CINXE.COM

Mathematics - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Mathematics - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"fa5d6b39-4d43-4e0e-b9a3-ff9d5111dd39","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Mathematics","wgTitle":"Mathematics","wgCurRevisionId":1259797230,"wgRevisionId":1259797230,"wgArticleId":18831,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Wikipedia indefinitely semi-protected pages","Wikipedia indefinitely move-protected pages","Use American English from August 2022","All Wikipedia articles written in American English","Use mdy dates from October 2024","Pages using sidebar with the child parameter","Articles containing Ancient Greek (to 1453)-language text", "Articles containing Latin-language text","Articles containing Greek-language text","Pages using multiple image with manual scaled images","All articles with failed verification","Articles with failed verification from October 2024","Webarchive template archiveis links","Mathematics","Formal sciences","Main topic articles"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Mathematics","wgRelevantArticleId":18831,"wgIsProbablyEditable":false,"wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"],"wgRestrictionMove":["sysop"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false, "nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q395","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready", "jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking" ];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Mathematics - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Mathematics"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Mathematics"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Mathematics rootpage-Mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Mathematics" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Mathematics" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Mathematics" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Mathematics" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Areas_of_mathematics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Areas_of_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Areas of mathematics</span> </div> </a> <button aria-controls="toc-Areas_of_mathematics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Areas of mathematics subsection</span> </button> <ul id="toc-Areas_of_mathematics-sublist" class="vector-toc-list"> <li id="toc-Number_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Number theory</span> </div> </a> <ul id="toc-Number_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Geometry</span> </div> </a> <ul id="toc-Geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebra" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Algebra</span> </div> </a> <ul id="toc-Algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calculus_and_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calculus_and_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Calculus and analysis</span> </div> </a> <ul id="toc-Calculus_and_analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Discrete_mathematics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discrete_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Discrete mathematics</span> </div> </a> <ul id="toc-Discrete_mathematics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_logic_and_set_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematical_logic_and_set_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6</span> <span>Mathematical logic and set theory</span> </div> </a> <ul id="toc-Mathematical_logic_and_set_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Statistics_and_other_decision_sciences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Statistics_and_other_decision_sciences"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.7</span> <span>Statistics and other decision sciences</span> </div> </a> <ul id="toc-Statistics_and_other_decision_sciences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computational_mathematics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Computational_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8</span> <span>Computational mathematics</span> </div> </a> <ul id="toc-Computational_mathematics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Etymology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Etymology"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Etymology</span> </div> </a> <ul id="toc-Etymology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ancient" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ancient"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Ancient</span> </div> </a> <ul id="toc-Ancient-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Medieval_and_later" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Medieval_and_later"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Medieval and later</span> </div> </a> <ul id="toc-Medieval_and_later-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Symbolic_notation_and_terminology" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Symbolic_notation_and_terminology"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Symbolic notation and terminology</span> </div> </a> <ul id="toc-Symbolic_notation_and_terminology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relationship_with_sciences" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Relationship_with_sciences"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Relationship with sciences</span> </div> </a> <button aria-controls="toc-Relationship_with_sciences-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relationship with sciences subsection</span> </button> <ul id="toc-Relationship_with_sciences-sublist" class="vector-toc-list"> <li id="toc-Pure_and_applied_mathematics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pure_and_applied_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Pure and applied mathematics</span> </div> </a> <ul id="toc-Pure_and_applied_mathematics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unreasonable_effectiveness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unreasonable_effectiveness"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Unreasonable effectiveness</span> </div> </a> <ul id="toc-Unreasonable_effectiveness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Specific_sciences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Specific_sciences"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Specific sciences</span> </div> </a> <ul id="toc-Specific_sciences-sublist" class="vector-toc-list"> <li id="toc-Physics" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.1</span> <span>Physics</span> </div> </a> <ul id="toc-Physics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2</span> <span>Computing</span> </div> </a> <ul id="toc-Computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biology_and_chemistry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Biology_and_chemistry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.3</span> <span>Biology and chemistry</span> </div> </a> <ul id="toc-Biology_and_chemistry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Earth_sciences" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Earth_sciences"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.4</span> <span>Earth sciences</span> </div> </a> <ul id="toc-Earth_sciences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Social_sciences" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Social_sciences"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.5</span> <span>Social sciences</span> </div> </a> <ul id="toc-Social_sciences-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Philosophy" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Philosophy"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Philosophy</span> </div> </a> <button aria-controls="toc-Philosophy-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Philosophy subsection</span> </button> <ul id="toc-Philosophy-sublist" class="vector-toc-list"> <li id="toc-Reality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reality"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Reality</span> </div> </a> <ul id="toc-Reality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proposed_definitions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proposed_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Proposed definitions</span> </div> </a> <ul id="toc-Proposed_definitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rigor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rigor"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Rigor</span> </div> </a> <ul id="toc-Rigor-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Training_and_practice" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Training_and_practice"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Training and practice</span> </div> </a> <button aria-controls="toc-Training_and_practice-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Training and practice subsection</span> </button> <ul id="toc-Training_and_practice-sublist" class="vector-toc-list"> <li id="toc-Education" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Education"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Education</span> </div> </a> <ul id="toc-Education-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Psychology_(aesthetic,_creativity_and_intuition)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Psychology_(aesthetic,_creativity_and_intuition)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Psychology (aesthetic, creativity and intuition)</span> </div> </a> <ul id="toc-Psychology_(aesthetic,_creativity_and_intuition)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Cultural_impact" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Cultural_impact"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Cultural impact</span> </div> </a> <button aria-controls="toc-Cultural_impact-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Cultural impact subsection</span> </button> <ul id="toc-Cultural_impact-sublist" class="vector-toc-list"> <li id="toc-Artistic_expression" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Artistic_expression"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Artistic expression</span> </div> </a> <ul id="toc-Artistic_expression-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Popularization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Popularization"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Popularization</span> </div> </a> <ul id="toc-Popularization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Awards_and_prize_problems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Awards_and_prize_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Awards and prize problems</span> </div> </a> <ul id="toc-Awards_and_prize_problems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Mathematics</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 254 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-254" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">254 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Wiskunde" title="Wiskunde – Afrikaans" lang="af" hreflang="af" data-title="Wiskunde" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Mathematik" title="Mathematik – Alemannic" lang="gsw" hreflang="gsw" data-title="Mathematik" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%89%B5%E1%88%9D%E1%88%85%E1%88%AD%E1%89%B0_%E1%88%82%E1%88%B3%E1%89%A5" title="ትምህርተ ሂሳብ – Amharic" lang="am" hreflang="am" data-title="ትምህርተ ሂሳብ" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="गणित – Angika" lang="anp" hreflang="anp" data-title="गणित" data-language-autonym="अंगिका" data-language-local-name="Angika" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ang mw-list-item"><a href="https://ang.wikipedia.org/wiki/R%C4%ABmcr%C3%A6ft" title="Rīmcræft – Old English" lang="ang" hreflang="ang" data-title="Rīmcræft" data-language-autonym="Ænglisc" data-language-local-name="Old English" class="interlanguage-link-target"><span>Ænglisc</span></a></li><li class="interlanguage-link interwiki-ar badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://ar.wikipedia.org/wiki/%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA" title="رياضيات – Arabic" lang="ar" hreflang="ar" data-title="رياضيات" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Matematicas" title="Matematicas – Aragonese" lang="an" hreflang="an" data-title="Matematicas" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-roa-rup mw-list-item"><a href="https://roa-rup.wikipedia.org/wiki/Mathematic%C3%A2" title="Mathematicâ – Aromanian" lang="rup" hreflang="rup" data-title="Mathematicâ" data-language-autonym="Armãneashti" data-language-local-name="Aromanian" class="interlanguage-link-target"><span>Armãneashti</span></a></li><li class="interlanguage-link interwiki-frp mw-list-item"><a href="https://frp.wikipedia.org/wiki/Mat%C3%A8matiques" title="Matèmatiques – Arpitan" lang="frp" hreflang="frp" data-title="Matèmatiques" data-language-autonym="Arpetan" data-language-local-name="Arpitan" class="interlanguage-link-target"><span>Arpetan</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4" title="গণিত – Assamese" lang="as" hreflang="as" data-title="গণিত" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Matem%C3%A1tiques" title="Matemátiques – Asturian" lang="ast" hreflang="ast" data-title="Matemátiques" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-awa mw-list-item"><a href="https://awa.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="गणित – Awadhi" lang="awa" hreflang="awa" data-title="गणित" data-language-autonym="अवधी" data-language-local-name="Awadhi" class="interlanguage-link-target"><span>अवधी</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Papapykuaa" title="Papapykuaa – Guarani" lang="gn" hreflang="gn" data-title="Papapykuaa" data-language-autonym="Avañe&#039;ẽ" data-language-local-name="Guarani" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-ay mw-list-item"><a href="https://ay.wikipedia.org/wiki/Jakhu" title="Jakhu – Aymara" lang="ay" hreflang="ay" data-title="Jakhu" data-language-autonym="Aymar aru" data-language-local-name="Aymara" class="interlanguage-link-target"><span>Aymar aru</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Riyaziyyat" title="Riyaziyyat – Azerbaijani" lang="az" hreflang="az" data-title="Riyaziyyat" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA" title="ریاضیات – South Azerbaijani" lang="azb" hreflang="azb" data-title="ریاضیات" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bm mw-list-item"><a href="https://bm.wikipedia.org/wiki/Matematiki" title="Matematiki – Bambara" lang="bm" hreflang="bm" data-title="Matematiki" data-language-autonym="Bamanankan" data-language-local-name="Bambara" class="interlanguage-link-target"><span>Bamanankan</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4" title="গণিত – Bangla" lang="bn" hreflang="bn" data-title="গণিত" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bjn mw-list-item"><a href="https://bjn.wikipedia.org/wiki/Matamatika" title="Matamatika – Banjar" lang="bjn" hreflang="bjn" data-title="Matamatika" data-language-autonym="Banjar" data-language-local-name="Banjar" class="interlanguage-link-target"><span>Banjar</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/S%C3%B2%CD%98-ha%CC%8Dk" title="Sò͘-ha̍k – Minnan" lang="nan" hreflang="nan" data-title="Sò͘-ha̍k" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-map-bms mw-list-item"><a href="https://map-bms.wikipedia.org/wiki/Matematika" title="Matematika – Banyumasan" lang="jv-x-bms" hreflang="jv-x-bms" data-title="Matematika" data-language-autonym="Basa Banyumasan" data-language-local-name="Banyumasan" class="interlanguage-link-target"><span>Basa Banyumasan</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Bashkir" lang="ba" hreflang="ba" data-title="Математика" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0" title="Матэматыка – Belarusian" lang="be" hreflang="be" data-title="Матэматыка" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0" title="Матэматыка – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Матэматыка" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="गणित – Bhojpuri" lang="bh" hreflang="bh" data-title="गणित" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Matematika" title="Matematika – Central Bikol" lang="bcl" hreflang="bcl" data-title="Matematika" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-bi mw-list-item"><a href="https://bi.wikipedia.org/wiki/Matematikis" title="Matematikis – Bislama" lang="bi" hreflang="bi" data-title="Matematikis" data-language-autonym="Bislama" data-language-local-name="Bislama" class="interlanguage-link-target"><span>Bislama</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Bulgarian" lang="bg" hreflang="bg" data-title="Математика" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Mathematik" title="Mathematik – Bavarian" lang="bar" hreflang="bar" data-title="Mathematik" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://bo.wikipedia.org/wiki/%E0%BD%A2%E0%BE%A9%E0%BD%B2%E0%BD%A6%E0%BC%8B%E0%BD%A2%E0%BD%B2%E0%BD%82" title="རྩིས་རིག – Tibetan" lang="bo" hreflang="bo" data-title="རྩིས་རིག" data-language-autonym="བོད་ཡིག" data-language-local-name="Tibetan" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Matematika" title="Matematika – Bosnian" lang="bs" hreflang="bs" data-title="Matematika" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Matematik" title="Matematik – Breton" lang="br" hreflang="br" data-title="Matematik" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BE%D0%B3%D0%BE%D0%B9_%D1%83%D1%85%D0%B0%D0%B0%D0%BD" title="Тоогой ухаан – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Тоогой ухаан" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Matem%C3%A0tiques" title="Matemàtiques – Catalan" lang="ca" hreflang="ca" data-title="Matemàtiques" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Chuvash" lang="cv" hreflang="cv" data-title="Математика" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-ceb mw-list-item"><a href="https://ceb.wikipedia.org/wiki/Isip" title="Isip – Cebuano" lang="ceb" hreflang="ceb" data-title="Isip" data-language-autonym="Cebuano" data-language-local-name="Cebuano" class="interlanguage-link-target"><span>Cebuano</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Matematika" title="Matematika – Czech" lang="cs" hreflang="cs" data-title="Matematika" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-ch mw-list-item"><a href="https://ch.wikipedia.org/wiki/Matematika" title="Matematika – Chamorro" lang="ch" hreflang="ch" data-title="Matematika" data-language-autonym="Chamoru" data-language-local-name="Chamorro" class="interlanguage-link-target"><span>Chamoru</span></a></li><li class="interlanguage-link interwiki-cbk-zam mw-list-item"><a href="https://cbk-zam.wikipedia.org/wiki/Matematica" title="Matematica – Chavacano" lang="cbk" hreflang="cbk" data-title="Matematica" data-language-autonym="Chavacano de Zamboanga" data-language-local-name="Chavacano" class="interlanguage-link-target"><span>Chavacano de Zamboanga</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Masvomhu" title="Masvomhu – Shona" lang="sn" hreflang="sn" data-title="Masvomhu" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-co mw-list-item"><a href="https://co.wikipedia.org/wiki/Matematica" title="Matematica – Corsican" lang="co" hreflang="co" data-title="Matematica" data-language-autonym="Corsu" data-language-local-name="Corsican" class="interlanguage-link-target"><span>Corsu</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Mathemateg" title="Mathemateg – Welsh" lang="cy" hreflang="cy" data-title="Mathemateg" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-dag mw-list-item"><a href="https://dag.wikipedia.org/wiki/Laasabu_malibu" title="Laasabu malibu – Dagbani" lang="dag" hreflang="dag" data-title="Laasabu malibu" data-language-autonym="Dagbanli" data-language-local-name="Dagbani" class="interlanguage-link-target"><span>Dagbanli</span></a></li><li class="interlanguage-link interwiki-da badge-Q17559452 badge-recommendedarticle mw-list-item" title="recommended article"><a href="https://da.wikipedia.org/wiki/Matematik" title="Matematik – Danish" lang="da" hreflang="da" data-title="Matematik" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D9%84%D9%85%D8%A7%D8%B7" title="لماط – Moroccan Arabic" lang="ary" hreflang="ary" data-title="لماط" data-language-autonym="الدارجة" data-language-local-name="Moroccan Arabic" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://de.wikipedia.org/wiki/Mathematik" title="Mathematik – German" lang="de" hreflang="de" data-title="Mathematik" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-dv mw-list-item"><a href="https://dv.wikipedia.org/wiki/%DE%83%DE%A8%DE%94%DE%A7%DE%9F%DE%A8%DE%87%DE%B0%DE%94%DE%A7%DE%8C%DE%AA" title="ރިޔާޟިއްޔާތު – Divehi" lang="dv" hreflang="dv" data-title="ރިޔާޟިއްޔާތު" data-language-autonym="ދިވެހިބަސް" data-language-local-name="Divehi" class="interlanguage-link-target"><span>ދިވެހިބަސް</span></a></li><li class="interlanguage-link interwiki-nv mw-list-item"><a href="https://nv.wikipedia.org/wiki/A%C5%82hii%CA%BCn%C3%ADn%C3%A1%CA%BCiidz%C3%B3%C3%B3h" title="Ałhiiʼnínáʼiidzóóh – Navajo" lang="nv" hreflang="nv" data-title="Ałhiiʼnínáʼiidzóóh" data-language-autonym="Diné bizaad" data-language-local-name="Navajo" class="interlanguage-link-target"><span>Diné bizaad</span></a></li><li class="interlanguage-link interwiki-dsb mw-list-item"><a href="https://dsb.wikipedia.org/wiki/Matematika" title="Matematika – Lower Sorbian" lang="dsb" hreflang="dsb" data-title="Matematika" data-language-autonym="Dolnoserbski" data-language-local-name="Lower Sorbian" class="interlanguage-link-target"><span>Dolnoserbski</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Matemaatika" title="Matemaatika – Estonian" lang="et" hreflang="et" data-title="Matemaatika" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC" title="Μαθηματικά – Greek" lang="el" hreflang="el" data-title="Μαθηματικά" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Matem%C3%A2tica" title="Matemâtica – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Matemâtica" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-myv mw-list-item"><a href="https://myv.