CINXE.COM

Special unitary group - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Special unitary group - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c716f376-3982-4b9a-86a0-228bf97bd006","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Special_unitary_group","wgTitle":"Special unitary group","wgCurRevisionId":1263430849,"wgRevisionId":1263430849,"wgArticleId":173997,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Lie groups","Mathematical physics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Special_unitary_group","wgRelevantArticleId":173997,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{ "tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q684363","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready", "ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface", "ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/1200px-Cyclic_group.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1167"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/800px-Cyclic_group.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="778"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/640px-Cyclic_group.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="623"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Special unitary group - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Special_unitary_group"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Special_unitary_group&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Special_unitary_group"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Special_unitary_group rootpage-Special_unitary_group skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Special+unitary+group" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Special+unitary+group" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Special+unitary+group" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Special+unitary+group" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lie_algebra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lie_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Lie algebra</span> </div> </a> <button aria-controls="toc-Lie_algebra-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Lie algebra subsection</span> </button> <ul id="toc-Lie_algebra-sublist" class="vector-toc-list"> <li id="toc-Fundamental_representation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fundamental_representation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Fundamental representation</span> </div> </a> <ul id="toc-Fundamental_representation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Adjoint_representation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Adjoint_representation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Adjoint representation</span> </div> </a> <ul id="toc-Adjoint_representation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_group_SU(2)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_group_SU(2)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>The group SU(2)</span> </div> </a> <button aria-controls="toc-The_group_SU(2)-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle The group SU(2) subsection</span> </button> <ul id="toc-The_group_SU(2)-sublist" class="vector-toc-list"> <li id="toc-Diffeomorphism_with_the_3-sphere_S3" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Diffeomorphism_with_the_3-sphere_S3"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Diffeomorphism with the 3-sphere <i>S</i><sup>3</sup></span> </div> </a> <ul id="toc-Diffeomorphism_with_the_3-sphere_S3-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Isomorphism_with_group_of_versors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isomorphism_with_group_of_versors"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Isomorphism with group of versors</span> </div> </a> <ul id="toc-Isomorphism_with_group_of_versors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_spatial_rotations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_spatial_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Relation to spatial rotations</span> </div> </a> <ul id="toc-Relation_to_spatial_rotations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lie_algebra_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lie_algebra_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Lie algebra</span> </div> </a> <ul id="toc-Lie_algebra_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-SU(3)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#SU(3)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>SU(3)</span> </div> </a> <button aria-controls="toc-SU(3)-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle SU(3) subsection</span> </button> <ul id="toc-SU(3)-sublist" class="vector-toc-list"> <li id="toc-Topology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Topology</span> </div> </a> <ul id="toc-Topology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Representation_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Representation_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Representation theory</span> </div> </a> <ul id="toc-Representation_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lie_algebra_3" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lie_algebra_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Lie algebra</span> </div> </a> <ul id="toc-Lie_algebra_3-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lie_algebra_structure" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lie_algebra_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Lie algebra structure</span> </div> </a> <ul id="toc-Lie_algebra_structure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalized_special_unitary_group" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalized_special_unitary_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Generalized special unitary group</span> </div> </a> <button aria-controls="toc-Generalized_special_unitary_group-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalized special unitary group subsection</span> </button> <ul id="toc-Generalized_special_unitary_group-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Important_subgroups" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Important_subgroups"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Important subgroups</span> </div> </a> <ul id="toc-Important_subgroups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-SU(1,_1)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#SU(1,_1)"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>SU(1, 1)</span> </div> </a> <ul id="toc-SU(1,_1)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Footnotes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Footnotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Footnotes</span> </div> </a> <ul id="toc-Footnotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Special unitary group</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 19 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-19" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">19 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B2%D9%85%D8%B1%D8%A9_%D9%88%D8%AD%D8%AF%D9%88%D9%8A%D8%A9_%D8%AE%D8%A7%D8%B5%D8%A9" title="زمرة وحدوية خاصة – Arabic" lang="ar" hreflang="ar" data-title="زمرة وحدوية خاصة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%9E%D0%BD%D1%96%D1%82%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%B0" title="Спецыяльная ўнітарная група – Belarusian" lang="be" hreflang="be" data-title="Спецыяльная ўнітарная група" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Grup_unitari_especial" title="Grup unitari especial – Catalan" lang="ca" hreflang="ca" data-title="Grup unitari especial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Spezielle_unit%C3%A4re_Gruppe" title="Spezielle unitäre Gruppe – German" lang="de" hreflang="de" data-title="Spezielle unitäre Gruppe" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Grupo_unitario_especial" title="Grupo unitario especial – Spanish" lang="es" hreflang="es" data-title="Grupo unitario especial" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Groupe_sp%C3%A9cial_unitaire" title="Groupe spécial unitaire – French" lang="fr" hreflang="fr" data-title="Groupe spécial unitaire" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%8A%B9%EC%88%98_%EC%9C%A0%EB%8B%88%ED%84%B0%EB%A6%AC_%EA%B5%B0" title="특수 유니터리 군 – Korean" lang="ko" hreflang="ko" data-title="특수 유니터리 군" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Gruppo_unitario_speciale" title="Gruppo unitario speciale – Italian" lang="it" hreflang="it" data-title="Gruppo unitario speciale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Speci%C3%A1lis_unit%C3%A9r_csoport" title="Speciális unitér csoport – Hungarian" lang="hu" hreflang="hu" data-title="Speciális unitér csoport" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Kumpulan_unitari_istimewa" title="Kumpulan unitari istimewa – Malay" lang="ms" hreflang="ms" data-title="Kumpulan unitari istimewa" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Speciale_unitaire_groep" title="Speciale unitaire groep – Dutch" lang="nl" hreflang="nl" data-title="Speciale unitaire groep" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%89%B9%E6%AE%8A%E3%83%A6%E3%83%8B%E3%82%BF%E3%83%AA%E7%BE%A4" title="特殊ユニタリ群 – Japanese" lang="ja" hreflang="ja" data-title="特殊ユニタリ群" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%AA%E0%A9%88%E0%A8%B8%E0%A8%BC%E0%A8%B2_%E0%A8%AF%E0%A9%82%E0%A8%A8%E0%A8%BE%E0%A8%87%E0%A8%9F%E0%A9%8D%E0%A8%B0%E0%A9%80_%E0%A8%97%E0%A8%B0%E0%A9%81%E0%A9%B1%E0%A8%AA" title="ਸਪੈਸ਼ਲ ਯੂਨਾਇਟ੍ਰੀ ਗਰੁੱਪ – Punjabi" lang="pa" hreflang="pa" data-title="ਸਪੈਸ਼ਲ ਯੂਨਾਇਟ੍ਰੀ ਗਰੁੱਪ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Specjalna_grupa_unitarna" title="Specjalna grupa unitarna – Polish" lang="pl" hreflang="pl" data-title="Specjalna grupa unitarna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Grupo_especial_unit%C3%A1rio" title="Grupo especial unitário – Portuguese" lang="pt" hreflang="pt" data-title="Grupo especial unitário" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%83%D0%BD%D0%B8%D1%82%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0" title="Специальная унитарная группа – Russian" lang="ru" hreflang="ru" data-title="Специальная унитарная группа" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%96zel_birimsel_grup" title="Özel birimsel grup – Turkish" lang="tr" hreflang="tr" data-title="Özel birimsel grup" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D1%83%D0%BD%D1%96%D1%82%D0%B0%D1%80%D0%BD%D0%B0_%D0%B3%D1%80%D1%83%D0%BF%D0%B0" title="Спеціальна унітарна група – Ukrainian" lang="uk" hreflang="uk" data-title="Спеціальна унітарна група" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%89%B9%E6%AE%8A%E9%85%89%E7%BE%A4" title="特殊酉群 – Chinese" lang="zh" hreflang="zh" data-title="特殊酉群" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q684363#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Special_unitary_group" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Special_unitary_group" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Special_unitary_group"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Special_unitary_group&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Special_unitary_group&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Special_unitary_group"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Special_unitary_group&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Special_unitary_group&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Special_unitary_group" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Special_unitary_group" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Special_unitary_group&amp;oldid=1263430849" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Special_unitary_group&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Special_unitary_group&amp;id=1263430849&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpecial_unitary_group"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpecial_unitary_group"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Special_unitary_group&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Special_unitary_group&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q684363" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Group of unitary matrices with determinant of 1</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"SU(5)" redirects here. For the specific grand unification theory, see <a href="/wiki/Georgi%E2%80%93Glashow_model" title="Georgi–Glashow model">Georgi–Glashow model</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks" style="width:20.0em;"><tbody><tr><th class="sidebar-title" style="padding-bottom:0.4em;"><span style="font-size: 8pt; font-weight: none"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structure</a> → <b>Group theory</b></span><br /><a href="/wiki/Group_theory" title="Group theory">Group theory</a></th></tr><tr><td class="sidebar-image"><span class="skin-invert"><span typeof="mw:File"><a href="/wiki/File:Cyclic_group.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/120px-Cyclic_group.svg.png" decoding="async" width="120" height="117" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/180px-Cyclic_group.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/240px-Cyclic_group.svg.png 2x" data-file-width="443" data-file-height="431" /></a></span></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Basic notions</div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base, #202122 ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Subgroup" title="Subgroup">Subgroup</a></li> <li><a href="/wiki/Normal_subgroup" title="Normal subgroup">Normal subgroup</a></li> <li><a href="/wiki/Group_action" title="Group action">Group action</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Quotient_group" title="Quotient group">Quotient group</a></li> <li><a href="/wiki/Semidirect_product" title="Semidirect product">(Semi-)</a><a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a></li> <li><a href="/wiki/Direct_sum_of_groups" title="Direct sum of groups">Direct sum</a></li> <li><a href="/wiki/Free_product" title="Free product">Free product</a></li> <li><a href="/wiki/Wreath_product" title="Wreath product">Wreath product</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <i><a href="/wiki/Group_homomorphism" title="Group homomorphism">Group homomorphisms</a></i></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Kernel_(algebra)#Group_homomorphisms" title="Kernel (algebra)">kernel</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Simple_group" title="Simple group">simple</a></li> <li><a href="/wiki/Finite_group" title="Finite group">finite</a></li> <li><a href="/wiki/Infinite_group" title="Infinite group">infinite</a></li> <li><a href="/wiki/Continuous_group" class="mw-redirect" title="Continuous group">continuous</a></li> <li><a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative</a></li> <li><a href="/wiki/Additive_group" title="Additive group">additive</a></li> <li><a href="/wiki/Cyclic_group" title="Cyclic group">cyclic</a></li> <li><a href="/wiki/Abelian_group" title="Abelian group">abelian</a></li> <li><a href="/wiki/Dihedral_group" title="Dihedral group">dihedral</a></li> <li><a href="/wiki/Nilpotent_group" title="Nilpotent group">nilpotent</a></li> <li><a href="/wiki/Solvable_group" title="Solvable group">solvable</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Glossary_of_group_theory" title="Glossary of group theory">Glossary of group theory</a></li> <li><a href="/wiki/List_of_group_theory_topics" title="List of group theory topics">List of group theory topics</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Finite_group" title="Finite group">Finite groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base, #202122 ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cyclic_group" title="Cyclic group">Cyclic group</a> Z<sub><i>n</i></sub></li> <li><a href="/wiki/Symmetric_group" title="Symmetric group">Symmetric group</a> S<sub><i>n</i></sub></li> <li><a href="/wiki/Alternating_group" title="Alternating group">Alternating group</a> A<sub><i>n</i></sub></li></ul> <ul><li><a href="/wiki/Dihedral_group" title="Dihedral group">Dihedral group</a> D<sub><i>n</i></sub></li> <li><a href="/wiki/Quaternion_group" title="Quaternion group">Quaternion group</a> Q</li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cauchy%27s_theorem_(group_theory)" title="Cauchy&#39;s theorem (group theory)">Cauchy's theorem</a></li> <li><a href="/wiki/Lagrange%27s_theorem_(group_theory)" title="Lagrange&#39;s theorem (group theory)">Lagrange's theorem</a></li></ul> <ul><li><a href="/wiki/Sylow_theorems" title="Sylow theorems">Sylow theorems</a></li> <li><a href="/wiki/Hall_subgroup" title="Hall subgroup">Hall's theorem</a></li></ul> <ul><li><a href="/wiki/P-group" title="P-group"><i>p</i>-group</a></li> <li><a href="/wiki/Elementary_abelian_group" title="Elementary abelian group">Elementary abelian group</a></li></ul> <ul><li><a href="/wiki/Frobenius_group" title="Frobenius group">Frobenius group</a></li></ul> <ul><li><a href="/wiki/Schur_multiplier" title="Schur multiplier">Schur multiplier</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Classification_of_finite_simple_groups" title="Classification of finite simple groups">Classification of finite simple groups</a></th></tr><tr><td class="sidebar-content"> <ul><li>cyclic</li> <li>alternating</li> <li><a href="/wiki/Group_of_Lie_type" title="Group of Lie type">Lie type</a></li> <li><a href="/wiki/Sporadic_group" title="Sporadic group">sporadic</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><div class="hlist"><ul><li><a href="/wiki/Discrete_group" title="Discrete group">Discrete groups</a></li><li><a href="/wiki/Lattice_(discrete_subgroup)" title="Lattice (discrete subgroup)">Lattices</a></li></ul></div></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Integer" title="Integer">Integers</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li><a href="/wiki/Free_group" title="Free group">Free group</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Modular_group" title="Modular group">Modular groups</a> <div class="hlist"><ul><li>PSL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li><li>SL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li></ul></div></div> <ul><li><a href="/wiki/Arithmetic_group" title="Arithmetic group">Arithmetic group</a></li> <li><a href="/wiki/Lattice_(group)" title="Lattice (group)">Lattice</a></li> <li><a href="/wiki/Hyperbolic_group" title="Hyperbolic group">Hyperbolic group</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Topological_group" title="Topological group">Topological</a> and <a href="/wiki/Lie_group" title="Lie group">Lie groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Solenoid_(mathematics)" title="Solenoid (mathematics)">Solenoid</a></li> <li><a href="/wiki/Circle_group" title="Circle group">Circle</a></li></ul> <ul><li><a href="/wiki/General_linear_group" title="General linear group">General linear</a> GL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_linear_group" title="Special linear group">Special linear</a> SL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Orthogonal_group" title="Orthogonal group">Orthogonal</a> O(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Euclidean_group" title="Euclidean group">Euclidean</a> E(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">Special orthogonal</a> SO(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Unitary_group" title="Unitary group">Unitary</a> U(<i>n</i>)</li></ul> <ul><li><a class="mw-selflink selflink">Special unitary</a> SU(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Symplectic_group" title="Symplectic group">Symplectic</a> Sp(<i>n</i>)</li></ul> <ul><li><a href="/wiki/G2_(mathematics)" title="G2 (mathematics)">G<sub>2</sub></a></li> <li><a href="/wiki/F4_(mathematics)" title="F4 (mathematics)">F<sub>4</sub></a></li> <li><a href="/wiki/E6_(mathematics)" title="E6 (mathematics)">E<sub>6</sub></a></li> <li><a href="/wiki/E7_(mathematics)" title="E7 (mathematics)">E<sub>7</sub></a></li> <li><a href="/wiki/E8_(mathematics)" title="E8 (mathematics)">E<sub>8</sub></a></li></ul> <ul><li><a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz</a></li> <li><a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré</a></li> <li><a href="/wiki/Conformal_group" title="Conformal group">Conformal</a></li></ul> <ul><li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a></li> <li><a href="/wiki/Loop_group" title="Loop group">Loop</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Infinite_dimensional_Lie_group" class="mw-redirect" title="Infinite dimensional Lie group">Infinite dimensional Lie group</a> <div class="hlist"><ul><li>O(∞)</li><li>SU(∞)</li><li>Sp(∞)</li></ul></div></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Algebraic_group" title="Algebraic group">Algebraic groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Linear_algebraic_group" title="Linear algebraic group">Linear algebraic group</a></li></ul> <ul><li><a href="/wiki/Reductive_group" title="Reductive group">Reductive group</a></li></ul> <ul><li><a href="/wiki/Abelian_variety" title="Abelian variety">Abelian variety</a></li></ul> <ul><li><a href="/wiki/Elliptic_curve" title="Elliptic curve">Elliptic curve</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Group_theory_sidebar" title="Template:Group theory sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Group_theory_sidebar" title="Template talk:Group theory sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Group_theory_sidebar" title="Special:EditPage/Template:Group theory sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><th class="sidebar-title"><a href="/wiki/Lie_group" title="Lie group">Lie groups</a> and <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebras</a></th></tr><tr><td class="sidebar-image" style="padding-bottom:0.9em;"><span typeof="mw:File/Frameless"><a href="/wiki/File:E8Petrie.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/E8Petrie.svg/180px-E8Petrie.svg.png" decoding="async" width="180" height="181" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/E8Petrie.svg/270px-E8Petrie.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/14/E8Petrie.svg/360px-E8Petrie.svg.png 2x" data-file-width="2852" data-file-height="2863" /></a></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Classical_group" title="Classical group">Classical groups</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/General_linear_group" title="General linear group">General linear</a> GL(<i>n</i>)</li> <li><a href="/wiki/Special_linear_group" title="Special linear group">Special linear</a> SL(<i>n</i>)</li> <li><a href="/wiki/Orthogonal_group" title="Orthogonal group">Orthogonal</a> O(<i>n</i>)</li> <li><a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">Special orthogonal</a> SO(<i>n</i>)</li> <li><a href="/wiki/Unitary_group" title="Unitary group">Unitary</a> U(<i>n</i>)</li> <li><a class="mw-selflink selflink">Special unitary</a> SU(<i>n</i>)</li> <li><a href="/wiki/Symplectic_group" title="Symplectic group">Symplectic</a> Sp(<i>n</i>)</li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Simple_Lie_group" title="Simple Lie group">Simple Lie groups</a></div><div class="sidebar-list-content mw-collapsible-content"><table class="sidebar nomobile nowraplinks hlist" style="background-color: transparent; color: var( --color-base, #202122 ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><th class="sidebar-heading" style="font-weight:normal; font-style:italic;"> Classical</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Simple_Lie_group#A_series" title="Simple Lie group">A<sub><i>n</i></sub></a></li> <li><a href="/wiki/Simple_Lie_group#B_series" title="Simple Lie group">B<sub><i>n</i></sub></a></li> <li><a href="/wiki/Simple_Lie_group#C_series" title="Simple Lie group">C<sub><i>n</i></sub></a></li> <li><a href="/wiki/Simple_Lie_group#D_series" title="Simple Lie group">D<sub><i>n</i></sub></a></li></ul></td> </tr><tr><th class="sidebar-heading" style="font-weight:normal; font-style:italic;"> Exceptional</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/G2_(mathematics)" title="G2 (mathematics)">G<sub>2</sub></a></li> <li><a href="/wiki/F4_(mathematics)" title="F4 (mathematics)">F<sub>4</sub></a></li> <li><a href="/wiki/E6_(mathematics)" title="E6 (mathematics)">E<sub>6</sub></a></li> <li><a href="/wiki/E7_(mathematics)" title="E7 (mathematics)">E<sub>7</sub></a></li> <li><a href="/wiki/E8_(mathematics)" title="E8 (mathematics)">E<sub>8</sub></a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Table_of_Lie_groups" title="Table of Lie groups">Other Lie groups</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Circle_group" title="Circle group">Circle</a></li> <li><a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz</a></li> <li><a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré</a></li> <li><a href="/wiki/Conformal_group" title="Conformal group">Conformal group</a></li> <li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a></li> <li><a href="/wiki/Loop_group" title="Loop group">Loop</a></li> <li><a href="/wiki/Euclidean_group" title="Euclidean group">Euclidean</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebras</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Lie_group%E2%80%93Lie_algebra_correspondence" title="Lie group–Lie algebra correspondence">Lie group–Lie algebra correspondence</a></li> <li><a href="/wiki/Exponential_map_(Lie_theory)" title="Exponential map (Lie theory)">Exponential map</a></li> <li><a href="/wiki/Adjoint_representation" title="Adjoint representation">Adjoint representation</a></li> <li><div class="hlist"><ul><li><a href="/wiki/Killing_form" title="Killing form">Killing form</a></li><li><a href="/wiki/Index_of_a_Lie_algebra" title="Index of a Lie algebra">Index</a></li></ul></div></li> <li><a href="/wiki/Simple_Lie_algebra" title="Simple Lie algebra">Simple Lie algebra</a></li> <li><a href="/wiki/Loop_algebra" title="Loop algebra">Loop algebra</a></li> <li><a href="/wiki/Affine_Lie_algebra" title="Affine Lie algebra">Affine Lie algebra</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Semisimple_Lie_algebra" title="Semisimple Lie algebra">Semisimple Lie algebra</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Dynkin_diagram" title="Dynkin diagram">Dynkin diagrams</a></li> <li><a href="/wiki/Cartan_subalgebra" title="Cartan subalgebra">Cartan subalgebra</a></li> <li><div class="hlist"><ul><li><a href="/wiki/Root_system" title="Root system">Root system</a></li><li><a href="/wiki/Weyl_group" title="Weyl group">Weyl group</a></li></ul></div></li> <li><div class="hlist"><ul><li><a href="/wiki/Real_form_(Lie_theory)" title="Real form (Lie theory)">Real form</a></li><li><a href="/wiki/Complexification_(Lie_group)" title="Complexification (Lie group)">Complexification</a></li></ul></div></li> <li><a href="/wiki/Split_Lie_algebra" title="Split Lie algebra">Split Lie algebra</a></li> <li><a href="/wiki/Compact_Lie_algebra" title="Compact Lie algebra">Compact Lie algebra</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Representation_theory" title="Representation theory">Representation theory</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Representation_of_a_Lie_group" title="Representation of a Lie group">Lie group representation</a></li> <li><a href="/wiki/Lie_algebra_representation" title="Lie algebra representation">Lie algebra representation</a></li> <li><a href="/wiki/Representation_theory_of_semisimple_Lie_algebras" title="Representation theory of semisimple Lie algebras">Representation theory of semisimple Lie algebras</a></li> <li><a href="/wiki/Representations_of_classical_Lie_groups" title="Representations of classical Lie groups">Representations of classical Lie groups</a></li> <li><a href="/wiki/Theorem_of_the_highest_weight" title="Theorem of the highest weight">Theorem of the highest weight</a></li> <li><a href="/wiki/Borel%E2%80%93Weil%E2%80%93Bott_theorem" title="Borel–Weil–Bott theorem">Borel–Weil–Bott theorem</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Lie groups in <a href="/wiki/Physics" title="Physics">physics</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Particle_physics_and_representation_theory" title="Particle physics and representation theory">Particle physics and representation theory</a></li> <li><a href="/wiki/Representation_theory_of_the_Lorentz_group" title="Representation theory of the Lorentz group">Lorentz group representations</a></li> <li><a href="/wiki/Representation_theory_of_the_Poincar%C3%A9_group" title="Representation theory of the Poincaré group">Poincaré group representations</a></li> <li><a href="/wiki/Representation_theory_of_the_Galilean_group" title="Representation theory of the Galilean group">Galilean group representations</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a></li> <li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a></li> <li><a href="/wiki/Wilhelm_Killing" title="Wilhelm Killing">Wilhelm Killing</a></li> <li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li> <li><a href="/wiki/Claude_Chevalley" title="Claude Chevalley">Claude Chevalley</a></li> <li><a href="/wiki/Harish-Chandra" title="Harish-Chandra">Harish-Chandra</a></li> <li><a href="/wiki/Armand_Borel" title="Armand Borel">Armand Borel</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-below plainlist"> <ul><li><a href="/wiki/Glossary_of_Lie_groups_and_Lie_algebras" title="Glossary of Lie groups and Lie algebras">Glossary</a></li> <li><a href="/wiki/Table_of_Lie_groups" title="Table of Lie groups">Table of Lie groups</a></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Lie_groups" title="Template:Lie groups"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Lie_groups" title="Template talk:Lie groups"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Lie_groups" title="Special:EditPage/Template:Lie groups"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In mathematics, the <b>special unitary group</b> of degree <span class="texhtml"><i>n</i></span>, denoted <span class="texhtml">SU(<i>n</i>)</span>, is the <a href="/wiki/Lie_group" title="Lie group">Lie group</a> of <span class="texhtml"><i>n</i> × <i>n</i></span> <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrices</a> with <a href="/wiki/Determinant" title="Determinant">determinant</a> 1. </p><p>The <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a> of the more general <a href="/wiki/Unitary_group" title="Unitary group">unitary group</a> may have <a href="/wiki/Complex_number" title="Complex number">complex</a> determinants with absolute value 1, rather than real 1 in the special case. </p><p>The group operation is <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a>. The special unitary group is a <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a> of the <a href="/wiki/Unitary_group" title="Unitary group">unitary group</a> <span class="texhtml">U(<i>n</i>)</span>, consisting of all <span class="texhtml"><i>n</i>×<i>n</i></span> unitary matrices. As a <a href="/wiki/Classical_group" title="Classical group">compact classical group</a>, <span class="texhtml">U(<i>n</i>)</span> is the group that preserves the <a href="/wiki/Inner_product_space#Some_examples" title="Inner product space">standard inner product</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> It is itself a subgroup of the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SU} (n)\subset \operatorname {U} (n)\subset \operatorname {GL} (n,\mathbb {C} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2282;<!-- ⊂ --></mo> <mi mathvariant="normal">U</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2282;<!-- ⊂ --></mo> <mi>GL</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SU} (n)\subset \operatorname {U} (n)\subset \operatorname {GL} (n,\mathbb {C} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f574802fe5d1d9610d8a9b95d93f4ada466bb607" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.224ex; height:2.843ex;" alt="{\displaystyle \operatorname {SU} (n)\subset \operatorname {U} (n)\subset \operatorname {GL} (n,\mathbb {C} ).}"></span> </p><p>The <span class="texhtml">SU(<i>n</i>)</span> groups find wide application in the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> of <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a>, especially <span class="texhtml"><a href="#The_group_SU(2)">SU(2)</a></span> in the <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak interaction</a> and <span class="texhtml"><a href="#SU(3)">SU(3)</a></span> in <a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">quantum chromodynamics</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>The simplest case, <span class="texhtml">SU(1)</span>, is the <a href="/wiki/Trivial_group" title="Trivial group">trivial group</a>, having only a single element. The group <span class="texhtml">SU(2)</span> is <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a> to the group of <a href="/wiki/Quaternion" title="Quaternion">quaternions</a> of <a href="/wiki/Quaternion#Conjugation,_the_norm,_and_reciprocal" title="Quaternion">norm</a> 1, and is thus <a href="/wiki/Diffeomorphic" class="mw-redirect" title="Diffeomorphic">diffeomorphic</a> to the <a href="/wiki/3-sphere" title="3-sphere">3-sphere</a>. Since <a href="/wiki/Unit_quaternion" class="mw-redirect" title="Unit quaternion">unit quaternions</a> can be used to represent rotations in 3-dimensional space (up to sign), there is a <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a> <a href="/wiki/Homomorphism" title="Homomorphism">homomorphism</a> from <span class="texhtml">SU(2)</span> to the <a href="/wiki/Rotation_group_SO(3)" class="mw-redirect" title="Rotation group SO(3)">rotation group <span class="texhtml">SO(3)</span></a> whose <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> is <span class="texhtml">{+<i>I</i>, −<i>I</i>}</span>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> Since the quaternions can be identified as the even subalgebra of the Clifford Algebra <span class="texhtml">Cl(3)</span>, <span class="texhtml">SU(2)</span> is in fact identical to one of the symmetry groups of <a href="/wiki/Spinor" title="Spinor">spinors</a>, <a href="/wiki/Spin_group" title="Spin group">Spin</a>(3), that enables a spinor presentation of rotations. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=1" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The special unitary group <span class="texhtml">SU(<i>n</i>)</span> is a strictly real <a href="/wiki/Lie_group" title="Lie group">Lie group</a> (vs. a more general <a href="/wiki/Complex_Lie_group" title="Complex Lie group">complex Lie group</a>). Its dimension as a <a href="/wiki/Manifold" title="Manifold">real manifold</a> is <span class="texhtml"><i>n</i><sup>2</sup> − 1</span>. Topologically, it is <a href="/wiki/Compact_space" title="Compact space">compact</a> and <a href="/wiki/Simply_connected" class="mw-redirect" title="Simply connected">simply connected</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Algebraically, it is a <a href="/wiki/Simple_Lie_group" title="Simple Lie group">simple Lie group</a> (meaning its <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> is simple; see below).<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Center_of_a_group" class="mw-redirect" title="Center of a group">center</a> of <span class="texhtml">SU(<i>n</i>)</span> is isomorphic to the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /n\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /n\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2120ebbc85f91df66c6de5446367bf9fd620844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.658ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /n\mathbb {Z} }"></span>, and is composed of the diagonal matrices <span class="texhtml"><i>ζ</i> <i>I</i></span> for <span class="texhtml"><i>ζ</i></span> an <span class="texhtml"><i>n</i></span>th root of unity and <span class="texhtml"><i>I</i></span> the <span class="texhtml"><i>n</i> × <i>n</i></span> identity matrix. </p><p>Its <a href="/wiki/Outer_automorphism_group" title="Outer automorphism group">outer automorphism group</a> for <span class="texhtml"><i>n</i> ≥ 3</span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /2\mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /2\mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49b068d1b3377be64785a60d11d0f135fe529631" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /2\mathbb {Z} ,}"></span> while the outer automorphism group of <span class="texhtml">SU(2)</span> is the <a href="/wiki/Trivial_group" title="Trivial group">trivial group</a>. </p><p>A <a href="/wiki/Maximal_torus" title="Maximal torus">maximal torus</a> of <a href="/wiki/Algebraic_torus#Split_rank_of_a_semisimple_group" title="Algebraic torus">rank</a> <span class="texhtml"><i>n</i> − 1</span> is given by the set of diagonal matrices with determinant <span class="texhtml">1</span>. The <a href="/wiki/Weyl_group#The_Weyl_group_of_a_connected_compact_Lie_group" title="Weyl group">Weyl group</a> of <span class="texhtml">SU(<i>n</i>)</span> is the <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a> <span class="texhtml"><i>S<sub>n</sub></i></span>, which is represented by <a href="/wiki/Generalized_permutation_matrix#Signed_permutation_group" title="Generalized permutation matrix">signed permutation matrices</a> (the signs being necessary to ensure that the determinant is <span class="texhtml">1</span>). </p><p>The <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> of <span class="texhtml">SU(<i>n</i>)</span>, denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b77ffdb2c34631352744c0a3ea94ff2a70406f90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.477ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(n)}"></span>, can be identified with the set of <a href="/wiki/Traceless" class="mw-redirect" title="Traceless">traceless</a> <a href="/wiki/AntiHermitian" class="mw-redirect" title="AntiHermitian">anti‑Hermitian</a> <span class="texhtml"><i>n</i> × <i>n</i></span> complex matrices, with the regular <a href="/wiki/Commutator" title="Commutator">commutator</a> as a Lie bracket. <a href="/wiki/Particle_physics" title="Particle physics">Particle physicists</a> often use a different, equivalent representation: The set of traceless <a href="/wiki/Hermitian" class="mw-redirect" title="Hermitian">Hermitian</a> <span class="texhtml"><i>n</i> × <i>n</i></span> complex matrices with Lie bracket given by <span class="texhtml">−<i>i</i></span> times the commutator. </p> <div class="mw-heading mw-heading2"><h2 id="Lie_algebra">Lie algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=2" title="Edit section: Lie algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Classical_group#U(p,_q)_and_U(n)_–_the_unitary_groups" title="Classical group">Classical group §&#160;U(p, q) and U(n) – the unitary groups</a></div> <p>The Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b77ffdb2c34631352744c0a3ea94ff2a70406f90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.477ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(n)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SU} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SU} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31937ff2e5d88617cd98e982a475a6bf481b321c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.24ex; height:2.843ex;" alt="{\displaystyle \operatorname {SU} (n)}"></span> consists of <span class="texhtml"><i>n</i> × <i>n</i></span> <a href="/wiki/Skew_Hermitian_matrix" class="mw-redirect" title="Skew Hermitian matrix">skew-Hermitian</a> matrices with trace zero.