CINXE.COM

List of named matrices - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>List of named matrices - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"9d6cf645-e9c5-4d7b-a844-db924c899888","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"List_of_named_matrices","wgTitle":"List of named matrices","wgCurRevisionId":1255572705,"wgRevisionId":1255572705,"wgArticleId":193837,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Mathematics-related lists","Matrices"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"List_of_named_matrices","wgRelevantArticleId":193837,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"List_of_matrices","wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgInternalRedirectTargetUrl":"/wiki/List_of_named_matrices","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2663605","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.tablesorter","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Taxonomy_of_Complex_Matrices.svg/1200px-Taxonomy_of_Complex_Matrices.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Taxonomy_of_Complex_Matrices.svg/800px-Taxonomy_of_Complex_Matrices.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="533"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Taxonomy_of_Complex_Matrices.svg/640px-Taxonomy_of_Complex_Matrices.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="427"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="List of named matrices - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/List_of_named_matrices"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=List_of_named_matrices&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/List_of_named_matrices"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-List_of_named_matrices rootpage-List_of_named_matrices skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=List+of+named+matrices" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=List+of+named+matrices" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=List+of+named+matrices" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=List+of+named+matrices" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Constant_matrices" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Constant_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Constant matrices</span> </div> </a> <ul id="toc-Constant_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Specific_patterns_for_entries" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Specific_patterns_for_entries"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Specific patterns for entries</span> </div> </a> <ul id="toc-Specific_patterns_for_entries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrices_satisfying_some_equations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matrices_satisfying_some_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Matrices satisfying some equations</span> </div> </a> <ul id="toc-Matrices_satisfying_some_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrices_with_conditions_on_eigenvalues_or_eigenvectors" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matrices_with_conditions_on_eigenvalues_or_eigenvectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Matrices with conditions on eigenvalues or eigenvectors</span> </div> </a> <ul id="toc-Matrices_with_conditions_on_eigenvalues_or_eigenvectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrices_generated_by_specific_data" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matrices_generated_by_specific_data"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Matrices generated by specific data</span> </div> </a> <ul id="toc-Matrices_generated_by_specific_data-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrices_used_in_statistics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matrices_used_in_statistics"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Matrices used in statistics</span> </div> </a> <ul id="toc-Matrices_used_in_statistics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrices_used_in_graph_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matrices_used_in_graph_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Matrices used in graph theory</span> </div> </a> <ul id="toc-Matrices_used_in_graph_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrices_used_in_science_and_engineering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matrices_used_in_science_and_engineering"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Matrices used in science and engineering</span> </div> </a> <ul id="toc-Matrices_used_in_science_and_engineering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Specific_matrices" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Specific_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Specific matrices</span> </div> </a> <ul id="toc-Specific_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_matrix-related_terms_and_definitions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Other_matrix-related_terms_and_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Other matrix-related terms and definitions</span> </div> </a> <ul id="toc-Other_matrix-related_terms_and_definitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">List of named matrices</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 8 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-8" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">8 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D8%A7%D8%A6%D9%85%D8%A9_%D8%A7%D9%84%D9%85%D8%B5%D9%81%D9%88%D9%81%D8%A7%D8%AA" title="قائمة المصفوفات – Arabic" lang="ar" hreflang="ar" data-title="قائمة المصفوفات" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A5%8D%E0%A4%AF%E0%A5%82%E0%A4%B9%E0%A5%8B%E0%A4%82_%E0%A4%95%E0%A5%80_%E0%A4%B8%E0%A5%82%E0%A4%9A%E0%A5%80" title="व्यूहों की सूची – Hindi" lang="hi" hreflang="hi" data-title="व्यूहों की सूची" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Daftar_matriks_yang_dinamakan" title="Daftar matriks yang dinamakan – Indonesian" lang="id" hreflang="id" data-title="Daftar matriks yang dinamakan" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Glossario_sulle_matrici" title="Glossario sulle matrici – Italian" lang="it" hreflang="it" data-title="Glossario sulle matrici" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Spis_macierzy" title="Spis macierzy – Polish" lang="pl" hreflang="pl" data-title="Spis macierzy" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86" title="Список матриц – Russian" lang="ru" hreflang="ru" data-title="Список матриц" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Seznam_vrst_matrik" title="Seznam vrst matrik – Slovenian" lang="sl" hreflang="sl" data-title="Seznam vrst matrik" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D0%BB%D1%96%D0%BA_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8C" title="Перелік матриць – Ukrainian" lang="uk" hreflang="uk" data-title="Перелік матриць" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2663605#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/List_of_named_matrices" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:List_of_named_matrices" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/List_of_named_matrices"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=List_of_named_matrices&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/List_of_named_matrices"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=List_of_named_matrices&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/List_of_named_matrices" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/List_of_named_matrices" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=List_of_named_matrices&amp;oldid=1255572705" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=List_of_named_matrices&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=List_of_named_matrices&amp;id=1255572705&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FList_of_named_matrices"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FList_of_named_matrices"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=List_of_named_matrices&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=List_of_named_matrices&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2663605" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=List_of_matrices&amp;redirect=no" class="mw-redirect" title="List of matrices">List of matrices</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Taxonomy_of_Complex_Matrices.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Taxonomy_of_Complex_Matrices.svg/247px-Taxonomy_of_Complex_Matrices.svg.png" decoding="async" width="247" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Taxonomy_of_Complex_Matrices.svg/371px-Taxonomy_of_Complex_Matrices.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Taxonomy_of_Complex_Matrices.svg/494px-Taxonomy_of_Complex_Matrices.svg.png 2x" data-file-width="1350" data-file-height="900" /></a><figcaption>Several important classes of matrices are subsets of each other.