle and leads to broken symmetries in the ground state. Detection of subtle broken symmetries is the key to understand these quantum states but they are extremely challenging to expose leading to debate and controversy. Here, using second-order optical response, we uncover the broken symmetries of a chiral charge density wave in the Kagome lattice KV3Sb5, revealing the relevant broken symmetries of its charge order. KV3Sb5 undergoes a phase transition to a charge-ordered state at low temperatures. Our polarization-dependent mid-infrared photocurrent microscopy reveals an intrinsic, longitudinal helicity-dependent photocurrent associated with the charge order. Our measurements, supported by our theoretical analysis, provide direct evidence for broken inversion and mirror symmetries at the charge order transition, indicating a chiral charge ordered state. On the other hand, we do not observe a circular photogalvanic effect along the direction perpendicular to that of the incident light, imposing stringent constraints on the rotational and point group symmetries of the charge order. Our study not only visualizes the chiral nature of the Kagome charge order revealing its broken symmetries, but also highlights the nonlinear photogalvanic effect as a sensitive probe for detecting subtle symmetry breakings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08537v1-abstract-full').style.display = 'none'; document.getElementById('2502.08537v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08243">arXiv:2502.08243</a> <span> [<a href="https://arxiv.org/pdf/2502.08243">pdf</a>, <a href="https://arxiv.org/format/2502.08243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Research on trigger technology of MRPC TOF-PET system and imaging results of $^{22}$Na radioactive source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianing Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yuelei Ma</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Ziyang Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhenyan Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Baohong Guo</a>, <a href="/search/physics?searchtype=author&query=Han%2C+D">Dong Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuanjing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08243v1-abstract-short" style="display: inline;"> This study focuses on developing a self-triggered data acquisition system and a noise reduction algorithm for the Multi-gap Resistive Plate Chamber (MRPC) Time-of-Flight Positron Emission Tomography (TOF-PET) system. The system integrates a fast front-end amplifier, a waveform digitization module based on the DRS4 chip, and an efficient noise reduction algorithm to address challenges such as high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08243v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08243v1-abstract-full" style="display: none;"> This study focuses on developing a self-triggered data acquisition system and a noise reduction algorithm for the Multi-gap Resistive Plate Chamber (MRPC) Time-of-Flight Positron Emission Tomography (TOF-PET) system. The system integrates a fast front-end amplifier, a waveform digitization module based on the DRS4 chip, and an efficient noise reduction algorithm to address challenges such as high noise trigger rates and precise gamma-ray detection. The proposed self-triggered system, through threshold discrimination, coincidence logic, and continuous oscillation check, reduces the noise trigger rate to 0.004 Hz. Experimental results show that the system accurately localizes and images the $^{22}$Na radioactive source, and has a good time resolution of 162 ps FWHM for 0.511 MeV gamma rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08243v1-abstract-full').style.display = 'none'; document.getElementById('2502.08243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08044">arXiv:2502.08044</a> <span> [<a href="https://arxiv.org/pdf/2502.08044">pdf</a>, <a href="https://arxiv.org/format/2502.08044">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Twin-Space Representation of Classical Mapping Model in the Constraint Phase Space Representation: Numerically Exact Approach to Open Quantum Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiaji Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jian Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Lipeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08044v1-abstract-short" style="display: inline;"> The constraint coordinate-momentum \textit{phase space} (CPS) has recently been developed to study nonadiabatic dynamics in gas-phase and condensed-phase molecular systems. Although the CPS formulation is exact for describing the discrete (electronic/ vibrational/spin) state degrees of freedom (DOFs), when system-bath models in condense phase are studied, previous works often employ the discretiza… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08044v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08044v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08044v1-abstract-full" style="display: none;"> The constraint coordinate-momentum \textit{phase space} (CPS) has recently been developed to study nonadiabatic dynamics in gas-phase and condensed-phase molecular systems. Although the CPS formulation is exact for describing the discrete (electronic/ vibrational/spin) state degrees of freedom (DOFs), when system-bath models in condense phase are studied, previous works often employ the discretization of environmental bath DOFs, which breaks the time irreversibility and may make it difficult to obtain numerically converged results in the long-time limit. In this paper, we develop an exact trajectory-based phase space approach by adopting the twin-space (TS) formulation of quantum statistical mechanics, in which the density operator of the reduced system is transformed to the wavefunction of an expanded system with twice the DOFs. The classical mapping model (CMM) is then used to map the Hamiltonian of the expanded system to its equivalent classical counterpart on CPS. To demonstrate the applicability of the TS-CMM approach, we compare simulated population dynamics and nonlinear spectra for a few benchmark condensed phase system-bath models with those obtained from the hierarchical equations of motion method, which shows that our approach yields accurate dynamics of open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08044v1-abstract-full').style.display = 'none'; document.getElementById('2502.08044v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07317">arXiv:2502.07317</a> <span> [<a href="https://arxiv.org/pdf/2502.07317">pdf</a>, <a href="https://arxiv.org/format/2502.07317">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Position reconstruction and surface background model for the PandaX-4T detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qian%2C+Z">Zhicheng Qian</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Z">Zhaokan Cheng</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Z">Zhixing Gao</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xunan Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zichao Guo</a>, <a href="/search/physics?searchtype=author&query=Han%2C+C">Chencheng Han</a>, <a href="/search/physics?searchtype=author&query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H">Houqi Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Junting Huang</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+R">Ruquan Hou</a> , et al. (78 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07317v1-abstract-short" style="display: inline;"> We report the position reconstruction methods and surface background model for the PandaX-4T dark matter direct search experiment. This work develops two position reconstruction algorithms: template matching (TM) method and photon acceptance function (PAF) method. Both methods determine the horizontal position of events based on the light pattern of secondary scintillation collected by the light s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07317v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07317v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07317v1-abstract-full" style="display: none;"> We report the position reconstruction methods and surface background model for the PandaX-4T dark matter direct search experiment. This work develops two position reconstruction algorithms: template matching (TM) method and photon acceptance function (PAF) method. Both methods determine the horizontal position of events based on the light pattern of secondary scintillation collected by the light sensors. After a comprehensive evaluation of resolution, uniformity, and robustness, the PAF method was selected for position reconstruction, while the TM method was employed for verification. The PAF method achieves a bulk event resolution of 1.0 mm and a surface event resolution of 4.4 mm for a typical $S2$ signal with a bottom charge of 1500 PE (about 14 keV). The uniformity is around 20\%. Robustness studies reveal average deviations of 5.1 mm and 8.8 mm for the commissioning run (Run0) and the first science run (Run1), respectively, due to the deactivation of certain PMTs. A data-driven surface background model is developed based on the PAF method. The surface background is estimated to be $0.09 \pm 0.06$ events for Run0 (0.54 tonne$\cdot$year) and $0.17 \pm 0.11$ events for Run1 (1.00 tonne$\cdot$year). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07317v1-abstract-full').style.display = 'none'; document.getElementById('2502.07317v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06129">arXiv:2502.06129</a> <span> [<a href="https://arxiv.org/pdf/2502.06129">pdf</a>, <a href="https://arxiv.org/format/2502.06129">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Turbulence in stratified rotating topographic wakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinyuan Liu</a>, <a href="/search/physics?searchtype=author&query=Puthan%2C+P">Pranav Puthan</a>, <a href="/search/physics?searchtype=author&query=Sarkar%2C+S">Sutanu Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06129v1-abstract-short" style="display: inline;"> Turbulence generation mechanisms in stratified, rotating flows past three-dimensional (3D) topography remain underexplored, particularly in submesoscale (SMS) regimes critical to geophysical applications. Using turbulence-resolving large-eddy simulations, we systematically dissect the interplay of stratification and rotation in governing the dynamics of wake turbulence. Our parametric study reveal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06129v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06129v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06129v1-abstract-full" style="display: none;"> Turbulence generation mechanisms in stratified, rotating flows past three-dimensional (3D) topography remain underexplored, particularly in submesoscale (SMS) regimes critical to geophysical applications. Using turbulence-resolving large-eddy simulations, we systematically dissect the interplay of stratification and rotation in governing the dynamics of wake turbulence. Our parametric study reveals that turbulent dissipation in the near wake is dominated by two distinct instabilities: (1) vertical shear-driven Kelvin-Helmholtz instability (KHI), amplified by oblique dislocation of K谩rm谩n vortices under strong stratification, and (2) centrifugal/inertial instability (CI), which peaks at intermediate rotation rates (Rossby number order unity, SMS regime) and relatively weaker stratification. Notably, strong rotation dampens vertical shear and weakens KHI-driven turbulence, while strong stratification imposes smaller vertical length scales that restrict CI-driven turbulence. By quantifying dissipation across a broad parameter space of stratification and rotation, predictive relationships between the environmental parameters and instability dominance is established. These findings highlight the regime dependence of instability mechanisms and may inform targeted observational campaigns and numerical models of oceanic and atmospheric wakes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06129v1-abstract-full').style.display = 'none'; document.getElementById('2502.06129v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03001">arXiv:2502.03001</a> <span> [<a href="https://arxiv.org/pdf/2502.03001">pdf</a>, <a href="https://arxiv.org/format/2502.03001">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Universal Kerr-thermal dynamics of self-injection-locked microresonator dark pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+S">Shichang Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+K">Kunpeng Yu</a>, <a href="/search/physics?searchtype=author&query=Chermoshentsev%2C+D+A">Dmitry A. Chermoshentsev</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/physics?searchtype=author&query=Long%2C+J">Jinbao Long</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+X">Xiaoying Yan</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chen Shen</a>, <a href="/search/physics?searchtype=author&query=Shitikov%2C+A+E">Artem E. Shitikov</a>, <a href="/search/physics?searchtype=author&query=Dmitriev%2C+N+Y">Nikita Yu. Dmitriev</a>, <a href="/search/physics?searchtype=author&query=Bilenko%2C+I+A">Igor A. Bilenko</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Junqiu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03001v1-abstract-short" style="display: inline;"> Microcombs, formed in optical microresonators driven by continuous-wave lasers, are miniaturized optical frequency combs with small size, weight and power consumption. Leveraging integrated photonics and laser self-injection locking (SIL), compact and robust microcombs can be constructed via hybrid integration of a semiconductor laser with a chip-based microresonator. While the current linear SIL… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03001v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03001v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03001v1-abstract-full" style="display: none;"> Microcombs, formed in optical microresonators driven by continuous-wave lasers, are miniaturized optical frequency combs with small size, weight and power consumption. Leveraging integrated photonics and laser self-injection locking (SIL), compact and robust microcombs can be constructed via hybrid integration of a semiconductor laser with a chip-based microresonator. While the current linear SIL theory has successfully addressed the linear coupling between the laser cavity and the external microresonator, it fails to manage the complicated nonlinear processes, especially regarding to dark-pulse microcomb formation. Here, we investigate -- theoretically, numerically and experimentally -- the Kerr-thermal dynamics of a semiconductor laser self-injection-locked to an integrated silicon nitride microresonator. We