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> This (real) Lie algebra has dimension <span class="texhtml"><i>n</i><sup>2</sup> − 1</span>. More information about the structure of this Lie algebra can be found below in <i><a href="#Lie_algebra_structure">§&#160;Lie algebra structure</a></i>. </p> <div class="mw-heading mw-heading3"><h3 id="Fundamental_representation">Fundamental representation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=3" title="Edit section: Fundamental representation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the physics literature, it is common to identify the Lie algebra with the space of trace-zero <i>Hermitian</i> (rather than the skew-Hermitian) matrices. That is to say, the physicists' Lie algebra differs by a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> from the mathematicians'. With this convention, one can then choose generators <span class="texhtml"><i>T</i><sub><i>a</i></sub></span> that are <a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">traceless</a> <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a> complex <span class="texhtml"><i>n</i> × <i>n</i></span> matrices, where: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{a}\,T_{b}={\tfrac {1}{\,2n\,}}\,\delta _{ab}\,I_{n}+{\tfrac {1}{2}}\,\sum _{c=1}^{n^{2}-1}\left(if_{abc}+d_{abc}\right)\,T_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mspace width="thinmathspace" /> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> </mrow> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{a}\,T_{b}={\tfrac {1}{\,2n\,}}\,\delta _{ab}\,I_{n}+{\tfrac {1}{2}}\,\sum _{c=1}^{n^{2}-1}\left(if_{abc}+d_{abc}\right)\,T_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b3802b5d0dc6e92920ce078f2f07be789671ec8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:43.007ex; height:7.676ex;" alt="{\displaystyle T_{a}\,T_{b}={\tfrac {1}{\,2n\,}}\,\delta _{ab}\,I_{n}+{\tfrac {1}{2}}\,\sum _{c=1}^{n^{2}-1}\left(if_{abc}+d_{abc}\right)\,T_{c}}"></span> </p><p>where the <span class="texhtml"><i>f</i></span> are the <a href="/wiki/Structure_constants" title="Structure constants">structure constants</a> and are antisymmetric in all indices, while the <span class="texhtml"><i>d</i></span>-coefficients are symmetric in all indices. </p><p>As a consequence, the commutator is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\left[T_{a},\,T_{b}\right]~=~i\sum _{c=1}^{n^{2}-1}\,f_{abc}\,T_{c}\;,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow> <mo>[</mo> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mi>i</mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mspace width="thinmathspace" /> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mspace width="thickmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\left[T_{a},\,T_{b}\right]~=~i\sum _{c=1}^{n^{2}-1}\,f_{abc}\,T_{c}\;,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3405ac2cc1d7c8341f86701bf0112a8922ac3ffe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.605ex; height:7.676ex;" alt="{\displaystyle ~\left[T_{a},\,T_{b}\right]~=~i\sum _{c=1}^{n^{2}-1}\,f_{abc}\,T_{c}\;,}"></span> </p><p>and the corresponding anticommutator is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{T_{a},\,T_{b}\right\}~=~{\tfrac {1}{n}}\,\delta _{ab}\,I_{n}+\sum _{c=1}^{n^{2}-1}{d_{abc}\,T_{c}}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{T_{a},\,T_{b}\right\}~=~{\tfrac {1}{n}}\,\delta _{ab}\,I_{n}+\sum _{c=1}^{n^{2}-1}{d_{abc}\,T_{c}}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a94045d5afc0b4c340112a5b67c698d05c950d3e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.615ex; height:7.676ex;" alt="{\displaystyle \left\{T_{a},\,T_{b}\right\}~=~{\tfrac {1}{n}}\,\delta _{ab}\,I_{n}+\sum _{c=1}^{n^{2}-1}{d_{abc}\,T_{c}}~.}"></span> </p><p>The factor of <span class="texhtml"><i>i</i></span> in the commutation relation arises from the physics convention and is not present when using the mathematicians' convention. </p><p>The conventional normalization condition is </p><p><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{c,e=1}^{n^{2}-1}d_{ace}\,d_{bce}={\frac {\,n^{2}-4\,}{n}}\,\delta _{ab}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>,</mo> <mi>e</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> <mi>e</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mspace width="thinmathspace" /> </mrow> <mi>n</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{c,e=1}^{n^{2}-1}d_{ace}\,d_{bce}={\frac {\,n^{2}-4\,}{n}}\,\delta _{ab}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab872107313b28586324cd427d5b8055a409978e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:27.839ex; height:8.009ex;" alt="{\displaystyle \sum _{c,e=1}^{n^{2}-1}d_{ace}\,d_{bce}={\frac {\,n^{2}-4\,}{n}}\,\delta _{ab}~.}"></span> </p><p>The generators satisfy the Jacobi identity:<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [T_{a},[T_{b},T_{c}]]+[T_{b},[T_{c},T_{a}]]+[T_{c},[T_{a},T_{b}]]=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <mo stretchy="false">[</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mo stretchy="false">[</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>,</mo> <mo stretchy="false">[</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mo stretchy="false">[</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>,</mo> <mo stretchy="false">[</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [T_{a},[T_{b},T_{c}]]+[T_{b},[T_{c},T_{a}]]+[T_{c},[T_{a},T_{b}]]=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d13b4aac12698770cefc03cda97884c5d6d9501" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.723ex; height:2.843ex;" alt="{\displaystyle [T_{a},[T_{b},T_{c}]]+[T_{b},[T_{c},T_{a}]]+[T_{c},[T_{a},T_{b}]]=0.}"></span> </p><p>By convention, in the physics literature the generators <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54b73a473771885bb5d025ecd2fb10469ab859d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.459ex; height:2.509ex;" alt="{\displaystyle T_{a}}"></span> are defined as the traceless Hermitian complex matrices with a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e308a3a46b7fdce07cc09dcab9e8d8f73e37d935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/2}"></span> prefactor: for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SU(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SU(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27f8cd5de228a45abf34210c1666cd46dd87bc12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.254ex; height:2.843ex;" alt="{\displaystyle SU(2)}"></span> group, the generators are chosen as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}\sigma _{1},{\frac {1}{2}}\sigma _{2},{\frac {1}{2}}\sigma _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}\sigma _{1},{\frac {1}{2}}\sigma _{2},{\frac {1}{2}}\sigma _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f73b4142b1cef42280ef5f92bdf2a5e6cbfed47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.208ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{2}}\sigma _{1},{\frac {1}{2}}\sigma _{2},{\frac {1}{2}}\sigma _{3}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96ef75a8ddd0a1ba9772f635467a7aec9207f0c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.429ex; height:2.009ex;" alt="{\displaystyle \sigma _{a}}"></span> are the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a>, while for the case of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SU(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SU(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ac7389c1b06f783c603fa08d057b7c526228519" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.254ex; height:2.843ex;" alt="{\displaystyle SU(3)}"></span> one defines <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{a}={\frac {1}{2}}\lambda _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{a}={\frac {1}{2}}\lambda _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/566786f40d6886ba3df99a1699e088f612c708b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.014ex; height:5.176ex;" alt="{\displaystyle T_{a}={\frac {1}{2}}\lambda _{a}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7687dadd30027695922f307162cfea498553bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.457ex; height:2.509ex;" alt="{\displaystyle \lambda _{a}}"></span> are the <a href="/wiki/Gell-Mann_matrices" title="Gell-Mann matrices">Gell-Mann matrices</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> With these definitions, the generators satisfy the following normalization condition: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Tr(T_{a}T_{b})={\frac {1}{2}}\delta _{ab}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>r</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Tr(T_{a}T_{b})={\frac {1}{2}}\delta _{ab}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d64db21d3f57b0b69d7bafdf036fea31ccb50f1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.832ex; height:5.176ex;" alt="{\displaystyle Tr(T_{a}T_{b})={\frac {1}{2}}\delta _{ab}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Adjoint_representation">Adjoint representation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=4" title="Edit section: Adjoint representation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the <span class="texhtml">(<i>n</i><sup>2</sup> − 1)</span>-dimensional <a href="/wiki/Adjoint_representation_of_a_Lie_group" class="mw-redirect" title="Adjoint representation of a Lie group">adjoint representation</a>, the generators are represented by <span class="texhtml">(<i>n</i><sup>2</sup> − 1) × (<i>n</i><sup>2</sup> − 1)</span> matrices, whose elements are defined by the structure constants themselves: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(T_{a}\right)_{jk}=-if_{ajk}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(T_{a}\right)_{jk}=-if_{ajk}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/775b0ef218cc977fc79787777c8193ba08f053e3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:16.166ex; height:3.343ex;" alt="{\displaystyle \left(T_{a}\right)_{jk}=-if_{ajk}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="The_group_SU(2)"><span id="The_group_SU.282.29"></span>The group SU(2)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=5" title="Edit section: The group SU(2)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Versor" title="Versor">Versor</a>, <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a>, <a href="/wiki/3D_rotation_group#A_note_on_Lie_algebras" title="3D rotation group">3D rotation group §&#160;A note on Lie algebras</a>, and <a href="/wiki/Representation_theory_of_SU(2)" title="Representation theory of SU(2)">Representation theory of SU(2)</a></div> <p>Using <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a> for the binary operation, <span class="texhtml">SU(2)</span> forms a group,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SU} (2)=\left\{{\begin{pmatrix}\alpha &amp;-{\overline {\beta }}\\\beta &amp;{\overline {\alpha }}\end{pmatrix}}:\ \ \alpha ,\beta \in \mathbb {C} ,|\alpha |^{2}+|\beta |^{2}=1\right\}~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B2;<!-- β --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>:</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SU} (2)=\left\{{\begin{pmatrix}\alpha &amp;-{\overline {\beta }}\\\beta &amp;{\overline {\alpha }}\end{pmatrix}}:\ \ \alpha ,\beta \in \mathbb {C} ,|\alpha |^{2}+|\beta |^{2}=1\right\}~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c61204f51fca54af7e42063de8d64edcf41282c8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:52.577ex; height:6.509ex;" alt="{\displaystyle \operatorname {SU} (2)=\left\{{\begin{pmatrix}\alpha &amp;-{\overline {\beta }}\\\beta &amp;{\overline {\alpha }}\end{pmatrix}}:\ \ \alpha ,\beta \in \mathbb {C} ,|\alpha |^{2}+|\beta |^{2}=1\right\}~,}"></span> </p><p>where the overline denotes <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugation</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Diffeomorphism_with_the_3-sphere_S3">Diffeomorphism with the 3-sphere <i>S</i><sup>3</sup></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=6" title="Edit section: Diffeomorphism with the 3-sphere S3"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If we consider <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ,\beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ,\beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4b46b57cfa0011b643037751809904d915c1b48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.854ex; height:2.509ex;" alt="{\displaystyle \alpha ,\beta }"></span> as a pair in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f43d6ec8a1e1fe5a85aec0dd9bdcd45ae09b06b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{2}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf2c834b02b18181e80e4eb3e4a5eb434ec82fad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.456ex; height:2.343ex;" alt="{\displaystyle \alpha =a+bi}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =c+di}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =c+di}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b178ac48204505166e665809b4e4f3deec85a4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.296ex; height:2.509ex;" alt="{\displaystyle \beta =c+di}"></span>, then the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\alpha |^{2}+|\beta |^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\alpha |^{2}+|\beta |^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18cd7473cdb894839d10852890517b1fb687c73b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.617ex; height:3.343ex;" alt="{\displaystyle |\alpha |^{2}+|\beta |^{2}=1}"></span> becomes </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be606d79367578df0853b6c6ee02407ded846146" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:21.451ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=1}"></span> </p><p>This is the equation of the <a href="/wiki/3-sphere" title="3-sphere">3-sphere S<sup>3</sup></a>. This can also be seen using an embedding: the map </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\varphi \colon \mathbb {C} ^{2}\to {}&amp;\operatorname {M} (2,\mathbb {C} )\\[5pt]\varphi (\alpha ,\beta )={}&amp;{\begin{pmatrix}\alpha &amp;-{\overline {\beta }}\\\beta &amp;{\overline {\alpha }}\end{pmatrix}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x003A;<!-- : --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi mathvariant="normal">M</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B2;<!