CINXE.COM
Philippe Yves Picard - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Philippe Yves Picard - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="PaZYF63t4X28Ah/qrETnzhBQWUf2+gE3vJ83axPsJ8/EQr+I7XNOkb1lcALskZtuBhYaStMoD9lEFCKmnpyeJA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="philippe yves picard" /> <meta name="description" content="Philippe Y PicardPh.D Physique-Math茅matique, Plasma" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'f465d56e6b7bca0080e7479a0e72520e9aeacec3'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277488846,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732745127000); window.Aedu.timeDifference = new Date().getTime() - 1732745127000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7734a8b54dedb8fefe75ef934203d0ef41d066c1c5cfa6ba2a13dd7ec8bce449.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-9eaa790b1139e2d88eb4ac931dcbc6d7cea4403a763db5cc5a695dd2eaa34151.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/PhilippeYvesPicard" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-533ab26e53b28997c1064a839643ef40d866d497c665279ed26b743aacb62042.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard","photo":"https://0.academia-photos.com/13315004/3741824/4383174/s65_philippe_yves.picard.jpg_oh_265253a6c287b8a113066fac7ffce561_oe_5430df51___gda___1410576349_e58d9f73d3f251ddc0674371f0a81ce8","has_photo":true,"is_analytics_public":false,"interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":126829,"name":"Symmetry","url":"https://www.academia.edu/Documents/in/Symmetry"},{"id":370584,"name":"Exact Solutions","url":"https://www.academia.edu/Documents/in/Exact_Solutions"},{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics"},{"id":69704,"name":"Nuclear Fusion","url":"https://www.academia.edu/Documents/in/Nuclear_Fusion"},{"id":18038,"name":"MHD (Fluid Dynamics)","url":"https://www.academia.edu/Documents/in/MHD_Fluid_Dynamics_"},{"id":57004,"name":"study of MHD on flow problems","url":"https://www.academia.edu/Documents/in/study_of_MHD_on_flow_problems"},{"id":514,"name":"Nuclear Physics","url":"https://www.academia.edu/Documents/in/Nuclear_Physics"},{"id":64703,"name":"Symmetry analysis of differential equations","url":"https://www.academia.edu/Documents/in/Symmetry_analysis_of_differential_equations"},{"id":956755,"name":"Point Group Symmetry","url":"https://www.academia.edu/Documents/in/Point_Group_Symmetry"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"},{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":39018,"name":"Lie Groups","url":"https://www.academia.edu/Documents/in/Lie_Groups"},{"id":200112,"name":"Lie point symmetries of Differential Equations","url":"https://www.academia.edu/Documents/in/Lie_point_symmetries_of_Differential_Equations"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":3727253,"link":"https://www.facebook.com/philippeyves.picard","name":"Facebook","link_domain":"www.facebook.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.facebook.com"},{"id":3727335,"link":"http://picardp.ca","name":"Homepage","link_domain":"picardp.ca","icon":"//www.google.com/s2/u/0/favicons?domain=picardp.ca"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/PhilippeYvesPicard","location":"/PhilippeYvesPicard","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/PhilippeYvesPicard","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-18f14faa-6244-4501-8cbc-13e222dc9ce0"></div> <div id="ProfileCheckPaperUpdate-react-component-18f14faa-6244-4501-8cbc-13e222dc9ce0"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Philippe Yves Picard" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/13315004/3741824/4383174/s200_philippe_yves.picard.jpg_oh_265253a6c287b8a113066fac7ffce561_oe_5430df51___gda___1410576349_e58d9f73d3f251ddc0674371f0a81ce8" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Philippe Yves Picard</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Philippe Yves" data-follow-user-id="13315004" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="13315004"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">18</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">9</p></div></a><a href="/PhilippeYvesPicard/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">7</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Philippe Y PicardPh.D Physique-Math茅matique, Plasma<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="13315004">View All (17)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13315004" href="https://www.academia.edu/Documents/in/Physics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/PhilippeYvesPicard","location":"/PhilippeYvesPicard","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/PhilippeYvesPicard","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Physics"]}" data-trace="false" data-dom-id="Pill-react-component-25b5160c-3acc-47b8-b72c-5ec461fcac5b"></div> <div id="Pill-react-component-25b5160c-3acc-47b8-b72c-5ec461fcac5b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13315004" href="https://www.academia.edu/Documents/in/Mathematical_Physics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mathematical Physics"]}" data-trace="false" data-dom-id="Pill-react-component-888a1be5-00ad-4f70-a5a8-244e1e873b8d"></div> <div id="Pill-react-component-888a1be5-00ad-4f70-a5a8-244e1e873b8d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13315004" href="https://www.academia.edu/Documents/in/Applied_Mathematics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Applied Mathematics"]}" data-trace="false" data-dom-id="Pill-react-component-59b4fcb3-bf4a-45b0-8982-43da6e9251e8"></div> <div id="Pill-react-component-59b4fcb3-bf4a-45b0-8982-43da6e9251e8"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13315004" href="https://www.academia.edu/Documents/in/Symmetry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Symmetry"]}" data-trace="false" data-dom-id="Pill-react-component-099db1af-be8e-4f12-8dde-1ae9513b5971"></div> <div id="Pill-react-component-099db1af-be8e-4f12-8dde-1ae9513b5971"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13315004" href="https://www.academia.edu/Documents/in/Exact_Solutions"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Exact Solutions"]}" data-trace="false" data-dom-id="Pill-react-component-3e84b563-fa26-4ad8-85ba-9757f27e5407"></div> <div id="Pill-react-component-3e84b563-fa26-4ad8-85ba-9757f27e5407"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Philippe Yves Picard</h3></div><div class="js-work-strip profile--work_container" data-work-id="98856465"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98856465/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_magnetohydrodynamique"><img alt="Research paper thumbnail of Sur les solutions invariantes et conditionnellement invariantes des equations de la magnetohydrodynamique" class="work-thumbnail" src="https://attachments.academia-assets.com/100095127/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98856465/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_magnetohydrodynamique">Sur les solutions invariantes et conditionnellement invariantes des equations de la magnetohydrodynamique</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="800d7cafe65804f72efae78d70e04ce7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100095127,"asset_id":98856465,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100095127/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98856465"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98856465"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98856465; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98856465]").text(description); $(".js-view-count[data-work-id=98856465]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98856465; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98856465']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98856465, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "800d7cafe65804f72efae78d70e04ce7" } } $('.js-work-strip[data-work-id=98856465]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98856465,"title":"Sur les solutions invariantes et conditionnellement invariantes des equations de la magnetohydrodynamique","translated_title":"","metadata":{"grobid_abstract":"This thesis is devoted to the resolution of the equations of magnetohydrody namics in (3+ 1) dimensions with two different approaches based on the methods of conditional and classical symrnetry reductions. In Chapter 1, we briefty introduce the equations that constitute magnetohy drodynamics. The fiow under consideration is assumed to be ideal, nonstationary and isentropic for a compressible conductive ftuid placed in a magnetic field J. The electrical conductivity of the fluid is assumed to be infinitely large. In Chapter 2, we present in Section 1 a version of the conditional symmetry method for resolving quasilinear hyperbolic systems of partial differential equations of the first order. The rank-one solutions (also called simple waves solutions) obtained by this method are expressed in terms of Riemann invariants. In Section 2, we use it to obtain simple waves of MHD system equations. Section 3 generalizes the above construction to the case of many simple waves described in terms of Riemann invariants. In Section 4 we present some double waves solutions admitted by the MHD equations. Finally, in Section 5 we impose some differential constraints in order to get some new classes of solutions. In Chapter 3, we have applied the symmetry reduction method to the MHD system of equations. The symmetry algebra and its classification by conju gacy classes of r-dimensional subalgebras (i r 4) was already known [17]. We restrict our study to the three dirnensional galilean similitude subalgebras that give systems of ordinary differential equation ftom which we obtain G-invariant solutions. Finally, Chapter 4 contains conclusions of the obtained resuits and possible futures developments.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"grobid_abstract_attachment_id":100095127},"translated_abstract":null,"internal_url":"https://www.academia.edu/98856465/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_magnetohydrodynamique","translated_internal_url":"","created_at":"2023-03-20T10:26:37.788-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100095127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095127/thumbnails/1.jpg","file_name":"Picard_Philippe_2003_these.pdf","download_url":"https://www.academia.edu/attachments/100095127/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sur_les_solutions_invariantes_et_conditi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095127/Picard_Philippe_2003_these-libre.pdf?1679334018=\u0026response-content-disposition=attachment%3B+filename%3DSur_les_solutions_invariantes_et_conditi.pdf\u0026Expires=1732748726\u0026Signature=LSO65BRer8N8TCUvxrOSzs5Xu3~4bhbuDwMCNQcB9vkIj5UNwCPLki8OSDuOmxPcjOesKCgGV3n66SBBihsc~eQgGP8VACJNMWTmflLCnvLwt~bhNO8Y~Q23ZTtvHz8fTnRWyYOvZHklgFTt-ACrfYsK0L2tCvSzb76293qqlhLxIynd6XiZTlFg43kgHxycPHT6L-vG0t6IWDGWah5ktTQ6njikJ0889~f3CeZkrz2rk2TQsK6SCI9Wwhb9BRqAHHHcLvZZptkuHOKMzXTIA0aDApche1zgufoYroABoZWZNbLi3wo-wZrVdVFJ94iYbbImbJDzQN4UdbcFdR3o5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_magnetohydrodynamique","translated_slug":"","page_count":186,"language":"fr","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":100095127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095127/thumbnails/1.jpg","file_name":"Picard_Philippe_2003_these.pdf","download_url":"https://www.academia.edu/attachments/100095127/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sur_les_solutions_invariantes_et_conditi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095127/Picard_Philippe_2003_these-libre.pdf?1679334018=\u0026response-content-disposition=attachment%3B+filename%3DSur_les_solutions_invariantes_et_conditi.pdf\u0026Expires=1732748726\u0026Signature=LSO65BRer8N8TCUvxrOSzs5Xu3~4bhbuDwMCNQcB9vkIj5UNwCPLki8OSDuOmxPcjOesKCgGV3n66SBBihsc~eQgGP8VACJNMWTmflLCnvLwt~bhNO8Y~Q23ZTtvHz8fTnRWyYOvZHklgFTt-ACrfYsK0L2tCvSzb76293qqlhLxIynd6XiZTlFg43kgHxycPHT6L-vG0t6IWDGWah5ktTQ6njikJ0889~f3CeZkrz2rk2TQsK6SCI9Wwhb9BRqAHHHcLvZZptkuHOKMzXTIA0aDApche1zgufoYroABoZWZNbLi3wo-wZrVdVFJ94iYbbImbJDzQN4UdbcFdR3o5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"},{"id":194130,"name":"PARTIAL DIFFERENTIAL EQUATION","url":"https://www.academia.edu/Documents/in/PARTIAL_DIFFERENTIAL_EQUATION"},{"id":489882,"name":"MHD","url":"https://www.academia.edu/Documents/in/MHD"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":1202042,"name":"Electric Conductivity","url":"https://www.academia.edu/Documents/in/Electric_Conductivity"},{"id":1546577,"name":"System of Equation Linear Equations","url":"https://www.academia.edu/Documents/in/System_of_Equation_Linear_Equations"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"}],"urls":[{"id":29951679,"url":"http://adsabs.harvard.edu/abs/2003phdt.......170p"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98856464"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98856464/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions"><img alt="Research paper thumbnail of Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3+ 1) Dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/100095126/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98856464/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions">Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3+ 1) Dimensions</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="604f8c6982a3f985d28779d91fde4d86" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100095126,"asset_id":98856464,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100095126/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98856464"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98856464"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98856464; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98856464]").text(description); $(".js-view-count[data-work-id=98856464]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98856464; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98856464']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98856464, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "604f8c6982a3f985d28779d91fde4d86" } } $('.js-work-strip[data-work-id=98856464]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98856464,"title":"Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3+ 1) Dimensions","translated_title":"","metadata":{"grobid_abstract":"The symmetry reduction method is used to obtain invariant and conditionally invariant solutions of magnetohydrodynamic equations in (3+1) dimensions. Detail description of the procedure for constructing such solutions is presented. These solutions represent simple and double Riemann waves.","grobid_abstract_attachment_id":100095126},"translated_abstract":null,"internal_url":"https://www.academia.edu/98856464/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions","translated_internal_url":"","created_at":"2023-03-20T10:26:37.672-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100095126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095126/thumbnails/1.jpg","file_name":"grundland.pdf","download_url":"https://www.academia.edu/attachments/100095126/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Invariant_and_Conditionally_Invariant_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095126/grundland-libre.pdf?1679333972=\u0026response-content-disposition=attachment%3B+filename%3DInvariant_and_Conditionally_Invariant_So.pdf\u0026Expires=1732748726\u0026Signature=HlAqj44gw0T5EMcc3covQqCehLYK3fvdFB2T4WDMm~HjwzQ4KqJrY8NIVc40avueY5FR5gUiFV1kUHlU4PynWH4lEPcgxMtYn1b16YNWeFtFBYuzrawZLvcCL14dGUkVBSBiv6inPmhV5MDeQ-tM5G1j3I6U0iqRt2yPBnLUk7eZFUzkxDczjSbWS1iP~miz02jY8Ah9AkjrQv6NW9ZMPQMan2ujJCk~hz5qIfwc6-igW5NXyAJw4IyawN5~Ec2jgyO~DpC1ggYihciS-lGMLDENdFqLsJUijrIE8BRyHiiM5DEcwVlYVgx-kC3~dG2dyftZFFKsCcUnlCI3fLqhNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":100095126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095126/thumbnails/1.jpg","file_name":"grundland.pdf","download_url":"https://www.academia.edu/attachments/100095126/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Invariant_and_Conditionally_Invariant_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095126/grundland-libre.pdf?1679333972=\u0026response-content-disposition=attachment%3B+filename%3DInvariant_and_Conditionally_Invariant_So.pdf\u0026Expires=1732748726\u0026Signature=HlAqj44gw0T5EMcc3covQqCehLYK3fvdFB2T4WDMm~HjwzQ4KqJrY8NIVc40avueY5FR5gUiFV1kUHlU4PynWH4lEPcgxMtYn1b16YNWeFtFBYuzrawZLvcCL14dGUkVBSBiv6inPmhV5MDeQ-tM5G1j3I6U0iqRt2yPBnLUk7eZFUzkxDczjSbWS1iP~miz02jY8Ah9AkjrQv6NW9ZMPQMan2ujJCk~hz5qIfwc6-igW5NXyAJw4IyawN5~Ec2jgyO~DpC1ggYihciS-lGMLDENdFqLsJUijrIE8BRyHiiM5DEcwVlYVgx-kC3~dG2dyftZFFKsCcUnlCI3fLqhNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98856463"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98856463/Some_spherical_solutions_of_ideal_magnetohydrodynamic_equations"><img alt="Research paper thumbnail of Some spherical solutions of ideal magnetohydrodynamic equations" class="work-thumbnail" src="https://attachments.academia-assets.com/100095136/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98856463/Some_spherical_solutions_of_ideal_magnetohydrodynamic_equations">Some spherical solutions of ideal magnetohydrodynamic equations</a></div><div class="wp-workCard_item"><span>Journal of Nonlinear Mathematical Physics</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41f4142383487285377a8e491e7e78e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100095136,"asset_id":98856463,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100095136/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98856463"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98856463"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98856463; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98856463]").text(description); $(".js-view-count[data-work-id=98856463]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98856463; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98856463']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98856463, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41f4142383487285377a8e491e7e78e7" } } $('.js-work-strip[data-work-id=98856463]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98856463,"title":"Some spherical solutions of ideal magnetohydrodynamic equations","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"Some spherical solutions of the ideal magnetohydrodynamic (MHD) equations are obtained from the method of the weak transversality method (WTM), which is based on Lie group theory. This analytical method makes use of the symmetry group of the MHD system in situations where the \"classical\" Lie approach of symmetry reductions is no longer applicable. Also, a brief physical interpretation of these solutions is given.