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Erzya" lang="myv" hreflang="myv" data-title="Математика" data-language-autonym="Эрзянь" data-language-local-name="Erzya" class="interlanguage-link-target"><span>Эрзянь</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matem%C3%A1ticas" title="Matemáticas – Spanish" lang="es" hreflang="es" data-title="Matemáticas" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Matematiko" title="Matematiko – Esperanto" lang="eo" hreflang="eo" data-title="Matematiko" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Matem%C3%A1ticas" title="Matemáticas – Extremaduran" lang="ext" hreflang="ext" data-title="Matemáticas" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Matematika" title="Matematika – Basque" lang="eu" hreflang="eu" data-title="Matematika" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA" title="ریاضیات – Persian" lang="fa" hreflang="fa" data-title="ریاضیات" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Mathematics" title="Mathematics – Fiji Hindi" lang="hif" hreflang="hif" data-title="Mathematics" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/St%C3%B8ddfr%C3%B8%C3%B0i" title="Støddfrøði – Faroese" lang="fo" hreflang="fo" data-title="Støddfrøði" data-language-autonym="Føroyskt" data-language-local-name="Faroese" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Math%C3%A9matiques" title="Mathématiques – French" lang="fr" hreflang="fr" data-title="Mathématiques" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Wiskunde" title="Wiskunde – Western Frisian" lang="fy" hreflang="fy" data-title="Wiskunde" data-language-autonym="Frysk" data-language-local-name="Western Frisian" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-fur mw-list-item"><a href="https://fur.wikipedia.org/wiki/Matematiche" title="Matematiche – Friulian" lang="fur" hreflang="fur" data-title="Matematiche" data-language-autonym="Furlan" data-language-local-name="Friulian" class="interlanguage-link-target"><span>Furlan</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Matamaitic" title="Matamaitic – Irish" lang="ga" hreflang="ga" data-title="Matamaitic" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Maddaght" title="Maddaght – Manx" lang="gv" hreflang="gv" data-title="Maddaght" data-language-autonym="Gaelg" data-language-local-name="Manx" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Matamataig" title="Matamataig – Scottish Gaelic" lang="gd" hreflang="gd" data-title="Matamataig" data-language-autonym="Gàidhlig" data-language-local-name="Scottish Gaelic" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Matem%C3%A1ticas" title="Matemáticas – Galician" lang="gl" hreflang="gl" data-title="Matemáticas" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-inh mw-list-item"><a href="https://inh.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Ingush" lang="inh" hreflang="inh" data-title="Математика" data-language-autonym="ГӀалгӀай" data-language-local-name="Ingush" class="interlanguage-link-target"><span>ГӀалгӀай</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E6%95%B8%E5%AD%B8" title="數學 – Gan" lang="gan" hreflang="gan" data-title="數學" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%97%E0%AA%A3%E0%AA%BF%E0%AA%A4" title="ગણિત – Gujarati" lang="gu" hreflang="gu" data-title="ગણિત" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-gom mw-list-item"><a href="https://gom.wikipedia.org/wiki/%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4%E0%B3%8D" title="ಗಣಿತ್ – Goan Konkani" lang="gom" hreflang="gom" data-title="ಗಣಿತ್" data-language-autonym="गोंयची कोंकणी / Gõychi Konknni" data-language-local-name="Goan Konkani" class="interlanguage-link-target"><span>गोंयची कोंकणी / Gõychi Konknni</span></a></li><li class="interlanguage-link interwiki-hak mw-list-item"><a href="https://hak.wikipedia.org/wiki/Su-ho%CC%8Dk" title="Su-ho̍k – Hakka Chinese" lang="hak" hreflang="hak" data-title="Su-ho̍k" data-language-autonym="客家語 / Hak-kâ-ngî" data-language-local-name="Hakka Chinese" class="interlanguage-link-target"><span>客家語 / Hak-kâ-ngî</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Kalmyk" lang="xal" hreflang="xal" data-title="Математика" data-language-autonym="Хальмг" data-language-local-name="Kalmyk" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99" title="수학 – Korean" lang="ko" hreflang="ko" data-title="수학" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ha mw-list-item"><a href="https://ha.wikipedia.org/wiki/Lissafi" title="Lissafi – Hausa" lang="ha" hreflang="ha" data-title="Lissafi" data-language-autonym="Hausa" data-language-local-name="Hausa" class="interlanguage-link-target"><span>Hausa</span></a></li><li class="interlanguage-link interwiki-haw mw-list-item"><a href="https://haw.wikipedia.org/wiki/Makemakika" title="Makemakika – Hawaiian" lang="haw" hreflang="haw" data-title="Makemakika" data-language-autonym="Hawaiʻi" data-language-local-name="Hawaiian" class="interlanguage-link-target"><span>Hawaiʻi</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1" title="Մաթեմատիկա – Armenian" lang="hy" hreflang="hy" data-title="Մաթեմատիկա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="गणित – Hindi" lang="hi" hreflang="hi" data-title="गणित" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Matematika" title="Matematika – Croatian" lang="hr" hreflang="hr" data-title="Matematika" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-gor mw-list-item"><a href="https://gor.wikipedia.org/wiki/Matematika" title="Matematika – Gorontalo" lang="gor" hreflang="gor" data-title="Matematika" data-language-autonym="Bahasa Hulontalo" data-language-local-name="Gorontalo" class="interlanguage-link-target"><span>Bahasa Hulontalo</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Matematiko" title="Matematiko – Ido" lang="io" hreflang="io" data-title="Matematiko" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-ig mw-list-item"><a href="https://ig.wikipedia.org/wiki/%E1%BB%8Cm%C3%BAm%C3%BA-%C3%B3n%C3%BA%E1%BB%8Dg%E1%BB%A5g%E1%BB%A5" title="Ọmúmú-ónúọgụgụ – Igbo" lang="ig" hreflang="ig" data-title="Ọmúmú-ónúọgụgụ" data-language-autonym="Igbo" data-language-local-name="Igbo" class="interlanguage-link-target"><span>Igbo</span></a></li><li class="interlanguage-link interwiki-ilo mw-list-item"><a href="https://ilo.wikipedia.org/wiki/Matematika" title="Matematika – Iloko" lang="ilo" hreflang="ilo" data-title="Matematika" data-language-autonym="Ilokano" data-language-local-name="Iloko" class="interlanguage-link-target"><span>Ilokano</span></a></li><li class="interlanguage-link interwiki-bpy mw-list-item"><a href="https://bpy.wikipedia.org/wiki/%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4" title="গণিত – Bishnupriya" lang="bpy" hreflang="bpy" data-title="গণিত" data-language-autonym="বিষ্ণুপ্রিয়া মণিপুরী" data-language-local-name="Bishnupriya" class="interlanguage-link-target"><span>বিষ্ণুপ্রিয়া মণিপুরী</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Matematika" title="Matematika – Indonesian" lang="id" hreflang="id" data-title="Matematika" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://ia.wikipedia.org/wiki/Mathematica" title="Mathematica – Interlingua" lang="ia" hreflang="ia" data-title="Mathematica" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-ie mw-list-item"><a href="https://ie.wikipedia.org/wiki/Matematica" title="Matematica – Interlingue" lang="ie" hreflang="ie" data-title="Matematica" data-language-autonym="Interlingue" data-language-local-name="Interlingue" class="interlanguage-link-target"><span>Interlingue</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%C3%A6" title="Математикæ – Ossetic" lang="os" hreflang="os" data-title="Математикæ" data-language-autonym="Ирон" data-language-local-name="Ossetic" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-xh mw-list-item"><a href="https://xh.wikipedia.org/wiki/I-Mathematics" title="I-Mathematics – Xhosa" lang="xh" hreflang="xh" data-title="I-Mathematics" data-language-autonym="IsiXhosa" data-language-local-name="Xhosa" class="interlanguage-link-target"><span>IsiXhosa</span></a></li><li class="interlanguage-link interwiki-zu mw-list-item"><a href="https://zu.wikipedia.org/wiki/Umchazazibalo" title="Umchazazibalo – Zulu" lang="zu" hreflang="zu" data-title="Umchazazibalo" data-language-autonym="IsiZulu" data-language-local-name="Zulu" class="interlanguage-link-target"><span>IsiZulu</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/St%C3%A6r%C3%B0fr%C3%A6%C3%B0i" title="Stærðfræði – Icelandic" lang="is" hreflang="is" data-title="Stærðfræði" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Matematica" title="Matematica – Italian" lang="it" hreflang="it" data-title="Matematica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94" title="מתמטיקה – Hebrew" lang="he" hreflang="he" data-title="מתמטיקה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-jv badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://jv.wikipedia.org/wiki/Mat%C3%A9matika" title="Matématika – Javanese" lang="jv" hreflang="jv" data-title="Matématika" data-language-autonym="Jawa" data-language-local-name="Javanese" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-kl mw-list-item"><a href="https://kl.wikipedia.org/wiki/Matematikki" title="Matematikki – Kalaallisut" lang="kl" hreflang="kl" data-title="Matematikki" data-language-autonym="Kalaallisut" data-language-local-name="Kalaallisut" class="interlanguage-link-target"><span>Kalaallisut</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4" title="ಗಣಿತ – Kannada" lang="kn" hreflang="kn" data-title="ಗಣಿತ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-pam mw-list-item"><a href="https://pam.wikipedia.org/wiki/Matematica" title="Matematica – Pampanga" lang="pam" hreflang="pam" data-title="Matematica" data-language-autonym="Kapampangan" data-language-local-name="Pampanga" class="interlanguage-link-target"><span>Kapampangan</span></a></li><li class="interlanguage-link interwiki-krc mw-list-item"><a href="https://krc.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Karachay-Balkar" lang="krc" hreflang="krc" data-title="Математика" data-language-autonym="Къарачай-малкъар" data-language-local-name="Karachay-Balkar" class="interlanguage-link-target"><span>Къарачай-малкъар</span></a></li><li class="interlanguage-link interwiki-ka badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90" title="მათემატიკა – Georgian" lang="ka" hreflang="ka" data-title="მათემატიკა" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-ks mw-list-item"><a href="https://ks.wikipedia.org/wiki/%DA%AF%D8%B1%D9%9B%D8%A0%D9%86%D8%AF%D9%8F%D8%AA" title="گرٛؠندُت – Kashmiri" lang="ks" hreflang="ks" data-title="گرٛؠندُت" data-language-autonym="कॉशुर / کٲشُر" data-language-local-name="Kashmiri" class="interlanguage-link-target"><span>कॉशुर / کٲشُر</span></a></li><li class="interlanguage-link interwiki-csb mw-list-item"><a href="https://csb.wikipedia.org/wiki/Matematika" title="Matematika – Kashubian" lang="csb" hreflang="csb" data-title="Matematika" data-language-autonym="Kaszëbsczi" data-language-local-name="Kashubian" class="interlanguage-link-target"><span>Kaszëbsczi</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Kazakh" lang="kk" hreflang="kk" data-title="Математика" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Awgrym" title="Awgrym – Cornish" lang="kw" hreflang="kw" data-title="Awgrym" data-language-autonym="Kernowek" data-language-local-name="Cornish" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Hisabati" title="Hisabati – Swahili" lang="sw" hreflang="sw" data-title="Hisabati" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-avk mw-list-item"><a href="https://avk.wikipedia.org/wiki/Solokseropa" title="Solokseropa – Kotava" lang="avk" hreflang="avk" data-title="Solokseropa" data-language-autonym="Kotava" data-language-local-name="Kotava" class="interlanguage-link-target"><span>Kotava</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Matematik" title="Matematik – Haitian Creole" lang="ht" hreflang="ht" data-title="Matematik" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Mat%C3%A9matik" title="Matématik – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Matématik" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Matemat%C3%AEk" title="Matematîk – Kurdish" lang="ku" hreflang="ku" data-title="Matematîk" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BC%D0%BE/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Википедия:Сомо/Математика – Kyrgyz" lang="ky" hreflang="ky" data-title="Википедия:Сомо/Математика" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lld mw-list-item"><a href="https://lld.wikipedia.org/wiki/Matematica" title="Matematica – Ladin" lang="lld" hreflang="lld" data-title="Matematica" data-language-autonym="Ladin" data-language-local-name="Ladin" class="interlanguage-link-target"><span>Ladin</span></a></li><li class="interlanguage-link interwiki-lad mw-list-item"><a href="https://lad.wikipedia.org/wiki/Matem%C3%A1tika" title="Matemátika – Ladino" lang="lad" hreflang="lad" data-title="Matemátika" data-language-autonym="Ladino" data-language-local-name="Ladino" class="interlanguage-link-target"><span>Ladino</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%84%E0%BA%B0%E0%BA%99%E0%BA%B4%E0%BA%94%E0%BA%AA%E0%BA%B2%E0%BA%94" title="ຄະນິດສາດ – Lao" lang="lo" hreflang="lo" data-title="ຄະນິດສາດ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://la.wikipedia.org/wiki/Mathematica" title="Mathematica – Latin" lang="la" hreflang="la" data-title="Mathematica" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Matem%C4%81tika" title="Matemātika – Latvian" lang="lv" hreflang="lv" data-title="Matemātika" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Mathematik" title="Mathematik – Luxembourgish" lang="lb" hreflang="lb" data-title="Mathematik" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lez mw-list-item"><a href="https://lez.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Lezghian" lang="lez" hreflang="lez" data-title="Математика" data-language-autonym="Лезги" data-language-local-name="Lezghian" class="interlanguage-link-target"><span>Лезги</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Matematika" title="Matematika – Lithuanian" lang="lt" hreflang="lt" data-title="Matematika" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-nia mw-list-item"><a href="https://nia.wikipedia.org/wiki/Matematika" title="Matematika – Nias" lang="nia" hreflang="nia" data-title="Matematika" data-language-autonym="Li Niha" data-language-local-name="Nias" class="interlanguage-link-target"><span>Li Niha</span></a></li><li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://lij.wikipedia.org/wiki/Matematica" title="Matematica – Ligurian" lang="lij" hreflang="lij" data-title="Matematica" data-language-autonym="Ligure" data-language-local-name="Ligurian" class="interlanguage-link-target"><span>Ligure</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Mathematiek" title="Mathematiek – Limburgish" lang="li" hreflang="li" data-title="Mathematiek" data-language-autonym="Limburgs" data-language-local-name="Limburgish" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Matematica" title="Matematica – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Matematica" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-olo mw-list-item"><a href="https://olo.wikipedia.org/wiki/Matematiekku" title="Matematiekku – Livvi-Karelian" lang="olo" hreflang="olo" data-title="Matematiekku" data-language-autonym="Livvinkarjala" data-language-local-name="Livvi-Karelian" class="interlanguage-link-target"><span>Livvinkarjala</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/cmaci" title="cmaci – Lojban" lang="jbo" hreflang="jbo" data-title="cmaci" data-language-autonym="La .lojban." data-language-local-name="Lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-lg mw-list-item"><a href="https://lg.wikipedia.org/wiki/Ekibalangulo" title="Ekibalangulo – Ganda" lang="lg" hreflang="lg" data-title="Ekibalangulo" data-language-autonym="Luganda" data-language-local-name="Ganda" class="interlanguage-link-target"><span>Luganda</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Matematega" title="Matematega – Lombard" lang="lmo" hreflang="lmo" data-title="Matematega" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Matematika" title="Matematika – Hungarian" lang="hu" hreflang="hu" data-title="Matematika" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mad mw-list-item"><a href="https://mad.wikipedia.org/wiki/Matematika" title="Matematika – Madurese" lang="mad" hreflang="mad" data-title="Matematika" data-language-autonym="Madhurâ" data-language-local-name="Madurese" class="interlanguage-link-target"><span>Madhurâ</span></a></li><li class="interlanguage-link interwiki-mai mw-list-item"><a href="https://mai.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="गणित – Maithili" lang="mai" hreflang="mai" data-title="गणित" data-language-autonym="मैथिली" data-language-local-name="Maithili" class="interlanguage-link-target"><span>मैथिली</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Macedonian" lang="mk" hreflang="mk" data-title="Математика" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Matematika" title="Matematika – Malagasy" lang="mg" hreflang="mg" data-title="Matematika" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%97%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%82" title="ഗണിതം – Malayalam" lang="ml" hreflang="ml" data-title="ഗണിതം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Matematika" title="Matematika – Maltese" lang="mt" hreflang="mt" data-title="Matematika" data-language-autonym="Malti" data-language-local-name="Maltese" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="गणित – Marathi" lang="mr" hreflang="mr" data-title="गणित" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90" title="მათემატიკა – Mingrelian" lang="xmf" hreflang="xmf" data-title="მათემატიკა" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA" title="رياضيات – Egyptian Arabic" lang="arz" hreflang="arz" data-title="رياضيات" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-mnw mw-list-item"><a href="https://mnw.wikipedia.org/wiki/%E1%80%9E%E1%81%9A%E1%80%BA%E1%80%B9%E1%80%81%E1%80%BB%E1%80%AC" title="သၚ်္ချာ – Mon" lang="mnw" hreflang="mnw" data-title="သၚ်္ချာ" data-language-autonym="ဘာသာမန်" data-language-local-name="Mon" class="interlanguage-link-target"><span>ဘာသာမန်</span></a></li><li class="interlanguage-link interwiki-mzn mw-list-item"><a href="https://mzn.wikipedia.org/wiki/%D8%B1%D9%82%D9%85" title="رقم – Mazanderani" lang="mzn" hreflang="mzn" data-title="رقم" data-language-autonym="مازِرونی" data-language-local-name="Mazanderani" class="interlanguage-link-target"><span>مازِرونی</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Matematik" title="Matematik – Malay" lang="ms" hreflang="ms" data-title="Matematik" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mni mw-list-item"><a href="https://mni.wikipedia.org/wiki/%EA%AF%86%EA%AF%A9%EA%AF%81%EA%AF%A4%EA%AF%A1%EA%AF%82%EA%AF%A3%EA%AF%9F" title="ꯆꯩꯁꯤꯡꯂꯣꯟ – Manipuri" lang="mni" hreflang="mni" data-title="ꯆꯩꯁꯤꯡꯂꯣꯟ" data-language-autonym="ꯃꯤꯇꯩ ꯂꯣꯟ" data-language-local-name="Manipuri" class="interlanguage-link-target"><span>ꯃꯤꯇꯩ ꯂꯣꯟ</span></a></li><li class="interlanguage-link interwiki-min mw-list-item"><a href="https://min.wikipedia.org/wiki/Matematika" title="Matematika – Minangkabau" lang="min" hreflang="min" data-title="Matematika" data-language-autonym="Minangkabau" data-language-local-name="Minangkabau" class="interlanguage-link-target"><span>Minangkabau</span></a></li><li class="interlanguage-link interwiki-cdo mw-list-item"><a href="https://cdo.wikipedia.org/wiki/S%C3%B3-h%C5%8Fk" title="Só-hŏk – Mindong" lang="cdo" hreflang="cdo" data-title="Só-hŏk" data-language-autonym="閩東語 / Mìng-dĕ̤ng-ngṳ̄" data-language-local-name="Mindong" class="interlanguage-link-target"><span>閩東語 / Mìng-dĕ̤ng-ngṳ̄</span></a></li><li class="interlanguage-link interwiki-mwl mw-list-item"><a href="https://mwl.wikipedia.org/wiki/Matem%C3%A1tica" title="Matemática – Mirandese" lang="mwl" hreflang="mwl" data-title="Matemática" data-language-autonym="Mirandés" data-language-local-name="Mirandese" class="interlanguage-link-target"><span>Mirandés</span></a></li><li class="interlanguage-link interwiki-mn badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://mn.