</figcaption></figure> <p>This article lists some important classes of <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a> used in <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, <a href="/wiki/Science" title="Science">science</a> and <a href="/wiki/Engineering" title="Engineering">engineering</a>. A <b>matrix</b> (plural matrices, or less commonly matrixes) is a rectangular <a href="/wiki/Array_data_structure" class="mw-redirect" title="Array data structure">array</a> of <a href="/wiki/Number" title="Number">numbers</a> called <i>entries</i>. Matrices have a long history of both study and application, leading to diverse ways of classifying matrices. A first group is matrices satisfying concrete conditions of the entries, including constant matrices. Important examples include the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{n}={\begin{bmatrix}1&amp;0&amp;\cdots &amp;0\\0&amp;1&amp;\cdots &amp;0\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\0&amp;0&amp;\cdots &amp;1\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22F1;<!-- ⋱ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{n}={\begin{bmatrix}1&amp;0&amp;\cdots &amp;0\\0&amp;1&amp;\cdots &amp;0\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\0&amp;0&amp;\cdots &amp;1\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10983f1fccdf00b7095eea8457480727538b91ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:23.273ex; height:14.176ex;" alt="{\displaystyle I_{n}={\begin{bmatrix}1&amp;0&amp;\cdots &amp;0\\0&amp;1&amp;\cdots &amp;0\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\0&amp;0&amp;\cdots &amp;1\end{bmatrix}}.}"></span></dd></dl> <p>and the <a href="/wiki/Zero_matrix" title="Zero matrix">zero matrix</a> of dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span>. For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O_{2\times 3}={\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O_{2\times 3}={\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/411eb6114fb4bc1924cf6ddbe3ce0fbaded49fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.332ex; height:6.176ex;" alt="{\displaystyle O_{2\times 3}={\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}}}"></span>.</dd></dl> <p>Further ways of classifying matrices are according to their <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a>, or by imposing conditions on the <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">product</a> of the matrix with other matrices. Finally, many domains, both in mathematics and other sciences including <a href="/wiki/Physics" title="Physics">physics</a> and <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, have particular matrices that are applied chiefly in these areas. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Constant_matrices">Constant matrices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=1" title="Edit section: Constant matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The list below comprises matrices whose elements are constant for any given dimension (size) of matrix. The matrix entries will be denoted <i>a<sub>ij</sub></i>. The table below uses the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a> δ<sub><i>ij</i></sub> for two integers <i>i</i> and <i>j</i> which is 1 if <i>i</i> = <i>j</i> and 0 else. </p> <table class="wikitable sortable"> <tbody><tr> <th>Name</th> <th>Explanation</th> <th>Symbolic description of the entries</th> <th>Notes </th></tr> <tr> <td><a href="/wiki/Commutation_matrix" title="Commutation matrix">Commutation matrix</a></td> <td>The matrix of the <a href="/wiki/Linear_map" title="Linear map">linear map</a> that maps a matrix to its transpose</td> <td></td> <td>See <a href="/wiki/Vectorization_(mathematics)" title="Vectorization (mathematics)">Vectorization</a> </td></tr> <tr> <td><a href="/wiki/Duplication_matrix" class="mw-redirect" title="Duplication matrix">Duplication matrix</a></td> <td>The matrix of the linear map mapping the vector of the distinct entries of a <a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric matrix</a> to the vector of all entries of the matrix</td> <td></td> <td>See <a href="/wiki/Vectorization_(mathematics)" title="Vectorization (mathematics)">Vectorization</a> </td></tr> <tr> <td><a href="/wiki/Elimination_matrix" class="mw-redirect" title="Elimination matrix">Elimination matrix</a></td> <td>The matrix of the linear map mapping the vector of the entries of a matrix to the vector of a part of the entries (for example the vector of the entries that are not below the main diagonal)</td> <td></td> <td>See <a href="/wiki/Vectorization_(mathematics)" title="Vectorization (mathematics)">vectorization</a> </td></tr> <tr> <td><a href="/wiki/Exchange_matrix" title="Exchange matrix">Exchange&#160;matrix</a></td> <td>The <a href="/wiki/Binary_matrix" class="mw-redirect" title="Binary matrix">binary matrix</a> with ones on the anti-diagonal, and zeroes everywhere else.</td> <td><i>a<sub>ij</sub></i> = δ<sub><i>n</i>+1−<i>i</i>,<i>j</i></sub></td> <td>A <a href="/wiki/Permutation_matrix" title="Permutation matrix">permutation matrix</a>. </td></tr> <tr> <td><a href="/wiki/Hilbert_matrix" title="Hilbert matrix">Hilbert matrix</a></td> <td></td> <td><i>a</i><sub><i>ij</i></sub>&#160;=&#160;(<i>i</i>&#160;+&#160;<i>j</i>&#160;−&#160;1)<sup>−1</sup>.</td> <td>A <a href="/wiki/Hankel_matrix" title="Hankel matrix">Hankel matrix</a>. </td></tr> <tr> <td><a href="/wiki/Identity_matrix" title="Identity matrix">Identity matrix</a></td> <td>A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0.</td> <td><i>a<sub>ij</sub></i> = δ<sub><i>ij</i></sub></td> <td> </td></tr> <tr> <td><a href="/wiki/Lehmer_matrix" title="Lehmer matrix">Lehmer matrix</a></td> <td></td> <td><i>a<sub>ij</sub></i> = min(<i>i</i>, <i>j</i>) ÷ max(<i>i</i>, <i>j</i>).</td> <td>A <a href="/wiki/Positive_matrix" class="mw-redirect" title="Positive matrix">positive</a> <a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric matrix</a>. </td></tr> <tr> <td><a href="/wiki/Matrix_of_ones" title="Matrix of ones">Matrix of ones</a></td> <td>A matrix with all entries equal to one.</td> <td><i>a<sub>ij</sub></i> = 1.</td> <td> </td></tr> <tr> <td><a href="/wiki/Pascal_matrix" title="Pascal matrix">Pascal matrix</a></td> <td>A matrix containing the entries of <a href="/wiki/Pascal%27s_triangle" title="Pascal&#39;s triangle">Pascal's triangle</a>.</td> <td></td> <td> </td></tr> <tr> <td><a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a></td> <td>A set of three 2&#160;×&#160;2 complex Hermitian and unitary matrices. When combined with the <i>I</i><sub>2</sub> identity matrix, they form an orthogonal basis for the 2&#160;×&#160;2 complex Hermitian matrices.</td> <td></td> <td> </td></tr> <tr> <td><a href="/wiki/Redheffer_matrix" title="Redheffer matrix">Redheffer&#160;matrix</a></td> <td>Encodes a <a href="/wiki/Dirichlet_convolution" title="Dirichlet convolution">Dirichlet convolution</a>. Matrix entries are given by the <a href="/wiki/Divisor_function" title="Divisor function">divisor function</a>; entires of the inverse are given by the <a href="/wiki/M%C3%B6bius_function" title="Möbius function">Möbius function</a>.</td> <td><i>a</i><sub><i>ij</i></sub> are 1 if <i>i</i> divides <i>j</i> or if <i>j</i> = 1; otherwise, <i>a</i><sub><i>ij</i></sub> = 0.</td> <td>A (0, 1)-matrix. </td></tr> <tr> <td><a href="/wiki/Shift_matrix" title="Shift matrix">Shift matrix</a></td> <td>A matrix with ones on the superdiagonal or subdiagonal and zeroes elsewhere.</td> <td><i>a<sub>ij</sub></i> = δ<sub><i>i</i>+1,<i>j</i></sub> or <i>a<sub>ij</sub></i> = δ<sub><i>i</i>−1,<i>j</i></sub></td> <td>Multiplication by it shifts matrix elements by one position. </td></tr> <tr> <td><a href="/wiki/Zero_matrix" title="Zero matrix">Zero matrix</a></td> <td>A matrix with all entries equal to zero.</td> <td><i>a<sub>ij</sub></i> = 0.</td> <td> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Specific_patterns_for_entries">Specific patterns for entries</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=2" title="Edit section: Specific patterns for entries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following lists matrices whose entries are subject to certain conditions. Many of them apply to <i>square matrices</i> only, that is matrices with the same number of columns and rows. The <a href="/wiki/Main_diagonal" title="Main diagonal">main diagonal</a> of a square matrix is the <a href="/wiki/Diagonal" title="Diagonal">diagonal</a> joining the upper left corner and the lower right one or equivalently the entries <i>a</i><sub><i>i</i>,<i>i</i></sub>. The other diagonal is called anti-diagonal (or counter-diagonal). </p> <table class="wikitable sortable"> <tbody><tr> <th>Name</th> <th>Explanation</th> <th>Notes, references </th></tr> <tr> <td><a href="/wiki/Logical_matrix" title="Logical matrix">(0,1)-matrix</a></td> <td>A matrix with all elements either 0 or 1.</td> <td>Synonym for <i>binary matrix</i> or <i>logical matrix</i>. </td></tr> <tr> <td><a href="/wiki/Alternant_matrix" title="Alternant matrix">Alternant matrix</a></td> <td>A matrix in which successive columns have a particular function applied to their entries.</td> <td> </td></tr> <tr> <td><a href="/wiki/Alternating_sign_matrix" title="Alternating sign matrix">Alternating sign matrix</a></td> <td>A square matrix with entries 0, 1 and &#8722;1 such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign.</td> <td> </td></tr> <tr> <td><a href="/wiki/Anti-diagonal_matrix" title="Anti-diagonal matrix">Anti-diagonal matrix</a></td> <td>A square matrix with all entries off the anti-diagonal equal to zero.</td> <td> </td></tr> <tr> <td><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Anti-Hermitian matrix</a></td> <td></td> <td>Synonym for <i>skew-Hermitian matrix</i>. </td></tr> <tr> <td><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Anti-symmetric matrix</a></td> <td></td> <td>Synonym for <i>skew-symmetric matrix</i>. </td></tr> <tr> <td><a href="/wiki/Arrowhead_matrix" title="Arrowhead matrix">Arrowhead matrix</a></td> <td>A square matrix containing zeros in all entries except for the first row, first column, and main diagonal.