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Journal of Nonlinear Mathematical Physics","grobid_abstract_attachment_id":100095136},"translated_abstract":null,"internal_url":"https://www.academia.edu/98856463/Some_spherical_solutions_of_ideal_magnetohydrodynamic_equations","translated_internal_url":"","created_at":"2023-03-20T10:26:37.498-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100095136,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095136/thumbnails/1.jpg","file_name":"144art6.pdf","download_url":"https://www.academia.edu/attachments/100095136/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_spherical_solutions_of_ideal_magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095136/144art6-libre.pdf?1679333977=\u0026response-content-disposition=attachment%3B+filename%3DSome_spherical_solutions_of_ideal_magnet.pdf\u0026Expires=1732748726\u0026Signature=L5xNGnswgECFsg4YG4IvPi1R9UrOww9QwlXbE1yDob0-8JZ7bKagxuGTyx8vkg8gHpDvXkBvsBinPnmLP93kfitUvjczQkOPCdfueyEA7wFYjndweNosq3OWHTn2BbjEUELycqDWt4zGQkFCnM4gbLPVQrzp0ulQd6QExEe6vgTzl7a4-JINZyMtsILOUs600T6V62IFzEeG81qmEOIj-IJ2BVXW9OWIvEqOIoxgYRQAVpN2pU6b1quNd-gPMZtmQeVU9BSSTyo4a5J8pfMNwBnWl1hkuJmq0agsA6iXmhOcv9PFpm0b8e~8aEUSa7SGY9LNPl5hvFswTmS6OjRSXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":100095128,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095128/thumbnails/1.jpg","file_name":"1531.pdf","download_url":"https://www.academia.edu/attachments/100095128/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_spherical_solutions_of_ideal_magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095128/1531-libre.pdf?1679333975=\u0026response-content-disposition=attachment%3B+filename%3DSome_spherical_solutions_of_ideal_magnet.pdf\u0026Expires=1732748726\u0026Signature=Y3g6mZB-L~PnUv5WaJezFdUKI9DJOEx3qSAdzSP3FEjKZbKMPX245XIMrtifINrRkqg56lwbGR9KGsTugiYvsYiM2KJ9m4AkvmaqDwLd2YnjG5yHccw~1KlGO9cltjABHDCBdtoinwLVgLqVo9z1xPySjs-~iJ9m3P~-q~34D0najnA--vUudG9~jyJWlBTTxuHezRsDzbAA0ETyqL8cJaf472jhnZEUdLJeYNhUrOY2iMYNWlGQU7bJ~7Fkv03FxL2r1kTKI0KtU~J06tcLnBPbyW4kDWhm8TcaTLruBVWGrtHrs-qTNue-DsAy1cVwW5~DzdFtObUJvp03nLGw3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_spherical_solutions_of_ideal_magnetohydrodynamic_equations","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":100095136,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095136/thumbnails/1.jpg","file_name":"144art6.pdf","download_url":"https://www.academia.edu/attachments/100095136/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_spherical_solutions_of_ideal_magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095136/144art6-libre.pdf?1679333977=\u0026response-content-disposition=attachment%3B+filename%3DSome_spherical_solutions_of_ideal_magnet.pdf\u0026Expires=1732748726\u0026Signature=L5xNGnswgECFsg4YG4IvPi1R9UrOww9QwlXbE1yDob0-8JZ7bKagxuGTyx8vkg8gHpDvXkBvsBinPnmLP93kfitUvjczQkOPCdfueyEA7wFYjndweNosq3OWHTn2BbjEUELycqDWt4zGQkFCnM4gbLPVQrzp0ulQd6QExEe6vgTzl7a4-JINZyMtsILOUs600T6V62IFzEeG81qmEOIj-IJ2BVXW9OWIvEqOIoxgYRQAVpN2pU6b1quNd-gPMZtmQeVU9BSSTyo4a5J8pfMNwBnWl1hkuJmq0agsA6iXmhOcv9PFpm0b8e~8aEUSa7SGY9LNPl5hvFswTmS6OjRSXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":100095128,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095128/thumbnails/1.jpg","file_name":"1531.pdf","download_url":"https://www.academia.edu/attachments/100095128/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_spherical_solutions_of_ideal_magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095128/1531-libre.pdf?1679333975=\u0026response-content-disposition=attachment%3B+filename%3DSome_spherical_solutions_of_ideal_magnet.pdf\u0026Expires=1732748726\u0026Signature=Y3g6mZB-L~PnUv5WaJezFdUKI9DJOEx3qSAdzSP3FEjKZbKMPX245XIMrtifINrRkqg56lwbGR9KGsTugiYvsYiM2KJ9m4AkvmaqDwLd2YnjG5yHccw~1KlGO9cltjABHDCBdtoinwLVgLqVo9z1xPySjs-~iJ9m3P~-q~34D0najnA--vUudG9~jyJWlBTTxuHezRsDzbAA0ETyqL8cJaf472jhnZEUdLJeYNhUrOY2iMYNWlGQU7bJ~7Fkv03FxL2r1kTKI0KtU~J06tcLnBPbyW4kDWhm8TcaTLruBVWGrtHrs-qTNue-DsAy1cVwW5~DzdFtObUJvp03nLGw3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":612122,"name":"Transversality","url":"https://www.academia.edu/Documents/in/Transversality"},{"id":2451605,"name":"Ideal Ethics","url":"https://www.academia.edu/Documents/in/Ideal_Ethics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98856436"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98856436/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves"><img alt="Research paper thumbnail of On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves" class="work-thumbnail" src="https://attachments.academia-assets.com/100095053/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98856436/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves">On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves</a></div><div class="wp-workCard_item"><span>Journal of Nonlinear Mathematical Physics</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0e2778c0639303a1cf3b77c0ea55f917" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100095053,"asset_id":98856436,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100095053/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98856436"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98856436"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98856436; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98856436]").text(description); $(".js-view-count[data-work-id=98856436]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98856436; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98856436']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98856436, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0e2778c0639303a1cf3b77c0ea55f917" } } $('.js-work-strip[data-work-id=98856436]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98856436,"title":"On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"We present a version of the conditional symmetry method in order to obtain multiple wave solutions expressed in terms of Riemann invariants. We construct an abelian distribution of vector fields which are symmetries of the original system of PDEs subjected to certain first order differential constraints. The usefulness of our approach is demonstrated on simple and double wave solutions of MHD equations. The paper also contains a comparison of the conditional symmetry method with the generalized method of characteristics.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Journal of Nonlinear Mathematical Physics","grobid_abstract_attachment_id":100095053},"translated_abstract":null,"internal_url":"https://www.academia.edu/98856436/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves","translated_internal_url":"","created_at":"2023-03-20T10:26:06.325-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100095053,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095053/thumbnails/1.jpg","file_name":"0306005v4.pdf","download_url":"https://www.academia.edu/attachments/100095053/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Conditionally_Invariant_Solutions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095053/0306005v4-libre.pdf?1679333991=\u0026response-content-disposition=attachment%3B+filename%3DOn_Conditionally_Invariant_Solutions_of.pdf\u0026Expires=1732748726\u0026Signature=cZDJxTFMGzShsJ-XISsc3MK1gc1gDwB3gbStkrMKQdAamvrdRo7~YA9ogGpam0I~V04Qzx2dyM1RiMD0j5NtnPpiGKKBDXWNFVUTF9YeuD~9coTBzcDY5iViasGO6pRdM0~svHeUXC-Jxs95t6F9Q4iVYZgMZKRRA1rfIbaxBLdr~x5ZaFYMdSFprPwrtVu0wW3kNMeKsNWLbXcxnMwhW2IGIslvwsqI4~1a8qSmgtjv6NlPz9pNat769y4K8f~sKqeOCYepMqk9vR15lfnDDplbZK~l9izN-myro3v33Je3KDIVKD50y~SExIegOm4KAYueGNEoY04PtMU4gOCPjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves","translated_slug":"","page_count":33,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":100095053,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095053/thumbnails/1.jpg","file_name":"0306005v4.pdf","download_url":"https://www.academia.edu/attachments/100095053/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Conditionally_Invariant_Solutions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095053/0306005v4-libre.pdf?1679333991=\u0026response-content-disposition=attachment%3B+filename%3DOn_Conditionally_Invariant_Solutions_of.pdf\u0026Expires=1732748726\u0026Signature=cZDJxTFMGzShsJ-XISsc3MK1gc1gDwB3gbStkrMKQdAamvrdRo7~YA9ogGpam0I~V04Qzx2dyM1RiMD0j5NtnPpiGKKBDXWNFVUTF9YeuD~9coTBzcDY5iViasGO6pRdM0~svHeUXC-Jxs95t6F9Q4iVYZgMZKRRA1rfIbaxBLdr~x5ZaFYMdSFprPwrtVu0wW3kNMeKsNWLbXcxnMwhW2IGIslvwsqI4~1a8qSmgtjv6NlPz9pNat769y4K8f~sKqeOCYepMqk9vR15lfnDDplbZK~l9izN-myro3v33Je3KDIVKD50y~SExIegOm4KAYueGNEoY04PtMU4gOCPjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75541613"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75541613/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method"><img alt="Research paper thumbnail of Some exact solutions of the ideal MHD equations through symmetry reduction method" class="work-thumbnail" src="https://attachments.academia-assets.com/83268901/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75541613/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method">Some exact solutions of the ideal MHD equations through symmetry reduction method</a></div><div class="wp-workCard_item"><span>Journal of Mathematical Analysis and Applications</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a7abdda2edea51ec025091e1f019843b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83268901,"asset_id":75541613,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83268901/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75541613"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75541613"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75541613; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75541613]").text(description); $(".js-view-count[data-work-id=75541613]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75541613; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75541613']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75541613, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a7abdda2edea51ec025091e1f019843b" } } $('.js-work-strip[data-work-id=75541613]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75541613,"title":"Some exact solutions of the ideal MHD equations through symmetry reduction method","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Journal of Mathematical Analysis and Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/75541613/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method","translated_internal_url":"","created_at":"2022-04-05T08:41:05.275-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83268901,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83268901/thumbnails/1.jpg","file_name":"82712114.pdf","download_url":"https://www.academia.edu/attachments/83268901/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_exact_solutions_of_the_ideal_MHD_eq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83268901/82712114-libre.pdf?1649173433=\u0026response-content-disposition=attachment%3B+filename%3DSome_exact_solutions_of_the_ideal_MHD_eq.pdf\u0026Expires=1732748726\u0026Signature=NZF4RULsi24nRAlEr~zrc1N~GPZrELjaIJx0vCfLC9N102AVapg8ghSw7n-EOefwNaLlHlIVz90Lzclzy6QUyFn-mBopA1vAdHZTvojCWYMXBL4B6p8O3EFeKLAEguM3gqqLUWAO3oxjWDua-v8jeAGMK--gx7Mhcvvbbm-VJ4oTHHYjm8Opp5Xm-t7f9bbDKjH~E0dXUbIBlosZFdNTnYoJlIdYtpZRG87MpBIKFWG9G02C2hBKRFsfOYmfxUbQKFSjvvmdBMJ2FBkLl-unNh-NAoj9QqL7hBm3NoQ94tOBvMwMcENvf8B3z6vHGWIp8gwZB-XV213vf3b4wTJG5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":83268901,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83268901/thumbnails/1.jpg","file_name":"82712114.pdf","download_url":"https://www.academia.edu/attachments/83268901/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_exact_solutions_of_the_ideal_MHD_eq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83268901/82712114-libre.pdf?1649173433=\u0026response-content-disposition=attachment%3B+filename%3DSome_exact_solutions_of_the_ideal_MHD_eq.pdf\u0026Expires=1732748726\u0026Signature=NZF4RULsi24nRAlEr~zrc1N~GPZrELjaIJx0vCfLC9N102AVapg8ghSw7n-EOefwNaLlHlIVz90Lzclzy6QUyFn-mBopA1vAdHZTvojCWYMXBL4B6p8O3EFeKLAEguM3gqqLUWAO3oxjWDua-v8jeAGMK--gx7Mhcvvbbm-VJ4oTHHYjm8Opp5Xm-t7f9bbDKjH~E0dXUbIBlosZFdNTnYoJlIdYtpZRG87MpBIKFWG9G02C2hBKRFsfOYmfxUbQKFSjvvmdBMJ2FBkLl-unNh-NAoj9QqL7hBm3NoQ94tOBvMwMcENvf8B3z6vHGWIp8gwZB-XV213vf3b4wTJG5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":336,"name":"Lie Algebra","url":"https://www.academia.edu/Documents/in/Lie_Algebra"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":11723,"name":"Group Theory","url":"https://www.academia.edu/Documents/in/Group_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":126829,"name":"Symmetry","url":"https://www.academia.edu/Documents/in/Symmetry"},{"id":263097,"name":"Application","url":"https://www.academia.edu/Documents/in/Application"},{"id":370584,"name":"Exact Solutions","url":"https://www.academia.edu/Documents/in/Exact_Solutions"},{"id":410032,"name":"Invariant","url":"https://www.academia.edu/Documents/in/Invariant"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":518958,"name":"Mathematical Analysis and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis_and_Applications"},{"id":603952,"name":"Lie Group","url":"https://www.academia.edu/Documents/in/Lie_Group"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"},{"id":1868639,"name":"Exact solution methods","url":"https://www.academia.edu/Documents/in/Exact_solution_methods"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70236838"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70236838/Reduction_and_Exact_Solutions_of_the_Ideal_Magnetohydrodynamic_Equations"><img alt="Research paper thumbnail of Reduction and Exact Solutions of the Ideal Magnetohydrodynamic Equations" class="work-thumbnail" src="https://attachments.academia-assets.com/80067534/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70236838/Reduction_and_Exact_Solutions_of_the_Ideal_Magnetohydrodynamic_Equations">Reduction and Exact Solutions of the Ideal Magnetohydrodynamic Equations</a></div><div class="wp-workCard_item"><span>arXiv: Mathematical Physics</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal mag...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal magnetohydrodynamic equations in (3+1) dimensions. These equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras ($1\leq r\leq 4$) was already known. So we restrict our study to the three-dimensional Galilean-similitude subalgebras that give systems composed of ordinary differential equations. We present here several examples of these solutions. Some of these exact solutions show interesting physical interpretations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f8e7b0058d9b56318305506d80b4b313" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":80067534,"asset_id":70236838,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/80067534/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70236838"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70236838"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70236838; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70236838]").text(description); $(".js-view-count[data-work-id=70236838]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70236838; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70236838']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70236838, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f8e7b0058d9b56318305506d80b4b313" } } $('.js-work-strip[data-work-id=70236838]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70236838,"title":"Reduction and Exact Solutions of the Ideal Magnetohydrodynamic Equations","translated_title":"","metadata":{"abstract":"In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal magnetohydrodynamic equations in (3+1) dimensions. These equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras ($1\\leq r\\leq 4$) was already known. So we restrict our study to the three-dimensional Galilean-similitude subalgebras that give systems composed of ordinary differential equations. We present here several examples of these solutions. Some of these exact solutions show interesting physical interpretations.