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA" title="Математик – Mongolian" lang="mn" hreflang="mn" data-title="Математик" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9E%E1%80%84%E1%80%BA%E1%80%B9%E1%80%81%E1%80%BB%E1%80%AC" title="သင်္ချာ – Burmese" lang="my" hreflang="my" data-title="သင်္ချာ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nah mw-list-item"><a href="https://nah.wikipedia.org/wiki/Tlap%C5%8Dhualmatiliztli" title="Tlapōhualmatiliztli – Nahuatl" lang="nah" hreflang="nah" data-title="Tlapōhualmatiliztli" data-language-autonym="Nāhuatl" data-language-local-name="Nahuatl" class="interlanguage-link-target"><span>Nāhuatl</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Fika" title="Fika – Fijian" lang="fj" hreflang="fj" data-title="Fika" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="Fijian" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Wiskunde" title="Wiskunde – Dutch" lang="nl" hreflang="nl" data-title="Wiskunde" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nds-nl mw-list-item"><a href="https://nds-nl.wikipedia.org/wiki/Wiskunde" title="Wiskunde – Low Saxon" lang="nds-NL" hreflang="nds-NL" data-title="Wiskunde" data-language-autonym="Nedersaksies" data-language-local-name="Low Saxon" class="interlanguage-link-target"><span>Nedersaksies</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="गणित – Nepali" lang="ne" hreflang="ne" data-title="गणित" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%B2%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%83%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="ल्याःज्या – Newari" lang="new" hreflang="new" data-title="ल्याःज्या" data-language-autonym="नेपाल भाषा" data-language-local-name="Newari" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6" title="数学 – Japanese" lang="ja" hreflang="ja" data-title="数学" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ce mw-list-item"><a href="https://ce.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Chechen" lang="ce" hreflang="ce" data-title="Математика" data-language-autonym="Нохчийн" data-language-local-name="Chechen" class="interlanguage-link-target"><span>Нохчийн</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Matematiik" title="Matematiik – Northern Frisian" lang="frr" hreflang="frr" data-title="Matematiik" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-pih mw-list-item"><a href="https://pih.wikipedia.org/wiki/Maethamatiks" title="Maethamatiks – Norfuk / Pitkern" lang="pih" hreflang="pih" data-title="Maethamatiks" data-language-autonym="Norfuk / Pitkern" data-language-local-name="Norfuk / Pitkern" class="interlanguage-link-target"><span>Norfuk / Pitkern</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Matematikk" title="Matematikk – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Matematikk" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Matematikk" title="Matematikk – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-nrm mw-list-item"><a href="https://nrm.wikipedia.org/wiki/Caltchul" title="Caltchul – Norman" lang="nrf" hreflang="nrf" data-title="Caltchul" data-language-autonym="Nouormand" data-language-local-name="Norman" class="interlanguage-link-target"><span>Nouormand</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Matematike" title="Matematike – Novial" lang="nov" hreflang="nov" data-title="Matematike" data-language-autonym="Novial" data-language-local-name="Novial" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Matematicas" title="Matematicas – Occitan" lang="oc" hreflang="oc" data-title="Matematicas" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B5" title="Математике – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Математике" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%97%E0%AC%A3%E0%AC%BF%E0%AC%A4" title="ଗଣିତ – Odia" lang="or" hreflang="or" data-title="ଗଣିତ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Herrega" title="Herrega – Oromo" lang="om" hreflang="om" data-title="Herrega" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Matematika" title="Matematika – Uzbek" lang="uz" hreflang="uz" data-title="Matematika" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%97%E0%A8%A3%E0%A8%BF%E0%A8%A4" title="ਗਣਿਤ – Punjabi" lang="pa" hreflang="pa" data-title="ਗਣਿਤ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pi mw-list-item"><a href="https://pi.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A4%82" title="गणितं – Pali" lang="pi" hreflang="pi" data-title="गणितं" data-language-autonym="पालि" data-language-local-name="Pali" class="interlanguage-link-target"><span>पालि</span></a></li><li class="interlanguage-link interwiki-pag mw-list-item"><a href="https://pag.wikipedia.org/wiki/Matematiks" title="Matematiks – Pangasinan" lang="pag" hreflang="pag" data-title="Matematiks" data-language-autonym="Pangasinan" data-language-local-name="Pangasinan" class="interlanguage-link-target"><span>Pangasinan</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C" title="ریاضی – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ریاضی" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-blk mw-list-item"><a href="https://blk.wikipedia.org/wiki/%E1%80%9E%E1%80%84%E1%80%BA%E1%80%B9%E1%80%81%E1%80%BB%E1%80%AC" title="သင်္ချာ – Pa&#039;O" lang="blk" hreflang="blk" data-title="သင်္ချာ" data-language-autonym="ပအိုဝ်ႏဘာႏသာႏ" data-language-local-name="Pa&#039;O" class="interlanguage-link-target"><span>ပအိုဝ်ႏဘာႏသာႏ</span></a></li><li class="interlanguage-link interwiki-pap mw-list-item"><a href="https://pap.wikipedia.org/wiki/Matem%C3%A1tika" title="Matemátika – Papiamento" lang="pap" hreflang="pap" data-title="Matemátika" data-language-autonym="Papiamentu" data-language-local-name="Papiamento" class="interlanguage-link-target"><span>Papiamentu</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D8%B4%D9%85%DB%90%D8%B1%D9%BE%D9%88%D9%87%D9%86%D9%87" title="شمېرپوهنه – Pashto" lang="ps" hreflang="ps" data-title="شمېرپوهنه" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Matimatix" title="Matimatix – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Matimatix" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%82%E1%9E%8E%E1%9E%B7%E1%9E%8F%E1%9E%9C%E1%9E%B7%E1%9E%91%E1%9F%92%E1%9E%99%E1%9E%B6" title="គណិតវិទ្យា – Khmer" lang="km" hreflang="km" data-title="គណិតវិទ្យា" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pcd mw-list-item"><a href="https://pcd.wikipedia.org/wiki/Mat%C3%A9matikes" title="Matématikes – Picard" lang="pcd" hreflang="pcd" data-title="Matématikes" data-language-autonym="Picard" data-language-local-name="Picard" class="interlanguage-link-target"><span>Picard</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Matem%C3%A0tica" title="Matemàtica – Piedmontese" lang="pms" hreflang="pms" data-title="Matemàtica" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-tpi mw-list-item"><a href="https://tpi.wikipedia.org/wiki/Ol_matematik" title="Ol matematik – Tok Pisin" lang="tpi" hreflang="tpi" data-title="Ol matematik" data-language-autonym="Tok Pisin" data-language-local-name="Tok Pisin" class="interlanguage-link-target"><span>Tok Pisin</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Mathematik" title="Mathematik – Low German" lang="nds" hreflang="nds" data-title="Mathematik" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Matematyka" title="Matematyka – Polish" lang="pl" hreflang="pl" data-title="Matematyka" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Matem%C3%A1tica" title="Matemática – Portuguese" lang="pt" hreflang="pt" data-title="Matemática" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Matematika" title="Matematika – Kara-Kalpak" lang="kaa" hreflang="kaa" data-title="Matematika" data-language-autonym="Qaraqalpaqsha" data-language-local-name="Kara-Kalpak" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-crh mw-list-item"><a href="https://crh.wikipedia.org/wiki/Riyaziyat" title="Riyaziyat – Crimean Tatar" lang="crh" hreflang="crh" data-title="Riyaziyat" data-language-autonym="Qırımtatarca" data-language-local-name="Crimean Tatar" class="interlanguage-link-target"><span>Qırımtatarca</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Matematic%C4%83" title="Matematică – Romanian" lang="ro" hreflang="ro" data-title="Matematică" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Yupay_yachay" title="Yupay yachay – Quechua" lang="qu" hreflang="qu" data-title="Yupay yachay" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D1%96%D0%BA%D0%B0" title="Математіка – Rusyn" lang="rue" hreflang="rue" data-title="Математіка" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Russian" lang="ru" hreflang="ru" data-title="Математика" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Yakut" lang="sah" hreflang="sah" data-title="Математика" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sm mw-list-item"><a href="https://sm.wikipedia.org/wiki/Matematika" title="Matematika – Samoan" lang="sm" hreflang="sm" data-title="Matematika" data-language-autonym="Gagana Samoa" data-language-local-name="Samoan" class="interlanguage-link-target"><span>Gagana Samoa</span></a></li><li class="interlanguage-link interwiki-sa mw-list-item"><a href="https://sa.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A4%AE%E0%A5%8D" title="गणितम् – Sanskrit" lang="sa" hreflang="sa" data-title="गणितम्" data-language-autonym="संस्कृतम्" data-language-local-name="Sanskrit" class="interlanguage-link-target"><span>संस्कृतम्</span></a></li><li class="interlanguage-link interwiki-sat mw-list-item"><a href="https://sat.wikipedia.org/wiki/%E1%B1%AE%E1%B1%9E%E1%B1%A0%E1%B1%B7%E1%B1%9F" title="ᱮᱞᱠᱷᱟ – Santali" lang="sat" hreflang="sat" data-title="ᱮᱞᱠᱷᱟ" data-language-autonym="ᱥᱟᱱᱛᱟᱲᱤ" data-language-local-name="Santali" class="interlanguage-link-target"><span>ᱥᱟᱱᱛᱟᱲᱤ</span></a></li><li class="interlanguage-link interwiki-skr mw-list-item"><a href="https://skr.wikipedia.org/wiki/%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C" title="ریاضی – Saraiki" lang="skr" hreflang="skr" data-title="ریاضی" data-language-autonym="سرائیکی" data-language-local-name="Saraiki" class="interlanguage-link-target"><span>سرائیکی</span></a></li><li class="interlanguage-link interwiki-sc badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://sc.wikipedia.org/wiki/Matem%C3%A0tica" title="Matemàtica – Sardinian" lang="sc" hreflang="sc" data-title="Matemàtica" data-language-autonym="Sardu" data-language-local-name="Sardinian" class="interlanguage-link-target"><span>Sardu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Mathematics" title="Mathematics – Scots" lang="sco" hreflang="sco" data-title="Mathematics" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-stq mw-list-item"><a href="https://stq.wikipedia.org/wiki/Mathematik" title="Mathematik – Saterland Frisian" lang="stq" hreflang="stq" data-title="Mathematik" data-language-autonym="Seeltersk" data-language-local-name="Saterland Frisian" class="interlanguage-link-target"><span>Seeltersk</span></a></li><li class="interlanguage-link interwiki-tn mw-list-item"><a href="https://tn.wikipedia.org/wiki/Dipalo" title="Dipalo – Tswana" lang="tn" hreflang="tn" data-title="Dipalo" data-language-autonym="Setswana" data-language-local-name="Tswana" class="interlanguage-link-target"><span>Setswana</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Matematika" title="Matematika – Albanian" lang="sq" hreflang="sq" data-title="Matematika" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Matim%C3%A0tica" title="Matimàtica – Sicilian" lang="scn" hreflang="scn" data-title="Matimàtica" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%9C%E0%B6%AB%E0%B7%92%E0%B6%AD%E0%B6%BA" title="ගණිතය – Sinhala" lang="si" hreflang="si" data-title="ගණිතය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Mathematics" title="Mathematics – Simple English" lang="en-simple" hreflang="en-simple" data-title="Mathematics" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A" title="رياضي – Sindhi" lang="sd" hreflang="sd" data-title="رياضي" data-language-autonym="سنڌي" data-language-local-name="Sindhi" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-ss mw-list-item"><a href="https://ss.wikipedia.org/wiki/Tekubala" title="Tekubala – Swati" lang="ss" hreflang="ss" data-title="Tekubala" data-language-autonym="SiSwati" data-language-local-name="Swati" class="interlanguage-link-target"><span>SiSwati</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Matematika" title="Matematika – Slovak" lang="sk" hreflang="sk" data-title="Matematika" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Matematika" title="Matematika – Slovenian" lang="sl" hreflang="sl" data-title="Matematika" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-cu mw-list-item"><a href="https://cu.wikipedia.org/wiki/%D0%9C%D0%B0%D1%B3%D0%B8%D0%BC%D0%B0%D1%82%D1%97%D0%BA%D0%B0" title="Маѳиматїка – Church Slavic" lang="cu" hreflang="cu" data-title="Маѳиматїка" data-language-autonym="Словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ" data-language-local-name="Church Slavic" class="interlanguage-link-target"><span>Словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Matymatyka" title="Matymatyka – Silesian" lang="szl" hreflang="szl" data-title="Matymatyka" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Tiromaal" title="Tiromaal – Somali" lang="so" hreflang="so" data-title="Tiromaal" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9" title="ماتماتیک – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ماتماتیک" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-srn mw-list-item"><a href="https://srn.wikipedia.org/wiki/Sabi_fu_Teri" title="Sabi fu Teri – Sranan Tongo" lang="srn" hreflang="srn" data-title="Sabi fu Teri" data-language-autonym="Sranantongo" data-language-local-name="Sranan Tongo" class="interlanguage-link-target"><span>Sranantongo</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Serbian" lang="sr" hreflang="sr" data-title="Математика" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Matematika" title="Matematika – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Matematika" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Matematika" title="Matematika – Sundanese" lang="su" hreflang="su" data-title="Matematika" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Matematiikka" title="Matematiikka – Finnish" lang="fi" hreflang="fi" data-title="Matematiikka" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Matematik" title="Matematik – Swedish" lang="sv" hreflang="sv" data-title="Matematik" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Matematika" title="Matematika – Tagalog" lang="tl" hreflang="tl" data-title="Matematika" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D" title="கணிதம் – Tamil" lang="ta" hreflang="ta" data-title="கணிதம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/Tusnakt" title="Tusnakt – Tachelhit" lang="shi" hreflang="shi" data-title="Tusnakt" data-language-autonym="Taclḥit" data-language-local-name="Tachelhit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tusnakt" title="Tusnakt – Kabyle" lang="kab" hreflang="kab" data-title="Tusnakt" data-language-autonym="Taqbaylit" data-language-local-name="Kabyle" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Tatar" lang="tt" hreflang="tt" data-title="Математика" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%97%E0%B0%A3%E0%B0%BF%E0%B0%A4%E0%B0%82" title="గణితం – Telugu" lang="te" hreflang="te" data-title="గణితం" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tet mw-list-item"><a href="https://tet.wikipedia.org/wiki/Matem%C3%A1tika" title="Matemátika – Tetum" lang="tet" hreflang="tet" data-title="Matemátika" data-language-autonym="Tetun" data-language-local-name="Tetum" class="interlanguage-link-target"><span>Tetun</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C" title="คณิตศาสตร์ – Thai" lang="th" hreflang="th" data-title="คณิตศาสตร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-din mw-list-item"><a href="https://din.wikipedia.org/wiki/Aku%C3%ABnk%C3%A4%C5%8B" title="Akuënkäŋ – Dinka" lang="din" hreflang="din" data-title="Akuënkäŋ" data-language-autonym="Thuɔŋjäŋ" data-language-local-name="Dinka" class="interlanguage-link-target"><span>Thuɔŋjäŋ</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%A0%D0%B8%D1%91%D0%B7%D0%B8%D1%91%D1%82" title="Риёзиёт – Tajik" lang="tg" hreflang="tg" data-title="Риёзиёт" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tcy mw-list-item"><a href="https://tcy.wikipedia.org/wiki/%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4" title="ಗಣಿತ – Tulu" lang="tcy" hreflang="tcy" data-title="ಗಣಿತ" data-language-autonym="ತುಳು" data-language-local-name="Tulu" class="interlanguage-link-target"><span>ತುಳು</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Matematik" title="Matematik – Turkish" lang="tr" hreflang="tr" data-title="Matematik" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Matematika" title="Matematika – Turkmen" lang="tk" hreflang="tk" data-title="Matematika" data-language-autonym="Türkmençe" data-language-local-name="Turkmen" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-udm mw-list-item"><a href="https://udm.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Udmurt" lang="udm" hreflang="udm" data-title="Математика" data-language-autonym="Удмурт" data-language-local-name="Udmurt" class="interlanguage-link-target"><span>Удмурт</span></a></li><li class="interlanguage-link interwiki-bug mw-list-item"><a href="https://bug.wikipedia.org/wiki/%E1%A8%86%E1%A8%88%E1%A8%9B%E1%A8%86%E1%A8%88%E1%A8%97%E1%A8%80" title="ᨆᨈᨛᨆᨈᨗᨀ – Buginese" lang="bug" hreflang="bug" data-title="ᨆᨈᨛᨆᨈᨗᨀ" data-language-autonym="Basa Ugi" data-language-local-name="Buginese" class="interlanguage-link-target"><span>Basa Ugi</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Математика – Ukrainian" lang="uk" hreflang="uk" data-title="Математика" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C" title="ریاضی – Urdu" lang="ur" hreflang="ur" data-title="ریاضی" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-za mw-list-item"><a href="https://za.wikipedia.org/wiki/Soqyoz" title="Soqyoz – Zhuang" lang="za" hreflang="za" data-title="Soqyoz" data-language-autonym="Vahcuengh" data-language-local-name="Zhuang" class="interlanguage-link-target"><span>Vahcuengh</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Matem%C3%A0tega" title="Matemàtega – Venetian" lang="vec" hreflang="vec" data-title="Matemàtega" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Matematik" title="Matematik – Veps" lang="vep" hreflang="vep" data-title="Matematik" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://vi.wikipedia.org/wiki/To%C3%A1n_h%E1%BB%8Dc" title="Toán học – Vietnamese" lang="vi" hreflang="vi" data-title="Toán học" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vo badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://vo.wikipedia.org/wiki/Matemat" title="Matemat – Volapük" lang="vo" hreflang="vo" data-title="Matemat" data-language-autonym="Volapük" data-language-local-name="Volapük" class="interlanguage-link-target"><span>Volapük</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Mat%C3%B5maatiga" title="Matõmaatiga – Võro" lang="vro" hreflang="vro" data-title="Matõmaatiga" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-wa mw-list-item"><a href="https://wa.wikipedia.org/wiki/Matematike" title="Matematike – Walloon" lang="wa" hreflang="wa" data-title="Matematike" data-language-autonym="Walon" data-language-local-name="Walloon" class="interlanguage-link-target"><span>Walon</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%95%B8%E5%AD%B8" title="數學 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="數學" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Wiskunde" title="Wiskunde – West Flemish" lang="vls" hreflang="vls" data-title="Wiskunde" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Matematika" title="Matematika – Waray" lang="war" hreflang="war" data-title="Matematika" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wo mw-list-item"><a href="https://wo.wikipedia.org/wiki/Xayma" title="Xayma – Wolof" lang="wo" hreflang="wo" data-title="Xayma" data-language-autonym="Wolof" data-language-local-name="Wolof" class="interlanguage-link-target"><span>Wolof</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6" title="数学 – Wu" lang="wuu" hreflang="wuu" data-title="数学" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-ts mw-list-item"><a href="https://ts.wikipedia.org/wiki/Dyondzo-Tinhlayo" title="Dyondzo-Tinhlayo – Tsonga" lang="ts" hreflang="ts" data-title="Dyondzo-Tinhlayo" data-language-autonym="Xitsonga" data-language-local-name="Tsonga" class="interlanguage-link-target"><span>Xitsonga</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%9E%D7%90%D7%98%D7%A2%D7%9E%D7%90%D7%98%D7%99%D7%A7" title="מאטעמאטיק – Yiddish" lang="yi" hreflang="yi" data-title="מאטעמאטיק" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/Mathim%C3%A1t%C3%ADk%C3%AC" title="Mathimátíkì – Yoruba" lang="yo" hreflang="yo" data-title="Mathimátíkì" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%95%B8%E5%AD%B8" title="數學 – Cantonese" lang="yue" hreflang="yue" data-title="數學" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Matematik" title="Matematik – Zazaki" lang="diq" hreflang="diq" data-title="Matematik" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-zea mw-list-item"><a href="https://zea.wikipedia.org/wiki/Wiskunde" title="Wiskunde – Zeelandic" lang="zea" hreflang="zea" data-title="Wiskunde" data-language-autonym="Zeêuws" data-language-local-name="Zeelandic" class="interlanguage-link-target"><span>Zeêuws</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Matemat%C4%97ka" title="Matematėka – Samogitian" lang="sgs" hreflang="sgs" data-title="Matematėka" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6" title="数学 – Chinese" lang="zh" hreflang="zh" data-title="数学" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-dtp mw-list-item"><a href="https://dtp.wikipedia.org/wiki/Matematik" title="Matematik – Central Dusun" lang="dtp" hreflang="dtp" data-title="Matematik" data-language-autonym="Kadazandusun" data-language-local-name="Central Dusun" class="interlanguage-link-target"><span>Kadazandusun</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Matematik" title="Matematik – Iban" lang="iba" hreflang="iba" data-title="Matematik" data-language-autonym="Jaku Iban" data-language-local-name="Iban" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-kge mw-list-item"><a href="https://kge.wikipedia.org/wiki/Matematika" title="Matematika – Komering" lang="kge" hreflang="kge" data-title="Matematika" data-language-autonym="Kumoring" data-language-local-name="Komering" class="interlanguage-link-target"><span>Kumoring</span></a></li><li class="interlanguage-link interwiki-tdd mw-list-item"><a href="https://tdd.wikipedia.org/wiki/%E1%A5%99%E1%A5%A3%E1%A5%AD%E1%A5%B0_%E1%A5%98%E1%A5%99%E1%A5%B3" title="ᥙᥣᥭᥰ ᥘᥙᥳ – Tai Nuea" lang="tdd" hreflang="tdd" data-title="ᥙᥣᥭᥰ ᥘᥙᥳ" data-language-autonym="ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ" data-language-local-name="Tai Nuea" class="interlanguage-link-target"><span>ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ</span></a></li><li class="interlanguage-link interwiki-tly mw-list-item"><a href="https://tly.wikipedia.org/wiki/Rijozijot" title="Rijozijot – Talysh" lang="tly" hreflang="tly" data-title="Rijozijot" data-language-autonym="Tolışi" data-language-local-name="Talysh" class="interlanguage-link-target"><span>Tolışi</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B5%9C%E2%B5%93%E2%B5%99%E2%B5%8F%E2%B4%B0%E2%B4%BD%E2%B5%9C" title="ⵜⵓⵙⵏⴰⴽⵜ – Standard Moroccan Tamazight" lang="zgh" hreflang="zgh" data-title="ⵜⵓⵙⵏⴰⴽⵜ" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="Standard Moroccan Tamazight" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q395#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Mathematics" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Mathematics" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Mathematics"><span>Read</span></a></li><li id="ca-viewsource" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mathematics&amp;action=edit" title="This page is protected.