</td> <td> </td></tr> <tr> <td><a href="/wiki/Band_matrix" title="Band matrix">Band matrix</a></td> <td>A square matrix whose non-zero entries are confined to a diagonal <i>band</i>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Bidiagonal_matrix" title="Bidiagonal matrix">Bidiagonal matrix</a></td> <td>A matrix with elements only on the main diagonal and either the superdiagonal or subdiagonal.</td> <td>Sometimes defined differently, see article. </td></tr> <tr> <td><a href="/wiki/Logical_matrix" title="Logical matrix">Binary matrix</a></td> <td>A matrix whose entries are all either 0 or 1.</td> <td>Synonym for <i>(0,1)-matrix</i> or <i>logical matrix</i>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Bisymmetric_matrix" title="Bisymmetric matrix">Bisymmetric matrix</a></td> <td>A square matrix that is symmetric with respect to its main diagonal and its main cross-diagonal.</td> <td> </td></tr> <tr> <td><a href="/wiki/Block-diagonal_matrix" class="mw-redirect" title="Block-diagonal matrix">Block-diagonal matrix</a></td> <td>A <a href="/wiki/Block_matrix" title="Block matrix">block matrix</a> with entries only on the diagonal.</td> <td> </td></tr> <tr> <td><a href="/wiki/Block_matrix" title="Block matrix">Block matrix</a></td> <td>A matrix partitioned in sub-matrices called blocks.</td> <td> </td></tr> <tr> <td><a href="/wiki/Block_tridiagonal_matrix" class="mw-redirect" title="Block tridiagonal matrix">Block tridiagonal matrix</a></td> <td>A block matrix which is essentially a tridiagonal matrix but with submatrices in place of scalar elements.</td> <td> </td></tr> <tr> <td><a href="/wiki/Boolean_matrix" title="Boolean matrix">Boolean matrix</a></td> <td>A matrix whose entries are taken from a <a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Cauchy_matrix" title="Cauchy matrix">Cauchy matrix</a></td> <td>A matrix whose elements are of the form 1/(<i>x<sub>i</sub></i> + <i>y<sub>j</sub></i>) for (<i>x<sub>i</sub></i>), (<i>y<sub>j</sub></i>) injective sequences (i.e., taking every value only once).</td> <td> </td></tr> <tr> <td><a href="/wiki/Centrosymmetric_matrix" title="Centrosymmetric matrix">Centrosymmetric matrix</a></td> <td>A matrix symmetric about its center; i.e., <i>a</i><sub><i>ij</i></sub>&#160;=&#160;<i>a</i><sub><i>n</i>−<i>i</i>+1,<i>n</i>−<i>j</i>+1</sub>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Circulant_matrix" title="Circulant matrix">Circulant matrix</a></td> <td>A matrix where each row is a circular shift of its predecessor.</td> <td> </td></tr> <tr> <td><a href="/wiki/Conference_matrix" title="Conference matrix">Conference matrix</a></td> <td>A square matrix with zero diagonal and +1 and −1 off the diagonal, such that C<sup>T</sup>C is a multiple of the identity matrix.</td> <td> </td></tr> <tr> <td><a href="/wiki/Complex_Hadamard_matrix" title="Complex Hadamard matrix">Complex Hadamard matrix</a></td> <td>A matrix with all rows and columns mutually orthogonal, whose entries are unimodular.</td> <td> </td></tr> <tr> <td><a href="/wiki/Compound_matrix" title="Compound matrix">Compound matrix</a> </td> <td>A matrix whose entries are generated by the determinants of all minors of a matrix. </td> <td> </td></tr> <tr> <td><a href="/wiki/Copositive_matrix" title="Copositive matrix">Copositive matrix</a></td> <td>A square matrix <i>A</i> with real coefficients, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{T}Ax}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mi>A</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{T}Ax}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecfdfeb624d92a4f3d0d3e0b4a2135a67cfb66e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.308ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{T}Ax}"></span> is nonnegative for every nonnegative vector <i>x</i></td> <td> </td></tr> <tr> <td><a href="/wiki/Diagonally_dominant_matrix" title="Diagonally dominant matrix">Diagonally dominant matrix</a></td> <td>A matrix whose entries satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a_{ii}|&gt;\sum _{j\neq i}|a_{ij}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&gt;</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>i</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a_{ii}|&gt;\sum _{j\neq i}|a_{ij}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e8754ac4f277f3a3f36f1a23178a492dcd56955" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:14.732ex; height:6.009ex;" alt="{\displaystyle |a_{ii}|&gt;\sum _{j\neq i}|a_{ij}|}"></span>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Diagonal_matrix" title="Diagonal matrix">Diagonal matrix</a></td> <td>A square matrix with all entries outside the <a href="/wiki/Main_diagonal" title="Main diagonal">main diagonal</a> equal to zero.</td> <td> </td></tr> <tr> <td><a href="/wiki/DFT_matrix" title="DFT matrix">Discrete Fourier-transform matrix</a></td> <td>Multiplying by a vector gives the DFT of the vector as result.</td> <td> </td></tr> <tr> <td><a href="/wiki/Elementary_matrix" title="Elementary matrix">Elementary matrix</a></td> <td>A square matrix derived by applying an elementary row operation to the identity matrix.</td> <td> </td></tr> <tr> <td><a href="/wiki/Equivalent_matrix" class="mw-redirect" title="Equivalent matrix">Equivalent matrix</a></td> <td>A matrix that can be derived from another matrix through a sequence of elementary row or column operations.</td> <td> </td></tr> <tr> <td><a href="/wiki/Frobenius_matrix" title="Frobenius matrix">Frobenius matrix</a></td> <td>A square matrix in the form of an identity matrix but with arbitrary entries in one column below the main diagonal.</td> <td> </td></tr> <tr> <td><a href="/wiki/GCD_matrix" title="GCD matrix">GCD matrix</a></td> <td>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7fcd27e8d01fdf5fe00da4f97045f079cd97bff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.309ex; height:2.843ex;" alt="{\displaystyle (S)}"></span> having the greatest common divisor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{i},x_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{i},x_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/310cfb18dea1a04a6f655b0131a04cf2527908b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.212ex; height:3.009ex;" alt="{\displaystyle (x_{i},x_{j})}"></span> as its <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ij}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ij}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53fcc7b57da64979c370eb150eb5a61a625a08e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.761ex; height:2.509ex;" alt="{\displaystyle ij}"></span> entry, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i},x_{j}\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i},x_{j}\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70a0b8b8e919d8c4694e2a6cef64c26ff84889a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.743ex; height:2.843ex;" alt="{\displaystyle x_{i},x_{j}\in S}"></span>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Generalized_permutation_matrix" title="Generalized permutation matrix">Generalized permutation matrix</a></td> <td>A square matrix with precisely one nonzero element in each row and column.</td> <td> </td></tr> <tr> <td><a href="/wiki/Hadamard_matrix" title="Hadamard matrix">Hadamard matrix</a></td> <td>A square matrix with entries +1, −1 whose rows are mutually orthogonal.</td> <td> </td></tr> <tr> <td><a href="/wiki/Hankel_matrix" title="Hankel matrix">Hankel matrix</a></td> <td>A matrix with constant skew-diagonals; also an upside down Toeplitz matrix.</td> <td>A square Hankel matrix is symmetric. </td></tr> <tr> <td><a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a></td> <td>A square matrix which is equal to its <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a>, <i>A</i> = <i>A</i><sup>*</sup>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Hessenberg_matrix" title="Hessenberg matrix">Hessenberg matrix</a></td> <td>An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal.</td> <td> </td></tr> <tr> <td><a href="/wiki/Hollow_matrix" title="Hollow matrix">Hollow matrix</a></td> <td>A square matrix whose main diagonal comprises only zero elements.</td> <td> </td></tr> <tr> <td><a href="/wiki/Integer_matrix" title="Integer matrix">Integer matrix</a></td> <td>A matrix whose entries are all integers.</td> <td> </td></tr> <tr> <td><a href="/wiki/Logical_matrix" title="Logical matrix">Logical matrix</a></td> <td>A matrix with all entries either 0 or 1.</td> <td>Synonym for <i>(0,1)-matrix</i>, <i>binary matrix</i> or <i>Boolean matrix</i>. Can be used to represent a <i>k</i>-adic <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relation</a>. </td></tr> <tr> <td><a href="/wiki/Markov_matrix" class="mw-redirect" title="Markov matrix">Markov matrix</a></td> <td>A matrix of non-negative real numbers, such that the entries in each row sum to 1.</td> <td> </td></tr> <tr> <td><a href="/wiki/Metzler_matrix" title="Metzler matrix">Metzler matrix</a></td> <td>A matrix whose off-diagonal entries are non-negative.</td> <td> </td></tr> <tr> <td><a href="/wiki/Generalized_permutation_matrix" title="Generalized permutation matrix">Monomial matrix</a></td> <td>A square matrix with exactly one non-zero entry in each row and column.</td> <td>Synonym for <i>generalized permutation matrix</i>. </td></tr> <tr> <td><a href="/wiki/Moore_matrix" title="Moore matrix">Moore matrix</a></td> <td>A row consists of <i>a</i>, <i>a</i><sup><i>q</i></sup>, <i>a</i><sup><i>q</i>²</sup>, etc., and each row uses a different variable.