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"arXiv: Mathematical Physics"},"translated_abstract":"In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal magnetohydrodynamic equations in (3+1) dimensions. These equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras ($1\\leq r\\leq 4$) was already known. So we restrict our study to the three-dimensional Galilean-similitude subalgebras that give systems composed of ordinary differential equations. We present here several examples of these solutions. Some of these exact solutions show interesting physical interpretations.","internal_url":"https://www.academia.edu/70236838/Reduction_and_Exact_Solutions_of_the_Ideal_Magnetohydrodynamic_Equations","translated_internal_url":"","created_at":"2022-02-01T15:43:24.022-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80067534,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80067534/thumbnails/1.jpg","file_name":"0509048v2.pdf","download_url":"https://www.academia.edu/attachments/80067534/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reduction_and_Exact_Solutions_of_the_Ide.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80067534/0509048v2-libre.pdf?1643760970=\u0026response-content-disposition=attachment%3B+filename%3DReduction_and_Exact_Solutions_of_the_Ide.pdf\u0026Expires=1732748726\u0026Signature=RsNB33em-4qpIQ7NATn0p1FJyDhx8i5UsqUmYdtoAHfCDHSwKZZ0Yw~zyjVNdpTPtMg0tpkd2CtFPpNtJ9ba9K2zvQ3mHxbwJGZB6AdZ0fgzdmIEf4So25bYF6GtkbtzL7bCtBOoGG9AGTzkujQ-pBXkNCO5OG6sumuARqYvAwpQU0wSUFSS1R23cRy9aWYirBULv1P95DNYNMEmY-cAH9RowQTGO7e-Sz0cwRhupOrClreL~hK00lGd7Dw2SFvyxlGh5B~H7kiFpF9xLc2dbvliFl3RgSHb8e0MIrfTWHMrWahH3tHezI9t8vAz7Di2vj2lq8uEkI9XQiHArozz3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reduction_and_Exact_Solutions_of_the_Ideal_Magnetohydrodynamic_Equations","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":80067534,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80067534/thumbnails/1.jpg","file_name":"0509048v2.pdf","download_url":"https://www.academia.edu/attachments/80067534/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reduction_and_Exact_Solutions_of_the_Ide.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80067534/0509048v2-libre.pdf?1643760970=\u0026response-content-disposition=attachment%3B+filename%3DReduction_and_Exact_Solutions_of_the_Ide.pdf\u0026Expires=1732748726\u0026Signature=RsNB33em-4qpIQ7NATn0p1FJyDhx8i5UsqUmYdtoAHfCDHSwKZZ0Yw~zyjVNdpTPtMg0tpkd2CtFPpNtJ9ba9K2zvQ3mHxbwJGZB6AdZ0fgzdmIEf4So25bYF6GtkbtzL7bCtBOoGG9AGTzkujQ-pBXkNCO5OG6sumuARqYvAwpQU0wSUFSS1R23cRy9aWYirBULv1P95DNYNMEmY-cAH9RowQTGO7e-Sz0cwRhupOrClreL~hK00lGd7Dw2SFvyxlGh5B~H7kiFpF9xLc2dbvliFl3RgSHb8e0MIrfTWHMrWahH3tHezI9t8vAz7Di2vj2lq8uEkI9XQiHArozz3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":336,"name":"Lie Algebra","url":"https://www.academia.edu/Documents/in/Lie_Algebra"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"}],"urls":[{"id":17194286,"url":"http://arxiv.org/pdf/math-ph/0509048v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7569508"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7569508/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_MHD_Ph_D_"><img alt="Research paper thumbnail of Sur les solutions invariantes et conditionnellement invariantes des equations de la MHD (Ph.D)" class="work-thumbnail" src="https://attachments.academia-assets.com/34127777/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7569508/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_MHD_Ph_D_">Sur les solutions invariantes et conditionnellement invariantes des equations de la MHD (Ph.D)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b1e2d7c1e8bde1fdef6da84067500d63" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34127777,"asset_id":7569508,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34127777/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7569508"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7569508"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7569508; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7569508]").text(description); $(".js-view-count[data-work-id=7569508]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7569508; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7569508']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7569508, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b1e2d7c1e8bde1fdef6da84067500d63" } } $('.js-work-strip[data-work-id=7569508]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7569508,"title":"Sur les solutions invariantes et conditionnellement invariantes des equations de la MHD (Ph.D)","translated_title":"","metadata":{"grobid_abstract":"This thesis is devoted to the resolution of the equations of magnetohydrodynamics in (3 + 1) dimensions with two different approaches based on the methods of conditional and classical symmetry reductions.","grobid_abstract_attachment_id":34127777},"translated_abstract":null,"internal_url":"https://www.academia.edu/7569508/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_MHD_Ph_D_","translated_internal_url":"","created_at":"2014-07-05T22:21:40.309-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34127777,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127777/thumbnails/1.jpg","file_name":"ph.d.pdf","download_url":"https://www.academia.edu/attachments/34127777/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sur_les_solutions_invariantes_et_conditi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127777/ph.d-libre.pdf?1404623985=\u0026response-content-disposition=attachment%3B+filename%3DSur_les_solutions_invariantes_et_conditi.pdf\u0026Expires=1732748726\u0026Signature=CkIkmQQvCesFLpOa2sVB36oif05~dLNPHqhJAmm~v3uYIwrveZ6s~bICRRu7Kyz8U~7Zyezsy8SbQxyZBqlIvA6oxzPbaWlCFGqaybDb8Hwk-HPQFJDKkfiL14l3QoCschCrkdA1VoxadV6u~ffS5u1pp-TLuahWV~BxIBu9y6pd1Q8iJjBiFUvrGS49pGxaywdFh3Y5h1Oari2PcjBy4RFqx9BYX9bXsC-JV2Cj3sdRJreX6NL~zyH0RUBOVtmBXpDHpPGBGBnbLct0y6E53Y0BYwe-wTxmxE5YYaEyRPOHw1HqRzfXzz57GLN3VDFTbOKj6nEHqWOUbYTbr1WcAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_MHD_Ph_D_","translated_slug":"","page_count":187,"language":"fr","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34127777,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127777/thumbnails/1.jpg","file_name":"ph.d.pdf","download_url":"https://www.academia.edu/attachments/34127777/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sur_les_solutions_invariantes_et_conditi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127777/ph.d-libre.pdf?1404623985=\u0026response-content-disposition=attachment%3B+filename%3DSur_les_solutions_invariantes_et_conditi.pdf\u0026Expires=1732748726\u0026Signature=CkIkmQQvCesFLpOa2sVB36oif05~dLNPHqhJAmm~v3uYIwrveZ6s~bICRRu7Kyz8U~7Zyezsy8SbQxyZBqlIvA6oxzPbaWlCFGqaybDb8Hwk-HPQFJDKkfiL14l3QoCschCrkdA1VoxadV6u~ffS5u1pp-TLuahWV~BxIBu9y6pd1Q8iJjBiFUvrGS49pGxaywdFh3Y5h1Oari2PcjBy4RFqx9BYX9bXsC-JV2Cj3sdRJreX6NL~zyH0RUBOVtmBXpDHpPGBGBnbLct0y6E53Y0BYwe-wTxmxE5YYaEyRPOHw1HqRzfXzz57GLN3VDFTbOKj6nEHqWOUbYTbr1WcAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics"},{"id":39018,"name":"Lie Groups","url":"https://www.academia.edu/Documents/in/Lie_Groups"},{"id":200112,"name":"Lie point symmetries of Differential Equations","url":"https://www.academia.edu/Documents/in/Lie_point_symmetries_of_Differential_Equations"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7569500"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7569500/Chauffage_et_Entrainement_du_Courant_dans_un_Tokamak_par_les_Ondes_HF"><img alt="Research paper thumbnail of Chauffage et Entrainement du Courant dans un Tokamak par les Ondes HF" class="work-thumbnail" src="https://attachments.academia-assets.com/34127766/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7569500/Chauffage_et_Entrainement_du_Courant_dans_un_Tokamak_par_les_Ondes_HF">Chauffage et Entrainement du Courant dans un Tokamak par les Ondes HF</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="30c1d88e82293940315c2db11b351499" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34127766,"asset_id":7569500,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34127766/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7569500"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7569500"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7569500; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7569500]").text(description); $(".js-view-count[data-work-id=7569500]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7569500; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7569500']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7569500, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "30c1d88e82293940315c2db11b351499" } } $('.js-work-strip[data-work-id=7569500]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7569500,"title":"Chauffage et Entrainement du Courant dans un Tokamak par les Ondes HF","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/7569500/Chauffage_et_Entrainement_du_Courant_dans_un_Tokamak_par_les_Ondes_HF","translated_internal_url":"","created_at":"2014-07-05T22:18:58.332-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34127766,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127766/thumbnails/1.jpg","file_name":"preplasma.pdf","download_url":"https://www.academia.edu/attachments/34127766/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chauffage_et_Entrainement_du_Courant_dan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127766/preplasma-libre.pdf?1404623858=\u0026response-content-disposition=attachment%3B+filename%3DChauffage_et_Entrainement_du_Courant_dan.pdf\u0026Expires=1732690822\u0026Signature=Cz3hBkaxPdPCgdN1fgWvvT1DkHAByjzeF0x01G3AKyapouBolCsxmnGnyV7dbeuslxDBID2gCAHHhNS0pgltze-7E5uzVhoNT-WxB1ARu3-osvW-m8vkCJHSXLtChJLlSX4ic2wLTLpS59EYFKGsUFtLQTdlbK2EfndXmv3-34JdDU4N4XK~E02A~xakNNsuNN8pmbt5e0YefKmENcVB~NyENHFC~jIEZRv4F4gq4nZwfAN897DTGvDVZEHsUvZDaE1eywsI3sf~ekjpk1TxVAE65TqHYr6rjAa0M~-MuP5BfQ8bZgF7Kt4W9YrSCFwjJgO4pjSz96bmTr6DUKcR5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chauffage_et_Entrainement_du_Courant_dans_un_Tokamak_par_les_Ondes_HF","translated_slug":"","page_count":38,"language":"fr","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34127766,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127766/thumbnails/1.jpg","file_name":"preplasma.pdf","download_url":"https://www.academia.edu/attachments/34127766/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chauffage_et_Entrainement_du_Courant_dan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127766/preplasma-libre.pdf?1404623858=\u0026response-content-disposition=attachment%3B+filename%3DChauffage_et_Entrainement_du_Courant_dan.pdf\u0026Expires=1732690822\u0026Signature=Cz3hBkaxPdPCgdN1fgWvvT1DkHAByjzeF0x01G3AKyapouBolCsxmnGnyV7dbeuslxDBID2gCAHHhNS0pgltze-7E5uzVhoNT-WxB1ARu3-osvW-m8vkCJHSXLtChJLlSX4ic2wLTLpS59EYFKGsUFtLQTdlbK2EfndXmv3-34JdDU4N4XK~E02A~xakNNsuNN8pmbt5e0YefKmENcVB~NyENHFC~jIEZRv4F4gq4nZwfAN897DTGvDVZEHsUvZDaE1eywsI3sf~ekjpk1TxVAE65TqHYr6rjAa0M~-MuP5BfQ8bZgF7Kt4W9YrSCFwjJgO4pjSz96bmTr6DUKcR5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7569480"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7569480/La_Photodesintegration_du_Deuton_a_theta_0_M_Sc_"><img alt="Research paper thumbnail of La Photodesintegration du Deuton a \theta=0 (M.Sc)" class="work-thumbnail" src="https://attachments.academia-assets.com/34127758/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7569480/La_Photodesintegration_du_Deuton_a_theta_0_M_Sc_">La Photodesintegration du Deuton a \theta=0 (M.Sc)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a3ff798b6b3f5f2e4f2f353fa8ecccd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34127758,"asset_id":7569480,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34127758/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7569480"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7569480"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7569480; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7569480]").text(description); $(".js-view-count[data-work-id=7569480]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7569480; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7569480']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7569480, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a3ff798b6b3f5f2e4f2f353fa8ecccd" } } $('.js-work-strip[data-work-id=7569480]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7569480,"title":"La Photodesintegration du Deuton a \\theta=0 (M.Sc)","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/7569480/La_Photodesintegration_du_Deuton_a_theta_0_M_Sc_","translated_internal_url":"","created_at":"2014-07-05T22:16:59.641-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34127758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127758/thumbnails/1.jpg","file_name":"master.pdf","download_url":"https://www.academia.edu/attachments/34127758/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"La_Photodesintegration_du_Deuton_a_theta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127758/master-libre.pdf?1404623744=\u0026response-content-disposition=attachment%3B+filename%3DLa_Photodesintegration_du_Deuton_a_theta.pdf\u0026Expires=1732690822\u0026Signature=Wsoh5Mts1We1kL8x9IXkfT7KsfUoUMmAsSCAzYoAgcOT8ApWUhXrfadJ2~~CQSBuT87xHzPbxxmv84uHtCRGMahR4QdihcvLuIOwHAyUSQ3Bg0X-EfCJEBz1FN~hv~7C2NJZ6-QbrBPVHAHqxACr6n1tw3L4NC3~vQ9XIU2RGu4QtA5Mq4AHNX3kM48EEDoRRr3I0JdLCBp7jPstMDWPc6kZGd5iiyiswOuJGC5Wy~jZPhFKwcIw9dVvUQqSOCvvmSif9UGe6F998-zDerVCrxCd6UDMUXefhYMF1iQQWpYRgdXgEbgSsb5olpWufy9-AovpHFPODuioI2uONBQuXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"La_Photodesintegration_du_Deuton_a_theta_0_M_Sc_","translated_slug":"","page_count":81,"language":"fr","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34127758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127758/thumbnails/1.jpg","file_name":"master.pdf","download_url":"https://www.academia.edu/attachments/34127758/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"La_Photodesintegration_du_Deuton_a_theta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127758/master-libre.pdf?1404623744=\u0026response-content-disposition=attachment%3B+filename%3DLa_Photodesintegration_du_Deuton_a_theta.pdf\u0026Expires=1732690822\u0026Signature=Wsoh5Mts1We1kL8x9IXkfT7KsfUoUMmAsSCAzYoAgcOT8ApWUhXrfadJ2~~CQSBuT87xHzPbxxmv84uHtCRGMahR4QdihcvLuIOwHAyUSQ3Bg0X-EfCJEBz1FN~hv~7C2NJZ6-QbrBPVHAHqxACr6n1tw3L4NC3~vQ9XIU2RGu4QtA5Mq4AHNX3kM48EEDoRRr3I0JdLCBp7jPstMDWPc6kZGd5iiyiswOuJGC5Wy~jZPhFKwcIw9dVvUQqSOCvvmSif9UGe6F998-zDerVCrxCd6UDMUXefhYMF1iQQWpYRgdXgEbgSsb5olpWufy9-AovpHFPODuioI2uONBQuXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":514,"name":"Nuclear Physics","url":"https://www.academia.edu/Documents/in/Nuclear_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7515703"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7515703/Some_Spherical_Solutions_of_Ideal_Magnetohydrodynamic_Equations"><img alt="Research paper thumbnail of Some Spherical Solutions of Ideal Magnetohydrodynamic Equations" class="work-thumbnail" src="https://attachments.academia-assets.com/34084279/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7515703/Some_Spherical_Solutions_of_Ideal_Magnetohydrodynamic_Equations">Some Spherical Solutions of Ideal Magnetohydrodynamic Equations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bd8ef3ebede353dcf5d1ef9272590693" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34084279,"asset_id":7515703,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34084279/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7515703"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7515703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7515703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7515703]").text(description); $(".js-view-count[data-work-id=7515703]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7515703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7515703']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7515703, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bd8ef3ebede353dcf5d1ef9272590693" } } $('.js-work-strip[data-work-id=7515703]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7515703,"title":"Some Spherical Solutions of Ideal Magnetohydrodynamic Equations","translated_title":"","metadata":{"grobid_abstract":"Some spherical solutions of the ideal magnetohydrodynamic (MHD) equations are obtained from the method of the weak transversality method (WTM), which is based on Lie