&#10;You can view its source [e]" accesskey="e"><span>View source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mathematics&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Mathematics"><span>Read</span></a></li><li id="ca-more-viewsource" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mathematics&amp;action=edit"><span>View source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mathematics&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Mathematics" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Mathematics" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Mathematics&amp;oldid=1259797230" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Mathematics&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Mathematics&amp;id=1259797230&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMathematics"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMathematics"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Mathematics&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Mathematics&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Mathematics" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Shelf:Mathematics" hreflang="en"><span>Wikibooks</span></a></li><li class="wb-otherproject-link wb-otherproject-wikinews mw-list-item"><a href="https://en.wikinews.org/wiki/Category:Mathematics" hreflang="en"><span>Wikinews</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Mathematics" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q395" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-pp-default" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#semi" title="This article is semi-protected."><img alt="Page semi-protected" src="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/20px-Semi-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/30px-Semi-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/40px-Semi-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Area of knowledge</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Math" and "Maths" redirect here. For other uses, see <a href="/wiki/Mathematics_(disambiguation)" class="mw-disambig" title="Mathematics (disambiguation)">Mathematics (disambiguation)</a> and <a href="/wiki/Math_(disambiguation)" class="mw-disambig" title="Math (disambiguation)">Math (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle"><a class="mw-selflink selflink">Mathematics</a></th></tr><tr><td class="sidebar-above" style="padding-bottom:0.35em;"> <ul><li><a href="/wiki/History_of_mathematics" title="History of mathematics">History</a></li> <li><a href="/wiki/Lists_of_mathematics_topics" title="Lists of mathematics topics">Index</a></li></ul></td></tr><tr><td class="sidebar-content-with-subgroup"> <table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="border-top:1px solid #aaa;background:#ddddff;text-align:center;;color: var(--color-base)"><a href="/wiki/Areas_of_mathematics" class="mw-redirect" title="Areas of mathematics">Areas</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Number_theory" title="Number theory">Number theory</a></li> <li><a href="/wiki/Geometry" title="Geometry">Geometry</a></li> <li><a href="/wiki/Algebra" title="Algebra">Algebra</a></li> <li><a href="/wiki/Calculus" title="Calculus">Calculus</a> and <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Analysis</a></li> <li><a href="/wiki/Discrete_mathematics" title="Discrete mathematics">Discrete mathematics</a></li> <li><a href="/wiki/Mathematical_logic" title="Mathematical logic">Logic</a> and <a href="/wiki/Set_theory" title="Set theory">Set theory</a></li> <li><a href="/wiki/Probability" title="Probability">Probability</a></li> <li><a href="/wiki/Statistics" title="Statistics">Statistics</a> and <a href="/wiki/Decision_theory" title="Decision theory">Decision theory</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="border-top:1px solid #aaa;background:#ddddff;text-align:center;;color: var(--color-base)">Relationship with sciences</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Mathematical_physics" title="Mathematical physics">Physics</a></li> <li><a href="/wiki/Mathematical_chemistry" title="Mathematical chemistry">Chemistry</a></li> <li><a href="/wiki/Geomathematics" title="Geomathematics">Geosciences</a></li> <li><a href="/wiki/Computational_mathematics" title="Computational mathematics">Computation</a></li> <li><a href="/wiki/Mathematical_and_theoretical_biology" title="Mathematical and theoretical biology">Biology</a></li> <li><a href="/wiki/Computational_linguistics" title="Computational linguistics">Linguistics</a></li> <li><a href="/wiki/Mathematical_economics" title="Mathematical economics">Economics</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy</a></li> <li><a href="/wiki/Mathematics_education" title="Mathematics education">Education</a></li></ul></div></div></td> </tr></tbody></table></td> </tr><tr><th class="sidebar-heading"> <span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/20px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/30px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/40px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> <a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics Portal</a></th></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Math_topics_sidebar" title="Template:Math topics sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Math_topics_sidebar" title="Template talk:Math topics sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Math_topics_sidebar" title="Special:EditPage/Template:Math topics sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Mathematics</b> is a field of study that discovers and organizes methods, <a href="/wiki/Mathematical_theory" class="mw-redirect" title="Mathematical theory">theories</a> and <a href="/wiki/Theorem" title="Theorem">theorems</a> that are developed and <a href="/wiki/Mathematical_proof" title="Mathematical proof">proved</a> for the needs of <a href="/wiki/Empirical_sciences" class="mw-redirect" title="Empirical sciences">empirical sciences</a> and mathematics itself. There are many areas of mathematics, which include <a href="/wiki/Number_theory" title="Number theory">number theory</a> (the study of numbers), <a href="/wiki/Algebra" title="Algebra">algebra</a> (the study of formulas and related structures), <a href="/wiki/Geometry" title="Geometry">geometry</a> (the study of shapes and spaces that contain them), <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">analysis</a> (the study of continuous changes), and <a href="/wiki/Set_theory" title="Set theory">set theory</a> (presently used as a foundation for all mathematics). </p><p>Mathematics involves the description and manipulation of <a href="/wiki/Mathematical_object" title="Mathematical object">abstract objects</a> that consist of either <a href="/wiki/Abstraction_(mathematics)" title="Abstraction (mathematics)">abstractions</a> from nature or—in modern mathematics—purely abstract entities that are stipulated to have certain properties, called <a href="/wiki/Axiom" title="Axiom">axioms</a>. Mathematics uses pure <a href="/wiki/Reason" title="Reason">reason</a> to <a href="/wiki/Proof_(mathematics)" class="mw-redirect" title="Proof (mathematics)">prove</a> properties of objects, a <i>proof</i> consisting of a succession of applications of <a href="/wiki/Inference_rule" class="mw-redirect" title="Inference rule">deductive rules</a> to already established results. These results include previously proved <a href="/wiki/Theorem" title="Theorem">theorems</a>, axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of the theory under consideration.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mathematics is essential in the <a href="/wiki/Natural_science" title="Natural science">natural sciences</a>, <a href="/wiki/Engineering" title="Engineering">engineering</a>, <a href="/wiki/Medicine" title="Medicine">medicine</a>, <a href="/wiki/Finance" title="Finance">finance</a>, <a href="/wiki/Computer_science" title="Computer science">computer science</a>, and the <a href="/wiki/Social_sciences" class="mw-redirect" title="Social sciences">social sciences</a>. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as <a href="/wiki/Statistics" title="Statistics">statistics</a> and <a href="/wiki/Game_theory" title="Game theory">game theory</a>, are developed in close correlation with their applications and are often grouped under <a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a>. Other areas are developed independently from any application (and are therefore called <a href="/wiki/Pure_mathematics" title="Pure mathematics">pure mathematics</a>) but often later find practical applications.<sup id="cite_ref-FOOTNOTEPeterson198812_2-0" class="reference"><a href="#cite_note-FOOTNOTEPeterson198812-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-wigner1960_3-0" class="reference"><a href="#cite_note-wigner1960-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Historically, the concept of a proof and its associated <a href="/wiki/Mathematical_rigour" class="mw-redirect" title="Mathematical rigour">mathematical rigour</a> first appeared in <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek mathematics</a>, most notably in <a href="/wiki/Euclid" title="Euclid">Euclid</a>'s <i><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Elements</a></i>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Since its beginning, mathematics was primarily divided into geometry and <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a> (the manipulation of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> and <a href="/wiki/Fractions" class="mw-redirect" title="Fractions">fractions</a>), until the 16th and 17th centuries, when algebra<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">infinitesimal calculus</a> were introduced as new fields. Since then, the interaction between mathematical innovations and <a href="/wiki/Timeline_of_scientific_discoveries" title="Timeline of scientific discoveries">scientific discoveries</a> has led to a correlated increase in the development of both.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> At the end of the 19th century, the <a href="/wiki/Foundational_crisis_of_mathematics" class="mw-redirect" title="Foundational crisis of mathematics">foundational crisis of mathematics</a> led to the systematization of the <a href="/wiki/Axiomatic_method" class="mw-redirect" title="Axiomatic method">axiomatic method</a>,<sup id="cite_ref-Kleiner_1991_7-0" class="reference"><a href="#cite_note-Kleiner_1991-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary <a href="/wiki/Mathematics_Subject_Classification" title="Mathematics Subject Classification">Mathematics Subject Classification</a> lists more than sixty first-level areas of mathematics. </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="Areas_of_mathematics">Areas of mathematics</h2></div> <p><span class="anchor" id="Branches_of_mathematics"></span> Before the <a href="/wiki/Renaissance" title="Renaissance">Renaissance</a>, mathematics was divided into two main areas: <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a>, regarding the manipulation of numbers, and <a href="/wiki/Geometry" title="Geometry">geometry</a>, regarding the study of shapes.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Some types of <a href="/wiki/Pseudoscience" title="Pseudoscience">pseudoscience</a>, such as <a href="/wiki/Numerology" title="Numerology">numerology</a> and <a href="/wiki/Astrology" title="Astrology">astrology</a>, were not then clearly distinguished from mathematics.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>During the Renaissance, two more areas appeared. <a href="/wiki/Mathematical_notation" title="Mathematical notation">Mathematical notation</a> led to <a href="/wiki/Algebra" title="Algebra">algebra</a> which, roughly speaking, consists of the study and the manipulation of <a href="/wiki/Formula" title="Formula">formulas</a>. <a href="/wiki/Calculus" title="Calculus">Calculus</a>, consisting of the two subfields <i><a href="/wiki/Differential_calculus" title="Differential calculus">differential calculus</a></i> and <i><a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">integral calculus</a></i>, is the study of <a href="/wiki/Continuous_functions" class="mw-redirect" title="Continuous functions">continuous functions</a>, which model the typically <a href="/wiki/Nonlinear_system" title="Nonlinear system">nonlinear relationships</a> between varying quantities, as represented by <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a>. This division into four main areas—arithmetic, geometry, algebra, and calculus<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>—endured until the end of the 19th century. Areas such as <a href="/wiki/Celestial_mechanics" title="Celestial mechanics">celestial mechanics</a> and <a href="/wiki/Solid_mechanics" title="Solid mechanics">solid mechanics</a> were then studied by mathematicians, but now are considered as belonging to physics.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> The subject of <a href="/wiki/Combinatorics" title="Combinatorics">combinatorics</a> has been studied for much of recorded history, yet did not become a separate branch of mathematics until the seventeenth century.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>At the end of the 19th century, the <a href="/wiki/Foundational_crisis_in_mathematics" class="mw-redirect" title="Foundational crisis in mathematics">foundational crisis in mathematics</a> and the resulting systematization of the <a href="/wiki/Axiomatic_method" class="mw-redirect" title="Axiomatic method">axiomatic method</a> led to an explosion of new areas of mathematics.<sup id="cite_ref-Warner_2013_13-0" class="reference"><a href="#cite_note-Warner_2013-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kleiner_1991_7-1" class="reference"><a href="#cite_note-Kleiner_1991-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> The 2020 <a href="/wiki/Mathematics_Subject_Classification" title="Mathematics Subject Classification">Mathematics Subject Classification</a> contains no less than <em>sixty-three</em> first-level areas.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Some of these areas correspond to the older division, as is true regarding <a href="/wiki/Number_theory" title="Number theory">number theory</a> (the modern name for <a href="/wiki/Higher_arithmetic" class="mw-redirect" title="Higher arithmetic">higher arithmetic</a>) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a> and <a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">foundations</a>.<sup id="cite_ref-MSC_15-0" class="reference"><a href="#cite_note-MSC-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Number_theory">Number theory</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Number_theory" title="Number theory">Number theory</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spirale_Ulam_150.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/Spirale_Ulam_150.jpg/220px-Spirale_Ulam_150.jpg" decoding="async" width="220" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/Spirale_Ulam_150.jpg/330px-Spirale_Ulam_150.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/34/Spirale_Ulam_150.jpg/440px-Spirale_Ulam_150.jpg 2x" data-file-width="750" data-file-height="752" /></a><figcaption>This is the <a href="/wiki/Ulam_spiral" title="Ulam spiral">Ulam spiral</a>, which illustrates the distribution of <a href="/wiki/Prime_numbers" class="mw-redirect" title="Prime numbers">prime numbers</a>. The dark diagonal lines in the spiral hint at the hypothesized approximate <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independence</a> between being prime and being a value of a quadratic polynomial, a conjecture now known as <a href="/wiki/Ulam_spiral#Hardy_and_Littlewood&#39;s_Conjecture_F" title="Ulam spiral">Hardy and Littlewood's Conjecture F</a>.</figcaption></figure> <p>Number theory began with the manipulation of <a href="/wiki/Number" title="Number">numbers</a>, that is, <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {N} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {N} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bea55fe9f7155b2404c5e56b357334e6c303740b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.134ex; height:2.843ex;" alt="{\displaystyle (\mathbb {N} ),}"></span> and later expanded to <a href="/wiki/Integer" title="Integer">integers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e7c394740649bbc95dc603df09ceebaac387c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.36ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} )}"></span> and <a href="/wiki/Rational_number" title="Rational number">rational numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Q} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Q} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfe972c32bdfc7274838beb71596b2001c2bd6af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.264ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Q} ).}"></span> Number theory was once called arithmetic, but nowadays this term is mostly used for <a href="/wiki/Numerical_calculation" class="mw-redirect" title="Numerical calculation">numerical calculations</a>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Number theory dates back to ancient <a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylon</a> and probably <a href="/wiki/Ancient_China" class="mw-redirect" title="Ancient China">China</a>. Two prominent early number theorists were <a href="/wiki/Euclid" title="Euclid">Euclid</a> of ancient Greece and <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> of Alexandria.