-- β --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\varphi \colon \mathbb {C} ^{2}\to {}&amp;\operatorname {M} (2,\mathbb {C} )\\[5pt]\varphi (\alpha ,\beta )={}&amp;{\begin{pmatrix}\alpha &amp;-{\overline {\beta }}\\\beta &amp;{\overline {\alpha }}\end{pmatrix}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9d540cf990ed87348dc38f038644938711ce2ed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:22.928ex; height:11.176ex;" alt="{\displaystyle {\begin{aligned}\varphi \colon \mathbb {C} ^{2}\to {}&amp;\operatorname {M} (2,\mathbb {C} )\\[5pt]\varphi (\alpha ,\beta )={}&amp;{\begin{pmatrix}\alpha &amp;-{\overline {\beta }}\\\beta &amp;{\overline {\alpha }}\end{pmatrix}},\end{aligned}}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {M} (2,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">M</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {M} (2,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f311c84ded59c83ef0f40c56f86463e50ca96231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.815ex; height:2.843ex;" alt="{\displaystyle \operatorname {M} (2,\mathbb {C} )}"></span> denotes the set of 2 by 2 complex matrices, is an injective real linear map (by considering <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f43d6ec8a1e1fe5a85aec0dd9bdcd45ae09b06b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{2}}"></span> <a href="/wiki/Diffeomorphism" title="Diffeomorphism">diffeomorphic</a> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4abb9b9dab94f7b25a4210364f0f9032704bfb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{4}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {M} (2,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">M</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {M} (2,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f311c84ded59c83ef0f40c56f86463e50ca96231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.815ex; height:2.843ex;" alt="{\displaystyle \operatorname {M} (2,\mathbb {C} )}"></span> diffeomorphic to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{8}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{8}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ccc2412bb86d0c9bf29d71756465f9353bec870" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{8}}"></span>). Hence, the <a href="/wiki/Restriction_(mathematics)" title="Restriction (mathematics)">restriction</a> of <span class="texhtml"><i>φ</i></span> to the <a href="/wiki/3-sphere" title="3-sphere">3-sphere</a> (since modulus is 1), denoted <span class="texhtml"><i>S</i><sup>3</sup></span>, is an embedding of the 3-sphere onto a compact submanifold of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {M} (2,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">M</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {M} (2,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f311c84ded59c83ef0f40c56f86463e50ca96231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.815ex; height:2.843ex;" alt="{\displaystyle \operatorname {M} (2,\mathbb {C} )}"></span>, namely <span class="texhtml"><i>φ</i>(<i>S</i><sup>3</sup>) = SU(2)</span>. </p><p>Therefore, as a manifold, <span class="texhtml"><i>S</i><sup>3</sup></span> is diffeomorphic to <span class="texhtml">SU(2)</span>, which shows that <span class="texhtml">SU(2)</span> is <a href="/wiki/Simply_connected_space" title="Simply connected space">simply connected</a> and that <span class="texhtml"><i>S</i><sup>3</sup></span> can be endowed with the structure of a compact, connected <a href="/wiki/Lie_group" title="Lie group">Lie group</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Isomorphism_with_group_of_versors">Isomorphism with group of versors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=7" title="Edit section: Isomorphism with group of versors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Quaternion" title="Quaternion">Quaternions</a> of norm 1 are called <a href="/wiki/Versor" title="Versor">versors</a> since they generate the <a href="/wiki/Rotation_group_SO(3)#Using_quaternions_of_unit_norm" class="mw-redirect" title="Rotation group SO(3)">rotation group SO(3)</a>: The <span class="texhtml">SU(2)</span> matrix: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}a+bi&amp;c+di\\-c+di&amp;a-bi\end{pmatrix}}\quad (a,b,c,d\in \mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mtd> <mtd> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mtd> <mtd> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>i</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}a+bi&amp;c+di\\-c+di&amp;a-bi\end{pmatrix}}\quad (a,b,c,d\in \mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7bcc8a5e7828f63431ec820b65e166ba2013e35" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.242ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}a+bi&amp;c+di\\-c+di&amp;a-bi\end{pmatrix}}\quad (a,b,c,d\in \mathbb {R} )}"></span> </p><p>can be mapped to the quaternion </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\,{\hat {1}}+b\,{\hat {i}}+c\,{\hat {j}}+d\,{\hat {k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>1</mn> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\,{\hat {1}}+b\,{\hat {i}}+c\,{\hat {j}}+d\,{\hat {k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24f2f594bf1a093f2765b7dc602e2f3bd3e0e0b6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.218ex; height:3.176ex;" alt="{\displaystyle a\,{\hat {1}}+b\,{\hat {i}}+c\,{\hat {j}}+d\,{\hat {k}}}"></span> </p><p>This map is in fact a <a href="/wiki/Group_isomorphism" title="Group isomorphism">group isomorphism</a>. Additionally, the determinant of the matrix is the squared norm of the corresponding quaternion. Clearly any matrix in <span class="texhtml">SU(2)</span> is of this form and, since it has determinant&#160;<span class="texhtml">1</span>, the corresponding quaternion has norm <span class="texhtml">1</span>. Thus <span class="texhtml">SU(2)</span> is isomorphic to the group of versors.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Relation_to_spatial_rotations">Relation to spatial rotations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=8" title="Edit section: Relation to spatial rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/3D_rotation_group#Connection_between_SO(3)_and_SU(2)" title="3D rotation group">3D rotation group §&#160;Connection between SO(3) and SU(2)</a>, and <a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">Quaternions and spatial rotation</a></div> <p>Every versor is naturally associated to a spatial rotation in 3 dimensions, and the product of versors is associated to the composition of the associated rotations. Furthermore, every rotation arises from exactly two versors in this fashion. In short: there is a 2:1 surjective homomorphism from <span class="texhtml">SU(2)</span> to <a href="/wiki/3D_rotation_group" title="3D rotation group"><span class="texhtml">SO(3)</span></a>; consequently <span class="texhtml">SO(3)</span> is isomorphic to the <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a> <span class="texhtml">SU(2)/{±I}</span>, the manifold underlying <span class="texhtml">SO(3)</span> is obtained by identifying antipodal points of the 3-sphere <span class="texhtml"><i>S</i><sup>3</sup></span>, and <span class="texhtml">SU(2)</span> is the <a href="/wiki/Covering_group#Universal_covering_group" title="Covering group">universal cover</a> of <span class="texhtml">SO(3)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Lie_algebra_2">Lie algebra <span class="anchor" id="Lie_algebra_basis"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=9" title="Edit section: Lie algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> of <span class="texhtml">SU(2)</span> consists of <span class="texhtml">2 × 2</span> <a href="/wiki/Skew_Hermitian_matrix" class="mw-redirect" title="Skew Hermitian matrix">skew-Hermitian</a> matrices with trace zero.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Explicitly, this means </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(2)=\left\{{\begin{pmatrix}i\ a&amp;-{\overline {z}}\\z&amp;-i\ a\end{pmatrix}}:\ a\in \mathbb {R} ,z\in \mathbb {C} \right\}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>i</mi> <mtext>&#xA0;</mtext> <mi>a</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mtext>&#xA0;</mtext> <mi>a</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>:</mo> <mtext>&#xA0;</mtext> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mrow> <mo>}</mo> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(2)=\left\{{\begin{pmatrix}i\ a&amp;-{\overline {z}}\\z&amp;-i\ a\end{pmatrix}}:\ a\in \mathbb {R} ,z\in \mathbb {C} \right\}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0295d9f1edc104dbadd7114f8038da189290cc3b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-left: -0.041ex; width:41.88ex; height:6.176ex;" alt="{\displaystyle {\mathfrak {su}}(2)=\left\{{\begin{pmatrix}i\ a&amp;-{\overline {z}}\\z&amp;-i\ a\end{pmatrix}}:\ a\in \mathbb {R} ,z\in \mathbb {C} \right\}~.}"></span> </p><p>The Lie algebra is then generated by the following matrices, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1}={\begin{pmatrix}0&amp;i\\i&amp;0\end{pmatrix}},\quad u_{2}={\begin{pmatrix}0&amp;-1\\1&amp;0\end{pmatrix}},\quad u_{3}={\begin{pmatrix}i&amp;0\\0&amp;-i\end{pmatrix}}~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1}={\begin{pmatrix}0&amp;i\\i&amp;0\end{pmatrix}},\quad u_{2}={\begin{pmatrix}0&amp;-1\\1&amp;0\end{pmatrix}},\quad u_{3}={\begin{pmatrix}i&amp;0\\0&amp;-i\end{pmatrix}}~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8780ec6412fa91d0200e001278a1b4638f6dcedd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:54.104ex; height:6.176ex;" alt="{\displaystyle u_{1}={\begin{pmatrix}0&amp;i\\i&amp;0\end{pmatrix}},\quad u_{2}={\begin{pmatrix}0&amp;-1\\1&amp;0\end{pmatrix}},\quad u_{3}={\begin{pmatrix}i&amp;0\\0&amp;-i\end{pmatrix}}~,}"></span> </p><p>which have the form of the general element specified above. </p><p>This can also be written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(2)=\operatorname {span} \left\{i\sigma _{1},i\sigma _{2},i\sigma _{3}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>span</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>{</mo> <mrow> <mi>i</mi> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>i</mi> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>i</mi> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(2)=\operatorname {span} \left\{i\sigma _{1},i\sigma _{2},i\sigma _{3}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77fb6fdde7858cdff106971003e49d3b5d2c8db3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:26.952ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(2)=\operatorname {span} \left\{i\sigma _{1},i\sigma _{2},i\sigma _{3}\right\}}"></span> using the <a href="/wiki/Pauli_matrices#SU(2)" title="Pauli matrices">Pauli matrices</a>. </p><p>These satisfy the <a href="/wiki/Quaternion" title="Quaternion">quaternion</a> relationships <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{2}\ u_{3}=-u_{3}\ u_{2}=u_{1}~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{2}\ u_{3}=-u_{3}\ u_{2}=u_{1}~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d500630383313d30eeb134e985d7aae1e609a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.313ex; height:2.343ex;" alt="{\displaystyle u_{2}\ u_{3}=-u_{3}\ u_{2}=u_{1}~,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{3}\ u_{1}=-u_{1}\ u_{3}=u_{2}~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{3}\ u_{1}=-u_{1}\ u_{3}=u_{2}~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be0f08f5f63444941bb4d369cb11147a879e4bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.313ex; height:2.343ex;" alt="{\displaystyle u_{3}\ u_{1}=-u_{1}\ u_{3}=u_{2}~,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1}u_{2}=-u_{2}\ u_{1}=u_{3}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1}u_{2}=-u_{2}\ u_{1}=u_{3}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8a8ca3bac7149f2933d7fadaedfd70b0bf941ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.733ex; height:2.343ex;" alt="{\displaystyle u_{1}u_{2}=-u_{2}\ u_{1}=u_{3}~.}"></span> The <a href="/wiki/Commutator_bracket" class="mw-redirect" title="Commutator bracket">commutator bracket</a> is therefore specified by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[u_{3},u_{1}\right]=2\ u_{2},\quad \left[u_{1},u_{2}\right]=2\ u_{3},\quad \left[u_{2},u_{3}\right]=2\ u_{1}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mn>2</mn> <mtext>&#xA0;</mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mrow> <mo>[</mo> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mn>2</mn> <mtext>&#xA0;</mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mrow> <mo>[</mo> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mn>2</mn> <mtext>&#xA0;</mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[u_{3},u_{1}\right]=2\ u_{2},\quad \left[u_{1},u_{2}\right]=2\ u_{3},\quad \left[u_{2},u_{3}\right]=2\ u_{1}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2da532e2434fd294dbca0834da6f8192eb1dc480" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.903ex; height:2.843ex;" alt="{\displaystyle \left[u_{3},u_{1}\right]=2\ u_{2},\quad \left[u_{1},u_{2}\right]=2\ u_{3},\quad \left[u_{2},u_{3}\right]=2\ u_{1}~.}"></span> </p><p>The above generators are related to the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1}=i\ \sigma _{1}~,\,u_{2}=-i\ \sigma _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1}=i\ \sigma _{1}~,\,u_{2}=-i\ \sigma _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e3e1868cba67dc113cb4367fc0b3a309185da4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.304ex; height:2.509ex;" alt="{\displaystyle u_{1}=i\ \sigma _{1}~,\,u_{2}=-i\ \sigma _{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{3}=+i\ \sigma _{3}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo>+</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{3}=+i\ \sigma _{3}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25d118cb41ac411c13a303acccdf21655a5d32d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.283ex; height:2.509ex;" alt="{\displaystyle u_{3}=+i\ \sigma _{3}~.}"></span> This representation is routinely used in <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> to represent the <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> of <a href="/wiki/Fundamental_particle" class="mw-redirect" title="Fundamental particle">fundamental particles</a> such as <a href="/wiki/Electron" title="Electron">electrons</a>. They also serve as <a href="/wiki/Unit_vector" title="Unit vector">unit vectors</a> for the description of our 3&#160;spatial dimensions in <a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">loop quantum gravity</a>. They also correspond to the <a href="/wiki/Quantum_logic_gate#Pauli_gates_(X,Y,Z)" title="Quantum logic gate">Pauli X, Y, and Z gates</a>, which are standard generators for the single qubit gates, corresponding to 3d rotations about the axes of the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a>. </p><p>The Lie algebra serves to work out the <a href="/wiki/Representation_theory_of_SU(2)" title="Representation theory of SU(2)">representations of <span class="texhtml">SU(2)</span></a>. </p> <div class="mw-heading mw-heading2"><h2 id="SU(3)"><span id="SU.283.29"></span>SU(3)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=10" title="Edit section: SU(3)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Clebsch%E2%80%93Gordan_coefficients_for_SU(3)" title="Clebsch–Gordan coefficients for SU(3)">Clebsch–Gordan coefficients for SU(3)</a></div> <p>The group <span class="texhtml">SU(3)</span> is an 8-dimensional <a href="/wiki/Simple_Lie_group" title="Simple Lie group">simple Lie group</a> consisting of all <span class="texhtml">3&#160;×&#160;3</span> <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary</a> <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a> with <a href="/wiki/Determinant" title="Determinant">determinant</a> 1. </p> <div class="mw-heading mw-heading3"><h3 id="Topology">Topology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=11" title="Edit section: Topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The group <span class="texhtml">SU(3)</span> is a simply-connected, compact Lie group.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Its topological structure can be understood by noting that <span class="texhtml">SU(3)</span> acts <a href="/wiki/Transitive_action" class="mw-redirect" title="Transitive action">transitively</a> on the unit sphere <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/607969929aed35066061d39ff55a2e086c5e6ec4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{5}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{3}\cong \mathbb {R} ^{6}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2245;<!-- ≅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{3}\cong \mathbb {R} ^{6}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8da86d8cf9e61af7a7379289a4be3f8dab4c06dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.563ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{3}\cong \mathbb {R} ^{6}}"></span>. The <a href="/wiki/Group_action_(mathematics)#Fixed_points_and_stabilizer_subgroups" class="mw-redirect" title="Group action (mathematics)">stabilizer</a> of an arbitrary point in the sphere is isomorphic to <span class="texhtml">SU(2)</span>, which topologically is a 3-sphere. It then follows that <span class="texhtml">SU(3)</span> is a <a href="/wiki/Fiber_bundle" title="Fiber bundle">fiber bundle</a> over the base <span class="texhtml"><i>S</i><sup>5</sup></span> with fiber <span class="texhtml"><i>S</i><sup>3</sup></span>. Since the fibers and the base are simply connected, the simple connectedness of <span class="texhtml">SU(3)</span> then follows by means of a standard topological result (the <a href="/wiki/Homotopy_group#Long_exact_sequence_of_a_fibration" title="Homotopy group">long exact sequence of homotopy groups</a> for fiber bundles).<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <span class="texhtml">SU(2)</span>-bundles over <span class="texhtml"><i>S</i><sup>5</sup></span> are classified by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{4}{\mathord {\left(S^{3}\right)}}=\mathbb {Z} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{4}{\mathord {\left(S^{3}\right)}}=\mathbb {Z} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce2fceafc89ca68b05fc122ac3e957d9d7e3229" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.788ex; height:3.343ex;" alt="{\displaystyle \pi _{4}{\mathord {\left(S^{3}\right)}}=\mathbb {Z} _{2}}"></span> since any such bundle can be constructed by looking at trivial bundles on the two hemispheres <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{\text{N}}^{5},S_{\text{S}}^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>N</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>S</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{\text{N}}^{5},S_{\text{S}}^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bba122cf2199ce7b7463fc7675851b918e217faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.5ex; height:3.176ex;" alt="{\displaystyle S_{\text{N}}^{5},S_{\text{S}}^{5}}"></span> and looking at the transition function on their intersection, which is a copy of <span class="texhtml"><i>S</i><sup>4</sup></span>, so </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{\text{N}}^{5}\cap S_{\text{S}}^{5}\simeq S^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>N</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msubsup> <mo>&#x2229;<!-- ∩ --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>S</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msubsup> <mo>&#x2243;<!-- ≃ --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{\text{N}}^{5}\cap S_{\text{S}}^{5}\simeq S^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b61b683f7661bb7900a5827b38c69747501a23ef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.723ex; height:3.343ex;" alt="{\displaystyle S_{\text{N}}^{5}\cap S_{\text{S}}^{5}\simeq S^{4}}"></span> </p><p>Then, all such transition functions are classified by homotopy classes of maps </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[S^{4},\mathrm {SU} (2)\right]\cong \left[S^{4},S^{3}\right]=\pi _{4}{\mathord {\left(S^{3}\right)}}\cong \mathbb {Z} /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">U</mi> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <mrow> <mo>[</mo> <mrow> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[S^{4},\mathrm {SU} (2)\right]\cong \left[S^{4},S^{3}\right]=\pi _{4}{\mathord {\left(S^{3}\right)}}\cong \mathbb {Z} /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23c2ccda7f3f274352dea60d8bd45e8364c3f5d1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:39.937ex; height:3.343ex;" alt="{\displaystyle \left[S^{4},\mathrm {SU} (2)\right]\cong \left[S^{4},S^{3}\right]=\pi _{4}{\mathord {\left(S^{3}\right)}}\cong \mathbb {Z} /2}"></span> </p><p>and as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{4}(\mathrm {SU} (3))=\{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">U</mi> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{4}(\mathrm {SU} (3))=\{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dc69725251762679de2dd9558ae6e700592ce24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.782ex; height:2.843ex;" alt="{\displaystyle \pi _{4}(\mathrm {SU} (3))=\{0\}}"></span> rather than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/191bfe791873cb941d1bf8ee1d62434ea800f8a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.875ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /2}"></span>, <span class="texhtml">SU(3)</span> cannot be the trivial bundle <span class="texhtml">SU(2) × <i>S</i><sup>5</sup> ≅ <i>S</i><sup>3</sup> × <i>S</i><sup>5</sup></span>, and therefore must be the unique nontrivial (twisted) bundle. This can be shown by looking at the induced long exact sequence on homotopy groups. </p> <div class="mw-heading mw-heading3"><h3 id="Representation_theory">Representation theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=12" title="Edit section: Representation theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The representation theory of <span class="texhtml">SU(3)</span> is well-understood.