group theory. This analytical method makes use of the symmetry group of the MHD system in situations where the \"classical\" Lie approach of symmetry reductions is no longer applicable. Also, a brief physical interpretation of these solutions is given.","grobid_abstract_attachment_id":34084279},"translated_abstract":null,"internal_url":"https://www.academia.edu/7515703/Some_Spherical_Solutions_of_Ideal_Magnetohydrodynamic_Equations","translated_internal_url":"","created_at":"2014-06-30T22:07:21.098-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34084279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084279/thumbnails/1.jpg","file_name":"2.pdf","download_url":"https://www.academia.edu/attachments/34084279/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_Spherical_Solutions_of_Ideal_Magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084279/2-libre.pdf?1404191236=\u0026response-content-disposition=attachment%3B+filename%3DSome_Spherical_Solutions_of_Ideal_Magnet.pdf\u0026Expires=1732748726\u0026Signature=COUV9cqZMnukQCqmgIPt9LWRXQadRqRVXLycK8AeoyN1LQ2HpsxuQKlGO6acboMgLHu5h9kq~u8F-JdrW2QTRR0ZtIM3~GtygK7nmb9Iyo2Xdz2BsMf5FqD-KVTaPfMhGeEgs782k6iE3n4wt63JRq75iW1fqjLQeLUsmrzqIqxi8f~5QHgwpzVZKiLTdhk9Y3j2snLjETFTXey75zkct~dqR4TNUWtLkgwje2T1EZLR~d7bbMx2TnHylz2rlRpPk6f65NSG2oDCjNOw6pHWkD-QfJ5zAJbaEYC25WU2ku99idWfF6Ml-FjiiXGKBLIKO45w~wKpR7~-GDQzi6KPhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_Spherical_Solutions_of_Ideal_Magnetohydrodynamic_Equations","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34084279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084279/thumbnails/1.jpg","file_name":"2.pdf","download_url":"https://www.academia.edu/attachments/34084279/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_Spherical_Solutions_of_Ideal_Magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084279/2-libre.pdf?1404191236=\u0026response-content-disposition=attachment%3B+filename%3DSome_Spherical_Solutions_of_Ideal_Magnet.pdf\u0026Expires=1732748726\u0026Signature=COUV9cqZMnukQCqmgIPt9LWRXQadRqRVXLycK8AeoyN1LQ2HpsxuQKlGO6acboMgLHu5h9kq~u8F-JdrW2QTRR0ZtIM3~GtygK7nmb9Iyo2Xdz2BsMf5FqD-KVTaPfMhGeEgs782k6iE3n4wt63JRq75iW1fqjLQeLUsmrzqIqxi8f~5QHgwpzVZKiLTdhk9Y3j2snLjETFTXey75zkct~dqR4TNUWtLkgwje2T1EZLR~d7bbMx2TnHylz2rlRpPk6f65NSG2oDCjNOw6pHWkD-QfJ5zAJbaEYC25WU2ku99idWfF6Ml-FjiiXGKBLIKO45w~wKpR7~-GDQzi6KPhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7515702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7515702/Some_Partially_Invariant_Solutions_of_Ideal_Magnetohydrodynamic_Equations"><img alt="Research paper thumbnail of Some Partially Invariant Solutions of Ideal Magnetohydrodynamic Equations" class="work-thumbnail" src="https://attachments.academia-assets.com/34084280/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7515702/Some_Partially_Invariant_Solutions_of_Ideal_Magnetohydrodynamic_Equations">Some Partially Invariant Solutions of Ideal Magnetohydrodynamic Equations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8b935695799eab84c739de435fb2588" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34084280,"asset_id":7515702,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34084280/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7515702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7515702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7515702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7515702]").text(description); $(".js-view-count[data-work-id=7515702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7515702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7515702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7515702, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8b935695799eab84c739de435fb2588" } } $('.js-work-strip[data-work-id=7515702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7515702,"title":"Some Partially Invariant Solutions of Ideal Magnetohydrodynamic Equations","translated_title":"","metadata":{"grobid_abstract":"Some partially invariant solutions (PIS) with a defect structure 未 = 1 are constructed for the ideal magnetohydrodynamic (MHD) equations. We use a general and systematic approach based on subgroup classification methods. In particular, we restrict our study to the three-dimensional subgroups, which have generic orbits of dimension 2 in the space of independent variables, that allow us to introduce the corresponding symmetry variables and then to reduce the initial equations to different nonequivalent classes of partial differential equations.This gives us some new partially invariant solutions, which are determined to be reducible with respect to the symmetry group. Some physical interpretations of the results are briefly discussed.","grobid_abstract_attachment_id":34084280},"translated_abstract":null,"internal_url":"https://www.academia.edu/7515702/Some_Partially_Invariant_Solutions_of_Ideal_Magnetohydrodynamic_Equations","translated_internal_url":"","created_at":"2014-06-30T22:07:18.607-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34084280,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084280/thumbnails/1.jpg","file_name":"3.pdf","download_url":"https://www.academia.edu/attachments/34084280/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_Partially_Invariant_Solutions_of_Id.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084280/3-libre.pdf?1404191312=\u0026response-content-disposition=attachment%3B+filename%3DSome_Partially_Invariant_Solutions_of_Id.pdf\u0026Expires=1732748726\u0026Signature=CoGo50Fo8roUsi7wJITwe2wCZubpkSc2KPpZ4cPQd1Oq9qxRJHJRxHPvUSsgEWB794ezSxXYo~SMes7CNCGfrtrnsvBqYE653s1rN9mY3e~ALOpTkxHFwCe8AEmRWr5Bj~uEn4Xa-NPP7-RKWa84kJUZcm~zywfOenaoMnqnwGNdpYgAXFiLsa9FO10VZxIOnbz9VndxcJOHbk~RMRTwzXGAZfPziLysE-MpvtYJXAm99RlmQK~pURKGHLn6B-TP2FZmx7cgk59OIUlVPS-Z9lmWziQhzybby0hyJxPiXA8Yw0d-2yvjzg1XIrSkow5yiOy3aTRwTC0Wq2gdPgtQgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_Partially_Invariant_Solutions_of_Ideal_Magnetohydrodynamic_Equations","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34084280,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084280/thumbnails/1.jpg","file_name":"3.pdf","download_url":"https://www.academia.edu/attachments/34084280/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_Partially_Invariant_Solutions_of_Id.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084280/3-libre.pdf?1404191312=\u0026response-content-disposition=attachment%3B+filename%3DSome_Partially_Invariant_Solutions_of_Id.pdf\u0026Expires=1732748726\u0026Signature=CoGo50Fo8roUsi7wJITwe2wCZubpkSc2KPpZ4cPQd1Oq9qxRJHJRxHPvUSsgEWB794ezSxXYo~SMes7CNCGfrtrnsvBqYE653s1rN9mY3e~ALOpTkxHFwCe8AEmRWr5Bj~uEn4Xa-NPP7-RKWa84kJUZcm~zywfOenaoMnqnwGNdpYgAXFiLsa9FO10VZxIOnbz9VndxcJOHbk~RMRTwzXGAZfPziLysE-MpvtYJXAm99RlmQK~pURKGHLn6B-TP2FZmx7cgk59OIUlVPS-Z9lmWziQhzybby0hyJxPiXA8Yw0d-2yvjzg1XIrSkow5yiOy3aTRwTC0Wq2gdPgtQgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7515701"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7515701/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions"><img alt="Research paper thumbnail of Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/34084277/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7515701/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions">Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05ae5342e08346c4f9938223d416cd74" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34084277,"asset_id":7515701,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34084277/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7515701"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7515701"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7515701; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7515701]").text(description); $(".js-view-count[data-work-id=7515701]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7515701; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7515701']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7515701, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05ae5342e08346c4f9938223d416cd74" } } $('.js-work-strip[data-work-id=7515701]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7515701,"title":"Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions","translated_title":"","metadata":{"grobid_abstract":"The symmetry reduction method is used to obtain invariant and conditionally invariant solutions of magnetohydrodynamic equations in (3+1) dimensions. Detail description of the procedure for constructing such solutions is presented. These solutions represent simple and double Riemann waves.","grobid_abstract_attachment_id":34084277},"translated_abstract":null,"internal_url":"https://www.academia.edu/7515701/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions","translated_internal_url":"","created_at":"2014-06-30T22:07:18.529-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":31995759,"work_id":7515701,"tagging_user_id":13315004,"tagged_user_id":51783228,"co_author_invite_id":null,"email":"g***n@crm.umontreal.ca","display_order":0,"name":"Alfred Grundland","title":"Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions"}],"downloadable_attachments":[{"id":34084277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084277/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/34084277/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Invariant_and_Conditionally_Invariant_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084277/1-libre.pdf?1404191276=\u0026response-content-disposition=attachment%3B+filename%3DInvariant_and_Conditionally_Invariant_So.pdf\u0026Expires=1732748726\u0026Signature=O~abno2jcmfeqlG45jVd5lIqQQZ8WJO76n6e8gCYOD3wET5XVEbxqkgdHG0MciJQIQtAUQ4V86CEWat9jtUzsz259p8sVasISzAIpjd70sKF-TCMveGZvM4famDFdd8qPH7cxXDdPnp8vwgGOJGpKwvYVjJi4PyCZbF6oTM62L6sD8nMerK8ndwFEAZr3OuQLUce35L0wwpqWERp3xuy5yedm7PeKZ~lmyVTfELQFb-UeNGwuRfaSxyhsnmJIxjzf2zoaue2OCiYWCVrsfh5~tl8ik3tzCpU6kIpF5yaxpFHW5-8TWPQ-tF~myM4WboLOyZQF3gGO-KphaslCAuN0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34084277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084277/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/34084277/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Invariant_and_Conditionally_Invariant_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084277/1-libre.pdf?1404191276=\u0026response-content-disposition=attachment%3B+filename%3DInvariant_and_Conditionally_Invariant_So.pdf\u0026Expires=1732748726\u0026Signature=O~abno2jcmfeqlG45jVd5lIqQQZ8WJO76n6e8gCYOD3wET5XVEbxqkgdHG0MciJQIQtAUQ4V86CEWat9jtUzsz259p8sVasISzAIpjd70sKF-TCMveGZvM4famDFdd8qPH7cxXDdPnp8vwgGOJGpKwvYVjJi4PyCZbF6oTM62L6sD8nMerK8ndwFEAZr3OuQLUce35L0wwpqWERp3xuy5yedm7PeKZ~lmyVTfELQFb-UeNGwuRfaSxyhsnmJIxjzf2zoaue2OCiYWCVrsfh5~tl8ik3tzCpU6kIpF5yaxpFHW5-8TWPQ-tF~myM4WboLOyZQF3gGO-KphaslCAuN0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7515699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7515699/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves"><img alt="Research paper thumbnail of On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves" class="work-thumbnail" src="https://attachments.academia-assets.com/34084276/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7515699/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves">On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4354ede6f5adf8992908b1c2f83f23bd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34084276,"asset_id":7515699,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34084276/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7515699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7515699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7515699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7515699]").text(description); $(".js-view-count[data-work-id=7515699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7515699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7515699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7515699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4354ede6f5adf8992908b1c2f83f23bd" } } $('.js-work-strip[data-work-id=7515699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7515699,"title":"On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves","translated_title":"","metadata":{"grobid_abstract":"We present a version of the conditional symmetry method in order to obtain multiple wave solutions expressed in terms of Riemann invariants. We construct an abelian distribution of vector fields which are symmetries of the original system of PDEs subjected to certain first order differential constraints. The usefulness of our approach is demonstrated on simple and double wave solutions of MHD equations. The paper also contains a comparison of the conditional symmetry method with the generalized method of characteristics.","grobid_abstract_attachment_id":34084276},"translated_abstract":null,"internal_url":"https://www.academia.edu/7515699/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves","translated_internal_url":"","created_at":"2014-06-30T22:06:20.736-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":31985467,"work_id":7515699,"tagging_user_id":13315004,"tagged_user_id":51783228,"co_author_invite_id":null,"email":"g***n@crm.umontreal.ca","display_order":0,"name":"Alfred Grundland","title":"On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves"}],"downloadable_attachments":[{"id":34084276,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084276/thumbnails/1.jpg","file_name":"0.pdf","download_url":"https://www.academia.edu/attachments/34084276/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Conditionally_Invariant_Solutions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084276/0-libre.pdf?1404191495=\u0026response-content-disposition=attachment%3B+filename%3DOn_Conditionally_Invariant_Solutions_of.pdf\u0026Expires=1732748726\u0026Signature=D4FbQCNHzyfTCE2BRsrML7gKzW3UGNPXD0ngTecXdtvT6ck5RVh93y6URxYfE~H5AvdiandgtazfSuspWQgQGZk70I4s2I3htqov~d~cET9GG7DtbHangHUKeqSJv2Bz4dw8rlEc-a4QLwDKyShF3PwtnQOWVRc1m2VpzpZnFU0T3BOpnvUv17lWU-bS9WsLTmW5iPmIV1KR1J5GxQCAEw7TNk13h424lsQn8LbNzsfzLK8gdz33dxvNQhhlrLWrrkDNdorZYno3bq~7koicvvDDKNOAtdq31gcdDocgti4cqdFZYE3Dorq98U07OBGUE0xCtXEmA7zlR0qSEAwiCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34084276,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084276/thumbnails/1.jpg","file_name":"0.pdf","download_url":"https://www.academia.edu/attachments/34084276/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Conditionally_Invariant_Solutions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084276/0-libre.pdf?1404191495=\u0026response-content-disposition=attachment%3B+filename%3DOn_Conditionally_Invariant_Solutions_of.pdf\u0026Expires=1732748726\u0026Signature=D4FbQCNHzyfTCE2BRsrML7gKzW3UGNPXD0ngTecXdtvT6ck5RVh93y6URxYfE~H5AvdiandgtazfSuspWQgQGZk70I4s2I3htqov~d~cET9GG7DtbHangHUKeqSJv2Bz4dw8rlEc-a4QLwDKyShF3PwtnQOWVRc1m2VpzpZnFU0T3BOpnvUv17lWU-bS9WsLTmW5iPmIV1KR1J5GxQCAEw7TNk13h424lsQn8LbNzsfzLK8gdz33dxvNQhhlrLWrrkDNdorZYno3bq~7koicvvDDKNOAtdq31gcdDocgti4cqdFZYE3Dorq98U07OBGUE0xCtXEmA7zlR0qSEAwiCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7472251"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7472251/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method"><img alt="Research paper thumbnail of Some exact solutions of the ideal MHD equations through symmetry reduction method" class="work-thumbnail" src="https://attachments.academia-assets.com/34047326/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7472251/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method">Some exact solutions of the ideal MHD equations through symmetry reduction method</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b281ed78fd49dc974d687156643d58f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34047326,"asset_id":7472251,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34047326/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7472251"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7472251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7472251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7472251]").text(description); $(".js-view-count[data-work-id=7472251]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7472251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7472251']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7472251, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b281ed78fd49dc974d687156643d58f" } } $('.js-work-strip[data-work-id=7472251]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7472251,"title":"Some exact solutions of the ideal MHD equations through symmetry reduction method","translated_title":"","metadata":{"grobid_abstract":"We use the symmetry reduction method based on Lie group theory to obtain some exact solutions, the so-called invariant solutions, of the ideal magnetohydrodynamic equations in (3 + 1) dimensions. In particular, these equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras (1 r 4) was already known. We restrict our study to the three-dimensional Galilean-similitude subalgebras that give us systems composed of ordinary differential equations. Here, some examples of these solutions are presented with a brief physical