unveil intriguing yet universal dark-pulse formation and switching behaviour with discrete steps, and establish a theoretical model scrutinizing the synergy of laser-microresonator mutual coupling, Kerr nonlinearity, photo-thermal effect. Numerical simulation confirms the experimental result and identifies the origins. Exploiting this unique phenomenon, we showcase an application on low-noise photonic microwave generation with phase noise purified by 23.5 dB. Our study not only add critical insight of pulse formation in laser-microresonator hybrid systems, but also enables all-passive, photonic-chip-based microwave oscillators with high spectral purity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03001v1-abstract-full').style.display = 'none'; document.getElementById('2502.03001v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02926">arXiv:2502.02926</a> <span> [<a href="https://arxiv.org/pdf/2502.02926">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Exclusive Generation of Single-Atom Sulfur for Ultrahigh Quality Monolayer MoS$_2$ Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yunhao Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jingwei Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yumo Chen</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xian Wu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+J">Junyang Tan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiarong Liu</a>, <a href="/search/physics?searchtype=author&query=Nong%2C+H">Huiyu Nong</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">Liqiong He</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qinke Wu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+G">Guangmin Zhou</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+X">Xiaolong Zou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bilu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02926v1-abstract-short" style="display: inline;"> Preparation of high-quality two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the precondition for realizing their applications. However, the synthesized 2D TMDCs (e.g., MoS$_2$) crystals suffer from low quality due to the massive defects formed during the growth. Here, we report the single-atom sulfur (S1) as a highly reactive sulfur species to grow ultrahigh-quality monolayer MoS… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02926v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02926v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02926v1-abstract-full" style="display: none;"> Preparation of high-quality two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the precondition for realizing their applications. However, the synthesized 2D TMDCs (e.g., MoS$_2$) crystals suffer from low quality due to the massive defects formed during the growth. Here, we report the single-atom sulfur (S1) as a highly reactive sulfur species to grow ultrahigh-quality monolayer MoS$_2$. Derived from battery waste, the sulfurized polyacrylonitrile (SPAN) is found to be exclusive and efficient in releasing S1. The monolayer MoS$_2$ prepared by SPAN exhibits an ultralow defect density of $~7\times 10^{12}$ cm$^{-2}$ and the narrowest photoluminescence (PL) emission peak with full-width at half-maximum of ~47.11 meV at room temperature. Moreover, the statistical resonance Raman and low-temperature PL results further verify the significantly lower defect density and higher optical quality of SPAN-grown MoS$_2$ than the conventional S-powder-grown samples. This work provides an effective approach for preparing ultrahigh-quality 2D single crystals, facilitating their industrial applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02926v1-abstract-full').style.display = 'none'; document.getElementById('2502.02926v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures. Journal of the American Chemical Society, 2024, 146, 49, 33289</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JACS, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02878">arXiv:2502.02878</a> <span> [<a href="https://arxiv.org/pdf/2502.02878">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A High-resolution Microcavity Transmission Spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+R">Ruocan Zhao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+B">Bin Yang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+C">Chuan Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiangtao Li</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+B">Baoqi Shi</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chen Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chong Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+T">Tingdi Chen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+C">Chen Liang</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+X">Xianghui Xue</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Junqiu Liu</a>, <a href="/search/physics?searchtype=author&query=Dou%2C+X">Xiankang Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02878v1-abstract-short" style="display: inline;"> Spectral analysis is one of the most powerful tools for studying and understanding matter. Traditional mode-locked optical frequency combs, which feature broad spectra and low repetition rates, have enabled high-precision absorption measurements through dual-comb techniques. These combs have found applications in trace gas detection, spectral imaging, and isotope analysis. However, their complexit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02878v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02878v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02878v1-abstract-full" style="display: none;"> Spectral analysis is one of the most powerful tools for studying and understanding matter. Traditional mode-locked optical frequency combs, which feature broad spectra and low repetition rates, have enabled high-precision absorption measurements through dual-comb techniques. These combs have found applications in trace gas detection, spectral imaging, and isotope analysis. However, their complexity, bulkiness, and large size limit their use outside laboratories. In contrast, low-noise optical frequency combs generated by optical micro-resonators offer significant potential advantages for spectroscopy due to their chip-scale size and lightweight design. We present a microcavity-based transmission spectrometer using a single silicon nitride microcavity soliton, achieving a 4 THz bandwidth with 200 kHz resolution. This system combines the stable dissipative Kerr soliton (DKS) comb from a silicon nitride micro-resonator with the dual-sideband scanning from an intensity electro-optic modulator (EOM), transferring sub-Hz RF precision to the optical domain. The resulting frequency-modulated (FM) comb inherits the high precision of the RF domain, with optical accuracy dominated by the pump laser and repetition rate stability. The DKS comb allows independent locking of the pump laser and repetition rate, facilitating ultra-precise FM comb generation. The frequency-modulated comb is then imaged onto a 2D CCD array using a VIPA in tandem with a diffraction grating, enabling the recording of a composite spectrum during scanning. It is anticipated that using an ultra-narrow linewidth laser locked to an ultra-stable cavity as the pump source could enable Hz-level precision and stability. Given the integration advantages of the key components in this approach, it holds significant potential for future miniaturization, offering vast possibilities for compact, high-precision spectroscopic measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02878v1-abstract-full').style.display = 'none'; document.getElementById('2502.02878v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00477">arXiv:2502.00477</a> <span> [<a href="https://arxiv.org/pdf/2502.00477">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> An Inorganic Liquid Crystalline Dispersion with 2D Ferroelectric Moieties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Ziyang Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zehao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Rongjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+B">Baofu Ding</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L">Liu Yang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+K">Keyou Wu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Youan Xu</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+G">Gaokuo Zhong</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+C">Chuanlai Ren</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiarong Liu</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Yugan Hao</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+M">Menghao Wu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+T">Teng Ma</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bilu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00477v1-abstract-short" style="display: inline;"> Electro-optical effect based liquid crystal devices have been extensively used in optical modulation techniques, in which the Kerr coefficient reflects the sensitivity of the liquid crystals and determines the strength of the device operational electric field. The Peterlin-Stuart theory and the O'Konski model jointly indicate that a giant Kerr coefficient could be obtained in a material with both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00477v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00477v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00477v1-abstract-full" style="display: none;"> Electro-optical effect based liquid crystal devices have been extensively used in optical modulation techniques, in which the Kerr coefficient reflects the sensitivity of the liquid crystals and determines the strength of the device operational electric field. The Peterlin-Stuart theory and the O'Konski model jointly indicate that a giant Kerr coefficient could be obtained in a material with both a large geometrical anisotropy and an intrinsic polarization, but such a material is not yet reported. Here we reveal a ferroelectric effect in a monolayer two-dimensional mineral vermiculite. A large geometrical anisotropy factor and a large inherent electric dipole together raise the record value of Kerr coefficient by an order of magnitude, till $3.0\times 10^{-4}$ m V$^{-2}$. This finding enables an ultra-low operational electric field of $10^2$-$10^4$ V m$^{-1}$ and the fabrication of electro-optical devices with an inch-level electrode separation, which is not practical previously. Because of its high ultraviolet stability (decay <1% under ultraviolet exposure of 1000 hours), large-scale, and energy-efficiency, prototypical displayable billboards have been fabricated for outdoor interactive scenes. The work provides new insights for both liquid crystal optics and two-dimensional ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00477v1-abstract-full').style.display = 'none'; document.getElementById('2502.00477v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 3 figures. Published in National Science Review 2024, 11 (5), nwae108</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00267">arXiv:2502.00267</a> <span> [<a href="https://arxiv.org/pdf/2502.00267">pdf</a>, <a href="https://arxiv.org/format/2502.00267">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A combined statistical mechanical and ab initio approach to understanding H2O/CO2 co-adsorption in mmen-Mg2(dobpdc) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Owens%2C+J+R">Jonathan R. Owens</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+B">Bojun Feng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jie Liu</a>, <a href="/search/physics?searchtype=author&query=Moore%2C+D">David Moore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00267v1-abstract-short" style="display: inline;"> We study the effects of H2O on CO2 adsorption in an amine-appended variant of the metal-organic framework Mg2(dobpdc), which is known to exhibit chaining behavior that presents in a step-shaped adsorption isotherm. We first show how the presence of different levels of local H2O affects this chaining behavior and the energetics of CO2 adsorption, based on a series of ab initio calculations, giving… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00267v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00267v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00267v1-abstract-full" style="display: none;"> We study the effects of H2O on CO2 adsorption in an amine-appended variant of the metal-organic framework Mg2(dobpdc), which is known to exhibit chaining behavior that presents in a step-shaped adsorption isotherm. We first show how the presence of different levels of local H2O affects this chaining behavior and the energetics of CO2 adsorption, based on a series of ab initio calculations, giving insight into the atomic-scale environment. In particular, we predict a novel adsorbed configuration, in which H2O and CO2 intertwine to make a braided chain down the MOF pore. We then show how an existing lattice model can be adapted to incorporate the effect of water, and predict the CO2 isotherms for the various water levels, observing a sharp shift the uptake at low partial pressures. In addition to the physical further work on this and related materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00267v1-abstract-full').style.display = 'none'; document.getElementById('2502.00267v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, letter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11947">arXiv:2501.11947</a> <span> [<a href="https://arxiv.org/pdf/2501.11947">pdf</a>, <a href="https://arxiv.org/format/2501.11947">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Modeling finite viscoelasticity based on the Green-Naghdi kinematic assumption and generalized strains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Ju Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Chongran Zhao</a>, <a href="/search/physics?searchtype=author&query=Guan%2C+J">Jiashen Guan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11947v1-abstract-short" style="display: inline;"> We propose a modeling framework for finite viscoelasticity, inspired by the kinematic assumption made by Green and Naghdi in plasticity. This approach fundamentally differs from the widely used multiplicative decomposition of the deformation gradient, as the intermediate configuration, a concept that remains debated, becomes unnecessary. The advent of the concept of generalized strains allows the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11947v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11947v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11947v1-abstract-full" style="display: none;"> We propose a modeling framework for finite viscoelasticity, inspired by the kinematic assumption made by Green and