</td> <td> </td></tr> <tr> <td><a href="/wiki/Nonnegative_matrix" title="Nonnegative matrix">Nonnegative matrix</a></td> <td>A matrix with all nonnegative entries.</td> <td> </td></tr> <tr> <td>Null-symmetric matrix </td> <td>A square matrix whose null space (or <a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">kernel</a>) is equal to its <a href="/wiki/Transpose" title="Transpose">transpose</a>, N(<i>A)</i> = N(<i>A<sup>T</sup></i>) or ker(<i>A)</i> = ker(<i>A<sup>T</sup></i>). </td> <td>Synonym for kernel-symmetric matrices. Examples include (but not limited to) symmetric, skew-symmetric, and normal matrices. </td></tr> <tr> <td>Null-Hermitian matrix </td> <td>A square matrix whose null space (or <a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">kernel</a>) is equal to its <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a>, N(<i>A</i>)=N(<i>A</i><sup>*</sup>) or ker(<i>A</i>)=ker(<i>A</i><sup>*</sup>). </td> <td>Synonym for kernel-Hermitian matrices. Examples include (but not limited) to Hermitian, skew-Hermitian matrices, and normal matrices. </td></tr> <tr> <td><a href="/wiki/Block_matrix" title="Block matrix">Partitioned matrix</a></td> <td>A matrix partitioned into sub-matrices, or equivalently, a matrix whose entries are themselves matrices rather than scalars.</td> <td>Synonym for <i>block matrix</i>. </td></tr> <tr> <td><a href="/w/index.php?title=Parisi_matrix&amp;action=edit&amp;redlink=1" class="new" title="Parisi matrix (page does not exist)">Parisi matrix</a></td> <td>A block-hierarchical matrix. It consist of growing blocks placed along the diagonal, each block is itself a Parisi matrix of a smaller size.</td> <td>In theory of spin-glasses is also known as a replica matrix. </td></tr> <tr> <td><a href="/wiki/Pentadiagonal_matrix" class="mw-redirect" title="Pentadiagonal matrix">Pentadiagonal matrix</a></td> <td>A matrix with the only nonzero entries on the main diagonal and the two diagonals just above and below the main one.</td> <td> </td></tr> <tr> <td><a href="/wiki/Permutation_matrix" title="Permutation matrix">Permutation matrix</a></td> <td>A matrix representation of a <a href="/wiki/Permutation" title="Permutation">permutation</a>, a square matrix with exactly one 1 in each row and column, and all other elements 0.</td> <td> </td></tr> <tr> <td><a href="/wiki/Persymmetric_matrix" title="Persymmetric matrix">Persymmetric matrix</a></td> <td>A matrix that is symmetric about its northeast–southwest diagonal, i.e., <i>a</i><sub><i>ij</i></sub>&#160;=&#160;<i>a</i><sub><i>n</i>−<i>j</i>+1,<i>n</i>−<i>i</i>+1</sub>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Polynomial_matrix" title="Polynomial matrix">Polynomial matrix</a></td> <td>A matrix whose entries are <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Positive_matrix" class="mw-redirect" title="Positive matrix">Positive matrix</a></td> <td>A matrix with all positive entries.</td> <td> </td></tr> <tr> <td><a href="/wiki/Quaternionic_matrix" title="Quaternionic matrix">Quaternionic matrix</a></td> <td>A matrix whose entries are <a href="/wiki/Quaternion" title="Quaternion">quaternions</a>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Random_matrix" title="Random matrix">Random matrix</a></td> <td>A matrix whose entries are <a href="/wiki/Random_variable" title="Random variable">random variables</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Sign_matrix" class="mw-redirect" title="Sign matrix">Sign matrix</a></td> <td>A matrix whose entries are either +1, 0, or −1.</td> <td> </td></tr> <tr> <td><a href="/wiki/Signature_matrix" title="Signature matrix">Signature matrix</a></td> <td>A diagonal matrix where the diagonal elements are either +1 or −1.</td> <td> </td></tr> <tr> <td><a href="/wiki/Single-entry_matrix" class="mw-redirect" title="Single-entry matrix">Single-entry matrix</a></td> <td>A matrix where a single element is one and the rest of the elements are zero.</td> <td> </td></tr> <tr> <td><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Skew-Hermitian matrix</a></td> <td>A square matrix which is equal to the negative of its <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a>, <i>A</i><sup>*</sup> = −<i>A</i>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Skew-symmetric matrix</a></td> <td>A matrix which is equal to the negative of its <a href="/wiki/Transpose" title="Transpose">transpose</a>, <i>A</i><sup>T</sup> = −<i>A</i>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Skyline_matrix" title="Skyline matrix">Skyline matrix</a></td> <td>A rearrangement of the entries of a banded matrix which requires less space.</td> <td> </td></tr> <tr> <td><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse matrix</a></td> <td>A matrix with relatively few non-zero elements.</td> <td>Sparse matrix algorithms can tackle huge sparse matrices that are utterly impractical for dense matrix algorithms. </td></tr> <tr> <td><a href="/wiki/Symmetric_matrix" title="Symmetric matrix">Symmetric matrix</a></td> <td>A square matrix which is equal to its <a href="/wiki/Transpose" title="Transpose">transpose</a>, <i>A</i> = <i>A</i><sup>T</sup> (<i>a</i><sub><i>i</i>,<i>j</i></sub> = <i>a</i><sub><i>j</i>,<i>i</i></sub>).</td> <td> </td></tr> <tr> <td><a href="/wiki/Toeplitz_matrix" title="Toeplitz matrix">Toeplitz matrix</a></td> <td>A matrix with constant diagonals.</td> <td> </td></tr> <tr> <td><a href="/wiki/Totally_positive_matrix" title="Totally positive matrix">Totally positive matrix</a></td> <td>A matrix with <a href="/wiki/Determinant" title="Determinant">determinants</a> of all its square submatrices positive.</td> <td> </td></tr> <tr> <td><a href="/wiki/Triangular_matrix" title="Triangular matrix">Triangular matrix</a></td> <td>A matrix with all entries above the main diagonal equal to zero (lower triangular) or with all entries below the main diagonal equal to zero (upper triangular).</td> <td> </td></tr> <tr> <td><a href="/wiki/Tridiagonal_matrix" title="Tridiagonal matrix">Tridiagonal matrix</a></td> <td>A matrix with the only nonzero entries on the main diagonal and the diagonals just above and below the main one.</td> <td> </td></tr> <tr> <td>X–Y–Z matrix </td> <td>A generalization to three dimensions of the concept of <a href="/wiki/Two-dimensional_array" class="mw-redirect" title="Two-dimensional array">two-dimensional array</a> </td></tr> <tr> <td><a href="/wiki/Vandermonde_matrix" title="Vandermonde matrix">Vandermonde matrix</a></td> <td>A row consists of 1, <i>a</i>, <i>a</i><sup>2</sup>, <i>a</i><sup>3</sup>, etc., and each row uses a different variable.</td> <td> </td></tr> <tr> <td><a href="/wiki/Walsh_matrix" title="Walsh matrix">Walsh matrix</a></td> <td>A square matrix, with dimensions a power of 2, the entries of which are +1 or −1, and the property that the dot product of any two distinct rows (or columns) is zero.</td> <td> </td></tr> <tr> <td><a href="/wiki/Z-matrix_(mathematics)" title="Z-matrix (mathematics)">Z-matrix</a></td> <td>A matrix with all off-diagonal entries less than zero. </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Matrices_satisfying_some_equations">Matrices satisfying some equations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=3" title="Edit section: Matrices satisfying some equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A number of matrix-related notions is about properties of products or inverses of the given matrix. The <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">matrix product</a> of a <i>m</i>-by-<i>n</i> matrix <i>A</i> and a <i>n</i>-by-<i>k</i> matrix <i>B</i> is the <i>m</i>-by-<i>k</i> matrix <i>C</i> given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (C)_{i,j}=\sum _{r=1}^{n}A_{i,r}B_{r,j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>C</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (C)_{i,j}=\sum _{r=1}^{n}A_{i,r}B_{r,j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dd263f78d70ec11b4bc19d1856cb24d19ccd248" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.612ex; height:6.843ex;" alt="{\displaystyle (C)_{i,j}=\sum _{r=1}^{n}A_{i,r}B_{r,j}.}"></span><sup id="cite_ref-:1_2-0" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>This matrix product is denoted <i>AB</i>. Unlike the product of numbers, matrix products are not <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a>, that is to say <i>AB</i> need not be equal to <i>BA</i>.<sup id="cite_ref-:1_2-1" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> A number of notions are concerned with the failure of this commutativity. An <a href="/wiki/Inverse_of_a_matrix" class="mw-redirect" title="Inverse of a matrix">inverse</a> of square matrix <i>A</i> is a matrix <i>B</i> (necessarily of the same dimension as <i>A</i>) such that <i>AB</i> = <i>I</i>. Equivalently, <i>BA</i> = <i>I</i>. An inverse need not exist. If it exists, <i>B</i> is uniquely determined, and is also called <i>the</i> inverse of <i>A</i>, denoted <i>A</i><sup>&#8722;1</sup>. </p> <table class="wikitable sortable"> <tbody><tr> <th>Name</th> <th>Explanation</th> <th>Notes </th></tr> <tr> <td><a href="/w/index.php?title=Circular_matrix&amp;action=edit&amp;redlink=1" class="new" title="Circular matrix (page does not exist)">Circular matrix</a> or <a href="/w/index.php?title=Coninvolutory_matrix&amp;action=edit&amp;redlink=1" class="new" title="Coninvolutory matrix (page does not exist)">Coninvolutory matrix</a> </td> <td>A matrix whose inverse is equal to its entrywise complex conjugate: <i>A</i><sup>&#8722;1</sup> = <span style="text-decoration:overline;"><i>A</i></span>. </td> <td>Compare with unitary matrices. </td></tr> <tr> <td><a href="/wiki/Matrix_congruence" title="Matrix congruence">Congruent matrix</a></td> <td>Two matrices <i>A</i> and <i>B</i> are congruent if there exists an invertible matrix <i>P</i> such that <span class="nowrap"><i>P</i><sup>T</sup> <i>A</i> <i>P</i></span> = <i>B</i>.