interpretation.","grobid_abstract_attachment_id":34047326},"translated_abstract":null,"internal_url":"https://www.academia.edu/7472251/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method","translated_internal_url":"","created_at":"2014-06-26T10:24:15.239-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34047326,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34047326/thumbnails/1.jpg","file_name":"JMAA-12344-FINAL.pdf","download_url":"https://www.academia.edu/attachments/34047326/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_exact_solutions_of_the_ideal_MHD_eq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34047326/JMAA-12344-FINAL-libre.pdf?1403803895=\u0026response-content-disposition=attachment%3B+filename%3DSome_exact_solutions_of_the_ideal_MHD_eq.pdf\u0026Expires=1732748726\u0026Signature=EgF6MOhCJu9wcKINgRfhZKizq1NAUX1EeHM7h7VsrGFsZv8wWYayKg8N3fphmEgaNgQEhzSqFoanB9vurLadDoVLkIkG7I5NpHtBEGYYBbzhE72VZFr~iMtFO5~MuKTO9CTbIr8yJwnOi1A9Gq3OPh76Qt4HJ-32~kcahPygUyyKlq~HhIxfUpH3BYG3C5NAoj4BLCqKVDkwR9WpsrogiAy4usBOD6vtPUucBapKMNvHQaS9RQJ9zJjwsXaiMVWIN2sfHCGv0JEzaxhy488XmOn85a7l~2kZscddoYMVgV0gJXmm9s026KEnLhaVPsPOtHNvizJjalNIZCMttQlwyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34047326,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34047326/thumbnails/1.jpg","file_name":"JMAA-12344-FINAL.pdf","download_url":"https://www.academia.edu/attachments/34047326/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_exact_solutions_of_the_ideal_MHD_eq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34047326/JMAA-12344-FINAL-libre.pdf?1403803895=\u0026response-content-disposition=attachment%3B+filename%3DSome_exact_solutions_of_the_ideal_MHD_eq.pdf\u0026Expires=1732748726\u0026Signature=EgF6MOhCJu9wcKINgRfhZKizq1NAUX1EeHM7h7VsrGFsZv8wWYayKg8N3fphmEgaNgQEhzSqFoanB9vurLadDoVLkIkG7I5NpHtBEGYYBbzhE72VZFr~iMtFO5~MuKTO9CTbIr8yJwnOi1A9Gq3OPh76Qt4HJ-32~kcahPygUyyKlq~HhIxfUpH3BYG3C5NAoj4BLCqKVDkwR9WpsrogiAy4usBOD6vtPUucBapKMNvHQaS9RQJ9zJjwsXaiMVWIN2sfHCGv0JEzaxhy488XmOn85a7l~2kZscddoYMVgV0gJXmm9s026KEnLhaVPsPOtHNvizJjalNIZCMttQlwyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":126829,"name":"Symmetry","url":"https://www.academia.edu/Documents/in/Symmetry"},{"id":370584,"name":"Exact Solutions","url":"https://www.academia.edu/Documents/in/Exact_Solutions"},{"id":603952,"name":"Lie Group","url":"https://www.academia.edu/Documents/in/Lie_Group"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="1562707" id="papers"><div class="js-work-strip profile--work_container" data-work-id="98856465"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98856465/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_magnetohydrodynamique"><img alt="Research paper thumbnail of Sur les solutions invariantes et conditionnellement invariantes des equations de la magnetohydrodynamique" class="work-thumbnail" src="https://attachments.academia-assets.com/100095127/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98856465/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_magnetohydrodynamique">Sur les solutions invariantes et conditionnellement invariantes des equations de la magnetohydrodynamique</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="800d7cafe65804f72efae78d70e04ce7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100095127,"asset_id":98856465,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100095127/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98856465"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98856465"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98856465; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98856465]").text(description); $(".js-view-count[data-work-id=98856465]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98856465; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98856465']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98856465, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "800d7cafe65804f72efae78d70e04ce7" } } $('.js-work-strip[data-work-id=98856465]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98856465,"title":"Sur les solutions invariantes et conditionnellement invariantes des equations de la magnetohydrodynamique","translated_title":"","metadata":{"grobid_abstract":"This thesis is devoted to the resolution of the equations of magnetohydrody namics in (3+ 1) dimensions with two different approaches based on the methods of conditional and classical symrnetry reductions. In Chapter 1, we briefty introduce the equations that constitute magnetohy drodynamics. The fiow under consideration is assumed to be ideal, nonstationary and isentropic for a compressible conductive ftuid placed in a magnetic field J. The electrical conductivity of the fluid is assumed to be infinitely large. In Chapter 2, we present in Section 1 a version of the conditional symmetry method for resolving quasilinear hyperbolic systems of partial differential equations of the first order. The rank-one solutions (also called simple waves solutions) obtained by this method are expressed in terms of Riemann invariants. In Section 2, we use it to obtain simple waves of MHD system equations. Section 3 generalizes the above construction to the case of many simple waves described in terms of Riemann invariants. In Section 4 we present some double waves solutions admitted by the MHD equations. Finally, in Section 5 we impose some differential constraints in order to get some new classes of solutions. In Chapter 3, we have applied the symmetry reduction method to the MHD system of equations. The symmetry algebra and its classification by conju gacy classes of r-dimensional subalgebras (i r 4) was already known [17]. We restrict our study to the three dirnensional galilean similitude subalgebras that give systems of ordinary differential equation ftom which we obtain G-invariant solutions. Finally, Chapter 4 contains conclusions of the obtained resuits and possible futures developments.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"grobid_abstract_attachment_id":100095127},"translated_abstract":null,"internal_url":"https://www.academia.edu/98856465/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_magnetohydrodynamique","translated_internal_url":"","created_at":"2023-03-20T10:26:37.788-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100095127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095127/thumbnails/1.jpg","file_name":"Picard_Philippe_2003_these.pdf","download_url":"https://www.academia.edu/attachments/100095127/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sur_les_solutions_invariantes_et_conditi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095127/Picard_Philippe_2003_these-libre.pdf?1679334018=\u0026response-content-disposition=attachment%3B+filename%3DSur_les_solutions_invariantes_et_conditi.pdf\u0026Expires=1732748726\u0026Signature=LSO65BRer8N8TCUvxrOSzs5Xu3~4bhbuDwMCNQcB9vkIj5UNwCPLki8OSDuOmxPcjOesKCgGV3n66SBBihsc~eQgGP8VACJNMWTmflLCnvLwt~bhNO8Y~Q23ZTtvHz8fTnRWyYOvZHklgFTt-ACrfYsK0L2tCvSzb76293qqlhLxIynd6XiZTlFg43kgHxycPHT6L-vG0t6IWDGWah5ktTQ6njikJ0889~f3CeZkrz2rk2TQsK6SCI9Wwhb9BRqAHHHcLvZZptkuHOKMzXTIA0aDApche1zgufoYroABoZWZNbLi3wo-wZrVdVFJ94iYbbImbJDzQN4UdbcFdR3o5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_magnetohydrodynamique","translated_slug":"","page_count":186,"language":"fr","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":100095127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095127/thumbnails/1.jpg","file_name":"Picard_Philippe_2003_these.pdf","download_url":"https://www.academia.edu/attachments/100095127/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sur_les_solutions_invariantes_et_conditi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095127/Picard_Philippe_2003_these-libre.pdf?1679334018=\u0026response-content-disposition=attachment%3B+filename%3DSur_les_solutions_invariantes_et_conditi.pdf\u0026Expires=1732748726\u0026Signature=LSO65BRer8N8TCUvxrOSzs5Xu3~4bhbuDwMCNQcB9vkIj5UNwCPLki8OSDuOmxPcjOesKCgGV3n66SBBihsc~eQgGP8VACJNMWTmflLCnvLwt~bhNO8Y~Q23ZTtvHz8fTnRWyYOvZHklgFTt-ACrfYsK0L2tCvSzb76293qqlhLxIynd6XiZTlFg43kgHxycPHT6L-vG0t6IWDGWah5ktTQ6njikJ0889~f3CeZkrz2rk2TQsK6SCI9Wwhb9BRqAHHHcLvZZptkuHOKMzXTIA0aDApche1zgufoYroABoZWZNbLi3wo-wZrVdVFJ94iYbbImbJDzQN4UdbcFdR3o5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"},{"id":194130,"name":"PARTIAL DIFFERENTIAL EQUATION","url":"https://www.academia.edu/Documents/in/PARTIAL_DIFFERENTIAL_EQUATION"},{"id":489882,"name":"MHD","url":"https://www.academia.edu/Documents/in/MHD"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":1202042,"name":"Electric Conductivity","url":"https://www.academia.edu/Documents/in/Electric_Conductivity"},{"id":1546577,"name":"System of Equation Linear Equations","url":"https://www.academia.edu/Documents/in/System_of_Equation_Linear_Equations"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"}],"urls":[{"id":29951679,"url":"http://adsabs.harvard.edu/abs/2003phdt.......170p"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98856464"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98856464/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions"><img alt="Research paper thumbnail of Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3+ 1) Dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/100095126/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98856464/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions">Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3+ 1) Dimensions</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="604f8c6982a3f985d28779d91fde4d86" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100095126,"asset_id":98856464,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100095126/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98856464"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98856464"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98856464; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98856464]").text(description); $(".js-view-count[data-work-id=98856464]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98856464; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98856464']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98856464, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "604f8c6982a3f985d28779d91fde4d86" } } $('.js-work-strip[data-work-id=98856464]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98856464,"title":"Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3+ 1) Dimensions","translated_title":"","metadata":{"grobid_abstract":"The symmetry reduction method is used to obtain invariant and conditionally invariant solutions of magnetohydrodynamic equations in (3+1) dimensions. Detail description of the procedure for constructing such solutions is presented. These solutions represent simple and double Riemann waves.","grobid_abstract_attachment_id":100095126},"translated_abstract":null,"internal_url":"https://www.academia.edu/98856464/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions","translated_internal_url":"","created_at":"2023-03-20T10:26:37.672-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100095126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095126/thumbnails/1.jpg","file_name":"grundland.pdf","download_url":"https://www.academia.edu/attachments/100095126/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Invariant_and_Conditionally_Invariant_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095126/grundland-libre.pdf?1679333972=\u0026response-content-disposition=attachment%3B+filename%3DInvariant_and_Conditionally_Invariant_So.pdf\u0026Expires=1732748726\u0026Signature=HlAqj44gw0T5EMcc3covQqCehLYK3fvdFB2T4WDMm~HjwzQ4KqJrY8NIVc40avueY5FR5gUiFV1kUHlU4PynWH4lEPcgxMtYn1b16YNWeFtFBYuzrawZLvcCL14dGUkVBSBiv6inPmhV5MDeQ-tM5G1j3I6U0iqRt2yPBnLUk7eZFUzkxDczjSbWS1iP~miz02jY8Ah9AkjrQv6NW9ZMPQMan2ujJCk~hz5qIfwc6-igW5NXyAJw4IyawN5~Ec2jgyO~DpC1ggYihciS-lGMLDENdFqLsJUijrIE8BRyHiiM5DEcwVlYVgx-kC3~dG2dyftZFFKsCcUnlCI3fLqhNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":100095126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095126/thumbnails/1.jpg","file_name":"grundland.pdf","download_url":"https://www.academia.edu/attachments/100095126/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Invariant_and_Conditionally_Invariant_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095126/grundland-libre.pdf?1679333972=\u0026response-content-disposition=attachment%3B+filename%3DInvariant_and_Conditionally_Invariant_So.pdf\u0026Expires=1732748726\u0026Signature=HlAqj44gw0T5EMcc3covQqCehLYK3fvdFB2T4WDMm~HjwzQ4KqJrY8NIVc40avueY5FR5gUiFV1kUHlU4PynWH4lEPcgxMtYn1b16YNWeFtFBYuzrawZLvcCL14dGUkVBSBiv6inPmhV5MDeQ-tM5G1j3I6U0iqRt2yPBnLUk7eZFUzkxDczjSbWS1iP~miz02jY8Ah9AkjrQv6NW9ZMPQMan2ujJCk~hz5qIfwc6-igW5NXyAJw4IyawN5~Ec2jgyO~DpC1ggYihciS-lGMLDENdFqLsJUijrIE8BRyHiiM5DEcwVlYVgx-kC3~dG2dyftZFFKsCcUnlCI3fLqhNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98856463"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98856463/Some_spherical_solutions_of_ideal_magnetohydrodynamic_equations"><img alt="Research paper thumbnail of Some spherical solutions of ideal magnetohydrodynamic equations" class="work-thumbnail" src="https://attachments.academia-assets.com/100095136/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98856463/Some_spherical_solutions_of_ideal_magnetohydrodynamic_equations">Some spherical solutions of ideal magnetohydrodynamic equations</a></div><div class="wp-workCard_item"><span>Journal of Nonlinear Mathematical Physics</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41f4142383487285377a8e491e7e78e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100095136,"asset_id":98856463,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100095136/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98856463"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98856463"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98856463; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98856463]").text(description); $(".js-view-count[data-work-id=98856463]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98856463; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98856463']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98856463, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41f4142383487285377a8e491e7e78e7" } } $('.js-work-strip[data-work-id=98856463]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98856463,"title":"Some spherical solutions of ideal magnetohydrodynamic equations","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"Some spherical solutions of the ideal magnetohydrodynamic (MHD) equations are obtained from the method of the weak transversality method (WTM), which is based on Lie group theory. This analytical method makes use of the symmetry group of the MHD system in situations where the \"classical\" Lie approach of symmetry reductions is no longer applicable. Also, a brief physical interpretation of these solutions is given.