Naghdi in plasticity. This approach fundamentally differs from the widely used multiplicative decomposition of the deformation gradient, as the intermediate configuration, a concept that remains debated, becomes unnecessary. The advent of the concept of generalized strains allows the Green-Naghdi assumption to be employed with different strains, offering a flexible mechanism to separate inelastic deformation from total deformation. This leads to a constitutive theory in which the kinematic separation is adjustable and can be calibrated. For quadratic configurational free energy, the framework yields a suite of finite linear viscoelasticity models governed by linear evolution equations. Notably, these models recover established models, including those by Green and Tobolsky (1946) and Simo (1987), when the Seth-Hill strain is chosen with the strain parameter being -2 and 2, respectively. It is also related to the model of Miehe and Keck (2000) when the strain is of the Hencky type. We further extend the approach by adopting coercive strains, which allows us to define an elastic deformation tensor locally. This facilitates modeling the viscous branch using general forms of the configurational free energy, and we construct a micromechanical viscoelastic model as a representative instantiation. The constitutive integration algorithms of the proposed models are detailed. We employ the experimental data of VHB 4910 to examine the proposed models, which demonstrate their effectiveness and potential advantages in the quality of fitting and prediction. Three-dimensional finite element analysis is also conducted to assess the influence of different strains on the viscoelastic behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11947v1-abstract-full').style.display = 'none'; document.getElementById('2501.11947v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10626">arXiv:2501.10626</a> <span> [<a href="https://arxiv.org/pdf/2501.10626">pdf</a>, <a href="https://arxiv.org/format/2501.10626">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.110.044902">10.1103/PhysRevE.110.044902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of particle elongation on dense granular flows down a rough inclined plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jixiong Liu</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+L">Lu Jing</a>, <a href="/search/physics?searchtype=author&query=P%C3%A4htz%2C+T">Thomas P盲htz</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+Y">Yifei Cui</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+G+G+D">Gordon G. D. Zhou</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+X">Xudong Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10626v1-abstract-short" style="display: inline;"> Granular materials in nature are nearly always non-spherical, but particle shape effects in granular flow remain largely elusive. This study uses discrete element method simulations to investigate how elongated particle shapes affect the mobility of dense granular flows down a rough incline. For a range of systematically varied particle length-to-diameter aspect ratios (AR), we run simulations wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10626v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10626v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10626v1-abstract-full" style="display: none;"> Granular materials in nature are nearly always non-spherical, but particle shape effects in granular flow remain largely elusive. This study uses discrete element method simulations to investigate how elongated particle shapes affect the mobility of dense granular flows down a rough incline. For a range of systematically varied particle length-to-diameter aspect ratios (AR), we run simulations with various flow thicknesses $h$ and slope angles $胃$ to extract the well-known $h_\textrm{stop}(胃)$ curves (below which the flow ceases) and the $Fr$-$h/h_\textrm{stop}$ relations following Pouliquen's approach, where $Fr=u/\sqrt{gh}$ is the Froude number, $u$ is the mean flow velocity, and $g$ is the gravitational acceleration. The slope $尾$ of the $Fr$-$h/h_\textrm{stop}$ relations shows an intriguing S-shaped dependence on AR, with two plateaus at small and large AR, respectively, transitioning with a sharp increase. We understand this S-shaped dependence by examining statistics of particle orientation, alignment, and hindered rotation. We find that the rotation ability of weakly elongated particles ($\textrm{AR}\lesssim1.3$) remains similar to spheres, leading to the first plateau in the $尾$-AR relation, whereas the effects of particle orientation saturates beyond $\textrm{AR}\approx2.0$, explaining the second plateau. An empirical sigmoidal function is proposed to capture this non-linear dependence. The findings are expected to enhance our understanding of how particle shape affects the flow of granular materials from both the flow- and particle-scale perspectives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10626v1-abstract-full').style.display = 'none'; document.getElementById('2501.10626v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 110 (4), 044902 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10618">arXiv:2501.10618</a> <span> [<a href="https://arxiv.org/pdf/2501.10618">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Daily Groundwater Monitoring Using Vehicle-DAS Elastic Full-waveform Inversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Haipeng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jingxiao Liu</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+S">Shujuan Mao</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+S">Siyuan Yuan</a>, <a href="/search/physics?searchtype=author&query=Clapp%2C+R+G">Robert G. Clapp</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+B+L">Biondo L. Biondi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10618v1-abstract-short" style="display: inline;"> Understanding groundwater dynamics is critical for sustainable water management, particularly as climate extremes intensify. However, the resolutions of existing subsurface observational tools are still inadequate for detailed aquifer monitoring and imaging. We introduce an innovative technique for groundwater monitoring using time-lapse full-waveform inversion, leveraging fiber-optic cables as se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10618v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10618v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10618v1-abstract-full" style="display: none;"> Understanding groundwater dynamics is critical for sustainable water management, particularly as climate extremes intensify. However, the resolutions of existing subsurface observational tools are still inadequate for detailed aquifer monitoring and imaging. We introduce an innovative technique for groundwater monitoring using time-lapse full-waveform inversion, leveraging fiber-optic cables as seismic sensors and vehicular traffic as repetitive seismic sources. Over a two-year period along Sandhill Road, California, this approach captures detailed spatiotemporal S-wave velocity variations, revealing a 2.9% reduction corresponding to a 9.0-meter groundwater table rise after atmospheric-river storms in Water Year 2023. Notably, this approach enables the high-resolution daily analysis of rapid aquifer responses. We observe spatially inhomogeneous velocity changes, with less reduction beneath impervious paved zones than under grassy areas, underscoring the impact of urbanization on the natural recharge of aquifers. Our findings highlight the potential of Vehicle-DAS FWI for high-resolution daily monitoring and quantitative spatiotemporal characterizations of groundwater systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10618v1-abstract-full').style.display = 'none'; document.getElementById('2501.10618v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09335">arXiv:2501.09335</a> <span> [<a href="https://arxiv.org/pdf/2501.09335">pdf</a>, <a href="https://arxiv.org/format/2501.09335">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamic modulation of dual-band nonreciprocal radiation in a graphene-Weyl semimetal plasmonic structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qing%2C+Y+M">Ye Ming Qing</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiao Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhaoyan Yang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+L+W">Liang Wei Wu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09335v1-abstract-short" style="display: inline;"> We introduce and develop a hybrid structure combining graphene and Weyl semimetal, capable of achieving dynamically adjustable dual-band nonreciprocal radiation. The results reveal that the nonreciprocal radiation can be attributed to the synergistic interaction between resonance mode excitation and the unique properties of Weyl materials, with the electric field distribution providing further ins… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09335v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09335v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09335v1-abstract-full" style="display: none;"> We introduce and develop a hybrid structure combining graphene and Weyl semimetal, capable of achieving dynamically adjustable dual-band nonreciprocal radiation. The results reveal that the nonreciprocal radiation can be attributed to the synergistic interaction between resonance mode excitation and the unique properties of Weyl materials, with the electric field distribution providing further insights into the graphene plasmon modes involved. By exploiting the resonant characteristics of graphene plasmons, we demonstrate that strong nonreciprocal radiation can be effectively regulated through adjusting the grating's geometric parameters, while maintaining robustness over a wide range. Notably, substantial dynamic tuning of the resonant wavelength for nonreciprocal radiation is achievable by modulating the Fermi level of graphene. Our research results offer promising prospects for the developing of complex energy harvesting and conversion systems within advanced thermal frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09335v1-abstract-full').style.display = 'none'; document.getElementById('2501.09335v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04991">arXiv:2501.04991</a> <span> [<a href="https://arxiv.org/pdf/2501.04991">pdf</a>, <a href="https://arxiv.org/format/2501.04991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> PICOSEC Micromegas Precise-timing Detectors: Development towards Large-Area and Integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Meng%2C+Y">Y. Meng</a>, <a href="/search/physics?searchtype=author&query=Aleksan%2C+R">R. Aleksan</a>, <a href="/search/physics?searchtype=author&query=Angelis%2C+Y">Y. Angelis</a>, <a href="/search/physics?searchtype=author&query=Bortfeld%2C+J">J. Bortfeld</a>, <a href="/search/physics?searchtype=author&query=Brunbauer%2C+F">F. Brunbauer</a>, <a href="/search/physics?searchtype=author&query=Brunoldi%2C+M">M. Brunoldi</a>, <a href="/search/physics?searchtype=author&query=Chatzianagnostou%2C+E">E. Chatzianagnostou</a>, <a href="/search/physics?searchtype=author&query=Datt%2C+J">J. Datt</a>, <a href="/search/physics?searchtype=author&query=Degmelt%2C+K">K. Degmelt</a>, <a href="/search/physics?searchtype=author&query=Fanourakis%2C+G">G. Fanourakis</a>, <a href="/search/physics?searchtype=author&query=Fiorina%2C+D">D. Fiorina</a>, <a href="/search/physics?searchtype=author&query=Floethner%2C+K+J">K. J. Floethner</a>, <a href="/search/physics?searchtype=author&query=Gallinaro%2C+M">M. Gallinaro</a>, <a href="/search/physics?searchtype=author&query=Garcia%2C+F">F. Garcia</a>, <a href="/search/physics?searchtype=author&query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&query=Gnanvo%2C+K">K. Gnanvo</a>, <a href="/search/physics?searchtype=author&query=Iguaz%2C+F+J">F. J. Iguaz</a>, <a href="/search/physics?searchtype=author&query=Janssens%2C+D">D. Janssens</a>, <a href="/search/physics?searchtype=author&query=Kallitsopoulou%2C+A">A. Kallitsopoulou</a>, <a href="/search/physics?searchtype=author&query=Kovacic%2C+M">M. Kovacic</a>, <a href="/search/physics?searchtype=author&query=Kross%2C+B">B. Kross</a>, <a href="/search/physics?searchtype=author&query=Legou%2C+P">P. Legou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/physics?searchtype=author&query=Lisowska%2C+M">M. Lisowska</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">J. Liu</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04991v1-abstract-short" style="display: inline;"> PICOSEC Micromegas (MM) is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure. The detector conceprt was successfully demonstrated through a single-channel prototype, achieving sub-25 ps time resolution with Minimum Ionizing Particles (MIPs). A series of studies followed, aimed at developing robust, large-area… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04991v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04991v1-abstract-full" style="display: none;"> PICOSEC Micromegas (MM) is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure. The detector conceprt was successfully demonstrated through a single-channel prototype, achieving sub-25 ps time resolution with Minimum Ionizing Particles (MIPs). A series of studies followed, aimed at developing robust, large-area, and scalable detectors with high time resolution, complemented by specialized fast-response readout electronics. This work presents recent advancements towards large-area resistive PICOSEC MM, including 10 $\times$ 10 $\text{cm}^2$ area prototypes and a 20 $\times$ 20 $\text{cm}^2$ prototype, which features the jointing of four photocathodes. The time resolution of these detector prototypes was tested during the test beam, achieved a timing performance of around 25 ps for individual pads in MIPs. Meanwhile, customized electronics have been developed dedicated to the high-precision time measurement of the large-area PICOSEC MM. The performance of the entire system was evaluated during the test beam, demonstrating its capability for large-area integration. These advancements highlight the potential of PICOSEC MM to meet the stringent requirements of future particle physics experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04991v1-abstract-full').style.display = 'none'; document.getElementById('2501.04991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04892">arXiv:2501.04892</a> <span> [<a href="https://arxiv.org/pdf/2501.04892">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement and Modeling on Terahertz Channel Propagation Through Vegetation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cui%2C+J">Jiayuan Cui</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yuheng