</td> <td>Compare with similar matrices. </td></tr> <tr> <td><a href="/wiki/EP_matrix" title="EP matrix">EP matrix</a> or Range-Hermitian matrix </td> <td>A square matrix that commutes with its <a href="/wiki/Moore%E2%80%93Penrose_inverse" title="Moore–Penrose inverse">Moore–Penrose inverse</a>: <i>AA</i><sup>+</sup> = <i>A</i><sup>+</sup><i>A.</i> </td> <td> </td></tr> <tr> <td><a href="/wiki/Idempotent_matrix" title="Idempotent matrix">Idempotent matrix</a> or <br /> <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Projection Matrix</a></td> <td>A matrix that has the property <i>A</i>² = <i>AA</i> = <i>A</i>.</td> <td>The name projection matrix inspires from the observation of projection of a point multiple <br /> times onto a subspace(plane or a line) giving the same result as <a href="/wiki/Projection_(linear_algebra)#Properties_and_classification" title="Projection (linear algebra)">one projection</a>. </td></tr> <tr> <td><a href="/wiki/Invertible_matrix" title="Invertible matrix">Invertible matrix</a></td> <td>A square matrix having a multiplicative <a href="/wiki/Inverse_matrix" class="mw-redirect" title="Inverse matrix">inverse</a>, that is, a matrix <i>B</i> such that <i>AB</i> = <i>BA</i> = <i>I</i>.</td> <td>Invertible matrices form the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a>. </td></tr> <tr> <td><a href="/wiki/Involutory_matrix" title="Involutory matrix">Involutory matrix</a></td> <td>A square matrix which is its own inverse, i.e., <i>AA</i> = <i>I</i>.</td> <td><a href="/wiki/Signature_matrix" title="Signature matrix">Signature matrices</a>, <a href="/wiki/Householder_transformation#Definition_and_properties" title="Householder transformation">Householder matrices</a> (Also known as 'reflection matrices' <br /> to reflect a point about a plane or line) have this property. </td></tr> <tr> <td><a href="/wiki/Isometry" title="Isometry">Isometric matrix</a></td> <td>A matrix that preserves distances, i.e., a matrix that satisfies <i>A</i><sup>*</sup><i>A</i> = <i>I</i> where <i>A</i><sup>*</sup> denotes the <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a> of <i>A</i>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Nilpotent_matrix" title="Nilpotent matrix">Nilpotent matrix</a></td> <td>A square matrix satisfying <i>A</i><sup><i>q</i></sup> = 0 for some positive integer <i>q</i>.</td> <td>Equivalently, the only eigenvalue of <i>A</i> is 0. </td></tr> <tr> <td><a href="/wiki/Normal_matrix" title="Normal matrix">Normal matrix</a></td> <td>A square matrix that commutes with its <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a>: <i>AA</i><sup>∗</sup> = <i>A</i><sup>∗</sup><i>A</i></td> <td>They are the matrices to which the <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theorem</a> applies. </td></tr> <tr> <td><a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal matrix</a></td> <td>A matrix whose inverse is equal to its <a href="/wiki/Transpose" title="Transpose">transpose</a>, <i>A</i><sup>&#8722;1</sup> = <i>A</i><sup><i>T</i></sup>.</td> <td>They form the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a>. </td></tr> <tr> <td><a href="/wiki/Orthonormal_matrix" class="mw-redirect" title="Orthonormal matrix">Orthonormal matrix</a></td> <td>A matrix whose columns are <a href="/wiki/Orthonormal" class="mw-redirect" title="Orthonormal">orthonormal</a> vectors.</td> <td> </td></tr> <tr> <td><a href="/wiki/Partial_isometry" title="Partial isometry">Partially Isometric matrix</a></td> <td>A matrix that is an <a href="/wiki/Isometry" title="Isometry">isometry</a> on the <a href="/wiki/Orthogonal_complement" title="Orthogonal complement">orthogonal complement</a> of its <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a>. Equivalently, a matrix that satisfies <i>AA</i><sup>*</sup><i>A</i> = <i>A</i>.</td> <td>Equivalently, a matrix with <a href="/wiki/Singular_value" title="Singular value">singular values</a> that are either 0 or 1. </td></tr> <tr> <td><a href="/wiki/Singular_matrix" class="mw-redirect" title="Singular matrix">Singular matrix</a></td> <td>A square matrix that is not invertible.</td> <td> </td></tr> <tr> <td><a href="/wiki/Unimodular_matrix" title="Unimodular matrix">Unimodular matrix</a></td> <td>An invertible matrix with entries in the integers (<a href="/wiki/Integer_matrix" title="Integer matrix">integer matrix</a>)</td> <td>Necessarily the determinant is +1 or &#8722;1. </td></tr> <tr> <td><a href="/wiki/Unipotent_matrix" class="mw-redirect" title="Unipotent matrix">Unipotent matrix</a></td> <td>A square matrix with all eigenvalues equal to 1.</td> <td>Equivalently, <span class="nowrap"><i>A</i> &#8722; <i>I</i></span> is nilpotent. See also <a href="/wiki/Unipotent_group" class="mw-redirect" title="Unipotent group">unipotent group</a>. </td></tr> <tr> <td><a href="/wiki/Unitary_matrix" title="Unitary matrix">Unitary matrix</a> </td> <td>A square matrix whose inverse is equal to its <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a>, <i>A</i><sup>&#8722;1</sup> = <i>A</i><sup>*</sup>. </td> <td> </td></tr> <tr> <td><a href="/wiki/Totally_unimodular_matrix" class="mw-redirect" title="Totally unimodular matrix">Totally unimodular matrix</a></td> <td>A matrix for which every non-singular square submatrix is <a href="/wiki/Unimodular_matrix" title="Unimodular matrix">unimodular</a>. This has some implications in the <a href="/wiki/Linear_programming" title="Linear programming">linear programming</a> <a href="/wiki/Linear_programming_relaxation" title="Linear programming relaxation">relaxation</a> of an <a href="/wiki/Integer_program" class="mw-redirect" title="Integer program">integer program</a>.</td> <td> </td></tr> <tr> <td><a href="/wiki/Weighing_matrix" title="Weighing matrix">Weighing matrix</a></td> <td>A square matrix the entries of which are in <span class="nowrap">{0, 1, &#8722;1}</span>, such that <i>AA</i><sup>T</sup> = <i>wI</i> for some positive integer <i>w</i>.</td> <td> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Matrices_with_conditions_on_eigenvalues_or_eigenvectors">Matrices with conditions on eigenvalues or eigenvectors</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=4" title="Edit section: Matrices with conditions on eigenvalues or eigenvectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable sortable"> <tbody><tr> <th>Name</th> <th>Explanation</th> <th>Notes </th></tr> <tr> <td><a href="/wiki/Convergent_matrix" title="Convergent matrix">Convergent matrix</a></td> <td>A square matrix whose successive powers approach the <a href="/wiki/Zero_matrix" title="Zero matrix">zero matrix</a>.</td> <td>Its <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues</a> have magnitude less than one. </td></tr> <tr> <td><a href="/wiki/Defective_matrix" title="Defective matrix">Defective matrix</a></td> <td>A square matrix that does not have a complete basis of <a href="/wiki/Eigenvectors" class="mw-redirect" title="Eigenvectors">eigenvectors</a>, and is thus not <a href="/wiki/Diagonalizable_matrix" title="Diagonalizable matrix">diagonalizable</a>.</td> <td> </td></tr> <tr> <td><a href="/w/index.php?title=Derogatory_matrix&amp;action=edit&amp;redlink=1" class="new" title="Derogatory matrix (page does not exist)">Derogatory matrix</a> </td> <td>A square matrix whose <a href="/wiki/Minimal_polynomial_(linear_algebra)" title="Minimal polynomial (linear algebra)">minimal polynomial</a> is of order less than <i>n</i>. Equivalently, at least one of its eigenvalues has at least two <a href="/wiki/Jordan_block" class="mw-redirect" title="Jordan block">Jordan blocks</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </td> <td> </td></tr> <tr> <td><a href="/wiki/Diagonalizable_matrix" title="Diagonalizable matrix">Diagonalizable matrix</a></td> <td>A square matrix <a href="/wiki/Similar_matrix" class="mw-redirect" title="Similar matrix">similar</a> to a diagonal matrix.</td> <td>It has an <a href="/wiki/Eigenbasis" class="mw-redirect" title="Eigenbasis">eigenbasis</a>, that is, a complete set of <a href="/wiki/Linearly_independent" class="mw-redirect" title="Linearly independent">linearly independent</a> eigenvectors. </td></tr> <tr> <td><a href="/wiki/Hurwitz-stable_matrix" title="Hurwitz-stable matrix">Hurwitz matrix</a></td> <td>A matrix whose eigenvalues have strictly negative real part. A stable system of differential equations may be represented by a Hurwitz matrix.</td> <td> </td></tr> <tr> <td><a href="/wiki/M-matrix" title="M-matrix">M-matrix</a></td> <td>A Z-matrix with eigenvalues whose real parts are nonnegative.</td> <td> </td></tr> <tr> <td><a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">Positive-definite matrix</a></td> <td>A Hermitian matrix with every eigenvalue positive.</td> <td> </td></tr> <tr> <td><a href="/wiki/Stability_matrix" class="mw-redirect" title="Stability matrix">Stability matrix</a></td> <td></td> <td>Synonym for <a href="/wiki/Hurwitz-stable_matrix" title="Hurwitz-stable matrix">Hurwitz matrix</a>. </td></tr> <tr> <td><a href="/wiki/Stieltjes_matrix" title="Stieltjes matrix">Stieltjes matrix</a></td> <td>A real symmetric positive definite matrix with nonpositive off-diagonal entries.