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> The modern study of number theory in its abstract form is largely attributed to <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> and <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>. The field came to full fruition with the contributions of <a href="/wiki/Adrien-Marie_Legendre" title="Adrien-Marie Legendre">Adrien-Marie Legendre</a> and <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example is <a href="/wiki/Fermat%27s_Last_Theorem" title="Fermat&#39;s Last Theorem">Fermat's Last Theorem</a>. This conjecture was stated in 1637 by Pierre de Fermat, but it <a href="/wiki/Wiles%27s_proof_of_Fermat%27s_Last_Theorem" title="Wiles&#39;s proof of Fermat&#39;s Last Theorem">was proved</a> only in 1994 by <a href="/wiki/Andrew_Wiles" title="Andrew Wiles">Andrew Wiles</a>, who used tools including <a href="/wiki/Scheme_theory" class="mw-redirect" title="Scheme theory">scheme theory</a> from <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>, <a href="/wiki/Category_theory" title="Category theory">category theory</a>, and <a href="/wiki/Homological_algebra" title="Homological algebra">homological algebra</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> Another example is <a href="/wiki/Goldbach%27s_conjecture" title="Goldbach&#39;s conjecture">Goldbach's conjecture</a>, which asserts that every even integer greater than 2 is the sum of two <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>. Stated in 1742 by <a href="/wiki/Christian_Goldbach" title="Christian Goldbach">Christian Goldbach</a>, it remains unproven despite considerable effort.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>Number theory includes several subareas, including <a href="/wiki/Analytic_number_theory" title="Analytic number theory">analytic number theory</a>, <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">algebraic number theory</a>, <a href="/wiki/Geometry_of_numbers" title="Geometry of numbers">geometry of numbers</a> (method oriented), <a href="/wiki/Diophantine_equation" title="Diophantine equation">diophantine equations</a>, and <a href="/wiki/Transcendence_theory" class="mw-redirect" title="Transcendence theory">transcendence theory</a> (problem oriented).<sup id="cite_ref-MSC_15-1" class="reference"><a href="#cite_note-MSC-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Geometry">Geometry</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Geometry" title="Geometry">Geometry</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Triangles_(spherical_geometry).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Triangles_%28spherical_geometry%29.jpg/220px-Triangles_%28spherical_geometry%29.jpg" decoding="async" width="220" height="181" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Triangles_%28spherical_geometry%29.jpg/330px-Triangles_%28spherical_geometry%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/97/Triangles_%28spherical_geometry%29.jpg/440px-Triangles_%28spherical_geometry%29.jpg 2x" data-file-width="2489" data-file-height="2048" /></a><figcaption>On the surface of a sphere, Euclidean geometry only applies as a local approximation. For larger scales the sum of the angles of a triangle is not equal to 180°.</figcaption></figure> <p>Geometry is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as <a href="/wiki/Line_(geometry)" title="Line (geometry)">lines</a>, <a href="/wiki/Angle" title="Angle">angles</a> and <a href="/wiki/Circle" title="Circle">circles</a>, which were developed mainly for the needs of <a href="/wiki/Surveying" title="Surveying">surveying</a> and <a href="/wiki/Architecture" title="Architecture">architecture</a>, but has since blossomed out into many other subfields.<sup id="cite_ref-Straume_2014_21-0" class="reference"><a href="#cite_note-Straume_2014-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>A fundamental innovation was the ancient Greeks' introduction of the concept of <a href="/wiki/Mathematical_proof" title="Mathematical proof">proofs</a>, which require that every assertion must be <i>proved</i>. For example, it is not sufficient to verify by <a href="/wiki/Measurement" title="Measurement">measurement</a> that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results (<a href="/wiki/Theorem" title="Theorem">theorems</a>) and a few basic statements. The basic statements are not subject to proof because they are self-evident (<a href="/wiki/Postulate" class="mw-redirect" title="Postulate">postulates</a>), or are part of the definition of the subject of study (<a href="/wiki/Axiom" title="Axiom">axioms</a>). This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by <a href="/wiki/Euclid" title="Euclid">Euclid</a> around 300 BC in his book <i><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Elements</a></i>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>The resulting <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> is the study of shapes and their arrangements <a href="/wiki/Straightedge_and_compass_construction" title="Straightedge and compass construction">constructed</a> from lines, <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">planes</a> and circles in the <a href="/wiki/Euclidean_plane" title="Euclidean plane">Euclidean plane</a> (<a href="/wiki/Plane_geometry" class="mw-redirect" title="Plane geometry">plane geometry</a>) and the three-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Straume_2014_21-1" class="reference"><a href="#cite_note-Straume_2014-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Euclidean geometry was developed without change of methods or scope until the 17th century, when <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> introduced what is now called <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a>. This constituted a major <a href="/wiki/Paradigm_shift" title="Paradigm shift">change of paradigm</a>: Instead of defining <a href="/wiki/Real_number" title="Real number">real numbers</a> as lengths of <a href="/wiki/Line_segments" class="mw-redirect" title="Line segments">line segments</a> (see <a href="/wiki/Number_line" title="Number line">number line</a>), it allowed the representation of points using their <i>coordinates</i>, which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: <a href="/wiki/Synthetic_geometry" title="Synthetic geometry">synthetic geometry</a>, which uses purely geometrical methods, and <a href="/wiki/Analytic_geometry" title="Analytic geometry">analytic geometry</a>, which uses coordinates systemically.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p><p>Analytic geometry allows the study of <a href="/wiki/Curve" title="Curve">curves</a> unrelated to circles and lines. Such curves can be defined as the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph of functions</a>, the study of which led to <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>. They can also be defined as <a href="/wiki/Implicit_equation" class="mw-redirect" title="Implicit equation">implicit equations</a>, often <a href="/wiki/Polynomial_equation" class="mw-redirect" title="Polynomial equation">polynomial equations</a> (which spawned <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions.<sup id="cite_ref-Straume_2014_21-2" class="reference"><a href="#cite_note-Straume_2014-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 19th century, mathematicians discovered <a href="/wiki/Non-Euclidean_geometries" class="mw-redirect" title="Non-Euclidean geometries">non-Euclidean geometries</a>, which do not follow the <a href="/wiki/Parallel_postulate" title="Parallel postulate">parallel postulate</a>. By questioning that postulate's truth, this discovery has been viewed as joining <a href="/wiki/Russell%27s_paradox" title="Russell&#39;s paradox">Russell's paradox</a> in revealing the <a href="/wiki/Foundational_crisis_of_mathematics" class="mw-redirect" title="Foundational crisis of mathematics">foundational crisis of mathematics</a>. This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not a mathematical problem.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kleiner_1991_7-2" class="reference"><a href="#cite_note-Kleiner_1991-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that <a href="/wiki/Invariant_(mathematics)" title="Invariant (mathematics)">do not change</a> under specific transformations of the <a href="/wiki/Space_(mathematics)" title="Space (mathematics)">space</a>.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>Today's subareas of geometry include:<sup id="cite_ref-MSC_15-2" class="reference"><a href="#cite_note-MSC-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><a href="/wiki/Projective_geometry" title="Projective geometry">Projective geometry</a>, introduced in the 16th century by <a href="/wiki/Girard_Desargues" title="Girard Desargues">Girard Desargues</a>, extends Euclidean geometry by adding <a href="/wiki/Points_at_infinity" class="mw-redirect" title="Points at infinity">points at infinity</a> at which <a href="/wiki/Parallel_lines" class="mw-redirect" title="Parallel lines">parallel lines</a> intersect. This simplifies many aspects of classical geometry by unifying the treatments for intersecting and parallel lines.</li> <li><a href="/wiki/Affine_geometry" title="Affine geometry">Affine geometry</a>, the study of properties relative to <a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">parallelism</a> and independent from the concept of length.</li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a>, the study of curves, surfaces, and their generalizations, which are defined using <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable functions</a>.</li> <li><a href="/wiki/Manifold_theory" class="mw-redirect" title="Manifold theory">Manifold theory</a>, the study of shapes that are not necessarily embedded in a larger space.</li> <li><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a>, the study of distance properties in curved spaces.</li> <li><a href="/wiki/Algebraic_geometry" title="Algebraic geometry">Algebraic geometry</a>, the study of curves, surfaces, and their generalizations, which are defined using <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>.</li> <li><a href="/wiki/Topology" title="Topology">Topology</a>, the study of properties that are kept under <a href="/wiki/Continuous_deformation" class="mw-redirect" title="Continuous deformation">continuous deformations</a>. <ul><li><a href="/wiki/Algebraic_topology" title="Algebraic topology">Algebraic topology</a>, the use in topology of algebraic methods, mainly <a href="/wiki/Homological_algebra" title="Homological algebra">homological algebra</a>.</li></ul></li> <li><a href="/wiki/Discrete_geometry" title="Discrete geometry">Discrete geometry</a>, the study of finite configurations in geometry.</li> <li><a href="/wiki/Convex_geometry" title="Convex geometry">Convex geometry</a>, the study of <a href="/wiki/Convex_set" title="Convex set">convex sets</a>, which takes its importance from its applications in <a href="/wiki/Convex_optimization" title="Convex optimization">optimization</a>.</li> <li><a href="/wiki/Complex_geometry" title="Complex geometry">Complex geometry</a>, the geometry obtained by replacing real numbers with <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Algebra">Algebra</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Algebra" title="Algebra">Algebra</a></div> <figure class="mw-default-size skin-invert-image" typeof="mw:File/Thumb"><a href="/wiki/File:Quadratic_formula.svg" class="mw-file-description"><img alt="refer to caption" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Quadratic_formula.svg/220px-Quadratic_formula.svg.png" decoding="async" width="220" height="68" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Quadratic_formula.svg/330px-Quadratic_formula.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Quadratic_formula.svg/440px-Quadratic_formula.svg.png 2x" data-file-width="402" data-file-height="124" /></a><figcaption>The <a href="/wiki/Quadratic_formula" title="Quadratic formula">quadratic formula</a>, which concisely expresses the solutions of all <a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equations</a></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Rubik%27s_cube.svg" class="mw-file-description"><img alt="A shuffled 3x3 rubik&#39;s cube" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/220px-Rubik%27s_cube.svg.png" decoding="async" width="220" height="229" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/330px-Rubik%27s_cube.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/440px-Rubik%27s_cube.svg.png 2x" data-file-width="480" data-file-height="500" /></a><figcaption>The <a href="/wiki/Rubik%27s_Cube_group" title="Rubik&#39;s Cube group">Rubik's Cube group</a> is a concrete application of <a href="/wiki/Group_theory" title="Group theory">group theory</a>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>Algebra is the art of manipulating <a href="/wiki/Equation" title="Equation">equations</a> and formulas. <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> (3rd century) and <a href="/wiki/Al-Khwarizmi" title="Al-Khwarizmi">al-Khwarizmi</a> (9th century) were the two main precursors of algebra.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEKleiner2007&quot;History_of_Classical_Algebra&quot;_pp._3–5_30-0" class="reference"><a href="#cite_note-FOOTNOTEKleiner2007&quot;History_of_Classical_Algebra&quot;_pp._3–5-30"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Diophantus solved some equations involving unknown natural numbers by deducing new relations until he obtained the solution.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Al-Khwarizmi introduced systematic methods for transforming equations, such as moving a term from one side of an equation into the other side.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> The term <i>algebra</i> is derived from the <a href="/wiki/Arabic" title="Arabic">Arabic</a> word <i>al-jabr</i> meaning 'the reunion of broken parts' that he used for naming one of these methods in the title of <a href="/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing" class="mw-redirect" title="The Compendious Book on Calculation by Completion and Balancing">his main treatise</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p><p>Algebra became an area in its own right only with <a href="/wiki/Fran%C3%A7ois_Vi%C3%A8te" title="François Viète">François Viète</a> (1540–1603), who introduced the use of variables for representing unknown or unspecified numbers.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> Variables allow mathematicians to describe the operations that have to be done on the numbers represented using <a href="/wiki/Mathematical_formulas" class="mw-redirect" title="Mathematical formulas">mathematical formulas</a>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>Until the 19th century, algebra consisted mainly of the study of <a href="/wiki/Linear_equation" title="Linear equation">linear equations</a> (presently <i><a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a></i>), and polynomial equations in a single <a href="/wiki/Unknown_(algebra)" class="mw-redirect" title="Unknown (algebra)">unknown</a>, which were called <i>algebraic equations</i> (a term still in use, although it may be ambiguous). During the 19th century, mathematicians began to use variables to represent things other than numbers (such as <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>, <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modular integers</a>, and <a href="/wiki/Geometric_transformation" title="Geometric transformation">geometric transformations</a>), on which generalizations of arithmetic operations are often valid.<sup id="cite_ref-FOOTNOTEKleiner2007&quot;History_of_Linear_Algebra&quot;_pp._79–101_37-0" class="reference"><a href="#cite_note-FOOTNOTEKleiner2007&quot;History_of_Linear_Algebra&quot;_pp._79–101-37"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> The concept of <a href="/wiki/Algebraic_structure" title="Algebraic structure">algebraic structure</a> addresses this, consisting of a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> whose elements are unspecified, of operations acting on the elements of the set, and rules that these operations must follow. The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called <i>modern algebra</i> or <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>, as established by the influence and works of <a href="/wiki/Emmy_Noether" title="Emmy Noether">Emmy Noether</a>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include:<sup id="cite_ref-MSC_15-3" class="reference"><a href="#cite_note-MSC-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><a href="/wiki/Group_theory" title="Group theory">group theory</a></li> <li><a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field theory</a></li> <li><a href="/wiki/Vector_space" title="Vector space">vector spaces</a>, whose study is essentially the same as <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a></li> <li><a href="/wiki/Ring_theory" title="Ring theory">ring theory</a></li> <li><a href="/wiki/Commutative_algebra" title="Commutative algebra">commutative algebra</a>, which is the study of <a href="/wiki/Commutative_ring" title="Commutative ring">commutative rings</a>, includes the study of <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>, and is a foundational part of <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a></li> <li><a href="/wiki/Homological_algebra" title="Homological algebra">homological algebra</a></li> <li><a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> and <a href="/wiki/Lie_group" title="Lie group">Lie group</a> theory</li> <li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a>, which is widely used for the study of the logical structure of <a href="/wiki/Computer" title="Computer">computers</a></li></ul> <p>The study of types of algebraic structures as <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical objects</a> is the purpose of <a href="/wiki/Universal_algebra" title="Universal algebra">universal algebra</a> and <a href="/wiki/Category_theory" title="Category theory">category theory</a>.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> The latter applies to every <a href="/wiki/Mathematical_structure" title="Mathematical structure">mathematical structure</a> (not only algebraic ones). At its origin, it was introduced, together with homological algebra for allowing the algebraic study of non-algebraic objects such as <a href="/wiki/Topological_space" title="Topological space">topological spaces</a>; this particular area of application is called <a href="/wiki/Algebraic_topology" title="Algebraic topology">algebraic topology</a>.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Calculus_and_analysis">Calculus and analysis</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Calculus" title="Calculus">Calculus</a> and <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Mathematical analysis</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Cauchy_sequence_illustration.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Cauchy_sequence_illustration.svg/220px-Cauchy_sequence_illustration.svg.png" decoding="async" width="220" height="123" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Cauchy_sequence_illustration.svg/330px-Cauchy_sequence_illustration.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/62/Cauchy_sequence_illustration.svg/440px-Cauchy_sequence_illustration.svg.png 2x" data-file-width="305" data-file-height="170" /></a><figcaption>A <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequence</a> consists of elements such that all subsequent terms of a term become arbitrarily close to each other as the sequence progresses (from left to right).</figcaption></figure> <p>Calculus, formerly called infinitesimal calculus, was introduced independently and simultaneously by 17th-century mathematicians <a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a> and <a href="/wiki/Leibniz" class="mw-redirect" title="Leibniz">Leibniz</a>.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by <a href="/wiki/Euler" class="mw-redirect" title="Euler">Euler</a> with the introduction of the concept of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> and many other results.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>Analysis is further subdivided into <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a>, where variables represent <a href="/wiki/Real_number" title="Real number">real numbers</a>, and <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, where variables represent <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>. Analysis includes many subareas shared by other areas of mathematics which include:<sup id="cite_ref-MSC_15-4" class="reference"><a href="#cite_note-MSC-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a></li> <li><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a>, where variables represent varying functions</li> <li><a href="/wiki/Integration_(mathematics)" class="mw-redirect" title="Integration (mathematics)">Integration</a>, <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a> and <a href="/wiki/Potential_theory" title="Potential theory">potential theory</a>, all strongly related with <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> on a <a href="/wiki/Continuum_(set_theory)" title="Continuum (set theory)">continuum</a></li> <li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equations</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equations</a></li> <li><a href="/wiki/Numerical_analysis" title="Numerical analysis">Numerical analysis</a>, mainly devoted to the computation on computers of solutions of ordinary and partial differential equations that arise in many applications</li></ul> <div class="mw-heading mw-heading3"><h3 id="Discrete_mathematics">Discrete mathematics</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Discrete_mathematics" title="Discrete mathematics">Discrete mathematics</a></div> <figure class="mw-default-size mw-halign-right skin-invert-image" typeof="mw:File/Thumb"><a href="/wiki/File:Markovkate_01.