Song</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Da Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guohao Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiacheng Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jiabiao Zhao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wenbo Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peian Li</a>, <a href="/search/physics?searchtype=author&query=Song%2C+F">Fei Song</a>, <a href="/search/physics?searchtype=author&query=Mittleman%2C+D+M">Daniel M. Mittleman</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jianjun Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04892v1-abstract-short" style="display: inline;"> The terahertz band offers promising opportunities for high-capacity wireless communications but faces significant challenges from vegetation-induced channel impairments. This article presents a comprehensive investigation of THz channel propagation through vegetation, introducing a hybrid modeling approach that combines deterministic vegetation dependent exponential decay modeling with statistical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04892v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04892v1-abstract-full" style="display: none;"> The terahertz band offers promising opportunities for high-capacity wireless communications but faces significant challenges from vegetation-induced channel impairments. This article presents a comprehensive investigation of THz channel propagation through vegetation, introducing a hybrid modeling approach that combines deterministic vegetation dependent exponential decay modeling with statistical characterization of temporal variations. Through extensive laboratory measurements using Epipremnum aureum, we find that vegetation introduces angular-dependent power losses, with channel statistics following heavy tailed Stable distributions rather than conventional Rician or Weibull models. Our outdoor measurements with dense and sparse lilac scenarios reveal pronounced seasonal variations in attenuation and height-dependent effects, while validating the VED model's ability to maintain excellent agreement with measured data and parameter stability across different heights. Critical bit error rate analysis uncovers distinct SNR thresholds beyond which performance exhibits oscillatory behavior due to heavy-tailed fading, with significant implications for modulation scheme selection and power control strategies in practical THz communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04892v1-abstract-full').style.display = 'none'; document.getElementById('2501.04892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE Transactions on Terahertz Science and Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02780">arXiv:2501.02780</a> <span> [<a href="https://arxiv.org/pdf/2501.02780">pdf</a>, <a href="https://arxiv.org/format/2501.02780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Design, fabrication and test of parallel-coupled slow-wave high-gradient structure for ultrashort input power pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gu%2C+W">Weihang Gu</a>, <a href="/search/physics?searchtype=author&query=Zha%2C+H">Hao Zha</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Jiaru Shi</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Y">Yuliang Jiang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiayang Liu</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+X">Xiancai Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Focheng Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Huaibi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02780v1-abstract-short" style="display: inline;"> Tsinghua University has designed an X-band (11.424 GHz) slow-wave parallel-coupling accelerating structure, and demonstrated the high performance of the over-coupled structure operating with ultrashort pulse. In this study, we redesigned a 40-ns structure with 10 cells, tailored to the specifications of a high-power experimental platform, and provided a detailed analysis of the experimental result… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02780v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02780v1-abstract-full" style="display: none;"> Tsinghua University has designed an X-band (11.424 GHz) slow-wave parallel-coupling accelerating structure, and demonstrated the high performance of the over-coupled structure operating with ultrashort pulse. In this study, we redesigned a 40-ns structure with 10 cells, tailored to the specifications of a high-power experimental platform, and provided a detailed analysis of the experimental results. Unexpected bead-pull results were observed during the cold testing, which we attribute to inter-cavity coupling. To explain these results, a multi-cell coupling circuit model was proposed and analyzed. High-power testing was conducted on the TPOT-X platform, and the highest gradient achieved was 130 MV/m after $1.1*10^7$ conditioning pulses. Compared to conventional multi-cavity high-gradient structures, the distributed power feeding system offers a shorter conditioning period and demonstrates the potential to achieve higher accelerating gradients under short-pulse operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02780v1-abstract-full').style.display = 'none'; document.getElementById('2501.02780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01143">arXiv:2501.01143</a> <span> [<a href="https://arxiv.org/pdf/2501.01143">pdf</a>, <a href="https://arxiv.org/ps/2501.01143">ps</a>, <a href="https://arxiv.org/format/2501.01143">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Design and construction of the multiplexing cold neutron spectrometer BOYA with double-column Rowland focusing analyzers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jinchen Wang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+D">Daye Xu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+W">Wei Luo</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hongxia Zhang</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+W">Wei Bao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01143v1-abstract-short" style="display: inline;"> Developing neutron spectrometers with higher counting efficiency has been an essential pursuit in neutron instrumentation. In this work, we present BOYA, a multiplexing cold neutron spectrometers designed and implemented at the China Advanced Research Reactor. Equipped with 34 angular analyzing channels spanning 119掳, each containing 5 inelastic channels and 1 diffraction channel, BOYA enhances th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01143v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01143v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01143v1-abstract-full" style="display: none;"> Developing neutron spectrometers with higher counting efficiency has been an essential pursuit in neutron instrumentation. In this work, we present BOYA, a multiplexing cold neutron spectrometers designed and implemented at the China Advanced Research Reactor. Equipped with 34 angular analyzing channels spanning 119掳, each containing 5 inelastic channels and 1 diffraction channel, BOYA enhances the measurement efficiency by two orders of magnitude over a traditional triple-axis spectrometer. To optimize both intensity and energy resolution, innovative double-column Rowland focusing analyzers have been developed. By filling the crystal gaps in the traditional Rowland focusing geometry, our design enhances the neutron beam coverage without introducing appreciable double-scattering. Our commissioning results on vanadium and MnWO4 have confirmed the success of the design, establishing BOYA as a successful multiplexing instrument for neutron spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01143v1-abstract-full').style.display = 'none'; document.getElementById('2501.01143v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00227">arXiv:2501.00227</a> <span> [<a href="https://arxiv.org/pdf/2501.00227">pdf</a>, <a href="https://arxiv.org/format/2501.00227">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Programming guide for solving constraint satisfaction problems with tensor networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gao%2C+X">Xuanzhao Gao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaofeng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinguo Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00227v1-abstract-short" style="display: inline;"> Constraint satisfaction problems (CSPs) are a class of problems that are ubiquitous in science and engineering. It features a collection of constraints specified over subsets of variables. A CSP can be solved either directly or by reducing it to other problems. This paper introduces the Julia ecosystem for solving and analyzing CSPs, focusing on the programming practices. We introduce some of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00227v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00227v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00227v1-abstract-full" style="display: none;"> Constraint satisfaction problems (CSPs) are a class of problems that are ubiquitous in science and engineering. It features a collection of constraints specified over subsets of variables. A CSP can be solved either directly or by reducing it to other problems. This paper introduces the Julia ecosystem for solving and analyzing CSPs, focusing on the programming practices. We introduce some of the important CSPs and show how these problems are reduced to each other. We also show how to transform CSPs into tensor networks, how to optimize the tensor network contraction orders, and how to extract the solution space properties by contracting the tensor networks with generic element types. Examples are given, which include computing the entropy constant, analyzing the overlap gap property, and the reduction between CSPs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00227v1-abstract-full').style.display = 'none'; document.getElementById('2501.00227v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20887">arXiv:2412.20887</a> <span> [<a href="https://arxiv.org/pdf/2412.20887">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Hidden Quantum Paraelectric Phase in SrTiO3 Induced by Terahertz Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H">Hanbyul Kim</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xinbo Wang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/physics?searchtype=author&query=Latini%2C+S">Simone Latini</a>, <a href="/search/physics?searchtype=author&query=Shin%2C+D">Dongbin Shin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun-Ming Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jing-Feng Li</a>, <a href="/search/physics?searchtype=author&query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&query=Nan%2C+C">Ce-Wen Nan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20887v1-abstract-short" style="display: inline;"> Coherent manipulation of lattice vibrations using ultrafast light pulses enables access to nonequilibrium 'hidden' phases with designed functionalities in quantum materials. However, expanding the understanding of nonlinear light-phonon interaction mechanisms remains crucial for developing new strategies. Here, we report re-entrant ultrafast phase transitions in SrTiO3 driven by intense terahertz… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20887v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20887v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20887v1-abstract-full" style="display: none;"> Coherent manipulation of lattice vibrations using ultrafast light pulses enables access to nonequilibrium 'hidden' phases with designed functionalities in quantum materials. However, expanding the understanding of nonlinear light-phonon interaction mechanisms remains crucial for developing new strategies. Here, we report re-entrant ultrafast phase transitions in SrTiO3 driven by intense terahertz excitation. As the terahertz field increases, the system transitions from the quantum paraelectric (QPE) ground state to an intermediate ferroelectric phase, and then unexpectedly reverts to a QPE state above ~500 kV/cm. The latter hidden QPE phase exhibits distinct lattice dynamics compared to the initial phases, highlighting activated antiferrodistortive phonon modes. Aided by first-principles dynamical calculations, we identify the mechanism for these complex behaviors as a superposition of multiple coherently excited eigenstates of the polar soft mode. Our results reveal a previously uncharted quantum facet of SrTiO3 and open pathways for harnessing high-order excitations to engineer quantum materials in the ultrafast regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20887v1-abstract-full').style.display = 'none'; document.getElementById('2412.20887v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20153">arXiv:2412.20153</a> <span> [<a href="https://arxiv.org/pdf/2412.20153">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Back-Scattering Suppression for Broad-Spectral High-Absorption Silicon Extended Area Blackbody </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+H">HongShuai Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">JinHao Zhang</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+B">BenFeng Bai</a>, <a href="/search/physics?searchtype=author&query=Mei%2C+X">XiRan Mei</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">KunPeng Chen</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+X">XiaoPeng Hao</a>, <a href="/search/physics?searchtype=author&query=Song%2C+J">Jian Song</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+G">GuoRui Guo</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">JiaLin Chen</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+T">Tian Tian</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+W">WanJie Shen</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Z">ZiHeng Zhong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">JiaYao Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">JiHong Zhao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">HongBo Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20153v1-abstract-short" style="display: inline;"> The stability and emissivity of the online calibration blackbody used in high-precision infrared remote sensing detectors in extreme environments are the primary limiting factors for their measurement accuracy. Due to the limitations of microstructure size effects, traditional calibration extended area blackbody cannot achieve an optimal balance between emissivity and stability, thus hindering fur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20153v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20153v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20153v1-abstract-full" style="display: none;"> The stability and emissivity of the online calibration blackbody used in