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> Descriptions of these representations, from the point of view of its complexified Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {sl}}(3;\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {sl}}(3;\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28431df673e4e7a6f244bf6af29716d2572835ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:7.406ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {sl}}(3;\mathbb {C} )}"></span>, may be found in the articles on <a href="/wiki/Lie_algebra_representation#Classifying_finite-dimensional_representations_of_Lie_algebras" title="Lie algebra representation">Lie algebra representations</a> or <a href="/wiki/Clebsch%E2%80%93Gordan_coefficients_for_SU(3)#Representations_of_the_SU(3)_group" title="Clebsch–Gordan coefficients for SU(3)">the Clebsch–Gordan coefficients for <span class="texhtml">SU(3)</span></a>. </p> <div class="mw-heading mw-heading3"><h3 id="Lie_algebra_3">Lie algebra</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=13" title="Edit section: Lie algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The generators, <span class="texhtml mvar" style="font-style:italic;">T</span>, of the Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62e67744b88c1161065934d1d841d185d6a7bb7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.244ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(3)}"></span> of <span class="texhtml">SU(3)</span> in the defining (particle physics, Hermitian) representation, are </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{a}={\frac {\lambda _{a}}{2}}~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{a}={\frac {\lambda _{a}}{2}}~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9135ccbb4e3fdd449c891022281196d085e346c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.079ex; height:5.343ex;" alt="{\displaystyle T_{a}={\frac {\lambda _{a}}{2}}~,}"></span> </p><p>where <span class="texhtml"><i>λ</i><sub>a</sub></span>, the <a href="/wiki/Gell-Mann_matrices" title="Gell-Mann matrices">Gell-Mann matrices</a>, are the <span class="texhtml">SU(3)</span> analog of the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a> for <span class="texhtml">SU(2)</span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lambda _{1}={}&amp;{\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{2}={}&amp;{\begin{pmatrix}0&amp;-i&amp;0\\i&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{3}={}&amp;{\begin{pmatrix}1&amp;0&amp;0\\0&amp;-1&amp;0\\0&amp;0&amp;0\end{pmatrix}},\\[6pt]\lambda _{4}={}&amp;{\begin{pmatrix}0&amp;0&amp;1\\0&amp;0&amp;0\\1&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{5}={}&amp;{\begin{pmatrix}0&amp;0&amp;-i\\0&amp;0&amp;0\\i&amp;0&amp;0\end{pmatrix}},\\[6pt]\lambda _{6}={}&amp;{\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;1\\0&amp;1&amp;0\end{pmatrix}},&amp;\lambda _{7}={}&amp;{\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;-i\\0&amp;i&amp;0\end{pmatrix}},&amp;\lambda _{8}={\frac {1}{\sqrt {3}}}&amp;{\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;-2\end{pmatrix}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lambda _{1}={}&amp;{\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{2}={}&amp;{\begin{pmatrix}0&amp;-i&amp;0\\i&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{3}={}&amp;{\begin{pmatrix}1&amp;0&amp;0\\0&amp;-1&amp;0\\0&amp;0&amp;0\end{pmatrix}},\\[6pt]\lambda _{4}={}&amp;{\begin{pmatrix}0&amp;0&amp;1\\0&amp;0&amp;0\\1&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{5}={}&amp;{\begin{pmatrix}0&amp;0&amp;-i\\0&amp;0&amp;0\\i&amp;0&amp;0\end{pmatrix}},\\[6pt]\lambda _{6}={}&amp;{\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;1\\0&amp;1&amp;0\end{pmatrix}},&amp;\lambda _{7}={}&amp;{\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;-i\\0&amp;i&amp;0\end{pmatrix}},&amp;\lambda _{8}={\frac {1}{\sqrt {3}}}&amp;{\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;-2\end{pmatrix}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27272365d50c95972a5a66b020caf63b836131df" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.005ex; width:74.549ex; height:31.176ex;" alt="{\displaystyle {\begin{aligned}\lambda _{1}={}&amp;{\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{2}={}&amp;{\begin{pmatrix}0&amp;-i&amp;0\\i&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{3}={}&amp;{\begin{pmatrix}1&amp;0&amp;0\\0&amp;-1&amp;0\\0&amp;0&amp;0\end{pmatrix}},\\[6pt]\lambda _{4}={}&amp;{\begin{pmatrix}0&amp;0&amp;1\\0&amp;0&amp;0\\1&amp;0&amp;0\end{pmatrix}},&amp;\lambda _{5}={}&amp;{\begin{pmatrix}0&amp;0&amp;-i\\0&amp;0&amp;0\\i&amp;0&amp;0\end{pmatrix}},\\[6pt]\lambda _{6}={}&amp;{\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;1\\0&amp;1&amp;0\end{pmatrix}},&amp;\lambda _{7}={}&amp;{\begin{pmatrix}0&amp;0&amp;0\\0&amp;0&amp;-i\\0&amp;i&amp;0\end{pmatrix}},&amp;\lambda _{8}={\frac {1}{\sqrt {3}}}&amp;{\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;-2\end{pmatrix}}.\end{aligned}}}"></span> </p><p>These <span class="texhtml"><i>λ</i><sub>a</sub></span> span all <a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">traceless</a> <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrices</a> <span class="texhtml mvar" style="font-style:italic;">H</span> of the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a>, as required. Note that <span class="texhtml"><i>λ</i><sub>2</sub>, <i>λ</i><sub>5</sub>, <i>λ</i><sub>7</sub></span> are antisymmetric. </p><p>They obey the relations </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left[T_{a},T_{b}\right]&amp;=i\sum _{c=1}^{8}f_{abc}T_{c},\\\left\{T_{a},T_{b}\right\}&amp;={\frac {1}{3}}\delta _{ab}I_{3}+\sum _{c=1}^{8}d_{abc}T_{c},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>[</mo> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>i</mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>{</mo> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </munderover> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left[T_{a},T_{b}\right]&amp;=i\sum _{c=1}^{8}f_{abc}T_{c},\\\left\{T_{a},T_{b}\right\}&amp;={\frac {1}{3}}\delta _{ab}I_{3}+\sum _{c=1}^{8}d_{abc}T_{c},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c84522e4ae5ab8f237d70c19f62e7b45affdb3c3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:32.138ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}\left[T_{a},T_{b}\right]&amp;=i\sum _{c=1}^{8}f_{abc}T_{c},\\\left\{T_{a},T_{b}\right\}&amp;={\frac {1}{3}}\delta _{ab}I_{3}+\sum _{c=1}^{8}d_{abc}T_{c},\end{aligned}}}"></span> </p><p>or, equivalently, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left[\lambda _{a},\lambda _{b}\right]&amp;=2i\sum _{c=1}^{8}f_{abc}\lambda _{c},\\\{\lambda _{a},\lambda _{b}\}&amp;={\frac {4}{3}}\delta _{ab}I_{3}+2\sum _{c=1}^{8}{d_{abc}\lambda _{c}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>[</mo> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mi>i</mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left[\lambda _{a},\lambda _{b}\right]&amp;=2i\sum _{c=1}^{8}f_{abc}\lambda _{c},\\\{\lambda _{a},\lambda _{b}\}&amp;={\frac {4}{3}}\delta _{ab}I_{3}+2\sum _{c=1}^{8}{d_{abc}\lambda _{c}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab840c966e3c626f971e8dc41833e7e7ae6e4c09" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:33.681ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}\left[\lambda _{a},\lambda _{b}\right]&amp;=2i\sum _{c=1}^{8}f_{abc}\lambda _{c},\\\{\lambda _{a},\lambda _{b}\}&amp;={\frac {4}{3}}\delta _{ab}I_{3}+2\sum _{c=1}^{8}{d_{abc}\lambda _{c}}.\end{aligned}}}"></span> </p><p>The <span class="texhtml mvar" style="font-style:italic;">f</span> are the <a href="/wiki/Structure_constants" title="Structure constants">structure constants</a> of the Lie algebra, given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{123}&amp;=1,\\f_{147}=-f_{156}=f_{246}=f_{257}=f_{345}=-f_{367}&amp;={\frac {1}{2}},\\f_{458}=f_{678}&amp;={\frac {\sqrt {3}}{2}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>123</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>147</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>156</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>246</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>257</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>345</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>367</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>458</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>678</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{123}&amp;=1,\\f_{147}=-f_{156}=f_{246}=f_{257}=f_{345}=-f_{367}&amp;={\frac {1}{2}},\\f_{458}=f_{678}&amp;={\frac {\sqrt {3}}{2}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0befb2b66a9e9bab74a1c06cbfd696c5ae4286dc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.278ex; margin-bottom: -0.227ex; width:50.564ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}f_{123}&amp;=1,\\f_{147}=-f_{156}=f_{246}=f_{257}=f_{345}=-f_{367}&amp;={\frac {1}{2}},\\f_{458}=f_{678}&amp;={\frac {\sqrt {3}}{2}},\end{aligned}}}"></span> </p><p>while all other <span class="texhtml"><i>f<sub>abc</sub></i></span> not related to these by permutation are zero. In general, they vanish unless they contain an odd number of indices from the set <span class="texhtml">{2, 5, 7}</span>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> </p><p>The symmetric coefficients <span class="texhtml"><i>d</i></span> take the values </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}d_{118}=d_{228}=d_{338}=-d_{888}&amp;={\frac {1}{\sqrt {3}}}\\d_{448}=d_{558}=d_{668}=d_{778}&amp;=-{\frac {1}{2{\sqrt {3}}}}\\d_{344}=d_{355}=-d_{366}=-d_{377}=-d_{247}=d_{146}=d_{157}=d_{256}&amp;={\frac {1}{2}}~.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>118</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>228</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>338</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>888</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>448</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>558</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>668</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>778</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>344</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>355</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>366</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>377</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>247</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>146</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>157</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>256</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}d_{118}=d_{228}=d_{338}=-d_{888}&amp;={\frac {1}{\sqrt {3}}}\\d_{448}=d_{558}=d_{668}=d_{778}&amp;=-{\frac {1}{2{\sqrt {3}}}}\\d_{344}=d_{355}=-d_{366}=-d_{377}=-d_{247}=d_{146}=d_{157}=d_{256}&amp;={\frac {1}{2}}~.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5724a51efe19a5d3c9d2b106c60f9f6f8eaa68c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.107ex; margin-bottom: -0.231ex; width:69.125ex; height:17.843ex;" alt="{\displaystyle {\begin{aligned}d_{118}=d_{228}=d_{338}=-d_{888}&amp;={\frac {1}{\sqrt {3}}}\\d_{448}=d_{558}=d_{668}=d_{778}&amp;=-{\frac {1}{2{\sqrt {3}}}}\\d_{344}=d_{355}=-d_{366}=-d_{377}=-d_{247}=d_{146}=d_{157}=d_{256}&amp;={\frac {1}{2}}~.\end{aligned}}}"></span> </p><p>They vanish if the number of indices from the set <span class="texhtml">{2, 5, 7}</span> is odd. </p><p>A generic <span class="texhtml">SU(3)</span> group element generated by a traceless 3×3 Hermitian matrix <span class="texhtml mvar" style="font-style:italic;">H</span>, normalized as <span class="texhtml">tr(<i>H</i><sup>2</sup>) = 2</span>, can be expressed as a <i>second order</i> matrix polynomial in <span class="texhtml mvar" style="font-style:italic;">H</span>:<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\exp(i\theta H)={}&amp;\left[-{\frac {1}{3}}I\sin \left(\varphi +{\frac {2\pi }{3}}\right)\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin(\varphi )-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin(\varphi )\right)}{\cos \left(\varphi +{\frac {2\pi }{3}}\right)\cos \left(\varphi -{\frac {2\pi }{3}}\right)}}\\[6pt]&amp;{}+\left[-{\frac {1}{3}}~I\sin(\varphi )\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin \left(\varphi +{\frac {2\pi }{3}}\right)-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin \left(\varphi +{\frac {2\pi }{3}}\right)\right)}{\cos(\varphi )\cos \left(\varphi -{\frac {2\pi }{3}}\right)}}\\[6pt]&amp;{}+\left[-{\frac {1}{3}}~I\sin(\varphi )\sin \left(\varphi +{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin \left(\varphi -{\frac {2\pi }{3}}\right)\right)}{\cos(\varphi )\cos \left(\varphi +{\frac {2\pi }{3}}\right)}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mi>H</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mi>I</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>H</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>I</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>H</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>I</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>H</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\exp(i\theta H)={}&amp;\left[-{\frac {1}{3}}I\sin \left(\varphi +{\frac {2\pi }{3}}\right)\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin(\varphi )-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin(\varphi )\right)}{\cos \left(\varphi +{\frac {2\pi }{3}}\right)\cos \left(\varphi -{\frac {2\pi }{3}}\right)}}\\[6pt]&amp;{}+\left[-{\frac {1}{3}}~I\sin(\varphi )\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin \left(\varphi +{\frac {2\pi }{3}}\right)-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin \left(\varphi +{\frac {2\pi }{3}}\right)\right)}{\cos(\varphi )\cos \left(\varphi -{\frac {2\pi }{3}}\right)}}\\[6pt]&amp;{}+\left[-{\frac {1}{3}}~I\sin(\varphi )\sin \left(\varphi +{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin \left(\varphi -{\frac {2\pi }{3}}\right)\right)}{\cos(\varphi )\cos \left(\varphi +{\frac {2\pi }{3}}\right)}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3911db5c2d7bd1d44edad1dff8db8099b077ed6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -16.338ex; width:104.494ex; height:33.843ex;" alt="{\displaystyle {\begin{aligned}\exp(i\theta H)={}&amp;\left[-{\frac {1}{3}}I\sin \left(\varphi +{\frac {2\pi }{3}}\right)\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin(\varphi )-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin(\varphi )\right)}{\cos \left(\varphi +{\frac {2\pi }{3}}\right)\cos \left(\varphi -{\frac {2\pi }{3}}\right)}}\\[6pt]&amp;{}+\left[-{\frac {1}{3}}~I\sin(\varphi )\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin \left(\varphi +{\frac {2\pi }{3}}\right)-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin \left(\varphi +{\frac {2\pi }{3}}\right)\right)}{\cos(\varphi )\cos \left(\varphi -{\frac {2\pi }{3}}\right)}}\\[6pt]&amp;{}+\left[-{\frac {1}{3}}~I\sin(\varphi )\sin \left(\varphi +{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin \left(\varphi -{\frac {2\pi }{3}}\right)\right)}{\cos(\varphi )\cos \left(\varphi +{\frac {2\pi }{3}}\right)}}\end{aligned}}}"></span> LP where </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \equiv {\frac {1}{3}}\left[\arccos \left({\frac {3{\sqrt {3}}}{2}}\det H\right)-{\frac {\pi }{2}}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>arccos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo movablelimits="true" form="prefix">det</mo> <mi>H</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \equiv {\frac {1}{3}}\left[\arccos \left({\frac {3{\sqrt {3}}}{2}}\det H\right)-{\frac {\pi }{2}}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3b54c3b30a637ef4902d486f9d86c0a7e46db78" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.305ex; height:6.509ex;" alt="{\displaystyle \varphi \equiv {\frac {1}{3}}\left[\arccos \left({\frac {3{\sqrt {3}}}{2}}\det H\right)-{\frac {\pi }{2}}\right].}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Lie_algebra_structure">Lie algebra structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=14" title="Edit section: Lie algebra structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As noted above, the Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b77ffdb2c34631352744c0a3ea94ff2a70406f90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.477ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(n)}"></span> of <span class="texhtml">SU(<i>n</i>)</span> consists of <span class="texhtml"><i>n</i> × <i>n</i></span> <a href="/wiki/Skew_Hermitian_matrix" class="mw-redirect" title="Skew Hermitian matrix">skew-Hermitian</a> matrices with trace zero.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Complexification" title="Complexification">complexification</a> of the Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b77ffdb2c34631352744c0a3ea94ff2a70406f90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.477ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(n)}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {sl}}(n;\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {sl}}(n;\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f1f3c589867f20df0559f6f526b62eaf5929633" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:7.638ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {sl}}(n;\mathbb {C} )}"></span>, the space of all <span class="texhtml"><i>n</i> × <i>n</i></span> complex matrices with trace zero.