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Journal of Nonlinear Mathematical Physics","grobid_abstract_attachment_id":100095136},"translated_abstract":null,"internal_url":"https://www.academia.edu/98856463/Some_spherical_solutions_of_ideal_magnetohydrodynamic_equations","translated_internal_url":"","created_at":"2023-03-20T10:26:37.498-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100095136,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095136/thumbnails/1.jpg","file_name":"144art6.pdf","download_url":"https://www.academia.edu/attachments/100095136/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_spherical_solutions_of_ideal_magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095136/144art6-libre.pdf?1679333977=\u0026response-content-disposition=attachment%3B+filename%3DSome_spherical_solutions_of_ideal_magnet.pdf\u0026Expires=1732748726\u0026Signature=L5xNGnswgECFsg4YG4IvPi1R9UrOww9QwlXbE1yDob0-8JZ7bKagxuGTyx8vkg8gHpDvXkBvsBinPnmLP93kfitUvjczQkOPCdfueyEA7wFYjndweNosq3OWHTn2BbjEUELycqDWt4zGQkFCnM4gbLPVQrzp0ulQd6QExEe6vgTzl7a4-JINZyMtsILOUs600T6V62IFzEeG81qmEOIj-IJ2BVXW9OWIvEqOIoxgYRQAVpN2pU6b1quNd-gPMZtmQeVU9BSSTyo4a5J8pfMNwBnWl1hkuJmq0agsA6iXmhOcv9PFpm0b8e~8aEUSa7SGY9LNPl5hvFswTmS6OjRSXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":100095128,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095128/thumbnails/1.jpg","file_name":"1531.pdf","download_url":"https://www.academia.edu/attachments/100095128/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_spherical_solutions_of_ideal_magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095128/1531-libre.pdf?1679333975=\u0026response-content-disposition=attachment%3B+filename%3DSome_spherical_solutions_of_ideal_magnet.pdf\u0026Expires=1732748726\u0026Signature=Y3g6mZB-L~PnUv5WaJezFdUKI9DJOEx3qSAdzSP3FEjKZbKMPX245XIMrtifINrRkqg56lwbGR9KGsTugiYvsYiM2KJ9m4AkvmaqDwLd2YnjG5yHccw~1KlGO9cltjABHDCBdtoinwLVgLqVo9z1xPySjs-~iJ9m3P~-q~34D0najnA--vUudG9~jyJWlBTTxuHezRsDzbAA0ETyqL8cJaf472jhnZEUdLJeYNhUrOY2iMYNWlGQU7bJ~7Fkv03FxL2r1kTKI0KtU~J06tcLnBPbyW4kDWhm8TcaTLruBVWGrtHrs-qTNue-DsAy1cVwW5~DzdFtObUJvp03nLGw3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_spherical_solutions_of_ideal_magnetohydrodynamic_equations","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":100095136,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095136/thumbnails/1.jpg","file_name":"144art6.pdf","download_url":"https://www.academia.edu/attachments/100095136/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_spherical_solutions_of_ideal_magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095136/144art6-libre.pdf?1679333977=\u0026response-content-disposition=attachment%3B+filename%3DSome_spherical_solutions_of_ideal_magnet.pdf\u0026Expires=1732748726\u0026Signature=L5xNGnswgECFsg4YG4IvPi1R9UrOww9QwlXbE1yDob0-8JZ7bKagxuGTyx8vkg8gHpDvXkBvsBinPnmLP93kfitUvjczQkOPCdfueyEA7wFYjndweNosq3OWHTn2BbjEUELycqDWt4zGQkFCnM4gbLPVQrzp0ulQd6QExEe6vgTzl7a4-JINZyMtsILOUs600T6V62IFzEeG81qmEOIj-IJ2BVXW9OWIvEqOIoxgYRQAVpN2pU6b1quNd-gPMZtmQeVU9BSSTyo4a5J8pfMNwBnWl1hkuJmq0agsA6iXmhOcv9PFpm0b8e~8aEUSa7SGY9LNPl5hvFswTmS6OjRSXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":100095128,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095128/thumbnails/1.jpg","file_name":"1531.pdf","download_url":"https://www.academia.edu/attachments/100095128/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_spherical_solutions_of_ideal_magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095128/1531-libre.pdf?1679333975=\u0026response-content-disposition=attachment%3B+filename%3DSome_spherical_solutions_of_ideal_magnet.pdf\u0026Expires=1732748726\u0026Signature=Y3g6mZB-L~PnUv5WaJezFdUKI9DJOEx3qSAdzSP3FEjKZbKMPX245XIMrtifINrRkqg56lwbGR9KGsTugiYvsYiM2KJ9m4AkvmaqDwLd2YnjG5yHccw~1KlGO9cltjABHDCBdtoinwLVgLqVo9z1xPySjs-~iJ9m3P~-q~34D0najnA--vUudG9~jyJWlBTTxuHezRsDzbAA0ETyqL8cJaf472jhnZEUdLJeYNhUrOY2iMYNWlGQU7bJ~7Fkv03FxL2r1kTKI0KtU~J06tcLnBPbyW4kDWhm8TcaTLruBVWGrtHrs-qTNue-DsAy1cVwW5~DzdFtObUJvp03nLGw3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":612122,"name":"Transversality","url":"https://www.academia.edu/Documents/in/Transversality"},{"id":2451605,"name":"Ideal Ethics","url":"https://www.academia.edu/Documents/in/Ideal_Ethics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="98856436"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98856436/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves"><img alt="Research paper thumbnail of On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves" class="work-thumbnail" src="https://attachments.academia-assets.com/100095053/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98856436/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves">On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves</a></div><div class="wp-workCard_item"><span>Journal of Nonlinear Mathematical Physics</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0e2778c0639303a1cf3b77c0ea55f917" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100095053,"asset_id":98856436,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100095053/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98856436"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98856436"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98856436; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98856436]").text(description); $(".js-view-count[data-work-id=98856436]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98856436; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98856436']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 98856436, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0e2778c0639303a1cf3b77c0ea55f917" } } $('.js-work-strip[data-work-id=98856436]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98856436,"title":"On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"We present a version of the conditional symmetry method in order to obtain multiple wave solutions expressed in terms of Riemann invariants. We construct an abelian distribution of vector fields which are symmetries of the original system of PDEs subjected to certain first order differential constraints. The usefulness of our approach is demonstrated on simple and double wave solutions of MHD equations. The paper also contains a comparison of the conditional symmetry method with the generalized method of characteristics.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Journal of Nonlinear Mathematical Physics","grobid_abstract_attachment_id":100095053},"translated_abstract":null,"internal_url":"https://www.academia.edu/98856436/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves","translated_internal_url":"","created_at":"2023-03-20T10:26:06.325-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100095053,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095053/thumbnails/1.jpg","file_name":"0306005v4.pdf","download_url":"https://www.academia.edu/attachments/100095053/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Conditionally_Invariant_Solutions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095053/0306005v4-libre.pdf?1679333991=\u0026response-content-disposition=attachment%3B+filename%3DOn_Conditionally_Invariant_Solutions_of.pdf\u0026Expires=1732748726\u0026Signature=cZDJxTFMGzShsJ-XISsc3MK1gc1gDwB3gbStkrMKQdAamvrdRo7~YA9ogGpam0I~V04Qzx2dyM1RiMD0j5NtnPpiGKKBDXWNFVUTF9YeuD~9coTBzcDY5iViasGO6pRdM0~svHeUXC-Jxs95t6F9Q4iVYZgMZKRRA1rfIbaxBLdr~x5ZaFYMdSFprPwrtVu0wW3kNMeKsNWLbXcxnMwhW2IGIslvwsqI4~1a8qSmgtjv6NlPz9pNat769y4K8f~sKqeOCYepMqk9vR15lfnDDplbZK~l9izN-myro3v33Je3KDIVKD50y~SExIegOm4KAYueGNEoY04PtMU4gOCPjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves","translated_slug":"","page_count":33,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":100095053,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100095053/thumbnails/1.jpg","file_name":"0306005v4.pdf","download_url":"https://www.academia.edu/attachments/100095053/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Conditionally_Invariant_Solutions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100095053/0306005v4-libre.pdf?1679333991=\u0026response-content-disposition=attachment%3B+filename%3DOn_Conditionally_Invariant_Solutions_of.pdf\u0026Expires=1732748726\u0026Signature=cZDJxTFMGzShsJ-XISsc3MK1gc1gDwB3gbStkrMKQdAamvrdRo7~YA9ogGpam0I~V04Qzx2dyM1RiMD0j5NtnPpiGKKBDXWNFVUTF9YeuD~9coTBzcDY5iViasGO6pRdM0~svHeUXC-Jxs95t6F9Q4iVYZgMZKRRA1rfIbaxBLdr~x5ZaFYMdSFprPwrtVu0wW3kNMeKsNWLbXcxnMwhW2IGIslvwsqI4~1a8qSmgtjv6NlPz9pNat769y4K8f~sKqeOCYepMqk9vR15lfnDDplbZK~l9izN-myro3v33Je3KDIVKD50y~SExIegOm4KAYueGNEoY04PtMU4gOCPjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75541613"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75541613/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method"><img alt="Research paper thumbnail of Some exact solutions of the ideal MHD equations through symmetry reduction method" class="work-thumbnail" src="https://attachments.academia-assets.com/83268901/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75541613/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method">Some exact solutions of the ideal MHD equations through symmetry reduction method</a></div><div class="wp-workCard_item"><span>Journal of Mathematical Analysis and Applications</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a7abdda2edea51ec025091e1f019843b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83268901,"asset_id":75541613,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83268901/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75541613"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75541613"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75541613; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75541613]").text(description); $(".js-view-count[data-work-id=75541613]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75541613; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75541613']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75541613, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a7abdda2edea51ec025091e1f019843b" } } $('.js-work-strip[data-work-id=75541613]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75541613,"title":"Some exact solutions of the ideal MHD equations through symmetry reduction method","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Journal of Mathematical Analysis and Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/75541613/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method","translated_internal_url":"","created_at":"2022-04-05T08:41:05.275-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83268901,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83268901/thumbnails/1.jpg","file_name":"82712114.pdf","download_url":"https://www.academia.edu/attachments/83268901/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_exact_solutions_of_the_ideal_MHD_eq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83268901/82712114-libre.pdf?1649173433=\u0026response-content-disposition=attachment%3B+filename%3DSome_exact_solutions_of_the_ideal_MHD_eq.pdf\u0026Expires=1732748726\u0026Signature=NZF4RULsi24nRAlEr~zrc1N~GPZrELjaIJx0vCfLC9N102AVapg8ghSw7n-EOefwNaLlHlIVz90Lzclzy6QUyFn-mBopA1vAdHZTvojCWYMXBL4B6p8O3EFeKLAEguM3gqqLUWAO3oxjWDua-v8jeAGMK--gx7Mhcvvbbm-VJ4oTHHYjm8Opp5Xm-t7f9bbDKjH~E0dXUbIBlosZFdNTnYoJlIdYtpZRG87MpBIKFWG9G02C2hBKRFsfOYmfxUbQKFSjvvmdBMJ2FBkLl-unNh-NAoj9QqL7hBm3NoQ94tOBvMwMcENvf8B3z6vHGWIp8gwZB-XV213vf3b4wTJG5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":83268901,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83268901/thumbnails/1.jpg","file_name":"82712114.pdf","download_url":"https://www.academia.edu/attachments/83268901/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_exact_solutions_of_the_ideal_MHD_eq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83268901/82712114-libre.pdf?1649173433=\u0026response-content-disposition=attachment%3B+filename%3DSome_exact_solutions_of_the_ideal_MHD_eq.pdf\u0026Expires=1732748726\u0026Signature=NZF4RULsi24nRAlEr~zrc1N~GPZrELjaIJx0vCfLC9N102AVapg8ghSw7n-EOefwNaLlHlIVz90Lzclzy6QUyFn-mBopA1vAdHZTvojCWYMXBL4B6p8O3EFeKLAEguM3gqqLUWAO3oxjWDua-v8jeAGMK--gx7Mhcvvbbm-VJ4oTHHYjm8Opp5Xm-t7f9bbDKjH~E0dXUbIBlosZFdNTnYoJlIdYtpZRG87MpBIKFWG9G02C2hBKRFsfOYmfxUbQKFSjvvmdBMJ2FBkLl-unNh-NAoj9QqL7hBm3NoQ94tOBvMwMcENvf8B3z6vHGWIp8gwZB-XV213vf3b4wTJG5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":336,"name":"Lie Algebra","url":"https://www.academia.edu/Documents/in/Lie_Algebra"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":11723,"name":"Group Theory","url":"https://www.academia.edu/Documents/in/Group_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":126829,"name":"Symmetry","url":"https://www.academia.edu/Documents/in/Symmetry"},{"id":263097,"name":"Application","url":"https://www.academia.edu/Documents/in/Application"},{"id":370584,"name":"Exact Solutions","url":"https://www.academia.edu/Documents/in/Exact_Solutions"},{"id":410032,"name":"Invariant","url":"https://www.academia.edu/Documents/in/Invariant"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":518958,"name":"Mathematical Analysis and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis_and_Applications"},{"id":603952,"name":"Lie Group","url":"https://www.academia.edu/Documents/in/Lie_Group"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"},{"id":1868639,"name":"Exact solution methods","url":"https://www.academia.edu/Documents/in/Exact_solution_methods"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70236838"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70236838/Reduction_and_Exact_Solutions_of_the_Ideal_Magnetohydrodynamic_Equations"><img alt="Research paper thumbnail of Reduction and Exact Solutions of the Ideal Magnetohydrodynamic Equations" class="work-thumbnail" src="https://attachments.academia-assets.com/80067534/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70236838/Reduction_and_Exact_Solutions_of_the_Ideal_Magnetohydrodynamic_Equations">Reduction and Exact Solutions of the Ideal Magnetohydrodynamic Equations</a></div><div class="wp-workCard_item"><span>arXiv: Mathematical Physics</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal mag...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal magnetohydrodynamic equations in (3+1) dimensions. These equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras ($1\leq r\leq 4$) was already known. So we restrict our study to the three-dimensional Galilean-similitude subalgebras that give systems composed of ordinary differential equations. We present here several examples of these solutions. Some of these exact solutions show interesting physical interpretations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f8e7b0058d9b56318305506d80b4b313" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":80067534,"asset_id":70236838,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/80067534/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70236838"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70236838"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70236838; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70236838]").text(description); $(".js-view-count[data-work-id=70236838]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70236838; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70236838']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70236838, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f8e7b0058d9b56318305506d80b4b313" } } $('.js-work-strip[data-work-id=70236838]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70236838,"title":"Reduction and Exact Solutions of the Ideal Magnetohydrodynamic Equations","translated_title":"","metadata":{"abstract":"In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal magnetohydrodynamic equations in (3+1) dimensions. These equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras ($1\\leq r\\leq 4$) was already known. So we restrict our study to the three-dimensional Galilean-similitude subalgebras that give systems composed of ordinary differential equations. We present here several examples of these solutions. Some of these exact solutions show interesting physical interpretations.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"arXiv: Mathematical Physics"},"translated_abstract":"In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal magnetohydrodynamic equations in (3+1) dimensions. These equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras ($1\\leq r\\leq 4$) was already known. So we restrict our study to the three-dimensional Galilean-similitude subalgebras that give systems composed of ordinary differential equations. We present here several examples of these solutions. Some of these exact solutions show interesting physical interpretations.","internal_url":"https://www.academia.edu/70236838/Reduction_and_Exact_Solutions_of_the_Ideal_Magnetohydrodynamic_Equations","translated_internal_url":"","created_at":"2022-02-01T15:43:24.022-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80067534,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80067534/thumbnails/1.jpg","file_name":"0509048v2.pdf","download_url":"https://www.academia.edu/attachments/80067534/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reduction_and_Exact_Solutions_of_the_Ide.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80067534/0509048v2-libre.pdf?1643760970=\u0026response-content-disposition=attachment%3B+filename%3DReduction_and_Exact_Solutions_of_the_Ide.pdf\u0026Expires=1732748726\u0026Signature=RsNB33em-4qpIQ7NATn0p1FJyDhx8i5UsqUmYdtoAHfCDHSwKZZ0Yw~zyjVNdpTPtMg0tpkd2CtFPpNtJ9ba9K2zvQ3mHxbwJGZB6AdZ0fgzdmIEf4So25bYF6GtkbtzL7bCtBOoGG9AGTzkujQ-pBXkNCO5OG6sumuARqYvAwpQU0wSUFSS1R23cRy9aWYirBULv1P95DNYNMEmY-cAH9RowQTGO7e-Sz0cwRhupOrClreL~hK00lGd7Dw2SFvyxlGh5B~H7kiFpF9xLc2dbvliFl3RgSHb8e0MIrfTWHMrWahH3tHezI9t8vAz7Di2vj2lq8uEkI9XQiHArozz3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reduction_and_Exact_Solutions_of_the_Ideal_Magnetohydrodynamic_Equations","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":80067534,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80067534/thumbnails/1.jpg","file_name":"0509048v2.pdf","download_url":"https://www.academia.edu/attachments/80067534/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reduction_and_Exact_Solutions_of_the_Ide.