high-precision infrared remote sensing detectors in extreme environments are the primary limiting factors for their measurement accuracy. Due to the limitations of microstructure size effects, traditional calibration extended area blackbody cannot achieve an optimal balance between emissivity and stability, thus hindering further improvement in infrared remote sensing accuracy. This work proposes a new method that utilize suppressing near-field backscattering to control far-field reflectance. Specifically, through simultaneously reducing backscattering intensity and the backscattering solid angle, the reflectance is significantly reduced to an extremely low limit, which is validated through numerical simulations. Additionally, by combining the femtosecond laser self-convergent processing technique, the spontaneous energy negative feedback mechanism during femtosecond laser processing is utilized to achieve the fabrication of a high emissivity, thermally stable, mechanically stable, and highly uniform extended area blackbody. The blackbody fabricated using this technique can be applied for online calibration in various extreme environments, significantly improving measurement accuracy and service life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20153v1-abstract-full').style.display = 'none'; document.getElementById('2412.20153v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18220">arXiv:2412.18220</a> <span> [<a href="https://arxiv.org/pdf/2412.18220">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Altermagnetic Spin-Splitting Magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zian Wang</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+P">Peixin Qin</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Z">Ziang Meng</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xiaorong Zhou</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaoning Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Li Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+G">Guojian Zhao</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+Z">Zhiyuan Duan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tianli Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinghua Liu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+D">Dingfu Shao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhiqi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18220v1-abstract-short" style="display: inline;"> The recently discovered altermagnets, featured by the exotic correlation of magnetic exchange interaction and alternating crystal environments, have offered exciting cutting-edge opportunities for spintronics. Here, we report the experimental observation of an altermagnetic spin-splitting magnetoresistance effect, which is driven by a spin current associated with the giant nonrelativistic spin spl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18220v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18220v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18220v1-abstract-full" style="display: none;"> The recently discovered altermagnets, featured by the exotic correlation of magnetic exchange interaction and alternating crystal environments, have offered exciting cutting-edge opportunities for spintronics. Here, we report the experimental observation of an altermagnetic spin-splitting magnetoresistance effect, which is driven by a spin current associated with the giant nonrelativistic spin splitting of an altermagnet. The spin current polarization and the corresponding magnetic field direction associated with the magnetoresistance extrema are largely determined by the Neel vector of the altermagnet, leading to a remarkable phase shift compared to that driven by a conventional relativistic spin current. Our work opens a door to unearthing luxuriant nonrelativistic quantum states of matter in emergent materials with unconventional spin degeneracy lifting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18220v1-abstract-full').style.display = 'none'; document.getElementById('2412.18220v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16647">arXiv:2412.16647</a> <span> [<a href="https://arxiv.org/pdf/2412.16647">pdf</a>, <a href="https://arxiv.org/format/2412.16647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Correlated Growth of Causal Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiazhen Liu</a>, <a href="/search/physics?searchtype=author&query=Tamang%2C+K">Kunal Tamang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dashun Wang</a>, <a href="/search/physics?searchtype=author&query=Song%2C+C">Chaoming Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16647v2-abstract-short" style="display: inline;"> The study of causal structure in complex systems has gained increasing attention, with many recent studies exploring causal networks that capture cause-effect relationships across diverse fields. Despite increasing empirical evidence linking causal structures to network topological correlations, the mechanisms underlying the emergence of these correlations in causal networks remain poorly understo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16647v2-abstract-full').style.display = 'inline'; document.getElementById('2412.16647v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16647v2-abstract-full" style="display: none;"> The study of causal structure in complex systems has gained increasing attention, with many recent studies exploring causal networks that capture cause-effect relationships across diverse fields. Despite increasing empirical evidence linking causal structures to network topological correlations, the mechanisms underlying the emergence of these correlations in causal networks remain poorly understood. In this work, we propose a general growth framework for causal networks, incorporating two key types of correlations: causal and dynamic. We analytically demonstrate that degree correlations emerge as a consequence of marginal dependencies on these correlations. Our theoretical predictions align quantitatively with empirical data from four large-scale innovation networks. Our theory not only sheds light on the origins of topological correlations but also provides a general framework for understanding correlated growth across causal systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16647v2-abstract-full').style.display = 'none'; document.getElementById('2412.16647v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16408">arXiv:2412.16408</a> <span> [<a href="https://arxiv.org/pdf/2412.16408">pdf</a>, <a href="https://arxiv.org/ps/2412.16408">ps</a>, <a href="https://arxiv.org/format/2412.16408">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Nutrient Transport in Concentration Gradients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jingyi Liu</a>, <a href="/search/physics?searchtype=author&query=Man%2C+Y">Yi Man</a>, <a href="/search/physics?searchtype=author&query=Kanso%2C+E">Eva Kanso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16408v1-abstract-short" style="display: inline;"> Sessile ciliates attach to substrates and generate feeding currents to capture passing particulates and dissolved nutrients. Optimal ciliary activity that maximizes nutrient flux at the cell surface while minimizing the rate of hydrodynamic energy dissipation is well characterized in uniform nutrient fields. However, it is unclear how ciliary motion should change when nutrients are non-uniform or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16408v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16408v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16408v1-abstract-full" style="display: none;"> Sessile ciliates attach to substrates and generate feeding currents to capture passing particulates and dissolved nutrients. Optimal ciliary activity that maximizes nutrient flux at the cell surface while minimizing the rate of hydrodynamic energy dissipation is well characterized in uniform nutrient fields. However, it is unclear how ciliary motion should change when nutrients are non-uniform or patchy. To address this question, we modeled the sessile ciliate and feeding currents using the spherical envelope model, and used an unsteady advection-diffusion equation to describe the nutrient scalar field. In the absence of flows, we calculated the diffusive nutrient uptake analytically in linear nutrient gradients and found no advantage over uptake in uniform fields. With ciliary activity driving feeding currents, we used a spectral method to solve for the unsteady nutrient concentration. We found that, when the axis of symmetry of the ciliary motion is aligned with the nutrient gradient, nutrient uptake at the cell surface increases steadily over time, with highest uptake achieved by the treadmill ciliary motion which is optimal in uniform fields as well. The associated nutrient uptake in concentration gradients scales with the square root of the product of time and P茅clet number. In patchy environments, optimal ciliary activity depends on the nature of the patchiness. Our findings highlight strategies that enable sessile ciliates to thrive in environments with fluctuating nutrient availability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16408v1-abstract-full').style.display = 'none'; document.getElementById('2412.16408v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16084">arXiv:2412.16084</a> <span> [<a href="https://arxiv.org/pdf/2412.16084">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Chiral phase-imaging meta-sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Erturan%2C+A+M">Ahmet M. Erturan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianing Liu</a>, <a href="/search/physics?searchtype=author&query=Roueini%2C+M+A">Maliheh A. Roueini</a>, <a href="/search/physics?searchtype=author&query=Malamug%2C+N">Nicolas Malamug</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+L">Lei Tian</a>, <a href="/search/physics?searchtype=author&query=Paiella%2C+R">Roberto Paiella</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16084v1-abstract-short" style="display: inline;"> Light waves possess multiple degrees of freedom besides intensity, including phase and polarization, that often contain important information but require complex and bulky systems for their measurement. Here we report a pair of compact multifunctional photodetectors that can selectively measure the local phase gradient of, respectively, the right and left circular-polarization component of any inc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16084v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16084v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16084v1-abstract-full" style="display: none;"> Light waves possess multiple degrees of freedom besides intensity, including phase and polarization, that often contain important information but require complex and bulky systems for their measurement. Here we report a pair of compact multifunctional photodetectors that can selectively measure the local phase gradient of, respectively, the right and left circular-polarization component of any incident wave. These devices employ a chiral pair of integrated plasmonic metasurfaces to introduce a sharp dependence of responsivity on local direction of propagation of the desired polarization component. An order-of-magnitude polarization selectivity with respect to phase gradient is demonstrated with both devices. Using the measured device characteristics, we also describe computationally a pixel array that allows for the simultaneous separate mapping of the right and left circularly-polarized incident wavefronts in a particularly simple imaging setup. These unique capabilities may be exploited to enable new functionalities for applications in chemical sensing, biomedical microscopy, and machine vision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16084v1-abstract-full').style.display = 'none'; document.getElementById('2412.16084v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14687">arXiv:2412.14687</a> <span> [<a href="https://arxiv.org/pdf/2412.14687">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Global track finding based on the Hough transform in the STCF detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hang Zhou</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+K">Kexin Sun</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhenna Lu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X">Xiaocong Ai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jin Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xingtao Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianbei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14687v1-abstract-short" style="display: inline;"> The proposed Super Tau-Charm Facility (STCF) is an electron-positron collider designed to operate in a center-of-mass energy range from 2 to 7 GeV. It provides a unique platform for physics research in the tau-charm energy region. To fulfill the physics goals of STCF, high tracking efficiency and good momentum resolution is required for charged particles with momenta from 50 MeV/c to 3.5 GeV/c. A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14687v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14687v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14687v1-abstract-full" style="display: none;"> The proposed Super Tau-Charm Facility (STCF) is an electron-positron collider designed to operate in a center-of-mass energy range from 2 to 7 GeV. It provides a unique platform for physics research in the tau-charm energy region. To fulfill the physics goals of STCF, high tracking efficiency and good momentum resolution is required for charged particles with momenta from 50 MeV/c to 3.5 GeV/c. A global track finding algorithm based on Hough transform has been developed and implemented in the STCF software framework to meet this requirement. The design of the algorithm and its performance with simulation are presented in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14687v1-abstract-full').style.display = 'none'; document.getElementById('2412.14687v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11793">arXiv:2412.11793</a> <span> [<a href="https://arxiv.org/pdf/2412.11793">pdf</a>, <a href="https://arxiv.org/format/2412.11793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Accelerated Bayesian optimization in deep cooling atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+X">Xiaoxiao Ma</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+C">Changwen Liang</a>, <a href="/search/physics?searchtype=author&query=Sha%2C+R">Rong Sha</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+C">Chao Zhou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qixue Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Guochao Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jixun Liu</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+S">Shuhua