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Markovkate_01.svg/220px-Markovkate_01.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Markovkate_01.svg/330px-Markovkate_01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Markovkate_01.svg/440px-Markovkate_01.svg.png 2x" data-file-width="563" data-file-height="563" /></a><figcaption>A diagram representing a two-state <a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a>. The states are represented by 'A' and 'E'. The numbers are the probability of flipping the state.</figcaption></figure> <p>Discrete mathematics, broadly speaking, is the study of individual, <a href="/wiki/Countable" class="mw-redirect" title="Countable">countable</a> mathematical objects. An example is the set of all integers.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Algorithm" title="Algorithm">Algorithms</a>—especially their <a href="/wiki/Implementation" title="Implementation">implementation</a> and <a href="/wiki/Computational_complexity" title="Computational complexity">computational complexity</a>—play a major role in discrete mathematics.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Four_color_theorem" title="Four color theorem">four color theorem</a> and <a href="/wiki/Kepler_conjecture" title="Kepler conjecture">optimal sphere packing</a> were two major problems of discrete mathematics solved in the second half of the 20th century.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/P_versus_NP_problem" title="P versus NP problem">P versus NP problem</a>, which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of <a href="/wiki/Computationally_expensive" class="mw-redirect" title="Computationally expensive">computationally difficult</a> problems.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p><p>Discrete mathematics includes:<sup id="cite_ref-MSC_15-5" class="reference"><a href="#cite_note-MSC-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><a href="/wiki/Combinatorics" title="Combinatorics">Combinatorics</a>, the art of enumerating mathematical objects that satisfy some given constraints. Originally, these objects were elements or <a href="/wiki/Subset" title="Subset">subsets</a> of a given <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a>; this has been extended to various objects, which establishes a strong link between combinatorics and other parts of discrete mathematics. For example, discrete geometry includes counting configurations of <a href="/wiki/Geometric_shape" class="mw-redirect" title="Geometric shape">geometric shapes</a>.</li> <li><a href="/wiki/Graph_theory" title="Graph theory">Graph theory</a> and <a href="/wiki/Hypergraph" title="Hypergraph">hypergraphs</a></li> <li><a href="/wiki/Coding_theory" title="Coding theory">Coding theory</a>, including <a href="/wiki/Error_correcting_code" class="mw-redirect" title="Error correcting code">error correcting codes</a> and a part of <a href="/wiki/Cryptography" title="Cryptography">cryptography</a></li> <li><a href="/wiki/Matroid" title="Matroid">Matroid</a> theory</li> <li><a href="/wiki/Discrete_geometry" title="Discrete geometry">Discrete geometry</a></li> <li><a href="/wiki/Discrete_probability_distribution" class="mw-redirect" title="Discrete probability distribution">Discrete probability distributions</a></li> <li><a href="/wiki/Game_theory" title="Game theory">Game theory</a> (although <a href="/wiki/Continuous_game" title="Continuous game">continuous games</a> are also studied, most common games, such as <a href="/wiki/Chess" title="Chess">chess</a> and <a href="/wiki/Poker" title="Poker">poker</a> are discrete)</li> <li><a href="/wiki/Discrete_optimization" title="Discrete optimization">Discrete optimization</a>, including <a href="/wiki/Combinatorial_optimization" title="Combinatorial optimization">combinatorial optimization</a>, <a href="/wiki/Integer_programming" title="Integer programming">integer programming</a>, <a href="/wiki/Constraint_programming" title="Constraint programming">constraint programming</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Mathematical_logic_and_set_theory">Mathematical logic and set theory</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a> and <a href="/wiki/Set_theory" title="Set theory">Set theory</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Venn_A_intersect_B.svg" class="mw-file-description"><img alt="A blue and pink circle and their intersection labeled" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/220px-Venn_A_intersect_B.svg.png" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/330px-Venn_A_intersect_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/440px-Venn_A_intersect_B.svg.png 2x" data-file-width="350" data-file-height="250" /></a><figcaption>The <a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a> is a commonly used method to illustrate the relations between sets.</figcaption></figure> <p>The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> Before this period, sets were not considered to be mathematical objects, and <a href="/wiki/Logic" title="Logic">logic</a>, although used for mathematical proofs, belonged to <a href="/wiki/Philosophy" title="Philosophy">philosophy</a> and was not specifically studied by mathematicians.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p><p>Before <a href="/wiki/Georg_Cantor" title="Georg Cantor">Cantor</a>'s study of <a href="/wiki/Infinite_set" title="Infinite set">infinite sets</a>, mathematicians were reluctant to consider <a href="/wiki/Actually_infinite" class="mw-redirect" title="Actually infinite">actually infinite</a> collections, and considered <a href="/wiki/Infinity" title="Infinity">infinity</a> to be the result of endless <a href="/wiki/Enumeration" title="Enumeration">enumeration</a>. Cantor's work offended many mathematicians not only by considering actually infinite sets<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> but by showing that this implies different sizes of infinity, per <a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor&#39;s diagonal argument">Cantor's diagonal argument</a>. This led to the <a href="/wiki/Controversy_over_Cantor%27s_theory" title="Controversy over Cantor&#39;s theory">controversy over Cantor's set theory</a>.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring <a href="/wiki/Mathematical_rigour" class="mw-redirect" title="Mathematical rigour">mathematical rigour</a>.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p><p>This became the foundational crisis of mathematics.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> It was eventually solved in mainstream mathematics by systematizing the axiomatic method inside a <a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">formalized set theory</a>. Roughly speaking, each mathematical object is defined by the set of all similar objects and the properties that these objects must have.<sup id="cite_ref-Warner_2013_13-1" class="reference"><a href="#cite_note-Warner_2013-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> For example, in <a href="/wiki/Peano_arithmetic" class="mw-redirect" title="Peano arithmetic">Peano arithmetic</a>, the natural numbers are defined by "zero is a number", "each number has a unique successor", "each number but zero has a unique predecessor", and some rules of reasoning.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> This <a href="/wiki/Mathematical_abstraction" class="mw-redirect" title="Mathematical abstraction">mathematical abstraction</a> from reality is embodied in the modern philosophy of <a href="/wiki/Formalism_(philosophy_of_mathematics)" title="Formalism (philosophy of mathematics)">formalism</a>, as founded by <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> around 1910.<sup id="cite_ref-Snapper_57-0" class="reference"><a href="#cite_note-Snapper-57"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>The "nature" of the objects defined this way is a philosophical problem that mathematicians leave to philosophers, even if many mathematicians have opinions on this nature, and use their opinion—sometimes called "intuition"—to guide their study and proofs. The approach allows considering "logics" (that is, sets of allowed deducing rules), theorems, proofs, etc. as mathematical objects, and to prove theorems about them. For example, <a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">Gödel's incompleteness theorems</a> assert, roughly speaking that, in every <a href="/wiki/Consistent" class="mw-redirect" title="Consistent">consistent</a> <a href="/wiki/Formal_system" title="Formal system">formal system</a> that contains the natural numbers, there are theorems that are true (that is provable in a stronger system), but not provable inside the system.<sup id="cite_ref-Raatikainen_2005_58-0" class="reference"><a href="#cite_note-Raatikainen_2005-58"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> This approach to the foundations of mathematics was challenged during the first half of the 20th century by mathematicians led by <a href="/wiki/L._E._J._Brouwer" title="L. E. J. Brouwer">Brouwer</a>, who promoted <a href="/wiki/Intuitionistic_logic" title="Intuitionistic logic">intuitionistic logic</a>, which explicitly lacks the <a href="/wiki/Law_of_excluded_middle" title="Law of excluded middle">law of excluded middle</a>.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>These problems and debates led to a wide expansion of mathematical logic, with subareas such as <a href="/wiki/Model_theory" title="Model theory">model theory</a> (modeling some logical theories inside other theories), <a href="/wiki/Proof_theory" title="Proof theory">proof theory</a>, <a href="/wiki/Type_theory" title="Type theory">type theory</a>, <a href="/wiki/Computability_theory" title="Computability theory">computability theory</a> and <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">computational complexity theory</a>.<sup id="cite_ref-MSC_15-6" class="reference"><a href="#cite_note-MSC-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Although these aspects of mathematical logic were introduced before the rise of <a href="/wiki/Computer" title="Computer">computers</a>, their use in <a href="/wiki/Compiler" title="Compiler">compiler</a> design, <a href="/wiki/Formal_verification" title="Formal verification">formal verification</a>, <a href="/wiki/Program_analysis" title="Program analysis">program analysis</a>, <a href="/wiki/Proof_assistant" title="Proof assistant">proof assistants</a> and other aspects of <a href="/wiki/Computer_science" title="Computer science">computer science</a>, contributed in turn to the expansion of these logical theories.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Statistics_and_other_decision_sciences">Statistics and other decision sciences</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Statistics" title="Statistics">Statistics</a> and <a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></div> <figure class="mw-default-size mw-halign-right skin-invert-image" typeof="mw:File/Thumb"><a href="/wiki/File:IllustrationCentralTheorem.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7b/IllustrationCentralTheorem.png/330px-IllustrationCentralTheorem.png" decoding="async" width="330" height="139" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7b/IllustrationCentralTheorem.png/495px-IllustrationCentralTheorem.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7b/IllustrationCentralTheorem.png/660px-IllustrationCentralTheorem.png 2x" data-file-width="2771" data-file-height="1166" /></a><figcaption>Whatever the form of a random population <a href="/wiki/Probability_distribution" title="Probability distribution">distribution</a> (μ), the sampling <a href="/wiki/Mean" title="Mean">mean</a> (x̄) tends to a <a href="/wiki/Gaussian" class="mw-redirect" title="Gaussian">Gaussian</a> distribution and its <a href="/wiki/Variance" title="Variance">variance</a> (σ) is given by the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a> of probability theory.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>The field of statistics is a mathematical application that is employed for the collection and processing of data samples, using procedures based on mathematical methods especially <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>. Statisticians generate data with <a href="/wiki/Random_sampling" class="mw-redirect" title="Random sampling">random sampling</a> or randomized <a href="/wiki/Design_of_experiments" title="Design of experiments">experiments</a>.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Statistical_theory" title="Statistical theory">Statistical theory</a> studies <a href="/wiki/Statistical_decision_theory" class="mw-redirect" title="Statistical decision theory">decision problems</a> such as minimizing the <a href="/wiki/Risk" title="Risk">risk</a> (<a href="/wiki/Expected_loss" title="Expected loss">expected loss</a>) of a statistical action, such as using a <a href="/wiki/Statistical_method" class="mw-redirect" title="Statistical method">procedure</a> in, for example, <a href="/wiki/Parameter_estimation" class="mw-redirect" title="Parameter estimation">parameter estimation</a>, <a href="/wiki/Hypothesis_testing" class="mw-redirect" title="Hypothesis testing">hypothesis testing</a>, and <a href="/wiki/Selection_algorithm" title="Selection algorithm">selecting the best</a>. In these traditional areas of <a href="/wiki/Mathematical_statistics" title="Mathematical statistics">mathematical statistics</a>, a statistical-decision problem is formulated by minimizing an <a href="/wiki/Objective_function" class="mw-redirect" title="Objective function">objective function</a>, like expected loss or <a href="/wiki/Cost" title="Cost">cost</a>, under specific constraints. For example, designing a survey often involves minimizing the cost of estimating a population mean with a given level of confidence.<sup id="cite_ref-RaoOpt_64-0" class="reference"><a href="#cite_note-RaoOpt-64"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Because of its use of <a href="/wiki/Optimization" class="mw-redirect" title="Optimization">optimization</a>, the mathematical theory of statistics overlaps with other <a href="/wiki/Decision_science" class="mw-redirect" title="Decision science">decision sciences</a>, such as <a href="/wiki/Operations_research" title="Operations research">operations research</a>, <a href="/wiki/Control_theory" title="Control theory">control theory</a>, and <a href="/wiki/Mathematical_economics" title="Mathematical economics">mathematical economics</a>.<sup id="cite_ref-FOOTNOTEWhittle199410–11,_14–18_65-0" class="reference"><a href="#cite_note-FOOTNOTEWhittle199410–11,_14–18-65"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Computational_mathematics">Computational mathematics</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Computational_mathematics" title="Computational mathematics">Computational mathematics</a></div> <p>Computational mathematics is the study of <a href="/wiki/Mathematical_problem" title="Mathematical problem">mathematical problems</a> that are typically too large for human, numerical capacity.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Numerical_analysis" title="Numerical analysis">Numerical analysis</a> studies methods for problems in <a href="/wiki/Analysis_(mathematics)" class="mw-redirect" title="Analysis (mathematics)">analysis</a> using <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> and <a href="/wiki/Approximation_theory" title="Approximation theory">approximation theory</a>; numerical analysis broadly includes the study of <a href="/wiki/Approximation" title="Approximation">approximation</a> and <a href="/wiki/Discretization" title="Discretization">discretization</a> with special focus on <a href="/wiki/Rounding_error" class="mw-redirect" title="Rounding error">rounding errors</a>.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> Numerical analysis and, more broadly, scientific computing also study non-analytic topics of mathematical science, especially algorithmic-<a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">matrix</a>-and-<a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>. Other areas of computational mathematics include <a href="/wiki/Computer_algebra" title="Computer algebra">computer algebra</a> and <a href="/wiki/Symbolic_computation" class="mw-redirect" title="Symbolic computation">symbolic computation</a>. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/History_of_mathematics" title="History of mathematics">History of mathematics</a></div> <div class="mw-heading mw-heading3"><h3 id="Etymology">Etymology</h3></div> <p>The word <i>mathematics</i> comes from the <a href="/wiki/Ancient_Greek" title="Ancient Greek">Ancient Greek</a> word <i>máthēma</i> (<i><span title="Ancient Greek-language text"><span lang="grc"><span lang="en"><a href="https://en.wiktionary.org/wiki/%CE%BC%CE%AC%CE%B8%CE%B7%CE%BC%CE%B1#English" class="extiw" title="wikt:μάθημα">μάθημα</a></span></span></span></i>), meaning <span class="gloss-quot">'</span><span class="gloss-text">something learned, knowledge, mathematics</span><span class="gloss-quot">'</span>, and the derived expression <i>mathēmatikḗ tékhnē</i> (<span title="Ancient Greek (to 1453)-language text"><span lang="grc">μαθηματικὴ τέχνη</span></span>), meaning <span class="gloss-quot">'</span><span class="gloss-text">mathematical science</span><span class="gloss-quot">'</span>. It entered the English language during the <a href="/wiki/Late_Middle_English" class="mw-redirect" title="Late Middle English">Late Middle English</a> period through French and Latin.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p><p>Similarly, one of the two main schools of thought in <a href="/wiki/Pythagoreanism" title="Pythagoreanism">Pythagoreanism</a> was known as the <i>mathēmatikoi</i> (μαθηματικοί)—which at the time meant "learners" rather than "mathematicians" in the modern sense. The Pythagoreans were likely the first to constrain the use of the word to just the study of <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a> and geometry. By the time of <a href="/wiki/Aristotle" title="Aristotle">Aristotle</a> (384–322&#160;BC) this meaning was fully established.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> </p><p>In Latin and English, until around 1700, the term <i>mathematics</i> more commonly meant "<a href="/wiki/Astrology" title="Astrology">astrology</a>" (or sometimes "<a href="/wiki/Astronomy" title="Astronomy">astronomy</a>") rather than "mathematics"; the meaning gradually changed to its present one from about 1500 to 1800. This change has resulted in several mistranslations: For example, <a href="/wiki/Saint_Augustine" class="mw-redirect" title="Saint Augustine">Saint Augustine</a>'s warning that Christians should beware of <i>mathematici</i>, meaning "astrologers", is sometimes mistranslated as a condemnation of mathematicians.<sup id="cite_ref-Boas_71-0" class="reference"><a href="#cite_note-Boas-71"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p><p>The apparent <a href="/wiki/Plural" title="Plural">plural</a> form in English goes back to the Latin <a href="/wiki/Neuter_(grammar)" class="mw-redirect" title="Neuter (grammar)">neuter</a> plural <span title="Latin-language text"><i lang="la">mathematica</i></span> (<a href="/wiki/Cicero" title="Cicero">Cicero</a>), based on the Greek plural <i>ta mathēmatiká</i> (<span title="Greek-language text"><span lang="el">τὰ μαθηματικά</span></span>) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective <i>mathematic(al)</i> and formed the noun <i>mathematics</i> anew, after the pattern of <i><a href="/wiki/Physics" title="Physics">physics</a></i> and <i><a href="/wiki/Metaphysics" title="Metaphysics">metaphysics</a></i>, inherited from Greek.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> In English, the noun <i>mathematics</i> takes a singular verb. It is often shortened to <i>maths</i><sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> or, in North America, <i>math</i>.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ancient">Ancient</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Plimpton_322.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Plimpton_322.jpg/220px-Plimpton_322.jpg" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Plimpton_322.jpg/330px-Plimpton_322.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Plimpton_322.jpg/440px-Plimpton_322.jpg 2x" data-file-width="1246" data-file-height="863" /></a><figcaption>The Babylonian mathematical tablet <i><a href="/wiki/Plimpton_322" title="Plimpton 322">Plimpton 322</a></i>, dated to 1800&#160;BC</figcaption></figure> <p>In addition to recognizing how to <a href="/wiki/Counting" title="Counting">count</a> physical objects, <a href="/wiki/Prehistoric" class="mw-redirect" title="Prehistoric">prehistoric</a> peoples may have also known how to count abstract quantities, like time—days, seasons, or years.