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> A <a href="/wiki/Cartan_subalgebra" title="Cartan subalgebra">Cartan subalgebra</a> then consists of the diagonal matrices with trace zero,<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> which we identify with vectors in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span> whose entries sum to zero. The <a href="/wiki/Root_system" title="Root system">roots</a> then consist of all the <span class="texhtml"><i>n</i>(<i>n</i> − 1)</span> permutations of <span class="texhtml">(1, −1, 0, ..., 0)</span>. </p><p>A choice of <a href="/wiki/Simple_root_(root_system)" class="mw-redirect" title="Simple root (root system)">simple roots</a> is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(&amp;1,-1,0,\dots ,0,0),\\(&amp;0,1,-1,\dots ,0,0),\\&amp;\vdots \\(&amp;0,0,0,\dots ,1,-1).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> </mtd> <mtd> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> </mtd> <mtd> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> </mtd> <mtd> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(&amp;1,-1,0,\dots ,0,0),\\(&amp;0,1,-1,\dots ,0,0),\\&amp;\vdots \\(&amp;0,0,0,\dots ,1,-1).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56204f08167aeeb2c5213a155ea317d23f728f39" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:19.108ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}(&amp;1,-1,0,\dots ,0,0),\\(&amp;0,1,-1,\dots ,0,0),\\&amp;\vdots \\(&amp;0,0,0,\dots ,1,-1).\end{aligned}}}"></span> </p><p>So, <span class="texhtml">SU(<i>n</i>)</span> is of <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a> <span class="texhtml"><i>n</i> − 1</span> and its <a href="/wiki/Dynkin_diagram" title="Dynkin diagram">Dynkin diagram</a> is given by <span class="texhtml">A<sub><i>n</i>−1</sub></span>, a chain of <span class="texhtml"><i>n</i> − 1</span> nodes: <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/8b/Dyn-node.png" decoding="async" width="9" height="24" class="mw-file-element" data-file-width="9" data-file-height="24" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/b3/Dyn-3.png" decoding="async" width="6" height="24" class="mw-file-element" data-file-width="6" data-file-height="24" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/8b/Dyn-node.png" decoding="async" width="9" height="24" class="mw-file-element" data-file-width="9" data-file-height="24" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/b3/Dyn-3.png" decoding="async" width="6" height="24" class="mw-file-element" data-file-width="6" data-file-height="24" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/8b/Dyn-node.png" decoding="async" width="9" height="24" class="mw-file-element" data-file-width="9" data-file-height="24" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/b3/Dyn-3.png" decoding="async" width="6" height="24" class="mw-file-element" data-file-width="6" data-file-height="24" /></span></span></span>...<span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/b3/Dyn-3.png" decoding="async" width="6" height="24" class="mw-file-element" data-file-width="6" data-file-height="24" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/8b/Dyn-node.png" decoding="async" width="9" height="24" class="mw-file-element" data-file-width="9" data-file-height="24" /></span></span></span>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Its <a href="/wiki/Cartan_matrix" title="Cartan matrix">Cartan matrix</a> is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}2&amp;-1&amp;0&amp;\dots &amp;0\\-1&amp;2&amp;-1&amp;\dots &amp;0\\0&amp;-1&amp;2&amp;\dots &amp;0\\\vdots &amp;\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\0&amp;0&amp;0&amp;\dots &amp;2\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2026;<!-- … --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2026;<!-- … --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2026;<!-- … --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22F1;<!-- ⋱ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2026;<!-- … --></mo> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}2&amp;-1&amp;0&amp;\dots &amp;0\\-1&amp;2&amp;-1&amp;\dots &amp;0\\0&amp;-1&amp;2&amp;\dots &amp;0\\\vdots &amp;\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\0&amp;0&amp;0&amp;\dots &amp;2\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90601d221286c75621b8f55b36410e89ef062f1e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.171ex; width:27.808ex; height:17.509ex;" alt="{\displaystyle {\begin{pmatrix}2&amp;-1&amp;0&amp;\dots &amp;0\\-1&amp;2&amp;-1&amp;\dots &amp;0\\0&amp;-1&amp;2&amp;\dots &amp;0\\\vdots &amp;\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\0&amp;0&amp;0&amp;\dots &amp;2\end{pmatrix}}.}"></span> </p><p>Its <a href="/wiki/Weyl_group" title="Weyl group">Weyl group</a> or <a href="/wiki/Coxeter_group" title="Coxeter group">Coxeter group</a> is the <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a> <span class="texhtml">S<sub><i>n</i></sub></span>, the <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> of the <span class="texhtml">(<i>n</i> − 1)</span>-<a href="/wiki/Simplex" title="Simplex">simplex</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Generalized_special_unitary_group">Generalized special unitary group</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=15" title="Edit section: Generalized special unitary group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml"><i>F</i></span>, the <b>generalized special unitary group over <i>F</i></b>, <span class="texhtml">SU(<i>p</i>, <i>q</i>; <i>F</i>)</span>, is the <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> of all <a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">linear transformations</a> of <a href="/wiki/Determinant" title="Determinant">determinant</a> 1 of a <a href="/wiki/Vector_space" title="Vector space">vector space</a> of rank <span class="texhtml"><i>n</i> = <i>p</i> + <i>q</i></span> over <span class="texhtml"><i>F</i></span> which leave invariant a <a href="/wiki/Nondegenerate_form" class="mw-redirect" title="Nondegenerate form">nondegenerate</a>, <a href="/wiki/Hermitian_form" class="mw-redirect" title="Hermitian form">Hermitian form</a> of <a href="/wiki/Signature_of_a_quadratic_form" class="mw-redirect" title="Signature of a quadratic form">signature</a> <span class="texhtml">(<i>p</i>, <i>q</i>)</span>. This group is often referred to as the <b>special unitary group of signature <span class="texhtml"><i>p</i> <i>q</i></span> over <span class="texhtml"><i>F</i></span></b>. The field <span class="texhtml"><i>F</i></span> can be replaced by a <a href="/wiki/Commutative_ring" title="Commutative ring">commutative ring</a>, in which case the vector space is replaced by a <a href="/wiki/Free_module" title="Free module">free module</a>. </p><p>Specifically, fix a <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a> <span class="texhtml"><i>A</i></span> of signature <span class="texhtml"><i>p</i> <i>q</i></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GL} (n,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>GL</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {GL} (n,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27624b52908a0452895ef7b7798a6660bf239e36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.193ex; height:2.843ex;" alt="{\displaystyle \operatorname {GL} (n,\mathbb {R} )}"></span>, then all </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\in \operatorname {SU} (p,q,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\in \operatorname {SU} (p,q,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/230d46b4bccae01384189703497c9246404c94d9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.113ex; height:2.843ex;" alt="{\displaystyle M\in \operatorname {SU} (p,q,\mathbb {R} )}"></span> </p><p>satisfy </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}M^{*}AM&amp;=A\\\det M&amp;=1.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>A</mi> <mi>M</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>A</mi> </mtd> </mtr> <mtr> <mtd> <mo movablelimits="true" form="prefix">det</mo> <mi>M</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}M^{*}AM&amp;=A\\\det M&amp;=1.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66e3b9a773e5f3d53ab82a57f3dc9513e1bda240" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.398ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}M^{*}AM&amp;=A\\\det M&amp;=1.\end{aligned}}}"></span> </p><p>Often one will see the notation <span class="texhtml">SU(<i>p</i>, <i>q</i>)</span> without reference to a ring or field; in this case, the ring or field being referred to is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> and this gives one of the classical <a href="/wiki/Lie_group" title="Lie group">Lie groups</a>. The standard choice for <span class="texhtml"><i>A</i></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {F} =\mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">F</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {F} =\mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8356769a4532f9381be440474c5288bf14ae89a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.294ex; height:2.176ex;" alt="{\displaystyle \operatorname {F} =\mathbb {C} }"></span> is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\begin{bmatrix}0&amp;0&amp;i\\0&amp;I_{n-2}&amp;0\\-i&amp;0&amp;0\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\begin{bmatrix}0&amp;0&amp;i\\0&amp;I_{n-2}&amp;0\\-i&amp;0&amp;0\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52b140c4a3cd4958fc60e5aa21f8232f186b308a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:22.101ex; height:9.509ex;" alt="{\displaystyle A={\begin{bmatrix}0&amp;0&amp;i\\0&amp;I_{n-2}&amp;0\\-i&amp;0&amp;0\end{bmatrix}}.}"></span> </p><p>However, there may be better choices for <span class="texhtml"><i>A</i></span> for certain dimensions which exhibit more behaviour under restriction to subrings of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=16" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An important example of this type of group is the <a href="/wiki/Picard_modular_group" title="Picard modular group">Picard modular group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SU} (2,1;\mathbb {Z} [i])}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">[</mo> <mi>i</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SU} (2,1;\mathbb {Z} [i])}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45355ecc0d2aaa11c11dc7f84ef94be718c62c43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.884ex; height:2.843ex;" alt="{\displaystyle \operatorname {SU} (2,1;\mathbb {Z} [i])}"></span> which acts (projectively) on complex hyperbolic space of dimension two, in the same way that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SL} (2,9;\mathbb {Z} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SL</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>9</mn> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SL} (2,9;\mathbb {Z} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a91ce5bb1e14efd2d39422dc8072a9dcdabb253a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.498ex; height:2.843ex;" alt="{\displaystyle \operatorname {SL} (2,9;\mathbb {Z} )}"></span> acts (projectively) on real <a href="/wiki/Hyperbolic_space" title="Hyperbolic space">hyperbolic space</a> of dimension two. In 2005 Gábor Francsics and <a href="/wiki/Peter_Lax" title="Peter Lax">Peter Lax</a> computed an explicit fundamental domain for the action of this group on <span class="texhtml">HC<sup>2</sup></span>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>A further example is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SU} (1,1;\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SU} (1,1;\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60a3352069e3370d45467fece794ddfa20823c40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.916ex; height:2.843ex;" alt="{\displaystyle \operatorname {SU} (1,1;\mathbb {C} )}"></span>, which is isomorphic to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SL} (2,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SL</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SL} (2,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2c3d7a096901753b8029c8e6ad683a35806cb51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.429ex; height:2.843ex;" alt="{\displaystyle \operatorname {SL} (2,\mathbb {R} )}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Important_subgroups">Important subgroups</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=17" title="Edit section: Important subgroups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In physics the special unitary group is used to represent <a href="/wiki/Fermionic" class="mw-redirect" title="Fermionic">fermionic</a> symmetries. In theories of <a href="/wiki/Symmetry_breaking" title="Symmetry breaking">symmetry breaking</a> it is important to be able to find the subgroups of the special unitary group. Subgroups of <span class="texhtml">SU(<i>n</i>)</span> that are important in <a href="/wiki/Grand_unification_theory" class="mw-redirect" title="Grand unification theory">GUT physics</a> are, for <span class="texhtml"><i>p</i> &gt; 1, <i>n</i> − <i>p</i> &gt; 1</span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SU} (n)\supset \operatorname {SU} (p)\times \operatorname {SU} (n-p)\times \operatorname {U} (1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2283;<!-- ⊃ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi mathvariant="normal">U</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SU} (n)\supset \operatorname {SU} (p)\times \operatorname {SU} (n-p)\times \operatorname {U} (1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/220dd2ce536301321faa1f90408adc774682e20c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.644ex; height:2.843ex;" alt="{\displaystyle \operatorname {SU} (n)\supset \operatorname {SU} (p)\times \operatorname {SU} (n-p)\times \operatorname {U} (1),}"></span> </p><p>where × denotes the <a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a> and <span class="texhtml">U(1)</span>, known as the <a href="/wiki/Circle_group" title="Circle group">circle group</a>, is the multiplicative group of all <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> with <a href="/wiki/Absolute_value#Complex_numbers" title="Absolute value">absolute value</a>&#160;1. </p><p>For completeness, there are also the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal</a> and <a href="/wiki/Compact_symplectic_group" class="mw-redirect" title="Compact symplectic group">symplectic</a> subgroups, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {SU} (n)&amp;\supset \operatorname {SO} (n),\\\operatorname {SU} (2n)&amp;\supset \operatorname {Sp} (n).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2283;<!-- ⊃ --></mo> <mi>SO</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2283;<!-- ⊃ --></mo> <mi>Sp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {SU} (n)&amp;\supset \operatorname {SO} (n),\\\operatorname {SU} (2n)&amp;\supset \operatorname {Sp} (n).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/129ab54f49ec8d7d6a7c71e4e53f9bc833f8a641" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.204ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {SU} (n)&amp;\supset \operatorname {SO} (n),\\\operatorname {SU} (2n)&amp;\supset \operatorname {Sp} (n).\end{aligned}}}"></span> </p><p>Since the <a href="/wiki/Rank_of_a_Lie_group" class="mw-redirect" title="Rank of a Lie group">rank</a> of <span class="texhtml">SU(<i>n</i>)</span> is <span class="texhtml"><i>n</i> − 1</span> and of <span class="texhtml">U(1)</span> is 1, a useful check is that the sum of the ranks of the subgroups is less than or equal to the rank of the original group. <span class="texhtml">SU(<i>n</i>)</span> is a subgroup of various other Lie groups, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {SO} (2n)&amp;\supset \operatorname {SU} (n)\\\operatorname {Sp} (n)&amp;\supset \operatorname {SU} (n)\\\operatorname {Spin} (4)&amp;=\operatorname {SU} (2)\times \operatorname {SU} (2)\\\operatorname {E} _{6}&amp;\supset \operatorname {SU} (6)\\\operatorname {E} _{7}&amp;\supset \operatorname {SU} (8)\\\operatorname {G} _{2}&amp;\supset \operatorname {SU} (3)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>SO</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2283;<!-- ⊃ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>Sp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2283;<!-- ⊃ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>Spin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&#x2283;<!-- ⊃ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&#x2283;<!-- ⊃ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&#x2283;<!