Yan</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jun Yang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+L">Lingxiao Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11793v2-abstract-short" style="display: inline;"> Laser cooling, which cools atomic and molecular gases to near absolute zero, is the crucial initial step for nearly all atomic gas experiments. However, fast achievement of numerous sub-$渭$K cold atoms is challenging. To resolve the issue, we propose and experimentally validate an intelligent polarization gradient cooling approach enhanced by optical lattice, utilizing Maximum Hypersphere Compensa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11793v2-abstract-full').style.display = 'inline'; document.getElementById('2412.11793v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11793v2-abstract-full" style="display: none;"> Laser cooling, which cools atomic and molecular gases to near absolute zero, is the crucial initial step for nearly all atomic gas experiments. However, fast achievement of numerous sub-$渭$K cold atoms is challenging. To resolve the issue, we propose and experimentally validate an intelligent polarization gradient cooling approach enhanced by optical lattice, utilizing Maximum Hypersphere Compensation Sampling Bayesian Optimization (MHCS-BO). MHCS-BO demonstrates a twofold increase in optimization efficiency and superior prediction accuracy compared to conventional Bayesian optimization. Finally, approximate $10^8$ cold atoms at a temperature of 0.4$\pm$0.2 $渭$K can be achieved given the optimal parameters within 15 minutes. Our work provides an intelligent protocol, which can be generalized to other high-dimension parameter optimization problems, and paves way for preparation of ultracold atom in quantum experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11793v2-abstract-full').style.display = 'none'; document.getElementById('2412.11793v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10830">arXiv:2412.10830</a> <span> [<a href="https://arxiv.org/pdf/2412.10830">pdf</a>, <a href="https://arxiv.org/format/2412.10830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2025.170290">10.1016/j.nima.2025.170290 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Novel Low-Background Photomultiplier Tube Developed for Xenon Based Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yun%2C+Y">Youhui Yun</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhizhen Zhou</a>, <a href="/search/physics?searchtype=author&query=An%2C+B">Baoguo An</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Z">Zhixing Gao</a>, <a href="/search/physics?searchtype=author&query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianglai Liu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Y">Yuanzi Liang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Y">Yue Meng</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+Z">Zhicheng Qian</a>, <a href="/search/physics?searchtype=author&query=Shang%2C+X">Xiaofeng Shang</a>, <a href="/search/physics?searchtype=author&query=Si%2C+L">Lin Si</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Z">Ziyan Song</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingxin Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shaobo Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+L">Liangyu Wu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Yuan Wu</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+B">Binbin Yan</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+X">Xiyu Yan</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Q">Qiang Zhao</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+X">Xinning Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10830v2-abstract-short" style="display: inline;"> Photomultiplier tubes (PMTs) are essential in xenon detectors like PandaX, LZ, and XENON experiments for dark matter searches and neutrino properties measurement. To minimize PMT-induced backgrounds, stringent requirements on PMT radioactivity are crucial. A novel 2-inch low-background R12699 PMT has been developed through a collaboration between the PandaX team and Hamamatsu Photonics K.K. corpor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10830v2-abstract-full').style.display = 'inline'; document.getElementById('2412.10830v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10830v2-abstract-full" style="display: none;"> Photomultiplier tubes (PMTs) are essential in xenon detectors like PandaX, LZ, and XENON experiments for dark matter searches and neutrino properties measurement. To minimize PMT-induced backgrounds, stringent requirements on PMT radioactivity are crucial. A novel 2-inch low-background R12699 PMT has been developed through a collaboration between the PandaX team and Hamamatsu Photonics K.K. corporation. Radioactivity measurements conducted with a high-purity germanium detector show levels of approximately 0.08 mBq/PMT for $\rm^{60}Co$ and 0.06~mBq/PMT for the $\rm^{238}U$ late chain, achieving a 15-fold reduction compared to R11410 PMT used in PandaX-4T. The radon emanation rate is below 3.2 $\rm 渭$Bq/PMT (@90\% confidence level), while the surface $\rm^{210}Po$ activity is less than 18.4 $渭$Bq/cm$^2$. The electrical performance of these PMTs at cryogenic temperature was evaluated. With an optimized readout base, the gain was enhanced by 30\%, achieving an average gain of $4.23 \times 10^6$ at -1000~V and -100~$^{\circ}$C. The dark count rate averaged 2.5~Hz per channel. Compactness, low radioactivity, and robust electrical performance in the cryogenic temperature make the R12699 PMT ideal for next-generation liquid xenon detectors and other rare event searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10830v2-abstract-full').style.display = 'none'; document.getElementById('2412.10830v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10724">arXiv:2412.10724</a> <span> [<a href="https://arxiv.org/pdf/2412.10724">pdf</a>, <a href="https://arxiv.org/format/2412.10724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Testing the Fifth Force on Lepton Spins through Neutrino Oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fang%2C+R">Rundong Fang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Ji-Heng Guo</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jia Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10724v1-abstract-short" style="display: inline;"> We investigate a fifth force mediated by a light vector boson that couples to lepton spins, characterized by axial-vector couplings to leptons and vector couplings to nucleons. This interaction generates a potential proportional to the inner product of the lepton spin vector and the nucleon-lepton relative velocity vector, a feature extensively explored with precision spin sensors. Employing weak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10724v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10724v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10724v1-abstract-full" style="display: none;"> We investigate a fifth force mediated by a light vector boson that couples to lepton spins, characterized by axial-vector couplings to leptons and vector couplings to nucleons. This interaction generates a potential proportional to the inner product of the lepton spin vector and the nucleon-lepton relative velocity vector, a feature extensively explored with precision spin sensors. Employing weak symmetry, we show that left-handed charged lepton couplings naturally extend to left-handed neutrinos, enabling this fifth force to influence neutrino oscillations. For electron-nucleon couplings, we find that solar and reactor neutrino experiments provide comparable constraints to those from spin sensors and surpass them in the short-range fifth force region. For muon-nucleon couplings, neutrino oscillation experiments exclude the fifth force as a viable explanation for the muon $ g-2 $ anomaly in the context of a vector mediator, tightening the bounds by two orders of magnitude in coupling strength by solar and atmospheric neutrino data. Our results highlight the critical role of neutrino oscillations in probing fifth forces acting across all three generations of lepton spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10724v1-abstract-full').style.display = 'none'; document.getElementById('2412.10724v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10637">arXiv:2412.10637</a> <span> [<a href="https://arxiv.org/pdf/2412.10637">pdf</a>, <a href="https://arxiv.org/format/2412.10637">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of cavitation bubbles inside a small corner </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinzhao Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianyou Wang</a>, <a href="/search/physics?searchtype=author&query=Che%2C+Z">Zhizhao Che</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10637v1-abstract-short" style="display: inline;"> Cavitation is a ubiquitous phenomenon in nature and bubble dynamics in open spaces have been widely studied, but the effects of the wall on the dynamics of cavitation bubbles in confined spaces are still unclear. Here, the dynamics of cavitation bubbles in small corners is studied experimentally, focusing on the interaction of the bubble with the wall. High-speed photography is used to visualize t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10637v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10637v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10637v1-abstract-full" style="display: none;"> Cavitation is a ubiquitous phenomenon in nature and bubble dynamics in open spaces have been widely studied, but the effects of the wall on the dynamics of cavitation bubbles in confined spaces are still unclear. Here, the dynamics of cavitation bubbles in small corners is studied experimentally, focusing on the interaction of the bubble with the wall. High-speed photography is used to visualize the temporal development of laser-induced cavitation bubbles in a small corner formed by two rigid walls, and the bubble spreading on the corner walls and the bubble migration is analyzed via digital image processing. We identify three distinct modes of bubble collapse, namely, collapse dominated by annular shrinkage, collapse dominated by wall attraction, and collapse governed by a combination of both annular shrinkage and wall attraction. The distribution of different collapse modes at different opening angles of the corner is also analyzed. The displacement and shrinkage of different parts of the bubble surface, as well as the direction and amount of bubble migration, are determined. The results show that the asymmetric structure of the corner leads to asymmetric bubble dynamics, including asymmetric bubble expansion, spreading, contraction, and migration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10637v1-abstract-full').style.display = 'none'; document.getElementById('2412.10637v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08899">arXiv:2412.08899</a> <span> [<a href="https://arxiv.org/pdf/2412.08899">pdf</a>, <a href="https://arxiv.org/format/2412.08899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> M\textbf{\textit{O}}enes family materials with Dirac nodal loop, strong light-harvesting ability, long carrier lifetime and conduction-band valley spin splitting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yan%2C+L">Luo Yan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Junchi Liu</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yu-Feng Ding</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jiafang Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+B">Bao-Tian Wang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Liujiang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08899v1-abstract-short" style="display: inline;"> M\textbf{\textit{O}}enes, as emerging MXenes-like materials, also have wide structural spaces and various chemical and physical properties. Using first-principles and high-throughput calculations, we have built an online library (\url{https://moenes.online}) for M\textbf{\textit{O}}enes family materials from basic summaries, mechanical, phonon and electron aspects, based on their structural divers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08899v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08899v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08899v1-abstract-full" style="display: none;"> M\textbf{\textit{O}}enes, as emerging MXenes-like materials, also have wide structural spaces and various chemical and physical properties. Using first-principles and high-throughput calculations, we have built an online library (\url{https://moenes.online}) for M\textbf{\textit{O}}enes family materials from basic summaries, mechanical, phonon and electron aspects, based on their structural diversities from 2 stoichiometric ratios, 11 early-transition metals, 4 typical functional groups and 4 oxygen group elements. Compared to MXenes, the main advantage of M\textbf{\textit{O}}enes at present is that we have discovered 14 direct semiconductors, which greatly increases the number of direct semiconductors and the range of band gap values in the MXenes family. Among them, 1T-Ti$_{2}$\textit{\textbf{O}}F$_{2}$ (\textbf{\textit{O}}=O, S, Se) reveal tunable semiconducting features and strong light-harvesting ability ranging from the ultraviolet to the near-infrared region. Besides, 2H- and 1T-Y$_{2}$TeO$_{2}$ have a long carrier lifetime of 2.38 and 1.24 ns, originating from their spatially distinguished VBM and CBM states and long dephasing times. In addition, 2H-Zr$_{2}$O(O)$_{2}$ shows spin-valley coupling phenomena, and the valley spin splitting is apparent and robust in its conduction band ($\sim$85 meV). Therefore, M\textbf{\textit{O}}enes have a wealth of physical properties, not limited to those reported here, and future studies of these emerging M\textbf{\textit{O}}enes are appealing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08899v1-abstract-full').style.display = 'none'; document.getElementById('2412.08899v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06704">arXiv:2412.06704</a> <span> [<a href="https://arxiv.org/pdf/2412.06704">pdf</a>, <a href="https://arxiv.org/format/2412.06704">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Dynamical Phase Transitions in Non-equilibrium Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiazhen Liu</a>, <a href="/search/physics?searchtype=author&query=Aden%2C+N+M">Nathaniel M. Aden</a>, <a href="/search/physics?searchtype=author&query=Sarker%2C+D">Debasish Sarker</a>, <a href="/search/physics?searchtype=author&query=Song%2C+C">Chaoming Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06704v1-abstract-short" style="display: inline;"> Dynamical phase transitions (DPTs) characterize critical changes in system behavior occurring at finite times, providing a lens to study nonequilibrium