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80067534/0509048v2-libre.pdf?1643760970=\u0026response-content-disposition=attachment%3B+filename%3DReduction_and_Exact_Solutions_of_the_Ide.pdf\u0026Expires=1732748726\u0026Signature=RsNB33em-4qpIQ7NATn0p1FJyDhx8i5UsqUmYdtoAHfCDHSwKZZ0Yw~zyjVNdpTPtMg0tpkd2CtFPpNtJ9ba9K2zvQ3mHxbwJGZB6AdZ0fgzdmIEf4So25bYF6GtkbtzL7bCtBOoGG9AGTzkujQ-pBXkNCO5OG6sumuARqYvAwpQU0wSUFSS1R23cRy9aWYirBULv1P95DNYNMEmY-cAH9RowQTGO7e-Sz0cwRhupOrClreL~hK00lGd7Dw2SFvyxlGh5B~H7kiFpF9xLc2dbvliFl3RgSHb8e0MIrfTWHMrWahH3tHezI9t8vAz7Di2vj2lq8uEkI9XQiHArozz3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":336,"name":"Lie Algebra","url":"https://www.academia.edu/Documents/in/Lie_Algebra"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"}],"urls":[{"id":17194286,"url":"http://arxiv.org/pdf/math-ph/0509048v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7569508"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7569508/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_MHD_Ph_D_"><img alt="Research paper thumbnail of Sur les solutions invariantes et conditionnellement invariantes des equations de la MHD (Ph.D)" class="work-thumbnail" src="https://attachments.academia-assets.com/34127777/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7569508/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_MHD_Ph_D_">Sur les solutions invariantes et conditionnellement invariantes des equations de la MHD (Ph.D)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b1e2d7c1e8bde1fdef6da84067500d63" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34127777,"asset_id":7569508,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34127777/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7569508"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7569508"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7569508; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7569508]").text(description); $(".js-view-count[data-work-id=7569508]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7569508; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7569508']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7569508, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b1e2d7c1e8bde1fdef6da84067500d63" } } $('.js-work-strip[data-work-id=7569508]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7569508,"title":"Sur les solutions invariantes et conditionnellement invariantes des equations de la MHD (Ph.D)","translated_title":"","metadata":{"grobid_abstract":"This thesis is devoted to the resolution of the equations of magnetohydrodynamics in (3 + 1) dimensions with two different approaches based on the methods of conditional and classical symmetry reductions.","grobid_abstract_attachment_id":34127777},"translated_abstract":null,"internal_url":"https://www.academia.edu/7569508/Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_MHD_Ph_D_","translated_internal_url":"","created_at":"2014-07-05T22:21:40.309-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34127777,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127777/thumbnails/1.jpg","file_name":"ph.d.pdf","download_url":"https://www.academia.edu/attachments/34127777/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sur_les_solutions_invariantes_et_conditi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127777/ph.d-libre.pdf?1404623985=\u0026response-content-disposition=attachment%3B+filename%3DSur_les_solutions_invariantes_et_conditi.pdf\u0026Expires=1732748726\u0026Signature=CkIkmQQvCesFLpOa2sVB36oif05~dLNPHqhJAmm~v3uYIwrveZ6s~bICRRu7Kyz8U~7Zyezsy8SbQxyZBqlIvA6oxzPbaWlCFGqaybDb8Hwk-HPQFJDKkfiL14l3QoCschCrkdA1VoxadV6u~ffS5u1pp-TLuahWV~BxIBu9y6pd1Q8iJjBiFUvrGS49pGxaywdFh3Y5h1Oari2PcjBy4RFqx9BYX9bXsC-JV2Cj3sdRJreX6NL~zyH0RUBOVtmBXpDHpPGBGBnbLct0y6E53Y0BYwe-wTxmxE5YYaEyRPOHw1HqRzfXzz57GLN3VDFTbOKj6nEHqWOUbYTbr1WcAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sur_les_solutions_invariantes_et_conditionnellement_invariantes_des_equations_de_la_MHD_Ph_D_","translated_slug":"","page_count":187,"language":"fr","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34127777,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127777/thumbnails/1.jpg","file_name":"ph.d.pdf","download_url":"https://www.academia.edu/attachments/34127777/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sur_les_solutions_invariantes_et_conditi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127777/ph.d-libre.pdf?1404623985=\u0026response-content-disposition=attachment%3B+filename%3DSur_les_solutions_invariantes_et_conditi.pdf\u0026Expires=1732748726\u0026Signature=CkIkmQQvCesFLpOa2sVB36oif05~dLNPHqhJAmm~v3uYIwrveZ6s~bICRRu7Kyz8U~7Zyezsy8SbQxyZBqlIvA6oxzPbaWlCFGqaybDb8Hwk-HPQFJDKkfiL14l3QoCschCrkdA1VoxadV6u~ffS5u1pp-TLuahWV~BxIBu9y6pd1Q8iJjBiFUvrGS49pGxaywdFh3Y5h1Oari2PcjBy4RFqx9BYX9bXsC-JV2Cj3sdRJreX6NL~zyH0RUBOVtmBXpDHpPGBGBnbLct0y6E53Y0BYwe-wTxmxE5YYaEyRPOHw1HqRzfXzz57GLN3VDFTbOKj6nEHqWOUbYTbr1WcAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics"},{"id":39018,"name":"Lie Groups","url":"https://www.academia.edu/Documents/in/Lie_Groups"},{"id":200112,"name":"Lie point symmetries of Differential Equations","url":"https://www.academia.edu/Documents/in/Lie_point_symmetries_of_Differential_Equations"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7569500"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7569500/Chauffage_et_Entrainement_du_Courant_dans_un_Tokamak_par_les_Ondes_HF"><img alt="Research paper thumbnail of Chauffage et Entrainement du Courant dans un Tokamak par les Ondes HF" class="work-thumbnail" src="https://attachments.academia-assets.com/34127766/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7569500/Chauffage_et_Entrainement_du_Courant_dans_un_Tokamak_par_les_Ondes_HF">Chauffage et Entrainement du Courant dans un Tokamak par les Ondes HF</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="30c1d88e82293940315c2db11b351499" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34127766,"asset_id":7569500,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34127766/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7569500"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7569500"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7569500; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7569500]").text(description); $(".js-view-count[data-work-id=7569500]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7569500; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7569500']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7569500, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "30c1d88e82293940315c2db11b351499" } } $('.js-work-strip[data-work-id=7569500]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7569500,"title":"Chauffage et Entrainement du Courant dans un Tokamak par les Ondes HF","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/7569500/Chauffage_et_Entrainement_du_Courant_dans_un_Tokamak_par_les_Ondes_HF","translated_internal_url":"","created_at":"2014-07-05T22:18:58.332-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34127766,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127766/thumbnails/1.jpg","file_name":"preplasma.pdf","download_url":"https://www.academia.edu/attachments/34127766/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chauffage_et_Entrainement_du_Courant_dan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127766/preplasma-libre.pdf?1404623858=\u0026response-content-disposition=attachment%3B+filename%3DChauffage_et_Entrainement_du_Courant_dan.pdf\u0026Expires=1732690822\u0026Signature=Cz3hBkaxPdPCgdN1fgWvvT1DkHAByjzeF0x01G3AKyapouBolCsxmnGnyV7dbeuslxDBID2gCAHHhNS0pgltze-7E5uzVhoNT-WxB1ARu3-osvW-m8vkCJHSXLtChJLlSX4ic2wLTLpS59EYFKGsUFtLQTdlbK2EfndXmv3-34JdDU4N4XK~E02A~xakNNsuNN8pmbt5e0YefKmENcVB~NyENHFC~jIEZRv4F4gq4nZwfAN897DTGvDVZEHsUvZDaE1eywsI3sf~ekjpk1TxVAE65TqHYr6rjAa0M~-MuP5BfQ8bZgF7Kt4W9YrSCFwjJgO4pjSz96bmTr6DUKcR5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chauffage_et_Entrainement_du_Courant_dans_un_Tokamak_par_les_Ondes_HF","translated_slug":"","page_count":38,"language":"fr","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34127766,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127766/thumbnails/1.jpg","file_name":"preplasma.pdf","download_url":"https://www.academia.edu/attachments/34127766/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chauffage_et_Entrainement_du_Courant_dan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127766/preplasma-libre.pdf?1404623858=\u0026response-content-disposition=attachment%3B+filename%3DChauffage_et_Entrainement_du_Courant_dan.pdf\u0026Expires=1732690822\u0026Signature=Cz3hBkaxPdPCgdN1fgWvvT1DkHAByjzeF0x01G3AKyapouBolCsxmnGnyV7dbeuslxDBID2gCAHHhNS0pgltze-7E5uzVhoNT-WxB1ARu3-osvW-m8vkCJHSXLtChJLlSX4ic2wLTLpS59EYFKGsUFtLQTdlbK2EfndXmv3-34JdDU4N4XK~E02A~xakNNsuNN8pmbt5e0YefKmENcVB~NyENHFC~jIEZRv4F4gq4nZwfAN897DTGvDVZEHsUvZDaE1eywsI3sf~ekjpk1TxVAE65TqHYr6rjAa0M~-MuP5BfQ8bZgF7Kt4W9YrSCFwjJgO4pjSz96bmTr6DUKcR5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7569480"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7569480/La_Photodesintegration_du_Deuton_a_theta_0_M_Sc_"><img alt="Research paper thumbnail of La Photodesintegration du Deuton a \theta=0 (M.Sc)" class="work-thumbnail" src="https://attachments.academia-assets.com/34127758/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7569480/La_Photodesintegration_du_Deuton_a_theta_0_M_Sc_">La Photodesintegration du Deuton a \theta=0 (M.Sc)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a3ff798b6b3f5f2e4f2f353fa8ecccd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34127758,"asset_id":7569480,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34127758/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7569480"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7569480"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7569480; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7569480]").text(description); $(".js-view-count[data-work-id=7569480]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7569480; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7569480']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7569480, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a3ff798b6b3f5f2e4f2f353fa8ecccd" } } $('.js-work-strip[data-work-id=7569480]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7569480,"title":"La Photodesintegration du Deuton a \\theta=0 (M.Sc)","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/7569480/La_Photodesintegration_du_Deuton_a_theta_0_M_Sc_","translated_internal_url":"","created_at":"2014-07-05T22:16:59.641-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34127758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127758/thumbnails/1.jpg","file_name":"master.pdf","download_url":"https://www.academia.edu/attachments/34127758/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"La_Photodesintegration_du_Deuton_a_theta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127758/master-libre.pdf?1404623744=\u0026response-content-disposition=attachment%3B+filename%3DLa_Photodesintegration_du_Deuton_a_theta.pdf\u0026Expires=1732690822\u0026Signature=Wsoh5Mts1We1kL8x9IXkfT7KsfUoUMmAsSCAzYoAgcOT8ApWUhXrfadJ2~~CQSBuT87xHzPbxxmv84uHtCRGMahR4QdihcvLuIOwHAyUSQ3Bg0X-EfCJEBz1FN~hv~7C2NJZ6-QbrBPVHAHqxACr6n1tw3L4NC3~vQ9XIU2RGu4QtA5Mq4AHNX3kM48EEDoRRr3I0JdLCBp7jPstMDWPc6kZGd5iiyiswOuJGC5Wy~jZPhFKwcIw9dVvUQqSOCvvmSif9UGe6F998-zDerVCrxCd6UDMUXefhYMF1iQQWpYRgdXgEbgSsb5olpWufy9-AovpHFPODuioI2uONBQuXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"La_Photodesintegration_du_Deuton_a_theta_0_M_Sc_","translated_slug":"","page_count":81,"language":"fr","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34127758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34127758/thumbnails/1.jpg","file_name":"master.pdf","download_url":"https://www.academia.edu/attachments/34127758/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"La_Photodesintegration_du_Deuton_a_theta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34127758/master-libre.pdf?1404623744=\u0026response-content-disposition=attachment%3B+filename%3DLa_Photodesintegration_du_Deuton_a_theta.pdf\u0026Expires=1732690822\u0026Signature=Wsoh5Mts1We1kL8x9IXkfT7KsfUoUMmAsSCAzYoAgcOT8ApWUhXrfadJ2~~CQSBuT87xHzPbxxmv84uHtCRGMahR4QdihcvLuIOwHAyUSQ3Bg0X-EfCJEBz1FN~hv~7C2NJZ6-QbrBPVHAHqxACr6n1tw3L4NC3~vQ9XIU2RGu4QtA5Mq4AHNX3kM48EEDoRRr3I0JdLCBp7jPstMDWPc6kZGd5iiyiswOuJGC5Wy~jZPhFKwcIw9dVvUQqSOCvvmSif9UGe6F998-zDerVCrxCd6UDMUXefhYMF1iQQWpYRgdXgEbgSsb5olpWufy9-AovpHFPODuioI2uONBQuXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":514,"name":"Nuclear Physics","url":"https://www.academia.edu/Documents/in/Nuclear_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7515703"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7515703/Some_Spherical_Solutions_of_Ideal_Magnetohydrodynamic_Equations"><img alt="Research paper thumbnail of Some Spherical Solutions of Ideal Magnetohydrodynamic Equations" class="work-thumbnail" src="https://attachments.academia-assets.com/34084279/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7515703/Some_Spherical_Solutions_of_Ideal_Magnetohydrodynamic_Equations">Some Spherical Solutions of Ideal Magnetohydrodynamic Equations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bd8ef3ebede353dcf5d1ef9272590693" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34084279,"asset_id":7515703,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34084279/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7515703"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7515703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7515703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7515703]").text(description); $(".js-view-count[data-work-id=7515703]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7515703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7515703']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7515703, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bd8ef3ebede353dcf5d1ef9272590693" } } $('.js-work-strip[data-work-id=7515703]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7515703,"title":"Some Spherical Solutions of Ideal Magnetohydrodynamic Equations","translated_title":"","metadata":{"grobid_abstract":"Some spherical solutions of the ideal magnetohydrodynamic (MHD) equations are obtained from the method of the weak transversality method (WTM), which is based on Lie group theory. This analytical method makes use of the symmetry group of the MHD system in situations where the \"classical\" Lie approach of symmetry reductions is no longer applicable. Also, a brief physical interpretation of these solutions is given.","grobid_abstract_attachment_id":34084279},"translated_abstract":null,"internal_url":"https://www.academia.edu/7515703/Some_Spherical_Solutions_of_Ideal_Magnetohydrodynamic_Equations","translated_internal_url":"","created_at":"2014-06-30T22:07:21.098-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34084279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084279/thumbnails/1.jpg","file_name":"2.pdf","download_url":"https://www.academia.edu/attachments/34084279/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_Spherical_Solutions_of_Ideal_Magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084279/2-libre.pdf?1404191236=\u0026response-content-disposition=attachment%3B+filename%3DSome_Spherical_Solutions_of_Ideal_Magnet.pdf\u0026Expires=1732748726\u0026Signature=COUV9cqZMnukQCqmgIPt9LWRXQadRqRVXLycK8AeoyN1LQ2HpsxuQKlGO6acboMgLHu5h9kq~u8F-JdrW2QTRR0ZtIM3~GtygK7nmb9Iyo2Xdz2BsMf5FqD-KVTaPfMhGeEgs782k6iE3n4wt63JRq75iW1fqjLQeLUsmrzqIqxi8f~5QHgwpzVZKiLTdhk9Y3j2snLjETFTXey75zkct~dqR4TNUWtLkgwje2T1EZLR~d7bbMx2TnHylz2rlRpPk6f65NSG2oDCjNOw6pHWkD-QfJ5zAJbaEYC25WU2ku99idWfF6Ml-FjiiXGKBLIKO45w~wKpR7~-GDQzi6KPhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_Spherical_Solutions_of_Ideal_Magnetohydrodynamic_Equations","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34084279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084279/thumbnails/1.jpg","file_name":"2.pdf","download_url":"https://www.academia.edu/attachments/34084279/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_Spherical_Solutions_of_Ideal_Magnet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084279/2-libre.pdf?1404191236=\u0026response-content-disposition=attachment%3B+filename%3DSome_Spherical_Solutions_of_Ideal_Magnet.pdf\u0026Expires=1732748726\u0026Signature=COUV9cqZMnukQCqmgIPt9LWRXQadRqRVXLycK8AeoyN1LQ2HpsxuQKlGO6acboMgLHu5h9kq~u8F-JdrW2QTRR0ZtIM3~GtygK7nmb9Iyo2Xdz2BsMf5FqD-KVTaPfMhGeEgs782k6iE3n4wt63JRq75iW1fqjLQeLUsmrzqIqxi8f~5QHgwpzVZKiLTdhk9Y3j2snLjETFTXey75zkct~dqR4TNUWtLkgwje2T1EZLR~d7bbMx2TnHylz2rlRpPk6f65NSG2oDCjNOw6pHWkD-QfJ5zAJbaEYC25WU2ku99idWfF6Ml-FjiiXGKBLIKO45w~wKpR7~-GDQzi6KPhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7515702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7515702/Some_Partially_Invariant_Solutions_of_Ideal_Magnetohydrodynamic_Equations"><img alt="Research paper thumbnail of Some Partially Invariant Solutions of Ideal Magnetohydrodynamic Equations" class="work-thumbnail" src="https://attachments.academia-assets.com/34084280/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7515702/Some_Partially_Invariant_Solutions_of_Ideal_Magnetohydrodynamic_Equations">Some Partially Invariant Solutions of Ideal Magnetohydrodynamic Equations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8b935695799eab84c739de435fb2588" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34084280,"asset_id":7515702,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34084280/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7515702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7515702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7515702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7515702]").text(description); $(".js-view-count[data-work-id=7515702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7515702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7515702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7515702, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8b935695799eab84c739de435fb2588" } } $('.js-work-strip[data-work-id=7515702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7515702,"title":"Some Partially Invariant Solutions of Ideal Magnetohydrodynamic Equations","translated_title":"","metadata":{"grobid_abstract":"Some partially invariant solutions (PIS) with a defect structure 未 = 1 are constructed for the ideal magnetohydrodynamic (MHD) equations. We use a general and systematic approach based on subgroup classification methods. In particular, we restrict our study to the three-dimensional subgroups, which have generic orbits of dimension 2 in the space of independent variables, that allow us to introduce the corresponding symmetry variables and then to reduce the initial equations to different nonequivalent classes of partial differential equations.This gives us some new partially invariant solutions, which are determined to be reducible with respect to the symmetry group. Some physical interpretations of the results are briefly discussed.","grobid_abstract_attachment_id":34084280},"translated_abstract":null,"internal_url":"https://www.academia.edu/7515702/Some_Partially_Invariant_Solutions_of_Ideal_Magnetohydrodynamic_Equations","translated_internal_url":"","created_at":"2014-06-30T22:07:18.607-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34084280,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084280/thumbnails/1.jpg","file_name":"3.pdf","download_url":"https://www.academia.edu/attachments/34084280/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_Partially_Invariant_Solutions_of_Id.