-- ⊃ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {SO} (2n)&amp;\supset \operatorname {SU} (n)\\\operatorname {Sp} (n)&amp;\supset \operatorname {SU} (n)\\\operatorname {Spin} (4)&amp;=\operatorname {SU} (2)\times \operatorname {SU} (2)\\\operatorname {E} _{6}&amp;\supset \operatorname {SU} (6)\\\operatorname {E} _{7}&amp;\supset \operatorname {SU} (8)\\\operatorname {G} _{2}&amp;\supset \operatorname {SU} (3)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af8131da165c7566ad316902dcda55df63742f9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:26.201ex; height:18.509ex;" alt="{\displaystyle {\begin{aligned}\operatorname {SO} (2n)&amp;\supset \operatorname {SU} (n)\\\operatorname {Sp} (n)&amp;\supset \operatorname {SU} (n)\\\operatorname {Spin} (4)&amp;=\operatorname {SU} (2)\times \operatorname {SU} (2)\\\operatorname {E} _{6}&amp;\supset \operatorname {SU} (6)\\\operatorname {E} _{7}&amp;\supset \operatorname {SU} (8)\\\operatorname {G} _{2}&amp;\supset \operatorname {SU} (3)\end{aligned}}}"></span> See <i><a href="/wiki/Spin_group" title="Spin group">Spin group</a></i> and <i><a href="/wiki/Simple_Lie_group" title="Simple Lie group">Simple Lie group</a></i> for <span class="texhtml">E<sub>6</sub></span>, <span class="texhtml">E<sub>7</sub></span>, and <span class="texhtml">G<sub>2</sub></span>. </p><p>There are also the <a href="/wiki/Spin_group#Exceptional_isomorphisms" title="Spin group">accidental isomorphisms</a>: <span class="texhtml">SU(4) = Spin(6)</span>, <span class="texhtml">SU(2) = Spin(3) = Sp(1)</span>,<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> and <span class="texhtml">U(1) = Spin(2) = SO(2)</span>. </p><p>One may finally mention that <span class="texhtml">SU(2)</span> is the <a href="/wiki/Double_covering_group" class="mw-redirect" title="Double covering group">double covering group</a> of <span class="texhtml">SO(3)</span>, a relation that plays an important role in the theory of rotations of 2-<a href="/wiki/Spinor" title="Spinor">spinors</a> in non-relativistic <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>. </p> <div class="mw-heading mw-heading2"><h2 id="SU(1,_1)"><span id="SU.281.2C_1.29"></span>SU(1, 1)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=18" title="Edit section: SU(1, 1)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SU} (1,1)=\left\{{\begin{pmatrix}u&amp;v\\v^{*}&amp;u^{*}\end{pmatrix}}\in M(2,\mathbb {C} ):uu^{*}-vv^{*}=1\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">U</mi> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>u</mi> </mtd> <mtd> <mi>v</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mtd> <mtd> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> <mo>:</mo> <mi>u</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SU} (1,1)=\left\{{\begin{pmatrix}u&amp;v\\v^{*}&amp;u^{*}\end{pmatrix}}\in M(2,\mathbb {C} ):uu^{*}-vv^{*}=1\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e73fabb78fbec26b25d7f82ac01b4a486a4c568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:53.912ex; height:6.176ex;" alt="{\displaystyle \mathrm {SU} (1,1)=\left\{{\begin{pmatrix}u&amp;v\\v^{*}&amp;u^{*}\end{pmatrix}}\in M(2,\mathbb {C} ):uu^{*}-vv^{*}=1\right\},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~u^{*}~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~u^{*}~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/218687f8d10072b9649471403792d59fa28d929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.545ex; height:2.343ex;" alt="{\displaystyle ~u^{*}~}"></span> denotes the <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a> of the complex number <span class="texhtml mvar" style="font-style:italic;">u</span>. </p><p>This group is isomorphic to <span class="texhtml">SL(2,ℝ)</span> and <span class="texhtml">Spin(2,1)</span><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> where the numbers separated by a comma refer to the <a href="/wiki/Signature_(quadratic_form)" class="mw-redirect" title="Signature (quadratic form)">signature</a> of the <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic form</a> preserved by the group. The expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~uu^{*}-vv^{*}~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>u</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~uu^{*}-vv^{*}~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3446cf10544dcd3a01966595d00676e23f9cb05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.025ex; height:2.509ex;" alt="{\displaystyle ~uu^{*}-vv^{*}~}"></span> in the definition of <span class="texhtml">SU(1,1)</span> is an <a href="/wiki/Hermitian_form" class="mw-redirect" title="Hermitian form">Hermitian form</a> which becomes an <a href="/wiki/Isotropic_quadratic_form" title="Isotropic quadratic form">isotropic quadratic form</a> when <span class="texhtml mvar" style="font-style:italic;">u</span> and <span class="texhtml"><i>v</i></span> are expanded with their real components. </p><p>An early appearance of this group was as the "unit sphere" of <a href="/wiki/Coquaternion" class="mw-redirect" title="Coquaternion">coquaternions</a>, introduced by <a href="/wiki/James_Cockle" title="James Cockle">James Cockle</a> in 1852. Let </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\,,\quad k={\begin{bmatrix}1&amp;\;~0\\0&amp;-1\end{bmatrix}}\,,\quad i={\begin{bmatrix}\;~0&amp;1\\-1&amp;0\end{bmatrix}}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mspace width="thickmathspace" /> <mtext>&#xA0;</mtext> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="thickmathspace" /> <mtext>&#xA0;</mtext> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\,,\quad k={\begin{bmatrix}1&amp;\;~0\\0&amp;-1\end{bmatrix}}\,,\quad i={\begin{bmatrix}\;~0&amp;1\\-1&amp;0\end{bmatrix}}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bca35d6dbae5321877cdc1d53f98f7f8769b0f1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-left: -0.027ex; width:48.187ex; height:6.176ex;" alt="{\displaystyle j={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\,,\quad k={\begin{bmatrix}1&amp;\;~0\\0&amp;-1\end{bmatrix}}\,,\quad i={\begin{bmatrix}\;~0&amp;1\\-1&amp;0\end{bmatrix}}~.}"></span> </p><p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~j\,k={\begin{bmatrix}0&amp;-1\\1&amp;\;~0\end{bmatrix}}=-i~,~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>j</mi> <mspace width="thinmathspace" /> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mspace width="thickmathspace" /> <mtext>&#xA0;</mtext> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~j\,k={\begin{bmatrix}0&amp;-1\\1&amp;\;~0\end{bmatrix}}=-i~,~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6b83da819ff5faad4511f08c4dafd92830a3a7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.802ex; height:6.176ex;" alt="{\displaystyle ~j\,k={\begin{bmatrix}0&amp;-1\\1&amp;\;~0\end{bmatrix}}=-i~,~}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~i\,j\,k=I_{2}\equiv {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}~,~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> <mspace width="thinmathspace" /> <mi>k</mi> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~i\,j\,k=I_{2}\equiv {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}~,~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2384bc664e56720356c7b10889dbff0b2dfdd67a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.65ex; height:6.176ex;" alt="{\displaystyle ~i\,j\,k=I_{2}\equiv {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}~,~}"></span> the 2×2 identity matrix, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~k\,i=j~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>k</mi> <mspace width="thinmathspace" /> <mi>i</mi> <mo>=</mo> <mi>j</mi> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~k\,i=j~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79c7180541a2a3c2b82484a6986b662fc7d69776" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.265ex; height:2.509ex;" alt="{\displaystyle ~k\,i=j~,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;i\,j=k\;,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> <mo>=</mo> <mi>k</mi> <mspace width="thickmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;i\,j=k\;,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/506e361e1f2b0fbcdbd10af65d44ed452b78f41e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.394ex; height:2.509ex;" alt="{\displaystyle \;i\,j=k\;,}"></span> and the elements <span class="texhtml mvar" style="font-style:italic;">i, j,</span> and <span class="texhtml mvar" style="font-style:italic;">k</span> all <a href="/wiki/Anticommutative_property" title="Anticommutative property">anticommute</a>, as in <a href="/wiki/Quaternion" title="Quaternion">quaternions</a>. Also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> is still a square root of <span class="texhtml">−<i>I</i><sub>2</sub></span> (negative of the identity matrix), whereas <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~j^{2}=k^{2}=+I_{2}~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>+</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~j^{2}=k^{2}=+I_{2}~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3a659659e5d30b1addf0881b79162e2a9442c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.521ex; height:3.009ex;" alt="{\displaystyle ~j^{2}=k^{2}=+I_{2}~}"></span> are not, unlike in quaternions. For both quaternions and <a href="/wiki/Coquaternion" class="mw-redirect" title="Coquaternion">coquaternions</a>, all scalar quantities are treated as implicit multiples of <span class="texhtml mvar" style="font-style:italic;">I</span><sub>2</sub> and notated as <span class="texhtml"><b>1</b></span>. </p><p>The coquaternion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~q=w+x\,i+y\,j+z\,k~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>q</mi> <mo>=</mo> <mi>w</mi> <mo>+</mo> <mi>x</mi> <mspace width="thinmathspace" /> <mi>i</mi> <mo>+</mo> <mi>y</mi> <mspace width="thinmathspace" /> <mi>j</mi> <mo>+</mo> <mi>z</mi> <mspace width="thinmathspace" /> <mi>k</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~q=w+x\,i+y\,j+z\,k~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fedb2f0ffc6771047e877f5ed5f15adaff4ec65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.221ex; height:2.509ex;" alt="{\displaystyle ~q=w+x\,i+y\,j+z\,k~}"></span> with scalar <span class="texhtml mvar" style="font-style:italic;">w</span>, has conjugate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~q=w-x\,i-y\,j-z\,k~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>q</mi> <mo>=</mo> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mspace width="thinmathspace" /> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mspace width="thinmathspace" /> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mspace width="thinmathspace" /> <mi>k</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~q=w-x\,i-y\,j-z\,k~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ae194eb895bed733c31adc60a80c2876986c3c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.221ex; height:2.509ex;" alt="{\displaystyle ~q=w-x\,i-y\,j-z\,k~}"></span> similar to Hamilton's quaternions. The quadratic form is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~q\,q^{*}=w^{2}+x^{2}-y^{2}-z^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>q</mi> <mspace width="thinmathspace" /> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~q\,q^{*}=w^{2}+x^{2}-y^{2}-z^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88ba5cacc38c7919c73ad7617dfad51e8dbd09f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.899ex; height:3.009ex;" alt="{\displaystyle ~q\,q^{*}=w^{2}+x^{2}-y^{2}-z^{2}.}"></span> </p><p>Note that the 2-sheet <a href="/wiki/Hyperboloid" title="Hyperboloid">hyperboloid</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{xi+yj+zk:x^{2}-y^{2}-z^{2}=1\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mi>x</mi> <mi>i</mi> <mo>+</mo> <mi>y</mi> <mi>j</mi> <mo>+</mo> <mi>z</mi> <mi>k</mi> <mo>:</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{xi+yj+zk:x^{2}-y^{2}-z^{2}=1\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c31cf8146ad0f32c2bd6b92a38299f5697f8c2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.558ex; height:3.343ex;" alt="{\displaystyle \left\{xi+yj+zk:x^{2}-y^{2}-z^{2}=1\right\}}"></span> corresponds to the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary units</a> in the algebra so that any point <span class="texhtml mvar" style="font-style:italic;">p</span> on this hyperboloid can be used as a <b>pole</b> of a sinusoidal wave according to <a href="/wiki/Euler%27s_formula" title="Euler&#39;s formula">Euler's formula</a>. </p><p>The hyperboloid is stable under <span class="texhtml">SU(1, 1)</span>, illustrating the isomorphism with <span class="texhtml">Spin(2, 1)</span>. The variability of the pole of a wave, as noted in studies of <a href="/wiki/Polarization_(waves)" title="Polarization (waves)">polarization</a>, might view <a href="/wiki/Elliptical_polarization" title="Elliptical polarization">elliptical polarization</a> as an exhibit of the elliptical shape of a wave with <span class="nowrap">pole <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~p\neq \pm i~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>p</mi> <mo>&#x2260;<!-- ≠ --></mo> <mo>&#x00B1;<!-- ± --></mo> <mi>i</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~p\neq \pm i~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bee4d373c4ab5f4929625a9d0be46aebecb1adc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.04ex; height:2.676ex;" alt="{\displaystyle ~p\neq \pm i~}"></span>.</span> The <a href="/wiki/Poincar%C3%A9_sphere_(optics)" class="mw-redirect" title="Poincaré sphere (optics)">Poincaré sphere</a> model used since 1892 has been compared to a 2-sheet hyperboloid model,<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> and the practice of <a href="/wiki/SU(1,1)_interferometry" title="SU(1,1) interferometry"><span class="texhtml">SU(1, 1)</span> interferometry</a> has been introduced. </p><p>When an element of <span class="texhtml">SU(1, 1)</span> is interpreted as a <a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">Möbius transformation</a>, it leaves the <a href="/wiki/Unit_disk" title="Unit disk">unit disk</a> stable, so this group represents the <a href="/wiki/Motion_(geometry)" title="Motion (geometry)">motions</a> of the <a href="/wiki/Poincar%C3%A9_disk_model" title="Poincaré disk model">Poincaré disk model</a> of hyperbolic plane geometry. Indeed, for a point <span class="texhtml"><big>[</big>z, 1<big>]</big></span> in the <a href="/wiki/Complex_projective_line" class="mw-redirect" title="Complex projective line">complex projective line</a>, the action of <span class="texhtml">SU(1,1)</span> is given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}u&amp;v\\v^{*}&amp;u^{*}\end{pmatrix}}\,{\bigl [}\;z,\;1\;{\bigr ]}=[\;u\,z+v,\,v^{*}\,z+u^{*}\;]\,=\,\left[\;{\frac {uz+v}{v^{*}z+u^{*}}},\,1\;\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>u</mi> </mtd> <mtd> <mi>v</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mtd> <mtd> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mspace width="thickmathspace" /> <mi>z</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mspace width="thickmathspace" /> <mi>u</mi> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <mi>v</mi> <mo>,</mo> <mspace width="thinmathspace" /> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="thickmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow> <mo>[</mo> <mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>u</mi> <mi>z</mi> <mo>+</mo> <mi>v</mi> </mrow> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>z</mi> <mo>+</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}u&amp;v\\v^{*}&amp;u^{*}\end{pmatrix}}\,{\bigl [}\;z,\;1\;{\bigr ]}=[\;u\,z+v,\,v^{*}\,z+u^{*}\;]\,=\,\left[\;{\frac {uz+v}{v^{*}z+u^{*}}},\,1\;\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ccea74a7cd5e572050071cc3638ca857c1942fe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:60.897ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}u&amp;v\\v^{*}&amp;u^{*}\end{pmatrix}}\,{\bigl [}\;z,\;1\;{\bigr ]}=[\;u\,z+v,\,v^{*}\,z+u^{*}\;]\,=\,\left[\;{\frac {uz+v}{v^{*}z+u^{*}}},\,1\;\right]}"></span> </p><p>since in <a href="/wiki/Projective_coordinates" class="mw-redirect" title="Projective coordinates">projective coordinates</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\;u\,z+v,\;v^{*}\,z+u^{*}\;)\thicksim \left(\;{\frac {\,u\,z+v\,}{v^{*}\,z+u^{*}}},\;1\;\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mspace width="thickmathspace" /> <mi>u</mi> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <mi>v</mi> <mo>,</mo> <mspace width="thickmathspace" /> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="thickmathspace" /> <mo stretchy="false">)</mo> <mo class="MJX-variant">&#x223C;<!-- ∼ --></mo> <mrow> <mo>(</mo> <mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mi>u</mi> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <mi>v</mi> <mspace width="thinmathspace" /> </mrow> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\;u\,z+v,\;v^{*}\,z+u^{*}\;)\thicksim \left(\;{\frac {\,u\,z+v\,}{v^{*}\,z+u^{*}}},\;1\;\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35411250f5855034d8f0f7b6c4d5a81f2be64a02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:41.836ex; height:6.176ex;" alt="{\displaystyle (\;u\,z+v,\;v^{*}\,z+u^{*}\;)\thicksim \left(\;{\frac {\,u\,z+v\,}{v^{*}\,z+u^{*}}},\;1\;\right).}"></span> </p><p>Writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;suv+{\overline {suv}}=2\,\Re {\mathord {\bigl (}}\,suv\,{\bigr )}\;,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>s</mi> <mi>u</mi> <mi>v</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>s</mi> <mi>u</mi> <mi>v</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>s</mi> <mi>u</mi> <mi>v</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="thickmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;suv+{\overline {suv}}=2\,\Re {\mathord {\bigl (}}\,suv\,{\bigr )}\;,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39a72586c232c43f2e17fc8f21b0ba163e92ca4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.012ex; height:3.176ex;" alt="{\displaystyle \;suv+{\overline {suv}}=2\,\Re {\mathord {\bigl (}}\,suv\,{\bigr )}\;,}"></span> complex number arithmetic shows </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bigl |}u\,z+v{\bigr |}^{2}=S+z\,z^{*}\quad {\text{ and }}\quad {\bigl |}v^{*}\,z+u^{*}{\bigr |}^{2}=S+1~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mi>u</mi> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <mi>v</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>S</mi> <mo>+</mo> <mi>z</mi> <mspace width="thinmathspace" /> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bigl |}u\,z+v{\bigr |}^{2}=S+z\,z^{*}\quad {\text{ and }}\quad {\bigl |}v^{*}\,z+u^{*}{\bigr |}^{2}=S+1~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21c87c01dd0624a4f1f596c724052edb82b3bf96" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:50.79ex; height:3.676ex;" alt="{\displaystyle {\bigl |}u\,z+v{\bigr |}^{2}=S+z\,z^{*}\quad {\text{ and }}\quad {\bigl |}v^{*}\,z+u^{*}{\bigr |}^{2}=S+1~,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=v\,v^{*}\left(z\,z^{*}+1\right)+2\,\Re {\mathord {\bigl (}}\,uvz\,{\bigr )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mi>v</mi> <mspace width="thinmathspace" /> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>z</mi> <mspace width="thinmathspace" /> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>u</mi> <mi>v</mi> <mi>z</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=v\,v^{*}\left(z\,z^{*}+1\right)+2\,\Re {\mathord {\bigl (}}\,uvz\,{\bigr )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b2c09e16fc307cdae3e89cd552e2c8ceb797ff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.524ex; height:3.176ex;" alt="{\displaystyle S=v\,v^{*}\left(z\,z^{*}+1\right)+2\,\Re {\mathord {\bigl (}}\,uvz\,{\bigr )}.}"></span> </p><p>Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\,z^{*}&lt;1\implies {\bigl |}uz+v{\bigr |}&lt;{\bigl |}\,v^{*}\,z+u^{*}\,{\bigr |}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mspace width="thinmathspace" /> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&lt;</mo> <mn>1</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mi>u</mi> <mi>z</mi> <mo>+</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>z</mi> <mo>+</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\,z^{*}&lt;1\implies {\bigl |}uz+v{\bigr |}&lt;{\bigl |}\,v^{*}\,z+u^{*}\,{\bigr |}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b27b3145320a495e1a6dcaf14deed5f3d88d6480" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.994ex; height:3.176ex;" alt="{\displaystyle z\,z^{*}&lt;1\implies {\bigl |}uz+v{\bigr |}&lt;{\bigl |}\,v^{*}\,z+u^{*}\,{\bigr |}}"></span> so that their ratio lies in the open disk.