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> Evidence for more complex mathematics does not appear until around 3000&#160;<abbr title="Before Christ">BC</abbr>, when the <a href="/wiki/Babylonia" title="Babylonia">Babylonians</a> and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy.<sup id="cite_ref-FOOTNOTEKline1990Chapter_1_77-0" class="reference"><a href="#cite_note-FOOTNOTEKline1990Chapter_1-77"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> The oldest mathematical texts from <a href="/wiki/Mesopotamia" title="Mesopotamia">Mesopotamia</a> and <a href="/wiki/Ancient_Egypt" title="Ancient Egypt">Egypt</a> are from 2000 to 1800&#160;BC.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> Many early texts mention <a href="/wiki/Pythagorean_triple" title="Pythagorean triple">Pythagorean triples</a> and so, by inference, the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It is in Babylonian mathematics that <a href="/wiki/Elementary_arithmetic" title="Elementary arithmetic">elementary arithmetic</a> (<a href="/wiki/Addition" title="Addition">addition</a>, <a href="/wiki/Subtraction" title="Subtraction">subtraction</a>, <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>, and <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a>) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a <a href="/wiki/Sexagesimal" title="Sexagesimal">sexagesimal</a> numeral system which is still in use today for measuring angles and time.<sup id="cite_ref-FOOTNOTEBoyer1991&quot;Mesopotamia&quot;_pp._24–27_79-0" class="reference"><a href="#cite_note-FOOTNOTEBoyer1991&quot;Mesopotamia&quot;_pp._24–27-79"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 6th century BC, <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek mathematics</a> began to emerge as a distinct discipline and some <a href="/wiki/Ancient_Greeks" class="mw-redirect" title="Ancient Greeks">Ancient Greeks</a> such as the <a href="/wiki/Pythagoreans" class="mw-redirect" title="Pythagoreans">Pythagoreans</a> appeared to have considered it a subject in its own right.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> Around 300 BC, <a href="/wiki/Euclid" title="Euclid">Euclid</a> organized mathematical knowledge by way of postulates and first principles, which evolved into the axiomatic method that is used in mathematics today, consisting of definition, axiom, theorem, and proof.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> His book, <i><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Elements</a></i>, is widely considered the most successful and influential textbook of all time.<sup id="cite_ref-FOOTNOTEBoyer1991&quot;Euclid_of_Alexandria&quot;_p._119_82-0" class="reference"><a href="#cite_note-FOOTNOTEBoyer1991&quot;Euclid_of_Alexandria&quot;_p._119-82"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> The greatest mathematician of antiquity is often held to be <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a> (<abbr title="circa">c.</abbr><span style="white-space:nowrap;">&#8201;287</span>&#160;– c.<span style="white-space:nowrap;">&#8201;212 BC</span>) of <a href="/wiki/Syracuse,_Italy" class="mw-redirect" title="Syracuse, Italy">Syracuse</a>.<sup id="cite_ref-FOOTNOTEBoyer1991&quot;Archimedes_of_Syracuse&quot;_p._120_83-0" class="reference"><a href="#cite_note-FOOTNOTEBoyer1991&quot;Archimedes_of_Syracuse&quot;_p._120-83"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> He developed formulas for calculating the surface area and volume of <a href="/wiki/Solids_of_revolution" class="mw-redirect" title="Solids of revolution">solids of revolution</a> and used the <a href="/wiki/Method_of_exhaustion" title="Method of exhaustion">method of exhaustion</a> to calculate the <a href="/wiki/Area" title="Area">area</a> under the arc of a <a href="/wiki/Parabola" title="Parabola">parabola</a> with the <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">summation of an infinite series</a>, in a manner not too dissimilar from modern calculus.<sup id="cite_ref-FOOTNOTEBoyer1991&quot;Archimedes_of_Syracuse&quot;_p._130_84-0" class="reference"><a href="#cite_note-FOOTNOTEBoyer1991&quot;Archimedes_of_Syracuse&quot;_p._130-84"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> Other notable achievements of Greek mathematics are <a href="/wiki/Conic_sections" class="mw-redirect" title="Conic sections">conic sections</a> (<a href="/wiki/Apollonius_of_Perga" title="Apollonius of Perga">Apollonius of Perga</a>, 3rd century BC),<sup id="cite_ref-FOOTNOTEBoyer1991&quot;Apollonius_of_Perga&quot;_p._145_85-0" class="reference"><a href="#cite_note-FOOTNOTEBoyer1991&quot;Apollonius_of_Perga&quot;_p._145-85"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Trigonometry" title="Trigonometry">trigonometry</a> (<a href="/wiki/Hipparchus_of_Nicaea" class="mw-redirect" title="Hipparchus of Nicaea">Hipparchus of Nicaea</a>, 2nd century BC),<sup id="cite_ref-FOOTNOTEBoyer1991&quot;Greek_Trigonometry_and_Mensuration&quot;_p._162_86-0" class="reference"><a href="#cite_note-FOOTNOTEBoyer1991&quot;Greek_Trigonometry_and_Mensuration&quot;_p._162-86"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> and the beginnings of algebra (Diophantus, 3rd century AD).<sup id="cite_ref-FOOTNOTEBoyer1991&quot;Revival_and_Decline_of_Greek_Mathematics&quot;_p._180_87-0" class="reference"><a href="#cite_note-FOOTNOTEBoyer1991&quot;Revival_and_Decline_of_Greek_Mathematics&quot;_p._180-87"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Bakhshali_numerals_2.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Bakhshali_numerals_2.jpg/330px-Bakhshali_numerals_2.jpg" decoding="async" width="330" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Bakhshali_numerals_2.jpg/495px-Bakhshali_numerals_2.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/58/Bakhshali_numerals_2.jpg/660px-Bakhshali_numerals_2.jpg 2x" data-file-width="1958" data-file-height="295" /></a><figcaption>The numerals used in the <a href="/wiki/Bakhshali_manuscript" title="Bakhshali manuscript">Bakhshali manuscript</a>, dated between the 2nd century BC and the 2nd century AD</figcaption></figure> <p>The <a href="/wiki/Hindu%E2%80%93Arabic_numeral_system" title="Hindu–Arabic numeral system">Hindu–Arabic numeral system</a> and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in <a href="/wiki/Indian_mathematics" title="Indian mathematics">India</a> and were transmitted to the <a href="/wiki/Western_world" title="Western world">Western world</a> via <a href="/wiki/Islamic_mathematics" class="mw-redirect" title="Islamic mathematics">Islamic mathematics</a>.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> Other notable developments of Indian mathematics include the modern definition and approximation of <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> and <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a>, and an early form of <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a>.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Medieval_and_later">Medieval and later</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg/150px-Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg" decoding="async" width="150" height="238" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg/225px-Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/2/23/Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg 2x" data-file-width="240" data-file-height="380" /></a><figcaption>A page from <a href="/wiki/Al-Khwarizmi" title="Al-Khwarizmi">al-Khwarizmi</a>'s <i><a href="/wiki/Al-Jabr" title="Al-Jabr">Al-Jabr</a></i></figcaption></figure> <p>During the <a href="/wiki/Golden_Age_of_Islam" class="mw-redirect" title="Golden Age of Islam">Golden Age of Islam</a>, especially during the 9th and 10th&#160;centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of <a href="/wiki/Algebra" title="Algebra">algebra</a>. Other achievements of the Islamic period include advances in <a href="/wiki/Spherical_trigonometry" title="Spherical trigonometry">spherical trigonometry</a> and the addition of the <a href="/wiki/Decimal_point" class="mw-redirect" title="Decimal point">decimal point</a> to the Arabic numeral system.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> Many notable mathematicians from this period were Persian, such as <a href="/wiki/Al-Khwarizmi" title="Al-Khwarizmi">Al-Khwarizmi</a>, <a href="/wiki/Omar_Khayyam" title="Omar Khayyam">Omar Khayyam</a> and <a href="/wiki/Sharaf_al-D%C4%ABn_al-%E1%B9%AC%C5%ABs%C4%AB" class="mw-redirect" title="Sharaf al-Dīn al-Ṭūsī">Sharaf al-Dīn al-Ṭūsī</a>.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> The Greek and Arabic mathematical texts were in turn translated to Latin during the Middle Ages and made available in Europe.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p><p>During the <a href="/wiki/Early_modern_period" title="Early modern period">early modern period</a>, mathematics began to develop at an accelerating pace in <a href="/wiki/Western_Europe" title="Western Europe">Western Europe</a>, with innovations that revolutionized mathematics, such as the introduction of variables and <a href="#Symbolic_notation_and_terminology">symbolic notation</a> by <a href="/wiki/Fran%C3%A7ois_Vi%C3%A8te" title="François Viète">François Viète</a> (1540–1603), the introduction of <a href="/wiki/History_of_logarithms" title="History of logarithms">logarithms</a> by <a href="/wiki/John_Napier" title="John Napier">John Napier</a> in 1614, which greatly simplified numerical calculations, especially for <a href="/wiki/Astronomy" title="Astronomy">astronomy</a> and <a href="/wiki/Marine_navigation" title="Marine navigation">marine navigation</a>, the introduction of coordinates by <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> (1596–1650) for reducing geometry to algebra, and the development of calculus by <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> (1643–1727) and <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a> (1646–1716). <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> (1707–1783), the most notable mathematician of the 18th century, unified these innovations into a single corpus with a standardized terminology, and completed them with the discovery and the proof of numerous theorems.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Carl_Friedrich_Gauss_1840_by_Jensen.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Carl_Friedrich_Gauss_1840_by_Jensen.jpg/180px-Carl_Friedrich_Gauss_1840_by_Jensen.jpg" decoding="async" width="180" height="229" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Carl_Friedrich_Gauss_1840_by_Jensen.jpg/270px-Carl_Friedrich_Gauss_1840_by_Jensen.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Carl_Friedrich_Gauss_1840_by_Jensen.jpg/360px-Carl_Friedrich_Gauss_1840_by_Jensen.jpg 2x" data-file-width="1639" data-file-height="2088" /></a><figcaption><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></figcaption></figure> <p>Perhaps the foremost mathematician of the 19th century was the German mathematician <a href="/wiki/Carl_Gauss" class="mw-redirect" title="Carl Gauss">Carl Gauss</a>, who made numerous contributions to fields such as algebra, analysis, <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>, <a href="/wiki/Matrix_theory" class="mw-redirect" title="Matrix theory">matrix theory</a>, number theory, and <a href="/wiki/Statistics" title="Statistics">statistics</a>.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> In the early 20th century, <a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Kurt Gödel</a> transformed mathematics by publishing <a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">his incompleteness theorems</a>, which show in part that any consistent axiomatic system—if powerful enough to describe arithmetic—will contain true propositions that cannot be proved.<sup id="cite_ref-Raatikainen_2005_58-1" class="reference"><a href="#cite_note-Raatikainen_2005-58"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mathematics has since been greatly extended, and there has been a fruitful interaction between mathematics and <a href="/wiki/Science" title="Science">science</a>, to the benefit of both. Mathematical discoveries continue to be made to this very day. According to Mikhail B. Sevryuk, in the January&#160;2006 issue of the <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>, "The number of papers and books included in the <i><a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">Mathematical Reviews</a></i> (MR) database since 1940 (the first year of operation of MR) is now more than 1.9&#160;million, and more than 75&#160;thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs."<sup id="cite_ref-FOOTNOTESevryuk2006101–109_96-0" class="reference"><a href="#cite_note-FOOTNOTESevryuk2006101–109-96"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Symbolic_notation_and_terminology">Symbolic notation and terminology</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Mathematical_notation" title="Mathematical notation">Mathematical notation</a>, <a href="/wiki/Language_of_mathematics" title="Language of mathematics">Language of mathematics</a>, and <a href="/wiki/Glossary_of_mathematics" class="mw-redirect" title="Glossary of mathematics">Glossary of mathematics</a></div> <figure class="mw-default-size skin-invert-image" typeof="mw:File/Thumb"><a href="/wiki/File:Sigma_summation_notation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Sigma_summation_notation.svg/220px-Sigma_summation_notation.svg.png" decoding="async" width="220" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Sigma_summation_notation.svg/330px-Sigma_summation_notation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Sigma_summation_notation.svg/440px-Sigma_summation_notation.svg.png 2x" data-file-width="350" data-file-height="240" /></a><figcaption>An explanation of the sigma (Σ) <a href="/wiki/Summation" title="Summation">summation</a> notation</figcaption></figure> <p>Mathematical notation is widely used in science and <a href="/wiki/Engineering" title="Engineering">engineering</a> for representing complex <a href="/wiki/Concept" title="Concept">concepts</a> and <a href="/wiki/Property_(philosophy)" title="Property (philosophy)">properties</a> in a concise, unambiguous, and accurate way. This notation consists of <a href="/wiki/Glossary_of_mathematical_symbols" title="Glossary of mathematical symbols">symbols</a> used for representing <a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">operations</a>, unspecified numbers, <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relations</a> and any other mathematical objects, and then assembling them into <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expressions</a> and formulas.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally <a href="/wiki/Latin_alphabet" title="Latin alphabet">Latin</a> or <a href="/wiki/Greek_alphabet" title="Greek alphabet">Greek</a> letters, and often include <a href="/wiki/Subscript" class="mw-redirect" title="Subscript">subscripts</a>. Operation and relations are generally represented by specific <a href="/wiki/Glossary_of_mathematical_symbols" title="Glossary of mathematical symbols">symbols</a> or <a href="/wiki/Glyph" title="Glyph">glyphs</a>,<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> such as <span class="texhtml">+</span> (<a href="/wiki/Plus_sign" class="mw-redirect" title="Plus sign">plus</a>), <span class="texhtml">×</span> (<a href="/wiki/Multiplication_sign" title="Multiplication sign">multiplication</a>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed07ec6b7c9532ddb859c43b95404125d5b34f25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.418ex; height:3.176ex;" alt="{\textstyle \int }"></span> (<a href="/wiki/Integral_sign" class="mw-redirect" title="Integral sign">integral</a>), <span class="texhtml">=</span> (<a href="/wiki/Equals_sign" title="Equals sign">equal</a>), and <span class="texhtml">&lt;</span> (<a href="/wiki/Less-than_sign" title="Less-than sign">less than</a>).<sup id="cite_ref-AMS_99-0" class="reference"><a href="#cite_note-AMS-99"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> All these symbols are generally grouped according to specific rules to form expressions and formulas.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> Normally, expressions and formulas do not appear alone, but are included in sentences of the current language, where expressions play the role of <a href="/wiki/Noun_phrase" title="Noun phrase">noun phrases</a> and formulas play the role of <a href="/wiki/Clause" title="Clause">clauses</a>. </p><p>Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous <a href="/wiki/Technical_definition" title="Technical definition">definitions</a> that provide a standard foundation for communication. An axiom or <a href="/wiki/Postulate" class="mw-redirect" title="Postulate">postulate</a> is a mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a <a href="/wiki/Conjecture" title="Conjecture">conjecture</a>. Through a series of rigorous arguments employing <a href="/wiki/Deductive_reasoning" title="Deductive reasoning">deductive reasoning</a>, a statement that is <a href="/wiki/Formal_proof" title="Formal proof">proven</a> to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a <a href="/wiki/Lemma_(mathematics)" title="Lemma (mathematics)">lemma</a>. A proven instance that forms part of a more general finding is termed a <a href="/wiki/Corollary" title="Corollary">corollary</a>.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p><p>Numerous technical terms used in mathematics are <a href="/wiki/Neologism" title="Neologism">neologisms</a>, such as <i><a href="/wiki/Polynomial" title="Polynomial">polynomial</a></i> and <i><a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphism</a></i>.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> Other technical terms are words of the common language that are used in an accurate meaning that may differ slightly from their common meaning. For example, in mathematics, "<a href="/wiki/Logical_disjunction" title="Logical disjunction">or</a>" means "one, the other or both", while, in common language, it is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called "<a href="/wiki/Exclusive_or" title="Exclusive or">exclusive or</a>"). Finally, many mathematical terms are common words that are used with a completely different meaning.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every <a href="/wiki/Free_module" title="Free module">free module</a> is <a href="/wiki/Flat_module" title="Flat module">flat</a>" and "a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> is always a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a>". </p> <div class="mw-heading mw-heading2"><h2 id="Relationship_with_sciences">Relationship with sciences</h2></div> <p>Mathematics is used in most <a href="/wiki/Science" title="Science">sciences</a> for <a href="/wiki/Mathematical_model" title="Mathematical model">modeling</a> phenomena, which then allows predictions to be made from experimental laws.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> The independence of mathematical truth from any experimentation implies that the accuracy of such predictions depends only on the adequacy of the model.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> Inaccurate predictions, rather than being caused by invalid mathematical concepts, imply the need to change the mathematical model used.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> For example, the <a href="/wiki/Perihelion_precession_of_Mercury" class="mw-redirect" title="Perihelion precession of Mercury">perihelion precession of Mercury</a> could only be explained after the emergence of <a href="/wiki/Einstein" class="mw-redirect" title="Einstein">Einstein</a>'s <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, which replaced <a href="/wiki/Newton%27s_law_of_gravitation" class="mw-redirect" title="Newton&#39;s law of gravitation">Newton's law of gravitation</a> as a better mathematical model.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> </p><p>There is still a <a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">philosophical</a> debate whether mathematics is a science. However, in practice, mathematicians are typically grouped with scientists, and mathematics shares much in common with the physical sciences. Like them, it is <a href="/wiki/Falsifiable" class="mw-redirect" title="Falsifiable">falsifiable</a>, which means in mathematics that, if a result or a theory is wrong, this can be proved by providing a <a href="/wiki/Counterexample" title="Counterexample">counterexample</a>. Similarly as in science, <a href="/wiki/Mathematical_theory" class="mw-redirect" title="Mathematical theory">theories</a> and results (theorems) are often obtained from <a href="/wiki/Experimentation" class="mw-redirect" title="Experimentation">experimentation</a>.