phenomena beyond conventional equilibrium physics. While extensively studied in quantum systems, DPTs have remained largely unexplored in classical settings. Recent experiments on complex systems, from social networks to financial markets, have rev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06704v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06704v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06704v1-abstract-full" style="display: none;"> Dynamical phase transitions (DPTs) characterize critical changes in system behavior occurring at finite times, providing a lens to study nonequilibrium phenomena beyond conventional equilibrium physics. While extensively studied in quantum systems, DPTs have remained largely unexplored in classical settings. Recent experiments on complex systems, from social networks to financial markets, have revealed abrupt dynamical changes analogous to quantum DPTs, motivating the search for a theoretical understanding. Here, we present a minimal model for nonequilibrium networks, demonstrating that nonlinear interactions among network edges naturally give rise to DPTs. Specifically, we show that network degree diverges at a finite critical time, following a universal hyperbolic scaling, consistent with empirical observations. Our analytical results predict that key network properties, including degree distributions and clustering coefficients, exhibit critical scaling as criticality approaches. These findings establish a theoretical foundation for understanding emergent nonequilibrium criticality across diverse complex systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06704v1-abstract-full').style.display = 'none'; document.getElementById('2412.06704v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05403">arXiv:2412.05403</a> <span> [<a href="https://arxiv.org/pdf/2412.05403">pdf</a>, <a href="https://arxiv.org/format/2412.05403">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Knowledge-Based Deep Learning for Time-Efficient Inverse Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+S">Shuhao Ma</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Y">Yu Cao</a>, <a href="/search/physics?searchtype=author&query=Robertson%2C+I+D">Ian D. Robertson</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+C">Chaoyang Shi</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jindong Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhi-Qiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05403v1-abstract-short" style="display: inline;"> Accurate understanding of muscle activation and muscle forces plays an essential role in neuro-rehabilitation and musculoskeletal disorder treatments. Computational musculoskeletal modeling has been widely used as a powerful non-invasive tool to estimate them through inverse dynamics using static optimization, but the inherent computational complexity results in time-consuming analysis. In this pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05403v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05403v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05403v1-abstract-full" style="display: none;"> Accurate understanding of muscle activation and muscle forces plays an essential role in neuro-rehabilitation and musculoskeletal disorder treatments. Computational musculoskeletal modeling has been widely used as a powerful non-invasive tool to estimate them through inverse dynamics using static optimization, but the inherent computational complexity results in time-consuming analysis. In this paper, we propose a knowledge-based deep learning framework for time-efficient inverse dynamic analysis, which can predict muscle activation and muscle forces from joint kinematic data directly while not requiring any label information during model training. The Bidirectional Gated Recurrent Unit (BiGRU) neural network is selected as the backbone of our model due to its proficient handling of time-series data. Prior physical knowledge from forward dynamics and pre-selected inverse dynamics based physiological criteria are integrated into the loss function to guide the training of neural networks. Experimental validations on two datasets, including one benchmark upper limb movement dataset and one self-collected lower limb movement dataset from six healthy subjects, are performed. The experimental results have shown that the selected BiGRU architecture outperforms other neural network models when trained using our specifically designed loss function, which illustrates the effectiveness and robustness of the proposed framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05403v1-abstract-full').style.display = 'none'; document.getElementById('2412.05403v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, Journal paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04507">arXiv:2412.04507</a> <span> [<a href="https://arxiv.org/pdf/2412.04507">pdf</a>, <a href="https://arxiv.org/format/2412.04507">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> YSO implantation detector for beta-delayed neutron spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Singh%2C+M">M. Singh</a>, <a href="/search/physics?searchtype=author&query=Yokoyama%2C+R">R. Yokoyama</a>, <a href="/search/physics?searchtype=author&query=Grzywacz%2C+R">R. Grzywacz</a>, <a href="/search/physics?searchtype=author&query=Keeler%2C+A">A. Keeler</a>, <a href="/search/physics?searchtype=author&query=King%2C+T+T">T. T. King</a>, <a href="/search/physics?searchtype=author&query=Agramunt%2C+J">J. Agramunt</a>, <a href="/search/physics?searchtype=author&query=Brewer%2C+N+T">N. T. Brewer</a>, <a href="/search/physics?searchtype=author&query=Go%2C+S">S. Go</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&query=Nishimura%2C+S">S. Nishimura</a>, <a href="/search/physics?searchtype=author&query=Parkhurst%2C+P">P. Parkhurst</a>, <a href="/search/physics?searchtype=author&query=Phong%2C+V+H">V. H. Phong</a>, <a href="/search/physics?searchtype=author&query=Rajabali%2C+M+M">M. M. Rajabali</a>, <a href="/search/physics?searchtype=author&query=Rasco%2C+B+C">B. C. Rasco</a>, <a href="/search/physics?searchtype=author&query=Rykaczewski%2C+K+P">K. P. Rykaczewski</a>, <a href="/search/physics?searchtype=author&query=Stracener%2C+D+W">D. W. Stracener</a>, <a href="/search/physics?searchtype=author&query=Tolosa-Delgado%2C+A">A. Tolosa-Delgado</a>, <a href="/search/physics?searchtype=author&query=Vaigneur%2C+K">K. Vaigneur</a>, <a href="/search/physics?searchtype=author&query=Wolinska-Cichocka%2C+M">M. Wolinska-Cichocka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04507v1-abstract-short" style="display: inline;"> A segmented-scintillator-based implantation detector was developed to study the energy distribution of beta-delayed neutrons emitted from exotic isotopes. The detector comprises a 34 $\times$ 34 YSO scintillator coupled to an 8 $\times$ 8 Position-Sensitive Photo-Multiplier Tube (PSPMT) via a tapered light guide. The detector was used at RIBF, RIKEN, for time-of-flight-based neutron spectroscopy m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04507v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04507v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04507v1-abstract-full" style="display: none;"> A segmented-scintillator-based implantation detector was developed to study the energy distribution of beta-delayed neutrons emitted from exotic isotopes. The detector comprises a 34 $\times$ 34 YSO scintillator coupled to an 8 $\times$ 8 Position-Sensitive Photo-Multiplier Tube (PSPMT) via a tapered light guide. The detector was used at RIBF, RIKEN, for time-of-flight-based neutron spectroscopy measurement in the $^{78}$Ni region. The detector provides the position and timing resolution necessary for ion-beta correlations and ToF measurements. The detector provides a high $\sim$ 80 $\%$ beta-detection efficiency and a sub-nanosecond timing resolution. This contribution discusses the details of the design, operation, implementation, and analysis developed to obtain neutron time-of-flight spectrum and the analysis methods in the context of neutron-rich nuclei in the $^{78}$Ni region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04507v1-abstract-full').style.display = 'none'; document.getElementById('2412.04507v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03916">arXiv:2412.03916</a> <span> [<a href="https://arxiv.org/pdf/2412.03916">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Terahertz channel power and BER performance in rain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yuheng Song</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+J">Jiayuan Cui</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guohao Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jiabiao Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Mingxia Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiacheng Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Da Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peian Li</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+C">Chen Yao</a>, <a href="/search/physics?searchtype=author&query=Song%2C+F">Fei Song</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+H">Hong Liang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jianjun Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03916v2-abstract-short" style="display: inline;"> Terahertz (THz) communications have emerged as a promising technology for 6G networks due to their potential for achieving terabit-per-second data rates. However, the impact of rainfall on THz channel characteristics remains incompletely understood, particularly regarding power attenuation mechanisms and bit error rate (BER) performance. This article presents a systematic measurement-based and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03916v2-abstract-full').style.display = 'inline'; document.getElementById('2412.03916v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03916v2-abstract-full" style="display: none;"> Terahertz (THz) communications have emerged as a promising technology for 6G networks due to their potential for achieving terabit-per-second data rates. However, the impact of rainfall on THz channel characteristics remains incompletely understood, particularly regarding power attenuation mechanisms and bit error rate (BER) performance. This article presents a systematic measurement-based and theoretical investigation of line-of-sight (LoS) THz channel behavior under rainfall conditions, methodically examining both power attenuation mechanisms and bit error rate (BER) performance. Our experimental campaign, conducted at frequencies of 220-230 GHz over a 54-meter outdoor channel, is complemented by analytical frameworks incorporating ITU-R and Mie scattering models. The study reveals that while rain induces significant power attenuation, multipath scattering effects remain minimal, with Rician K-factors maintaining high values. Notably, we observe substantial variations in power loss under constant rain rates, attributed to dynamic changes in raindrop size distribution. Comparative analysis demonstrates superior BER performance of Quadrature Amplitude Modulation (QAM) in rainfall conditions, while revealing increased environmental sensitivity at higher frequencies. These findings underscore the necessity for adaptive modulation schemes and strategic frequency planning in future THz communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03916v2-abstract-full').style.display = 'none'; document.getElementById('2412.03916v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted in Optics Express</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01018">arXiv:2412.01018</a> <span> [<a href="https://arxiv.org/pdf/2412.01018">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Vertical Emission of Blue Light from a Symmetry Breaking Plasmonic Nanocavity-Emitter System Supporting Bound States in the Continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yongqi Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiayi Liu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiang Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+X">Xiumei Yin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yangzhe Guo</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+N">Nan Gao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Z">Zhiguang Sun</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+H">Haonan Wei</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoran Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wenxin Wang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+B">Bin Dong</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Y">Yurui Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01018v1-abstract-short" style="display: inline;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01018v1-abstract-full" style="display: none;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum emitters, due to the strong intrinsic Ohmic losses of metals. Here, we propose and realize a 蟽h symmetry-breaking plasmonic honeycomb nanocavities (PHC) that support quasi-BIC resonance modes with high-Q factors. Our anodic oxidation-engineered strategy breaks out-of-plane symmetry while preserving in-plane symmetry, enabling the PHC to exhibit collective plasmonic lattice resonances (PLR) couplings and achieve Q-factors exceeding 106. Experimentally, we couple perovskite quantum dots (PQDs) to the PHC, demonstrating effective tuning of their emission properties and beam quality in the blue spectral region, achieving a 32-fold emission enhancement by suppress Ohmic loss and the life time of quantum emitters, simultaneously realize vertical emission in the 2.556 - 2.638 eV region, with a far-field hexagonal beam shape and a full width at half maximum of 12.6 degree under optimal coupling conditions. Furthermore, we demonstrate topological band inversion characterized by Zak phase transitions by continuously tuning the system parameters, confirming that the PHC supports topologically non-trivial q-BIC due to PLR coupling. The PHC presents itself as a promising next-generation, high-brightness nanoscale light source matrix, which can be directly scaled up to cover a wide wavelength range from UV to IR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'none'; document.getElementById('2412.01018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00130">arXiv:2412.00130</a> <span> [<a href="https://arxiv.org/pdf/2412.00130">pdf</a>, <a href="https://arxiv.org/format/2412.00130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Invisible Hydrodynamic Tweezers Based on Near-Zero Index Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yuhong Zhou</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fubao Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinrong Liu</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+G">Gaole