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=19" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <ul><li><a href="/wiki/Unitary_group" title="Unitary group">Unitary group</a></li> <li><a href="/wiki/Projective_special_unitary_group" class="mw-redirect" title="Projective special unitary group">Projective special unitary group</a>, <span class="texhtml">PSU(<i>n</i>)</span></li> <li><a href="/wiki/Orthogonal_group" title="Orthogonal group">Orthogonal group</a></li> <li><a href="/wiki/Generalizations_of_Pauli_matrices" title="Generalizations of Pauli matrices">Generalizations of Pauli matrices</a></li> <li><a href="/wiki/Representation_theory_of_SU(2)" title="Representation theory of SU(2)">Representation theory of SU(2)</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Footnotes">Footnotes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=20" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-lower-alpha"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">For a characterization of <span class="texhtml">U(<i>n</i>)</span> and hence <span class="texhtml">SU(<i>n</i>)</span> in terms of preservation of the standard inner product on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span>, see <i><a href="/wiki/Classical_group" title="Classical group">Classical group</a></i>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">For an explicit description of the homomorphism <span class="texhtml">SU(2) → SO(3)</span>, see <a href="/wiki/Rotation_group_SO(3)#Connection_between_SO(3)_and_SU(2)" class="mw-redirect" title="Rotation group SO(3)">Connection between SO(3) and SU(2)</a>.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">So fewer than <style data-mw-deduplicate="TemplateStyles:r1154941027">.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="frac"><span class="num">1</span>&#8260;<span class="den">6</span></span> of all <span class="texhtml"><i>f<sub>abc</sub></i></span>s are non-vanishing.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><span class="texhtml">Sp(<i>n</i>)</span> is the <a href="/wiki/Compact_real_form" class="mw-redirect" title="Compact real form">compact real form</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Sp} (2n,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Sp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Sp} (2n,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bb870549846ab30a040f9d16961d43e5a47736c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.664ex; height:2.843ex;" alt="{\displaystyle \operatorname {Sp} (2n,\mathbb {C} )}"></span>. It is sometimes denoted <span class="texhtml">USp(<i>2n</i>)</span>. The dimension of the <span class="texhtml">Sp(<i>n</i>)</span>-matrices is <span class="texhtml">2<i>n</i> × 2<i>n</i></span>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=21" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHalzen,_FrancisMartin,_Alan1984" class="citation book cs1"><a href="/wiki/Francis_Halzen" title="Francis Halzen">Halzen, Francis</a>; <a href="/wiki/Alan_Martin_(physicist)" title="Alan Martin (physicist)">Martin, Alan</a> (1984). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/quarksleptonsint0000halz"><i>Quarks &amp; Leptons: An Introductory Course in Modern Particle Physics</i></a></span>. John Wiley &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-88741-2" title="Special:BookSources/0-471-88741-2"><bdi>0-471-88741-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quarks+%26+Leptons%3A+An+Introductory+Course+in+Modern+Particle+Physics&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1984&amp;rft.isbn=0-471-88741-2&amp;rft.au=Halzen%2C+Francis&amp;rft.au=Martin%2C+Alan&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fquarksleptonsint0000halz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a>, Proposition 13.11</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWybourne,_B.G.1974" class="citation book cs1"><a href="/wiki/Brian_Garner_Wybourne" class="mw-redirect" title="Brian Garner Wybourne">Wybourne, B.G.</a> (1974). <i>Classical Groups for Physicists</i>. Wiley-Interscience. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0471965057" title="Special:BookSources/0471965057"><bdi>0471965057</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+Groups+for+Physicists&amp;rft.pub=Wiley-Interscience&amp;rft.date=1974&amp;rft.isbn=0471965057&amp;rft.au=Wybourne%2C+B.G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Proposition 3.24</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorgi2018" class="citation book cs1">Georgi, Howard (2018-05-04). <a rel="nofollow" class="external text" href="https://www.taylorfrancis.com/books/9780429499210"><i>Lie Algebras in Particle Physics: From Isospin to Unified Theories</i></a> (1&#160;ed.). Boca Raton: CRC Press. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018laip.book.....G">2018laip.book.....G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1201%2F9780429499210">10.1201/9780429499210</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-429-49921-0" title="Special:BookSources/978-0-429-49921-0"><bdi>978-0-429-49921-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+Algebras+in+Particle+Physics%3A+From+Isospin+to+Unified+Theories&amp;rft.place=Boca+Raton&amp;rft.edition=1&amp;rft.pub=CRC+Press&amp;rft.date=2018-05-04&amp;rft_id=info%3Adoi%2F10.1201%2F9780429499210&amp;rft_id=info%3Abibcode%2F2018laip.book.....G&amp;rft.isbn=978-0-429-49921-0&amp;rft.aulast=Georgi&amp;rft.aufirst=Howard&amp;rft_id=https%3A%2F%2Fwww.taylorfrancis.com%2Fbooks%2F9780429499210&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorgi2018" class="citation book cs1">Georgi, Howard (2018-05-04). <a rel="nofollow" class="external text" href="https://www.taylorfrancis.com/books/9780429499210"><i>Lie Algebras in Particle Physics: From Isospin to Unified Theories</i></a> (1&#160;ed.). Boca Raton: CRC Press. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018laip.book.....G">2018laip.book.....G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1201%2F9780429499210">10.1201/9780429499210</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-429-49921-0" title="Special:BookSources/978-0-429-49921-0"><bdi>978-0-429-49921-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+Algebras+in+Particle+Physics%3A+From+Isospin+to+Unified+Theories&amp;rft.place=Boca+Raton&amp;rft.edition=1&amp;rft.pub=CRC+Press&amp;rft.date=2018-05-04&amp;rft_id=info%3Adoi%2F10.1201%2F9780429499210&amp;rft_id=info%3Abibcode%2F2018laip.book.....G&amp;rft.isbn=978-0-429-49921-0&amp;rft.aulast=Georgi&amp;rft.aufirst=Howard&amp;rft_id=https%3A%2F%2Fwww.taylorfrancis.com%2Fbooks%2F9780429499210&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Exercise 1.5</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavage" class="citation web cs1">Savage, Alistair. <a rel="nofollow" class="external text" href="http://alistairsavage.ca/mat4144/notes/MAT4144-5158-LieGroups.pdf">"LieGroups"</a> <span class="cs1-format">(PDF)</span>. MATH 4144 notes.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=LieGroups&amp;rft.series=MATH+4144+notes&amp;rft.aulast=Savage&amp;rft.aufirst=Alistair&amp;rft_id=http%3A%2F%2Falistairsavage.ca%2Fmat4144%2Fnotes%2FMAT4144-5158-LieGroups.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Proposition 3.24</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Proposition 13.11</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Section 13.2</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Chapter 6</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRosen1971" class="citation journal cs1">Rosen, S P (1971). "Finite Transformations in Various Representations of SU(3)". <i>Journal of Mathematical Physics</i>. <b>12</b> (4): <span class="nowrap">673–</span>681. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1971JMP....12..673R">1971JMP....12..673R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1665634">10.1063/1.1665634</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=Finite+Transformations+in+Various+Representations+of+SU%283%29&amp;rft.volume=12&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E673-%3C%2Fspan%3E681&amp;rft.date=1971&amp;rft_id=info%3Adoi%2F10.1063%2F1.1665634&amp;rft_id=info%3Abibcode%2F1971JMP....12..673R&amp;rft.aulast=Rosen&amp;rft.aufirst=S+P&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCurtright,_T_LZachos,_C_K2015" class="citation journal cs1">Curtright, T L; Zachos, C K (2015). "Elementary results for the fundamental representation of SU(3)". <i>Reports on Mathematical Physics</i>. <b>76</b> (3): <span class="nowrap">401–</span>404. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1508.00868">1508.00868</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015RpMP...76..401C">2015RpMP...76..401C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0034-4877%2815%2930040-9">10.1016/S0034-4877(15)30040-9</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119679825">119679825</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reports+on+Mathematical+Physics&amp;rft.atitle=Elementary+results+for+the+fundamental+representation+of+SU%283%29&amp;rft.volume=76&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E401-%3C%2Fspan%3E404&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1508.00868&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119679825%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2FS0034-4877%2815%2930040-9&amp;rft_id=info%3Abibcode%2F2015RpMP...76..401C&amp;rft.au=Curtright%2C+T+L&amp;rft.au=Zachos%2C+C+K&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Proposition 3.24</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Section 3.6</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Section 7.7.1</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Section 8.10.1</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrancsicsLax2005" class="citation arxiv cs1">Francsics, Gabor; Lax, Peter D. (September 2005). "An explicit fundamental domain for the Picard modular group in two complex dimensions". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0509708">math/0509708</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=An+explicit+fundamental+domain+for+the+Picard+modular+group+in+two+complex+dimensions&amp;rft.date=2005-09&amp;rft_id=info%3Aarxiv%2Fmath%2F0509708&amp;rft.aulast=Francsics&amp;rft.aufirst=Gabor&amp;rft.au=Lax%2C+Peter+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGilmore1974" class="citation book cs1">Gilmore, Robert (1974). <i>Lie Groups, Lie Algebras and some of their Applications</i>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>. pp.&#160;52, 201−205. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1275599">1275599</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+Groups%2C+Lie+Algebras+and+some+of+their+Applications&amp;rft.pages=52%2C+201%E2%88%92205&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1974&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1275599%23id-name%3DMR&amp;rft.aulast=Gilmore&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMotaOjeda-GuillénSalazar-RamírezGranados2016" class="citation journal cs1">Mota, R.D.; Ojeda-Guillén, D.; Salazar-Ramírez, M.; Granados, V.D. (2016). "SU(1,1) approach to Stokes parameters and the theory of light polarization". <i>Journal of the Optical Society of America B</i>. <b>33</b> (8): <span class="nowrap">1696–</span>1701. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.03223">1602.03223</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JOSAB..33.1696M">2016JOSAB..33.1696M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FJOSAB.33.001696">10.1364/JOSAB.33.001696</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119146980">119146980</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Optical+Society+of+America+B&amp;rft.atitle=SU%281%2C1%29+approach+to+Stokes+parameters+and+the+theory+of+light+polarization&amp;rft.volume=33&amp;rft.issue=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1696-%3C%2Fspan%3E1701&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1602.03223&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119146980%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1364%2FJOSAB.33.001696&amp;rft_id=info%3Abibcode%2F2016JOSAB..33.1696M&amp;rft.aulast=Mota&amp;rft.aufirst=R.D.&amp;rft.au=Ojeda-Guill%C3%A9n%2C+D.&amp;rft.au=Salazar-Ram%C3%ADrez%2C+M.&amp;rft.au=Granados%2C+V.D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSiegel1971" class="citation book cs1"><a href="/wiki/C._L._Siegel" class="mw-redirect" title="C. L. Siegel">Siegel, C. L.</a> (1971). <i>Topics in Complex Function Theory</i>. Vol.&#160;2. Translated by Shenitzer, A.; Tretkoff, M. Wiley-Interscience. pp.&#160;<span class="nowrap">13–</span>15. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-79080_X" title="Special:BookSources/0-471-79080 X"><bdi>0-471-79080 X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topics+in+Complex+Function+Theory&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E13-%3C%2Fspan%3E15&amp;rft.pub=Wiley-Interscience&amp;rft.date=1971&amp;rft.isbn=0-471-79080X&amp;rft.aulast=Siegel&amp;rft.aufirst=C.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_unitary_group&amp;action=edit&amp;section=22" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2015" class="citation cs2">Hall, Brian C. (2015), <i>Lie Groups, Lie Algebras, and Representations: An Elementary Introduction</i>, Graduate Texts in Mathematics, vol.&#160;222 (2nd&#160;ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3319134666" title="Special:BookSources/978-3319134666"><bdi>978-3319134666</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+Groups%2C+Lie+Algebras%2C+and+Representations%3A+An+Elementary+Introduction&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2015&amp;rft.isbn=978-3319134666&amp;rft.aulast=Hall&amp;rft.aufirst=Brian+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIachello2006" class="citation cs2">Iachello, Francesco (2006), <i>Lie Algebras and Applications</i>, Lecture Notes in Physics, vol.&#160;708, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3540362363" title="Special:BookSources/3540362363"><bdi>3540362363</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+Algebras+and+Applications&amp;rft.series=Lecture+Notes+in+Physics&amp;rft.pub=Springer&amp;rft.date=2006&amp;rft.isbn=3540362363&amp;rft.aulast=Iachello&amp;rft.aufirst=Francesco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+unitary+group" class="Z3988"></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐b766959bd‐kbwzc Cached time: 20250214040447 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.726 seconds Real time usage: 0.941 seconds Preprocessor visited node count: 10076/1000000 Post‐expand include size: 118297/2097152 bytes Template argument size: 17715/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 145103/5000000 bytes Lua time usage: 0.332/10.000 seconds Lua memory usage: 7689058/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 598.592 1 -total 27.87% 166.852 2 Template:Reflist 22.11% 132.320 157 Template:Math 17.06% 102.102 2 Template:Sidebar_with_collapsible_lists 15.56% 93.165 1 Template:Short_description 14.94% 89.442 1 Template:Group_theory_sidebar 14.11% 84.489 6 Template:Cite_book 10.56% 63.208 2 Template:Pagetype 6.37% 38.149 162 Template:Main_other 5.63% 33.688 11 Template:Harvnb --> <!-- Saved in parser cache with key enwiki:pcache:173997:|#|:idhash:canonical and timestamp 20250214040447 and revision id 1263430849. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Special_unitary_group&amp;oldid=1263430849">https://en.wikipedia.org/w/index.php?title=Special_unitary_group&amp;oldid=1263430849</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Lie_groups" title="Category:Lie groups">Lie groups</a></li><li><a href="/wiki/Category:Mathematical_physics" title="Category:Mathematical physics">Mathematical physics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 16 December 2024, at 16:46<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Special_unitary_group&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Special unitary group</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>19 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-dhd6q","wgBackendResponseTime":167,"wgPageParseReport":{"limitreport":{"cputime":"0.726","walltime":"0.941","ppvisitednodes":{"value":10076,"limit":1000000},"postexpandincludesize":{"value":118297,"limit":2097152},"templateargumentsize":{"value":17715,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":145103,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 598.592 1 -total"," 27.87% 166.852 2 Template:Reflist"," 22.11% 132.320 157 Template:Math"," 17.06% 102.102 2 Template:Sidebar_with_collapsible_lists"," 15.56% 93.165 1 Template:Short_description"," 14.94% 89.442 1 Template:Group_theory_sidebar"," 14.11% 84.489 6 Template:Cite_book"," 10.56% 63.208 2 Template:Pagetype"," 6.37% 38.149 162 Template:Main_other"," 5.63% 33.688 11 Template:Harvnb"]},"scribunto":{"limitreport-timeusage":{"value":"0.332","limit":"10.000"},"limitreport-memusage":{"value":7689058,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFCurtright,_T_LZachos,_C_K2015\"] = 1,\n [\"CITEREFFrancsicsLax2005\"] = 1,\n [\"CITEREFGeorgi2018\"] = 2,\n [\"CITEREFGilmore1974\"] = 1,\n [\"CITEREFHall2015\"] = 1,\n [\"CITEREFHalzen,_FrancisMartin,_Alan1984\"] = 1,\n [\"CITEREFIachello2006\"] = 1,\n [\"CITEREFMotaOjeda-GuillénSalazar-RamírezGranados2016\"] = 1,\n [\"CITEREFRosen1971\"] = 1,\n [\"CITEREFSavage\"] = 1,\n [\"CITEREFSiegel1971\"] = 1,\n [\"CITEREFWybourne,_B.G.1974\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 1,\n [\"Citation\"] = 2,\n [\"Cite arXiv\"] = 1,\n [\"Cite book\"] = 6,\n [\"Cite journal\"] = 3,\n [\"Cite web\"] = 1,\n [\"DEFAULTSORT:Special Unitary Group\"] = 1,\n [\"Dynkin\"] = 2,\n [\"Efn\"] = 4,\n [\"Frac\"] = 1,\n [\"Group theory sidebar\"] = 1,\n [\"Harvnb\"] = 11,\n [\"Lie groups\"] = 1,\n [\"Main\"] = 2,\n [\"Math\"] = 157,\n [\"Mset\"] = 3,\n [\"Mvar\"] = 12,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 1,\n [\"Portal\"] = 1,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 2,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Sub\"] = 2,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-b766959bd-kbwzc","timestamp":"20250214040447","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Special unitary group","url":"https:\/\/en.wikipedia.org\/wiki\/Special_unitary_group","sameAs":"http:\/\/www.wikidata.org\/entity\/Q684363","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q684363","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-01-24T21:49:06Z","dateModified":"2024-12-16T16:46:59Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/5f\/Cyclic_group.svg","headline":"group of unitary matrices with determinant of 1"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10