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084280/3-libre.pdf?1404191312=\u0026response-content-disposition=attachment%3B+filename%3DSome_Partially_Invariant_Solutions_of_Id.pdf\u0026Expires=1732748726\u0026Signature=CoGo50Fo8roUsi7wJITwe2wCZubpkSc2KPpZ4cPQd1Oq9qxRJHJRxHPvUSsgEWB794ezSxXYo~SMes7CNCGfrtrnsvBqYE653s1rN9mY3e~ALOpTkxHFwCe8AEmRWr5Bj~uEn4Xa-NPP7-RKWa84kJUZcm~zywfOenaoMnqnwGNdpYgAXFiLsa9FO10VZxIOnbz9VndxcJOHbk~RMRTwzXGAZfPziLysE-MpvtYJXAm99RlmQK~pURKGHLn6B-TP2FZmx7cgk59OIUlVPS-Z9lmWziQhzybby0hyJxPiXA8Yw0d-2yvjzg1XIrSkow5yiOy3aTRwTC0Wq2gdPgtQgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_Partially_Invariant_Solutions_of_Ideal_Magnetohydrodynamic_Equations","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34084280,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084280/thumbnails/1.jpg","file_name":"3.pdf","download_url":"https://www.academia.edu/attachments/34084280/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_Partially_Invariant_Solutions_of_Id.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084280/3-libre.pdf?1404191312=\u0026response-content-disposition=attachment%3B+filename%3DSome_Partially_Invariant_Solutions_of_Id.pdf\u0026Expires=1732748726\u0026Signature=CoGo50Fo8roUsi7wJITwe2wCZubpkSc2KPpZ4cPQd1Oq9qxRJHJRxHPvUSsgEWB794ezSxXYo~SMes7CNCGfrtrnsvBqYE653s1rN9mY3e~ALOpTkxHFwCe8AEmRWr5Bj~uEn4Xa-NPP7-RKWa84kJUZcm~zywfOenaoMnqnwGNdpYgAXFiLsa9FO10VZxIOnbz9VndxcJOHbk~RMRTwzXGAZfPziLysE-MpvtYJXAm99RlmQK~pURKGHLn6B-TP2FZmx7cgk59OIUlVPS-Z9lmWziQhzybby0hyJxPiXA8Yw0d-2yvjzg1XIrSkow5yiOy3aTRwTC0Wq2gdPgtQgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7515701"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7515701/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions"><img alt="Research paper thumbnail of Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/34084277/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7515701/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions">Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05ae5342e08346c4f9938223d416cd74" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34084277,"asset_id":7515701,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34084277/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7515701"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7515701"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7515701; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7515701]").text(description); $(".js-view-count[data-work-id=7515701]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7515701; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7515701']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7515701, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05ae5342e08346c4f9938223d416cd74" } } $('.js-work-strip[data-work-id=7515701]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7515701,"title":"Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions","translated_title":"","metadata":{"grobid_abstract":"The symmetry reduction method is used to obtain invariant and conditionally invariant solutions of magnetohydrodynamic equations in (3+1) dimensions. Detail description of the procedure for constructing such solutions is presented. These solutions represent simple and double Riemann waves.","grobid_abstract_attachment_id":34084277},"translated_abstract":null,"internal_url":"https://www.academia.edu/7515701/Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions","translated_internal_url":"","created_at":"2014-06-30T22:07:18.529-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":31995759,"work_id":7515701,"tagging_user_id":13315004,"tagged_user_id":51783228,"co_author_invite_id":null,"email":"g***n@crm.umontreal.ca","display_order":0,"name":"Alfred Grundland","title":"Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions"}],"downloadable_attachments":[{"id":34084277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084277/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/34084277/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Invariant_and_Conditionally_Invariant_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084277/1-libre.pdf?1404191276=\u0026response-content-disposition=attachment%3B+filename%3DInvariant_and_Conditionally_Invariant_So.pdf\u0026Expires=1732748726\u0026Signature=O~abno2jcmfeqlG45jVd5lIqQQZ8WJO76n6e8gCYOD3wET5XVEbxqkgdHG0MciJQIQtAUQ4V86CEWat9jtUzsz259p8sVasISzAIpjd70sKF-TCMveGZvM4famDFdd8qPH7cxXDdPnp8vwgGOJGpKwvYVjJi4PyCZbF6oTM62L6sD8nMerK8ndwFEAZr3OuQLUce35L0wwpqWERp3xuy5yedm7PeKZ~lmyVTfELQFb-UeNGwuRfaSxyhsnmJIxjzf2zoaue2OCiYWCVrsfh5~tl8ik3tzCpU6kIpF5yaxpFHW5-8TWPQ-tF~myM4WboLOyZQF3gGO-KphaslCAuN0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Invariant_and_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_in_3_1_Dimensions","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34084277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084277/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/34084277/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Invariant_and_Conditionally_Invariant_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084277/1-libre.pdf?1404191276=\u0026response-content-disposition=attachment%3B+filename%3DInvariant_and_Conditionally_Invariant_So.pdf\u0026Expires=1732748726\u0026Signature=O~abno2jcmfeqlG45jVd5lIqQQZ8WJO76n6e8gCYOD3wET5XVEbxqkgdHG0MciJQIQtAUQ4V86CEWat9jtUzsz259p8sVasISzAIpjd70sKF-TCMveGZvM4famDFdd8qPH7cxXDdPnp8vwgGOJGpKwvYVjJi4PyCZbF6oTM62L6sD8nMerK8ndwFEAZr3OuQLUce35L0wwpqWERp3xuy5yedm7PeKZ~lmyVTfELQFb-UeNGwuRfaSxyhsnmJIxjzf2zoaue2OCiYWCVrsfh5~tl8ik3tzCpU6kIpF5yaxpFHW5-8TWPQ-tF~myM4WboLOyZQF3gGO-KphaslCAuN0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7515699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7515699/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves"><img alt="Research paper thumbnail of On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves" class="work-thumbnail" src="https://attachments.academia-assets.com/34084276/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7515699/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves">On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4354ede6f5adf8992908b1c2f83f23bd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34084276,"asset_id":7515699,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34084276/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7515699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7515699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7515699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7515699]").text(description); $(".js-view-count[data-work-id=7515699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7515699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7515699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7515699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4354ede6f5adf8992908b1c2f83f23bd" } } $('.js-work-strip[data-work-id=7515699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7515699,"title":"On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves","translated_title":"","metadata":{"grobid_abstract":"We present a version of the conditional symmetry method in order to obtain multiple wave solutions expressed in terms of Riemann invariants. We construct an abelian distribution of vector fields which are symmetries of the original system of PDEs subjected to certain first order differential constraints. The usefulness of our approach is demonstrated on simple and double wave solutions of MHD equations. The paper also contains a comparison of the conditional symmetry method with the generalized method of characteristics.","grobid_abstract_attachment_id":34084276},"translated_abstract":null,"internal_url":"https://www.academia.edu/7515699/On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves","translated_internal_url":"","created_at":"2014-06-30T22:06:20.736-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":31985467,"work_id":7515699,"tagging_user_id":13315004,"tagged_user_id":51783228,"co_author_invite_id":null,"email":"g***n@crm.umontreal.ca","display_order":0,"name":"Alfred Grundland","title":"On Conditionally Invariant Solutions of Magnetohydrodynamic Equations. Multiple Waves"}],"downloadable_attachments":[{"id":34084276,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084276/thumbnails/1.jpg","file_name":"0.pdf","download_url":"https://www.academia.edu/attachments/34084276/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Conditionally_Invariant_Solutions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084276/0-libre.pdf?1404191495=\u0026response-content-disposition=attachment%3B+filename%3DOn_Conditionally_Invariant_Solutions_of.pdf\u0026Expires=1732748726\u0026Signature=D4FbQCNHzyfTCE2BRsrML7gKzW3UGNPXD0ngTecXdtvT6ck5RVh93y6URxYfE~H5AvdiandgtazfSuspWQgQGZk70I4s2I3htqov~d~cET9GG7DtbHangHUKeqSJv2Bz4dw8rlEc-a4QLwDKyShF3PwtnQOWVRc1m2VpzpZnFU0T3BOpnvUv17lWU-bS9WsLTmW5iPmIV1KR1J5GxQCAEw7TNk13h424lsQn8LbNzsfzLK8gdz33dxvNQhhlrLWrrkDNdorZYno3bq~7koicvvDDKNOAtdq31gcdDocgti4cqdFZYE3Dorq98U07OBGUE0xCtXEmA7zlR0qSEAwiCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Conditionally_Invariant_Solutions_of_Magnetohydrodynamic_Equations_Multiple_Waves","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34084276,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34084276/thumbnails/1.jpg","file_name":"0.pdf","download_url":"https://www.academia.edu/attachments/34084276/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Conditionally_Invariant_Solutions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34084276/0-libre.pdf?1404191495=\u0026response-content-disposition=attachment%3B+filename%3DOn_Conditionally_Invariant_Solutions_of.pdf\u0026Expires=1732748726\u0026Signature=D4FbQCNHzyfTCE2BRsrML7gKzW3UGNPXD0ngTecXdtvT6ck5RVh93y6URxYfE~H5AvdiandgtazfSuspWQgQGZk70I4s2I3htqov~d~cET9GG7DtbHangHUKeqSJv2Bz4dw8rlEc-a4QLwDKyShF3PwtnQOWVRc1m2VpzpZnFU0T3BOpnvUv17lWU-bS9WsLTmW5iPmIV1KR1J5GxQCAEw7TNk13h424lsQn8LbNzsfzLK8gdz33dxvNQhhlrLWrrkDNdorZYno3bq~7koicvvDDKNOAtdq31gcdDocgti4cqdFZYE3Dorq98U07OBGUE0xCtXEmA7zlR0qSEAwiCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":503,"name":"Theoretical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7472251"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7472251/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method"><img alt="Research paper thumbnail of Some exact solutions of the ideal MHD equations through symmetry reduction method" class="work-thumbnail" src="https://attachments.academia-assets.com/34047326/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7472251/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method">Some exact solutions of the ideal MHD equations through symmetry reduction method</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b281ed78fd49dc974d687156643d58f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34047326,"asset_id":7472251,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34047326/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7472251"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7472251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7472251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7472251]").text(description); $(".js-view-count[data-work-id=7472251]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7472251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7472251']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7472251, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b281ed78fd49dc974d687156643d58f" } } $('.js-work-strip[data-work-id=7472251]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7472251,"title":"Some exact solutions of the ideal MHD equations through symmetry reduction method","translated_title":"","metadata":{"grobid_abstract":"We use the symmetry reduction method based on Lie group theory to obtain some exact solutions, the so-called invariant solutions, of the ideal magnetohydrodynamic equations in (3 + 1) dimensions. In particular, these equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras (1 r 4) was already known. We restrict our study to the three-dimensional Galilean-similitude subalgebras that give us systems composed of ordinary differential equations. Here, some examples of these solutions are presented with a brief physical interpretation.","grobid_abstract_attachment_id":34047326},"translated_abstract":null,"internal_url":"https://www.academia.edu/7472251/Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method","translated_internal_url":"","created_at":"2014-06-26T10:24:15.239-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13315004,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34047326,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34047326/thumbnails/1.jpg","file_name":"JMAA-12344-FINAL.pdf","download_url":"https://www.academia.edu/attachments/34047326/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_exact_solutions_of_the_ideal_MHD_eq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34047326/JMAA-12344-FINAL-libre.pdf?1403803895=\u0026response-content-disposition=attachment%3B+filename%3DSome_exact_solutions_of_the_ideal_MHD_eq.pdf\u0026Expires=1732748726\u0026Signature=EgF6MOhCJu9wcKINgRfhZKizq1NAUX1EeHM7h7VsrGFsZv8wWYayKg8N3fphmEgaNgQEhzSqFoanB9vurLadDoVLkIkG7I5NpHtBEGYYBbzhE72VZFr~iMtFO5~MuKTO9CTbIr8yJwnOi1A9Gq3OPh76Qt4HJ-32~kcahPygUyyKlq~HhIxfUpH3BYG3C5NAoj4BLCqKVDkwR9WpsrogiAy4usBOD6vtPUucBapKMNvHQaS9RQJ9zJjwsXaiMVWIN2sfHCGv0JEzaxhy488XmOn85a7l~2kZscddoYMVgV0gJXmm9s026KEnLhaVPsPOtHNvizJjalNIZCMttQlwyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_exact_solutions_of_the_ideal_MHD_equations_through_symmetry_reduction_method","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":13315004,"first_name":"Philippe Yves","middle_initials":null,"last_name":"Picard","page_name":"PhilippeYvesPicard","domain_name":"independent","created_at":"2014-06-26T10:22:32.802-07:00","display_name":"Philippe Yves Picard","url":"https://independent.academia.edu/PhilippeYvesPicard"},"attachments":[{"id":34047326,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34047326/thumbnails/1.jpg","file_name":"JMAA-12344-FINAL.pdf","download_url":"https://www.academia.edu/attachments/34047326/download_file?st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTEyNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_exact_solutions_of_the_ideal_MHD_eq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34047326/JMAA-12344-FINAL-libre.pdf?1403803895=\u0026response-content-disposition=attachment%3B+filename%3DSome_exact_solutions_of_the_ideal_MHD_eq.pdf\u0026Expires=1732748726\u0026Signature=EgF6MOhCJu9wcKINgRfhZKizq1NAUX1EeHM7h7VsrGFsZv8wWYayKg8N3fphmEgaNgQEhzSqFoanB9vurLadDoVLkIkG7I5NpHtBEGYYBbzhE72VZFr~iMtFO5~MuKTO9CTbIr8yJwnOi1A9Gq3OPh76Qt4HJ-32~kcahPygUyyKlq~HhIxfUpH3BYG3C5NAoj4BLCqKVDkwR9WpsrogiAy4usBOD6vtPUucBapKMNvHQaS9RQJ9zJjwsXaiMVWIN2sfHCGv0JEzaxhy488XmOn85a7l~2kZscddoYMVgV0gJXmm9s026KEnLhaVPsPOtHNvizJjalNIZCMttQlwyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":126829,"name":"Symmetry","url":"https://www.academia.edu/Documents/in/Symmetry"},{"id":370584,"name":"Exact Solutions","url":"https://www.academia.edu/Documents/in/Exact_Solutions"},{"id":603952,"name":"Lie Group","url":"https://www.academia.edu/Documents/in/Lie_Group"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "567cf7085c7243837989ff73dbbeceb768a1b7db0450714023ad44997ad5e006", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="u5NwDMXTmqjW+hUb9En/H44YupnyTWJYbm+NVeB5EVRCd5eThU01RNedevO0nIO/mF75lNefbLaW5JiYbQmovw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/PhilippeYvesPicard" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="EyWjWvp/+hWAxN78vzKJE29VNhVdmyr1AeTz5fCj8IHqwUTFuuFV+YGjsRT/5/WzeRN1GHhJJBv5b+YofdNJag==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>