Dai</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zixin Li</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xuzhi Zhou</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+P">Peng Jin</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jiping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00130v2-abstract-short" style="display: inline;"> Manipulating particles, such as cells and tissues, in a flowing liquid environment is crucial for life science research. Traditional contactless tweezers, although widely used for single-cell manipulation, face several challenges. These include potential damage to the target, restriction to static environments, complex excitation setups, and interference outside the target area. To address these i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00130v2-abstract-full').style.display = 'inline'; document.getElementById('2412.00130v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00130v2-abstract-full" style="display: none;"> Manipulating particles, such as cells and tissues, in a flowing liquid environment is crucial for life science research. Traditional contactless tweezers, although widely used for single-cell manipulation, face several challenges. These include potential damage to the target, restriction to static environments, complex excitation setups, and interference outside the target area. To address these issues, we propose an ``invisible hydrodynamic tweezer'' utilizing near-zero index hydrodynamic metamaterials. This metamaterial-based device creates an equipotential resistance zone, effectively immobilizing particles in flowing fluids without disturbing the external flow field and without causing damage to the targets. Unlike traditional active control methods, our tweezer passively captures and releases particles by adjusting the flow channel, eliminating the need for continuous and stable excitation devices, thereby significantly simplifying the setup complexity. Furthermore, these tweezers can be modularly designed in different sizes to flexibly accommodate various application needs. Simulations and experimental validations demonstrated the non-interfering, stable trapping, and precise movement capabilities of these tweezers. This proposed technique holds significant potential for applications in biomedicine, microfluidics, and environmental monitoring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00130v2-abstract-full').style.display = 'none'; document.getElementById('2412.00130v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17266">arXiv:2411.17266</a> <span> [<a href="https://arxiv.org/pdf/2411.17266">pdf</a>, <a href="https://arxiv.org/format/2411.17266">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.140601">10.1103/PhysRevLett.133.140601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polarization and Orbital Angular Momentum Encoded Quantum Toffoli Gate Enabled by Diffractive Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qianke Wang</a>, <a href="/search/physics?searchtype=author&query=Lyu%2C+D">Dawei Lyu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17266v1-abstract-short" style="display: inline;"> Controlled quantum gates play a crucial role in enabling quantum universal operations by facilitating interactions between qubits. Direct implementation of three-qubit gates simplifies the design of quantum circuits, thereby being conducive to performing complex quantum algorithms. Here, we propose and present an experimental demonstration of a quantum Toffoli gate fully exploiting the polarizatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17266v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17266v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17266v1-abstract-full" style="display: none;"> Controlled quantum gates play a crucial role in enabling quantum universal operations by facilitating interactions between qubits. Direct implementation of three-qubit gates simplifies the design of quantum circuits, thereby being conducive to performing complex quantum algorithms. Here, we propose and present an experimental demonstration of a quantum Toffoli gate fully exploiting the polarization and orbital angular momentum of a single photon. The Toffoli gate is implemented using the polarized diffractive neural networks scheme, achieving a mean truth table visibility of $97.27\pm0.20\%$. We characterize the gate's performance through quantum state tomography on 216 different input states and quantum process tomography, which yields a process fidelity of $94.05\pm 0.02\%$. Our method offers a novel approach for realizing the Toffoli gate without requiring exponential optical elements while maintaining extensibility to the implementation of other three-qubit gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17266v1-abstract-full').style.display = 'none'; document.getElementById('2411.17266v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16410">arXiv:2411.16410</a> <span> [<a href="https://arxiv.org/pdf/2411.16410">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-023-01336-7">10.1038/s41377-023-01336-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrahigh-fidelity spatial mode quantum gates in high-dimensional space by diffractive deep neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qianke Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Lyu%2C+D">Dawei Lyu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16410v1-abstract-short" style="display: inline;"> While the spatial mode of photons is widely used in quantum cryptography, its potential for quantum computation remains largely unexplored. Here, we showcase the use of the multi-dimensional spatial mode of photons to construct a series of high-dimensional quantum gates, achieved through the use of diffractive deep neural networks (D2NNs). Notably, our gates demonstrate high fidelity of up to 99.6… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16410v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16410v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16410v1-abstract-full" style="display: none;"> While the spatial mode of photons is widely used in quantum cryptography, its potential for quantum computation remains largely unexplored. Here, we showcase the use of the multi-dimensional spatial mode of photons to construct a series of high-dimensional quantum gates, achieved through the use of diffractive deep neural networks (D2NNs). Notably, our gates demonstrate high fidelity of up to 99.6(2)%, as characterized by quantum process tomography. Our experimental implementation of these gates involves a programmable array of phase layers in a compact and scalable device, capable of performing complex operations or even quantum circuits. We also demonstrate the efficacy of the D2NN gates by successfully implementing the Deutsch algorithm and propose an intelligent deployment protocol that involves self-configuration and self-optimization. Moreover, we conduct a comparative analysis of the D2NN gate's performance to the wave-front matching approach. Overall, our work opens a door for designing specific quantum gates using deep learning, with the potential for reliable execution of quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16410v1-abstract-full').style.display = 'none'; document.getElementById('2411.16410v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Light Sci. Appl. 13 (2024) 10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16247">arXiv:2411.16247</a> <span> [<a href="https://arxiv.org/pdf/2411.16247">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Dosimetry study of high repetition rate MeV electron beam from a continuous-wave photocathode gun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jianhan Sun</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+J">Jianfeng Lv</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+S">Shang Tian</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Juntao Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zihao Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">Hang Xu</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+L">Lin Lin</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+S">Senlin Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16247v1-abstract-short" style="display: inline;"> DC-SRF-II gun, a high-brightness continuous-wave photocathode gun, has greater potential in electron beam irradiation applications. This paper presents the in-vacuum and in-air irradiation dosimetry study of the high repetition rate electron beam from the DC-SRF-II gun with both Monte Carlo simulations and experiments. Especially, high-dose uniform irradiations with flexible and accurate tuning of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16247v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16247v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16247v1-abstract-full" style="display: none;"> DC-SRF-II gun, a high-brightness continuous-wave photocathode gun, has greater potential in electron beam irradiation applications. This paper presents the in-vacuum and in-air irradiation dosimetry study of the high repetition rate electron beam from the DC-SRF-II gun with both Monte Carlo simulations and experiments. Especially, high-dose uniform irradiations with flexible and accurate tuning of dose rate across orders of magnitude are demonstrated. Good stability and repeatability of the doses are also shown. The ultra-wide tuning range and precise control of irradiation time and dose rate are expected to pave the way for innovative applications across a wide range of fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16247v1-abstract-full').style.display = 'none'; document.getElementById('2411.16247v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13747">arXiv:2411.13747</a> <span> [<a href="https://arxiv.org/pdf/2411.13747">pdf</a>, <a href="https://arxiv.org/ps/2411.13747">ps</a>, <a href="https://arxiv.org/format/2411.13747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Interfacial Water Polarization: A Critical Force for Graphene-based Electrochemical Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peiyao Wang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+G">Gengping Jiang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Y">Yuan Yan</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+L">Longbing Qu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+X">Xiaoyang Du</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Dan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J+Z">Jefferson Zhe Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13747v1-abstract-short" style="display: inline;"> Water molecules predominantly act as solvents in electrochemical systems and are often modeled as a passive dielectric medium. In this work, we use molecular dynamics simulations and theoretical analysis to revisit this conventional view. We reveal that the interfacial polarized water overscreens the electrostatic potential between ions and the surface beyond being a passive dielectric medium. Thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13747v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13747v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13747v1-abstract-full" style="display: none;"> Water molecules predominantly act as solvents in electrochemical systems and are often modeled as a passive dielectric medium. In this work, we use molecular dynamics simulations and theoretical analysis to revisit this conventional view. We reveal that the interfacial polarized water overscreens the electrostatic potential between ions and the surface beyond being a passive dielectric medium. This overscreening enables the interfacial water to dominate the electric potential spatial distribution, inverting the electrode surface potential polarity and dominating the capacitance. A model is then developed to incorporate this critical interfacial water polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13747v1-abstract-full').style.display = 'none'; document.getElementById('2411.13747v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13331">arXiv:2411.13331</a> <span> [<a href="https://arxiv.org/pdf/2411.13331">pdf</a>, <a href="https://arxiv.org/format/2411.13331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Versatile photonic frequency synthetic dimensions using a single Mach-Zehnder-interferometer-assisted device on thin-film lithium niobate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhao-An Wang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+X">Xiao-Dong Zeng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi-Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+J">Jia-Ming Ren</a>, <a href="/search/physics?searchtype=author&query=Ao%2C+C">Chun Ao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhi-Peng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+N">Nai-Jie Guo</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+L">Lin-Ke Xie</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun-You Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Hang Ma</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Ya-Qi Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shuang Wang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian-Shun Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13331v1-abstract-short" style="display: inline;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13331v1-abstract-full" style="display: none;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupling resonators with fixed beam splitters is a common experimental approach, it often lacks tunability and limits coupling between adjacent lattices to sites occupying the same frequency domain positions. Here, on the contrary, we conceive the resonator arrays connected by electro-optic tunable Mach-Zehnder interferometers in our configuration instead of fixed beam splitters. By applying bias voltage and RF modulation on the interferometers, our design extends such coupling to long-range scenario and allows for continuous tuning on each coupling strength and synthetic effective magnetic flux. Therefore, our design enriches controllable coupling types that are essential for building programmable lattice networks and significantly increases versatility. As the example, we experimentally fabricate a two-resonator prototype on the TFLN platform, and on this single chip we realize well-known models including tight-binding lattices, topological Hall ladder and Creutz ladder. We directly observe the band structures in the quasi-momentum space and important phenomena such as spin-momentum locking and the Aharonov-Bohm cage effect. These results demonstrate the potential for convenient simulations of more complex models in our configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'none'; document.getElementById('2411.13331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>