</td> <td>Special case of an <a href="/wiki/M-matrix" title="M-matrix">M-matrix</a>. </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Matrices_generated_by_specific_data">Matrices generated by specific data</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=5" title="Edit section: Matrices generated by specific data"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable sortable"> <tbody><tr> <th>Name</th> <th>Definition</th> <th>Comments </th></tr> <tr> <td><a href="/wiki/Adjugate_matrix" title="Adjugate matrix">Adjugate matrix</a></td> <td><a href="/wiki/Transpose" title="Transpose">Transpose</a> of the <a href="/wiki/Cofactor_matrix" class="mw-redirect" title="Cofactor matrix">cofactor matrix</a></td> <td>The <a href="/wiki/Inverse_matrix" class="mw-redirect" title="Inverse matrix">inverse of a matrix</a> is its adjugate matrix divided by its <a href="/wiki/Determinant" title="Determinant">determinant</a> </td></tr> <tr> <td><a href="/wiki/Augmented_matrix" title="Augmented matrix">Augmented matrix</a></td> <td>Matrix whose rows are concatenations of the rows of two smaller matrices</td> <td>Used for performing the same <a href="/wiki/Row_operations" class="mw-redirect" title="Row operations">row operations</a> on two matrices </td></tr> <tr> <td><a href="/wiki/B%C3%A9zout_matrix" title="Bézout matrix">Bézout matrix</a></td> <td>Square matrix whose <a href="/wiki/Determinant" title="Determinant">determinant</a> is the <a href="/wiki/Resultant" title="Resultant">resultant</a> of two polynomials</td> <td>See also <a href="/wiki/Sylvester_matrix" title="Sylvester matrix">Sylvester matrix</a> </td></tr> <tr> <td><a href="/wiki/Carleman_matrix" title="Carleman matrix">Carleman matrix</a></td> <td>Infinite matrix of the <a href="/wiki/Taylor_coefficient" class="mw-redirect" title="Taylor coefficient">Taylor coefficients</a> of an <a href="/wiki/Analytic_function" title="Analytic function">analytic function</a> and its integer powers</td> <td>The composition of two functions can be expressed as the product of their Carleman matrices </td></tr> <tr> <td><a href="/wiki/Cartan_matrix" title="Cartan matrix">Cartan matrix</a></td> <td>A matrix associated with either a finite-dimensional <a href="/wiki/Associative_algebra" title="Associative algebra">associative algebra</a>, or a <a href="/wiki/Semisimple_Lie_algebra" title="Semisimple Lie algebra">semisimple Lie algebra</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Cofactor_matrix" class="mw-redirect" title="Cofactor matrix">Cofactor matrix</a></td> <td>Formed by the <a href="/wiki/Cofactor_(linear_algebra)" class="mw-redirect" title="Cofactor (linear algebra)">cofactors</a> of a square matrix, that is, the signed <a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">minors</a>, of the matrix</td> <td><a href="/wiki/Transpose" title="Transpose">Transpose</a> of the <a href="/wiki/Adjugate_matrix" title="Adjugate matrix">Adjugate matrix</a> </td></tr> <tr> <td><a href="/wiki/Companion_matrix" title="Companion matrix">Companion matrix</a></td> <td>A matrix having the coefficients of a polynomial as last column, and having the polynomial as its <a href="/wiki/Characteristic_polynomial" title="Characteristic polynomial">characteristic polynomial</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Coxeter_matrix" class="mw-redirect" title="Coxeter matrix">Coxeter matrix</a></td> <td>A matrix which describes the relations between the <a href="/wiki/Involution_(mathematics)" title="Involution (mathematics)">involutions</a> that generate a <a href="/wiki/Coxeter_group" title="Coxeter group">Coxeter group</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Distance_matrix" title="Distance matrix">Distance matrix</a></td> <td>The square matrix formed by the pairwise distances of a set of <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a></td> <td><a href="/wiki/Euclidean_distance_matrix" title="Euclidean distance matrix">Euclidean distance matrix</a> is a special case </td></tr> <tr> <td><a href="/wiki/Euclidean_distance_matrix" title="Euclidean distance matrix">Euclidean distance matrix</a></td> <td>A matrix that describes the pairwise distances between <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a> in <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a></td> <td>See also <a href="/wiki/Distance_matrix" title="Distance matrix">distance matrix</a> </td></tr> <tr> <td><a href="/wiki/Fundamental_matrix_(linear_differential_equation)" title="Fundamental matrix (linear differential equation)">Fundamental matrix</a></td> <td>The matrix formed from the fundamental solutions of a <a href="/wiki/System_of_linear_differential_equations" class="mw-redirect" title="System of linear differential equations">system of linear differential equations</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Generator_matrix" title="Generator matrix">Generator matrix</a></td> <td>In <a href="/wiki/Coding_theory" title="Coding theory">Coding theory</a>, a matrix whose rows <a href="/wiki/Linear_span" title="Linear span">span</a> a <a href="/wiki/Linear_code" title="Linear code">linear code</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Gramian_matrix" class="mw-redirect" title="Gramian matrix">Gramian matrix</a></td> <td>The symmetric matrix of the pairwise <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner products</a> of a set of vectors in an <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian matrix</a></td> <td>The square matrix of <a href="/wiki/Partial_derivative" title="Partial derivative">second partial derivatives</a> of a <a href="/wiki/Function_of_several_variables" class="mw-redirect" title="Function of several variables">function of several variables</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Householder_transformation#Householder_matrix" title="Householder transformation">Householder matrix</a></td> <td>The matrix of a <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflection</a> with respect to a <a href="/wiki/Hyperplane" title="Hyperplane">hyperplane</a> passing through the origin</td> <td> </td></tr> <tr> <td><a href="/wiki/Jacobian_matrix" class="mw-redirect" title="Jacobian matrix">Jacobian matrix</a></td> <td>The matrix of the partial derivatives of a <a href="/wiki/Function_of_several_variables" class="mw-redirect" title="Function of several variables">function of several variables</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Moment_matrix" title="Moment matrix">Moment matrix</a> </td> <td></td> <td>Used in <a href="/wiki/Statistics" title="Statistics">statistics</a> and <a href="/wiki/Sum-of-squares_optimization" title="Sum-of-squares optimization">Sum-of-squares optimization</a> </td></tr> <tr> <td><a href="/wiki/Payoff_matrix" class="mw-redirect" title="Payoff matrix">Payoff matrix</a></td> <td>A matrix in <a href="/wiki/Game_theory" title="Game theory">game theory</a> and <a href="/wiki/Economics" title="Economics">economics</a>, that represents the payoffs in a <a href="/wiki/Normal_form_game" class="mw-redirect" title="Normal form game">normal form game</a> where players move simultaneously</td> <td> </td></tr> <tr> <td><a href="/wiki/Pick_matrix" class="mw-redirect" title="Pick matrix">Pick matrix</a></td> <td>A matrix that occurs in the study of analytical interpolation problems</td> <td> </td></tr> <tr> <td><a href="/wiki/Rotation_matrix" title="Rotation matrix">Rotation matrix</a></td> <td>A matrix representing a <a href="/wiki/Rotation_(geometry)" class="mw-redirect" title="Rotation (geometry)">rotation</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Seifert_matrix" class="mw-redirect" title="Seifert matrix">Seifert matrix</a></td> <td>A matrix in <a href="/wiki/Knot_theory" title="Knot theory">knot theory</a>, primarily for the algebraic analysis of topological properties of knots and links.</td> <td><a href="/wiki/Alexander_polynomial" title="Alexander polynomial">Alexander polynomial</a> </td></tr> <tr> <td><a href="/wiki/Shear_matrix" class="mw-redirect" title="Shear matrix">Shear matrix</a></td> <td>The matrix of a <a href="/wiki/Shear_transformation" class="mw-redirect" title="Shear transformation">shear transformation</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Similarity_matrix" class="mw-redirect" title="Similarity matrix">Similarity matrix</a></td> <td>A matrix of scores which express the similarity between two data points</td> <td><a href="/wiki/Sequence_alignment" title="Sequence alignment">Sequence alignment</a> </td></tr> <tr> <td><a href="/wiki/Sylvester_matrix" title="Sylvester matrix">Sylvester matrix</a></td> <td>A square matrix whose entries come from the coefficients of two <a href="/wiki/Polynomials" class="mw-redirect" title="Polynomials">polynomials</a></td> <td>The Sylvester matrix is nonsingular if and only if the two polynomials are <a href="/wiki/Coprime" class="mw-redirect" title="Coprime">coprime</a> to each other </td></tr> <tr> <td><a href="/wiki/Symplectic_matrix" title="Symplectic matrix">Symplectic matrix</a></td> <td>The real matrix of a <a href="/wiki/Symplectic_transformation" class="mw-redirect" title="Symplectic transformation">symplectic transformation</a></td> <td> </td></tr> <tr> <td><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation matrix</a></td> <td>The matrix of a <a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">linear transformation</a> or a <a href="/wiki/Geometric_transformation" title="Geometric transformation">geometric transformation</a></td> <td> </td></tr> <tr> <td><a href="/w/index.php?title=Wedderburn_matrix&amp;action=edit&amp;redlink=1" class="new" title="Wedderburn matrix (page does not exist)">Wedderburn matrix</a></td> <td>A matrix of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-(y^{T}Ax)^{-1}Axy^{T}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mi>A</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>A</mi> <mi>x</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-(y^{T}Ax)^{-1}Axy^{T}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af3e89b1a1f8c5f4b4357e8d6cf5ba7c4f879f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.714ex; height:3.176ex;" alt="{\displaystyle A-(y^{T}Ax)^{-1}Axy^{T}A}"></span>, used for rank-reduction &amp; biconjugate decompositions</td> <td>Analysis of matrix decompositions </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Matrices_used_in_statistics">Matrices used in statistics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=6" title="Edit section: Matrices used in statistics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following matrices find their main application in <a href="/wiki/Statistics" title="Statistics">statistics</a> and <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>. </p> <ul><li><a href="/w/index.php?title=Bernoulli_matrix&amp;action=edit&amp;redlink=1" class="new" title="Bernoulli matrix (page does not exist)">Bernoulli matrix</a> — a square matrix with entries +1, &#8722;1, with equal <a href="/wiki/Probability" title="Probability">probability</a> of each.</li> <li><a href="/wiki/Centering_matrix" title="Centering matrix">Centering matrix</a> — a matrix which, when multiplied with a vector, has the same effect as subtracting the mean of the components of the vector from every component.</li> <li><a href="/wiki/Correlation_matrix" class="mw-redirect" title="Correlation matrix">Correlation matrix</a> — a symmetric <i>n×n</i> matrix, formed by the pairwise <a href="/wiki/Pearson_product-moment_correlation_coefficient" class="mw-redirect" title="Pearson product-moment correlation coefficient">correlation coefficients</a> of several <a href="/wiki/Random_variable" title="Random variable">random variables</a>.</li> <li><a href="/wiki/Covariance_matrix" title="Covariance matrix">Covariance matrix</a> — a symmetric <i>n×n</i> matrix, formed by the pairwise <a href="/wiki/Covariance" title="Covariance">covariances</a> of several random variables. Sometimes called a <i>dispersion matrix</i>.</li> <li><a href="/wiki/Dispersion_matrix" class="mw-redirect" title="Dispersion matrix">Dispersion matrix</a> — another name for a <i>covariance matrix</i>.</li> <li><a href="/wiki/Doubly_stochastic_matrix" title="Doubly stochastic matrix">Doubly stochastic matrix</a> — a non-negative matrix such that each row and each column sums to 1 (thus the matrix is both <i>left stochastic</i> and <i>right stochastic</i>)</li> <li><a href="/wiki/Fisher_information_matrix" class="mw-redirect" title="Fisher information matrix">Fisher information matrix</a> — a matrix representing the variance of the partial derivative, with respect to a parameter, of the log of the likelihood function of a random variable.</li> <li><a href="/wiki/Hat_matrix" class="mw-redirect" title="Hat matrix">Hat matrix</a> — a square matrix used in statistics to relate fitted values to observed values.</li> <li><a href="/wiki/Orthostochastic_matrix" title="Orthostochastic matrix">Orthostochastic matrix</a> — doubly stochastic matrix whose entries are the squares of the absolute values of the entries of some orthogonal matrix</li> <li><a href="/wiki/Precision_matrix" class="mw-redirect" title="Precision matrix">Precision matrix</a> — a symmetric <i>n×n</i> matrix, formed by inverting the <i>covariance matrix</i>. Also called the <i>information matrix</i>.</li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Stochastic matrix</a> — a <a href="/wiki/Non-negative" class="mw-redirect" title="Non-negative">non-negative</a> matrix describing a <a href="/wiki/Stochastic_process" title="Stochastic process">stochastic process</a>. The sum of entries of any row is one.</li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Transition matrix</a> — a matrix representing the <a href="/wiki/Probabilities" class="mw-redirect" title="Probabilities">probabilities</a> of conditions changing from one state to another in a <a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Unistochastic_matrix" title="Unistochastic matrix">Unistochastic matrix</a> — a doubly stochastic matrix whose entries are the squares of the absolute values of the entries of some unitary matrix</li></ul> <div class="mw-heading mw-heading2"><h2 id="Matrices_used_in_graph_theory">Matrices used in graph theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=7" title="Edit section: Matrices used in graph theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following matrices find their main application in <a href="/wiki/Graph_theory" title="Graph theory">graph</a> and <a href="/wiki/Network_theory" title="Network theory">network theory</a>. </p> <ul><li><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> — a square matrix representing a graph, with <i>a<sub>ij</sub></i> non-zero if vertex <i>i</i> and vertex <i>j</i> are adjacent.</li> <li><a href="/wiki/Biadjacency_matrix" class="mw-redirect" title="Biadjacency matrix">Biadjacency matrix</a> — a special class of <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> that describes adjacency in <a href="/wiki/Bipartite_graph" title="Bipartite graph">bipartite graphs</a>.</li> <li><a href="/wiki/Degree_matrix" title="Degree matrix">Degree matrix</a> — a diagonal matrix defining the degree of each <a href="/wiki/Vertex_(graph_theory)" title="Vertex (graph theory)">vertex</a> in a graph.</li> <li><a href="/wiki/Edmonds_matrix" title="Edmonds matrix">Edmonds matrix</a> — a square matrix of a bipartite graph.</li> <li><a href="/wiki/Incidence_matrix" title="Incidence matrix">Incidence matrix</a> — a matrix representing a relationship between two classes of objects (usually <a href="/wiki/Vertex_(graph_theory)" title="Vertex (graph theory)">vertices</a> and <a href="/wiki/Edge_(graph_theory)" class="mw-redirect" title="Edge (graph theory)">edges</a> in the context of graph theory).</li> <li><a href="/wiki/Laplacian_matrix" title="Laplacian matrix">Laplacian matrix</a> — a matrix equal to the degree matrix minus the adjacency matrix for a graph, used to find the number of spanning trees in the graph.</li> <li><a href="/wiki/Seidel_adjacency_matrix" title="Seidel adjacency matrix">Seidel adjacency matrix</a> — a matrix similar to the usual <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> but with &#8722;1 for adjacency; +1 for nonadjacency; 0 on the diagonal.</li> <li><a href="/w/index.php?title=Skew-adjacency_matrix&amp;action=edit&amp;redlink=1" class="new" title="Skew-adjacency matrix (page does not exist)">Skew-adjacency matrix</a> — an <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> in which each non-zero <i>a<sub>ij</sub></i> is 1 or &#8722;1, accordingly as the direction <i>i → j</i> matches or opposes that of an initially specified orientation.</li> <li><a href="/wiki/Tutte_matrix" title="Tutte matrix">Tutte matrix</a> — a generalization of the Edmonds matrix for a balanced bipartite graph.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Matrices_used_in_science_and_engineering">Matrices used in science and engineering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=8" title="Edit section: Matrices used in science and engineering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa matrix</a> — a unitary matrix used in <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a> to describe the strength of <i>flavour-changing</i> weak decays.</li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a> — a matrix describing the statistical state of a quantum system. <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a>, <a href="/wiki/Non-negative_matrix" class="mw-redirect" title="Non-negative matrix">non-negative</a> and with <a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">trace</a> 1.</li> <li><a href="/wiki/Fundamental_matrix_(computer_vision)" title="Fundamental matrix (computer vision)">Fundamental matrix (computer vision)</a> — a 3 × 3 matrix in <a href="/wiki/Computer_vision" title="Computer vision">computer vision</a> that relates corresponding points in stereo images.</li> <li><a href="/wiki/Fuzzy_associative_matrix" title="Fuzzy associative matrix">Fuzzy associative matrix</a> — a matrix in <a href="/wiki/Artificial_intelligence" title="Artificial intelligence">artificial intelligence</a>, used in machine learning processes.</li> <li><a href="/wiki/Gamma_matrices" title="Gamma matrices">Gamma matrices</a> — 4 × 4 matrices in <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>.</li> <li><a href="/wiki/Gell-Mann_matrices" title="Gell-Mann matrices">Gell-Mann matrices</a> — a <a href="/wiki/Generalizations_of_Pauli_matrices" title="Generalizations of Pauli matrices">generalization of the Pauli matrices</a>; these matrices are one notable representation of the <a href="/wiki/Lie_group#The_Lie_algebra_associated_to_a_Lie_group" title="Lie group">infinitesimal generators</a> of the <a href="/wiki/Special_unitary_group" title="Special unitary group">special unitary group</a> SU(3).</li> <li><a href="/wiki/Hamiltonian_matrix" title="Hamiltonian matrix">Hamiltonian matrix</a> — a matrix used in a variety of fields, including <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> and <a href="/wiki/Linear-quadratic_regulator" class="mw-redirect" title="Linear-quadratic regulator">linear-quadratic regulator</a> (LQR) systems.</li> <li><a href="/wiki/Irregular_matrix" title="Irregular matrix">Irregular matrix</a> — a matrix used in <a href="/wiki/Computer_science" title="Computer science">computer science</a> which has a varying number of elements in each row.</li> <li><a href="/wiki/Overlap_matrix" class="mw-redirect" title="Overlap matrix">Overlap matrix</a> — a type of <a href="/wiki/Gramian_matrix" class="mw-redirect" title="Gramian matrix">Gramian matrix</a>, used in <a href="/wiki/Quantum_chemistry" title="Quantum chemistry">quantum chemistry</a> to describe the inter-relationship of a set of <a href="/wiki/Basis_vector" class="mw-redirect" title="Basis vector">basis vectors</a> of a <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum</a> system.</li> <li><a href="/wiki/S_matrix" class="mw-redirect" title="S matrix">S matrix</a> — a matrix in <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> that connects asymptotic (infinite past and future) particle states.</li> <li><a href="/wiki/Scattering_matrix" class="mw-redirect" title="Scattering matrix">Scattering matrix</a> - a matrix in Microwave Engineering that describes how the power move in a multiport system.</li> <li><a href="/wiki/State-transition_matrix" title="State-transition matrix">State transition matrix</a> — exponent of state matrix in control systems.</li> <li><a href="/wiki/Substitution_matrix" title="Substitution matrix">Substitution matrix</a> — a matrix from <a href="/wiki/Bioinformatics" title="Bioinformatics">bioinformatics</a>, which describes mutation rates of <a href="/wiki/Amino_acid" title="Amino acid">amino acid</a> or <a href="/wiki/DNA" title="DNA">DNA</a> sequences.</li> <li><a href="/wiki/Supnick_matrix" title="Supnick matrix">Supnick matrix</a> — a square matrix used in <a href="/wiki/Computer_science" title="Computer science">computer science</a>.</li> <li><a href="/wiki/Z-matrix_(chemistry)" title="Z-matrix (chemistry)">Z-matrix</a> — a matrix in <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, representing a molecule in terms of its relative atomic geometry.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Specific_matrices">Specific matrices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=9" title="Edit section: Specific matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Wilson_matrix" title="Wilson matrix">Wilson matrix</a>, a matrix used as an example for test purposes.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Other_matrix-related_terms_and_definitions">Other matrix-related terms and definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=10" title="Edit section: Other matrix-related terms and definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Jordan_canonical_form" class="mw-redirect" title="Jordan canonical form">Jordan canonical form</a> — an 'almost' diagonalised matrix, where the only non-zero elements appear on the lead and superdiagonals.</li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a> — two or more <a href="/wiki/Coordinate_vector" title="Coordinate vector">vectors</a> are linearly independent if there is no way to construct one from <a href="/wiki/Linear_combination" title="Linear combination">linear combinations</a> of the others.</li> <li><a href="/wiki/Matrix_exponential" title="Matrix exponential">Matrix exponential</a> — defined by the <a href="/wiki/Exponential_function#Formal_definition" title="Exponential function">exponential series</a>.</li> <li><a href="/wiki/Matrix_representation_of_conic_sections" title="Matrix representation of conic sections">Matrix representation of conic sections</a></li> <li><a href="/wiki/Pseudoinverse" class="mw-redirect" title="Pseudoinverse">Pseudoinverse</a> — a generalization of the <a href="/wiki/Inverse_matrix" class="mw-redirect" title="Inverse matrix">inverse matrix</a>.</li> <li><a href="/wiki/Row_echelon_form" title="Row echelon form">Row echelon form</a> — a matrix in this form is the result of applying the <i>forward elimination</i> procedure to a matrix (as used in <a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a>).</li> <li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a> — the determinant of a matrix of functions and their derivatives such that row <i>n</i> is the (<i>n</i>−1)<sup>th</sup> derivative of row one.</li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=11" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Perfect_matrix" title="Perfect matrix">Perfect matrix</a></li></ul> <style data-mw-deduplicate="TemplateStyles:r1259569809">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=12" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Hogben&#160;<a href="#CITEREFHogben2006">2006</a>,&#8194;Ch. 31.3.</span> </li> <li id="cite_note-:1-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/MatrixMultiplication.html">"Matrix Multiplication"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathworld.wolfram.com&amp;rft.atitle=Matrix+Multiplication&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FMatrixMultiplication.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+named+matrices" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Non-derogatory_matrix">"Non-derogatory matrix - Encyclopedia of Mathematics"</a>. <i>encyclopediaofmath.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=encyclopediaofmath.org&amp;rft.atitle=Non-derogatory+matrix+-+Encyclopedia+of+Mathematics&amp;rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FNon-derogatory_matrix&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+named+matrices" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_named_matrices&amp;action=edit&amp;section=13" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHogben2006" class="citation cs2"><a href="/wiki/Leslie_Hogben" title="Leslie Hogben">Hogben, Leslie</a> (2006), <i>Handbook of Linear Algebra (Discrete Mathematics and Its Applications)</i>, Boca Raton: Chapman &amp; Hall/CRC, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-58488-510-8" title="Special:BookSources/978-1-58488-510-8"><bdi>978-1-58488-510-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Linear+Algebra+%28Discrete+Mathematics+and+Its+Applications%29&amp;rft.place=Boca+Raton&amp;rft.pub=Chapman+%26+Hall%2FCRC&amp;rft.date=2006&amp;rft.isbn=978-1-58488-510-8&amp;rft.aulast=Hogben&amp;rft.aufirst=Leslie&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+named+matrices" class="Z3988"></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐559c9fd9f4‐55mwv Cached time: 20241126135455 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.250 seconds Real time usage: 0.405 seconds Preprocessor visited node count: 969/1000000 Post‐expand include size: 6142/2097152 bytes Template argument size: 339/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 10710/5000000 bytes Lua time usage: 0.107/10.000 seconds Lua memory usage: 4113569/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 227.470 1 -total 38.06% 86.582 2 Template:Cite_web 36.82% 83.746 1 Template:Short_description 21.95% 49.931 2 Template:Pagetype 8.91% 20.260 2 Template:Main_other 8.51% 19.355 1 Template:Portal 7.86% 17.882 1 Template:SDcat 4.61% 10.493 3 Template:Nowrap 4.18% 9.509 1 Template:Harvard_citations 3.56% 8.099 1 Template:Mset --> <!-- Saved in parser cache with key enwiki:pcache:193837:|#|:idhash:canonical and timestamp 20241126135455 and revision id 1255572705. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=List_of_named_matrices&amp;oldid=1255572705">https://en.wikipedia.org/w/index.php?title=List_of_named_matrices&amp;oldid=1255572705</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Mathematics-related_lists" title="Category:Mathematics-related lists">Mathematics-related lists</a></li><li><a href="/wiki/Category:Matrices" title="Category:Matrices">Matrices</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 5 November 2024, at 16:53<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=List_of_named_matrices&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-tvbbz","wgBackendResponseTime":176,"wgPageParseReport":{"limitreport":{"cputime":"0.250","walltime":"0.405","ppvisitednodes":{"value":969,"limit":1000000},"postexpandincludesize":{"value":6142,"limit":2097152},"templateargumentsize":{"value":339,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":10710,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 227.470 1 -total"," 38.06% 86.582 2 Template:Cite_web"," 36.82% 83.746 1 Template:Short_description"," 21.95% 49.931 2 Template:Pagetype"," 8.91% 20.260 2 Template:Main_other"," 8.51% 19.355 1 Template:Portal"," 7.86% 17.882 1 Template:SDcat"," 4.61% 10.493 3 Template:Nowrap"," 4.18% 9.509 1 Template:Harvard_citations"," 3.56% 8.099 1 Template:Mset"]},"scribunto":{"limitreport-timeusage":{"value":"0.107","limit":"10.000"},"limitreport-memusage":{"value":4113569,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-559c9fd9f4-55mwv","timestamp":"20241126135455","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"List of named matrices","url":"https:\/\/en.wikipedia.org\/wiki\/List_of_named_matrices","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2663605","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2663605","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-03-09T04:33:00Z","dateModified":"2024-11-05T16:53:22Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d1\/Taxonomy_of_Complex_Matrices.svg","headline":"Wikimedia list article"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10