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> In mathematics, the experimentation may consist of computation on selected examples or of the study of figures or other representations of mathematical objects (often mind representations without physical support). For example, when asked how he came about his theorems, Gauss once replied "durch planmässiges Tattonieren" (through systematic experimentation).<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> However, some authors emphasize that mathematics differs from the modern notion of science by not <em>relying</em> on empirical evidence.<sup id="cite_ref-Bishop1991_110-0" class="reference"><a href="#cite_note-Bishop1991-110"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nickles2013_112-0" class="reference"><a href="#cite_note-Nickles2013-112"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Pigliucci2014_113-0" class="reference"><a href="#cite_note-Pigliucci2014-113"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Pure_and_applied_mathematics">Pure and applied mathematics</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Applied_mathematics" title="Applied mathematics">Applied mathematics</a> and <a href="/wiki/Pure_mathematics" title="Pure mathematics">Pure mathematics</a></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:322px;max-width:322px"><div class="trow"><div class="tsingle" style="width:150px;max-width:150px"><div class="thumbimage" style="height:202px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:GodfreyKneller-IsaacNewton-1689.jpg" class="mw-file-description"><img alt="Isaac Newton" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/GodfreyKneller-IsaacNewton-1689.jpg/148px-GodfreyKneller-IsaacNewton-1689.jpg" decoding="async" width="148" height="208" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/GodfreyKneller-IsaacNewton-1689.jpg/222px-GodfreyKneller-IsaacNewton-1689.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/39/GodfreyKneller-IsaacNewton-1689.jpg/296px-GodfreyKneller-IsaacNewton-1689.jpg 2x" data-file-width="1364" data-file-height="1916" /></a></span></div></div><div class="tsingle" style="width:168px;max-width:168px"><div class="thumbimage" style="height:202px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg" class="mw-file-description"><img alt="Gottfried Wilhelm von Leibniz" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Gottfried_Wilhelm_Leibniz%2C_Bernhard_Christoph_Francke.jpg/166px-Gottfried_Wilhelm_Leibniz%2C_Bernhard_Christoph_Francke.jpg" decoding="async" width="166" height="205" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Gottfried_Wilhelm_Leibniz%2C_Bernhard_Christoph_Francke.jpg/249px-Gottfried_Wilhelm_Leibniz%2C_Bernhard_Christoph_Francke.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Gottfried_Wilhelm_Leibniz%2C_Bernhard_Christoph_Francke.jpg/332px-Gottfried_Wilhelm_Leibniz%2C_Bernhard_Christoph_Francke.jpg 2x" data-file-width="4486" data-file-height="5538" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Isaac Newton (left) and <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a> developed infinitesimal calculus.</div></div></div></div> <p>Until the 19th century, the development of mathematics in the West was mainly motivated by the needs of <a href="/wiki/Technology" title="Technology">technology</a> and science, and there was no clear distinction between pure and applied mathematics.<sup id="cite_ref-Ferreirós_2007_114-0" class="reference"><a href="#cite_note-Ferreirós_2007-114"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> For example, the natural numbers and arithmetic were introduced for the need of counting, and geometry was motivated by surveying, architecture and astronomy. Later, <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> introduced infinitesimal calculus for explaining the movement of the <a href="/wiki/Planet" title="Planet">planets</a> with his law of gravitation. Moreover, most mathematicians were also scientists, and many scientists were also mathematicians.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> However, a notable exception occurred with the tradition of <a href="/wiki/Pure_mathematics_in_Ancient_Greece" class="mw-redirect" title="Pure mathematics in Ancient Greece">pure mathematics in Ancient Greece</a>.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> The problem of <a href="/wiki/Integer_factorization" title="Integer factorization">integer factorization</a>, for example, which goes back to <a href="/wiki/Euclid" title="Euclid">Euclid</a> in 300 BC, had no practical application before its use in the <a href="/wiki/RSA_cryptosystem" class="mw-redirect" title="RSA cryptosystem">RSA cryptosystem</a>, now widely used for the security of <a href="/wiki/Computer_network" title="Computer network">computer networks</a>.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 19th century, mathematicians such as <a href="/wiki/Karl_Weierstrass" title="Karl Weierstrass">Karl Weierstrass</a> and <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a> increasingly focused their research on internal problems, that is, <i>pure mathematics</i>.<sup id="cite_ref-Ferreirós_2007_114-1" class="reference"><a href="#cite_note-Ferreirós_2007-114"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> This led to split mathematics into <i>pure mathematics</i> and <i>applied mathematics</i>, the latter being often considered as having a lower value among mathematical purists. However, the lines between the two are frequently blurred.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> </p><p>The aftermath of <a href="/wiki/World_War_II" title="World War II">World War II</a> led to a surge in the development of applied mathematics in the US and elsewhere.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> Many of the theories developed for applications were found interesting from the point of view of pure mathematics, and many results of pure mathematics were shown to have applications outside mathematics; in turn, the study of these applications may give new insights on the "pure theory".<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup> </p><p>An example of the first case is the <a href="/wiki/Theory_of_distributions" class="mw-redirect" title="Theory of distributions">theory of distributions</a>, introduced by <a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Laurent Schwartz</a> for validating computations done in <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, which became immediately an important tool of (pure) mathematical analysis.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup> An example of the second case is the <a href="/wiki/Decidability_of_the_first-order_theory_of_the_real_numbers" class="mw-redirect" title="Decidability of the first-order theory of the real numbers">decidability of the first-order theory of the real numbers</a>, a problem of pure mathematics that was proved true by <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a>, with an algorithm that is impossible to <a href="/wiki/Implementation_(computer_science)" class="mw-redirect" title="Implementation (computer science)">implement</a> because of a computational complexity that is much too high.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, <a href="/wiki/George_E._Collins" title="George E. Collins">George Collins</a> introduced the <a href="/wiki/Cylindrical_algebraic_decomposition" title="Cylindrical algebraic decomposition">cylindrical algebraic decomposition</a> that became a fundamental tool in <a href="/wiki/Real_algebraic_geometry" title="Real algebraic geometry">real algebraic geometry</a>.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">&#91;</span>123<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the present day, the distinction between pure and applied mathematics is more a question of personal research aim of mathematicians than a division of mathematics into broad areas.<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">&#91;</span>124<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">&#91;</span>125<span class="cite-bracket">&#93;</span></a></sup> The Mathematics Subject Classification has a section for "general applied mathematics" but does not mention "pure mathematics".<sup id="cite_ref-MSC_15-7" class="reference"><a href="#cite_note-MSC-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> However, these terms are still used in names of some <a href="/wiki/University" title="University">university</a> departments, such as at the <a href="/wiki/Faculty_of_Mathematics,_University_of_Cambridge" title="Faculty of Mathematics, University of Cambridge">Faculty of Mathematics</a> at the <a href="/wiki/University_of_Cambridge" title="University of Cambridge">University of Cambridge</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Unreasonable_effectiveness">Unreasonable effectiveness</h3></div> <p>The <a href="/wiki/Unreasonable_effectiveness_of_mathematics" class="mw-redirect" title="Unreasonable effectiveness of mathematics">unreasonable effectiveness of mathematics</a> is a phenomenon that was named and first made explicit by physicist <a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Eugene Wigner</a>.<sup id="cite_ref-wigner1960_3-1" class="reference"><a href="#cite_note-wigner1960-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> It is the fact that many mathematical theories (even the "purest") have applications outside their initial object. These applications may be completely outside their initial area of mathematics, and may concern physical phenomena that were completely unknown when the mathematical theory was introduced.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">&#91;</span>126<span class="cite-bracket">&#93;</span></a></sup> Examples of unexpected applications of mathematical theories can be found in many areas of mathematics. </p><p>A notable example is the <a href="/wiki/Prime_factorization" class="mw-redirect" title="Prime factorization">prime factorization</a> of natural numbers that was discovered more than 2,000 years before its common use for secure <a href="/wiki/Internet" title="Internet">internet</a> communications through the <a href="/wiki/RSA_cryptosystem" class="mw-redirect" title="RSA cryptosystem">RSA cryptosystem</a>.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">&#91;</span>127<span class="cite-bracket">&#93;</span></a></sup> A second historical example is the theory of <a href="/wiki/Ellipse" title="Ellipse">ellipses</a>. They were studied by the <a href="/wiki/Ancient_Greek_mathematicians" class="mw-redirect" title="Ancient Greek mathematicians">ancient Greek mathematicians</a> as <a href="/wiki/Conic_section" title="Conic section">conic sections</a> (that is, intersections of <a href="/wiki/Cone" title="Cone">cones</a> with planes). It was almost 2,000 years later that <a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Johannes Kepler</a> discovered that the <a href="/wiki/Trajectories" class="mw-redirect" title="Trajectories">trajectories</a> of the planets are ellipses.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">&#91;</span>128<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 19th century, the internal development of geometry (pure mathematics) led to definition and study of non-Euclidean geometries, spaces of dimension higher than three and <a href="/wiki/Manifold" title="Manifold">manifolds</a>. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> developed the <a href="/wiki/Theory_of_relativity" title="Theory of relativity">theory of relativity</a> that uses fundamentally these concepts. In particular, <a href="/wiki/Spacetime" title="Spacetime">spacetime</a> of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> is a non-Euclidean space of dimension four, and spacetime of <a href="/wiki/General_relativity" title="General relativity">general relativity</a> is a (curved) manifold of dimension four.<sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">&#91;</span>129<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">&#91;</span>130<span class="cite-bracket">&#93;</span></a></sup> </p><p>A striking aspect of the interaction between mathematics and physics is when mathematics drives research in physics. This is illustrated by the discoveries of the <a href="/wiki/Positron" title="Positron">positron</a> and the <a href="/wiki/Omega_baryon" title="Omega baryon">baryon</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ^{-}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ^{-}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef44bf9fda1defbf63ab871817d3193ef64683ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.836ex; height:2.509ex;" alt="{\displaystyle \Omega ^{-}.}"></span> In both cases, the equations of the theories had unexplained solutions, which led to conjecture of the existence of an unknown <a href="/wiki/Particle" title="Particle">particle</a>, and the search for these particles. In both cases, these particles were discovered a few years later by specific experiments.<sup id="cite_ref-borel_134-0" class="reference"><a href="#cite_note-borel-134"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">&#91;</span>133<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Specific_sciences">Specific sciences</h3></div> <div class="mw-heading mw-heading4"><h4 id="Physics">Physics</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Relationship_between_mathematics_and_physics" title="Relationship between mathematics and physics">Relationship between mathematics and physics</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Pendule_schema.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Pendule_schema.gif/220px-Pendule_schema.gif" decoding="async" width="220" height="268" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/c/c5/Pendule_schema.gif 1.5x" data-file-width="291" data-file-height="354" /></a><figcaption>Diagram of a pendulum</figcaption></figure> <p>Mathematics and physics have influenced each other over their modern history. Modern physics uses mathematics abundantly,<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">&#91;</span>134<span class="cite-bracket">&#93;</span></a></sup> and is also considered to be the motivation of major mathematical developments.<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">&#91;</span>135<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Computing">Computing</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Theoretical_computer_science" title="Theoretical computer science">Theoretical computer science</a> and <a href="/wiki/Computational_mathematics" title="Computational mathematics">Computational mathematics</a></div> <p>Computing is closely related to mathematics in several ways.<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">&#91;</span>136<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Theoretical_computer_science" title="Theoretical computer science">Theoretical computer science</a> is considered to be mathematical in nature.<sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">&#91;</span>137<span class="cite-bracket">&#93;</span></a></sup> Communication technologies apply branches of mathematics that may be very old (e.g., arithmetic), especially with respect to transmission security, in <a href="/wiki/Cryptography" title="Cryptography">cryptography</a> and <a href="/wiki/Coding_theory" title="Coding theory">coding theory</a>. <a href="/wiki/Discrete_mathematics" title="Discrete mathematics">Discrete mathematics</a> is useful in many areas of computer science, such as <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">complexity theory</a>, <a href="/wiki/Information_theory" title="Information theory">information theory</a>, and <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>.<sup id="cite_ref-141" class="reference"><a href="#cite_note-141"><span class="cite-bracket">&#91;</span>138<span class="cite-bracket">&#93;</span></a></sup> In 1998, the <a href="/wiki/Kepler_conjecture" title="Kepler conjecture">Kepler conjecture</a> on <a href="/wiki/Sphere_packing" title="Sphere packing">sphere packing</a> seemed to also be partially proven by computer.<sup id="cite_ref-142" class="reference"><a href="#cite_note-142"><span class="cite-bracket">&#91;</span>139<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Biology_and_chemistry">Biology and chemistry</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Mathematical_and_theoretical_biology" title="Mathematical and theoretical biology">Mathematical and theoretical biology</a> and <a href="/wiki/Mathematical_chemistry" title="Mathematical chemistry">Mathematical chemistry</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Giant_Pufferfish_skin_pattern_detail.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Giant_Pufferfish_skin_pattern_detail.jpg/220px-Giant_Pufferfish_skin_pattern_detail.jpg" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/a/a4/Giant_Pufferfish_skin_pattern_detail.jpg 1.5x" data-file-width="300" data-file-height="300" /></a><figcaption>The skin of this <a href="/wiki/Giant_pufferfish" class="mw-redirect" title="Giant pufferfish">giant pufferfish</a> exhibits a <a href="/wiki/Turing_pattern" title="Turing pattern">Turing pattern</a>, which can be modeled by <a href="/wiki/Reaction%E2%80%93diffusion_system" title="Reaction–diffusion system">reaction–diffusion systems</a>.</figcaption></figure> <p><a href="/wiki/Biology" title="Biology">Biology</a> uses probability extensively in fields such as ecology or <a href="/wiki/Neurobiology" class="mw-redirect" title="Neurobiology">neurobiology</a>.<sup id="cite_ref-:2_143-0" class="reference"><a href="#cite_note-:2-143"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup> Most discussion of probability centers on the concept of <a href="/wiki/Evolutionary_fitness" class="mw-redirect" title="Evolutionary fitness">evolutionary fitness</a>.<sup id="cite_ref-:2_143-1" class="reference"><a href="#cite_note-:2-143"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup> Ecology heavily uses modeling to simulate <a href="/wiki/Population_dynamics" title="Population dynamics">population dynamics</a>,<sup id="cite_ref-:2_143-2" class="reference"><a href="#cite_note-:2-143"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup> study ecosystems such as the predator-prey model, measure pollution diffusion,<sup id="cite_ref-FOOTNOTEBouleau1999282–283_145-0" class="reference"><a href="#cite_note-FOOTNOTEBouleau1999282–283-145"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup> or to assess climate change.<sup id="cite_ref-FOOTNOTEBouleau1999285_146-0" class="reference"><a href="#cite_note-FOOTNOTEBouleau1999285-146"><span class="cite-bracket">&#91;</span>143<span class="cite-bracket">&#93;</span></a></sup> The dynamics of a population can be modeled by coupled differential equations, such as the <a href="/wiki/Lotka%E2%80%93Volterra_equations" title="Lotka–Volterra equations">Lotka–Volterra equations</a>.<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">&#91;</span>144<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Statistical_hypothesis_testing" class="mw-redirect" title="Statistical hypothesis testing">Statistical hypothesis testing</a>, is run on data from <a href="/wiki/Clinical_trial" title="Clinical trial">clinical trials</a> to determine whether a new treatment works.<sup id="cite_ref-148" class="reference"><a href="#cite_note-148"><span class="cite-bracket">&#91;</span>145<span class="cite-bracket">&#93;</span></a></sup> Since the start of the 20th century, chemistry has used computing to model molecules in three dimensions.<sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Earth_sciences">Earth sciences</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Geomathematics" title="Geomathematics">Geomathematics</a></div> <p><a href="/wiki/Structural_geology" title="Structural geology">Structural geology</a> and climatology use probabilistic models to predict the risk of natural catastrophes.<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">&#91;</span>147<span class="cite-bracket">&#93;</span></a></sup> Similarly, <a href="/wiki/Meteorology" title="Meteorology">meteorology</a>, <a href="/wiki/Oceanography" title="Oceanography">oceanography</a>, and <a href="/wiki/Planetology" class="mw-redirect" title="Planetology">planetology</a> also use mathematics due to their heavy use of models.<sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">&#91;</span>149<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Social_sciences">Social sciences</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Mathematical_economics" title="Mathematical economics">Mathematical economics</a> and <a href="/wiki/Historical_dynamics" title="Historical dynamics">Historical dynamics</a></div> <p>Areas of mathematics used in the social sciences include probability/statistics and differential equations. These are used in linguistics, <a href="/wiki/Economics" title="Economics">economics</a>, <a href="/wiki/Sociology" title="Sociology">sociology</a>,<sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">&#91;</span>151<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Psychology" title="Psychology">psychology</a>.<sup id="cite_ref-155" class="reference"><a href="#cite_note-155"><span class="cite-bracket">&#91;</span>152<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size skin-invert-image" typeof="mw:File/Thumb"><a href="/wiki/File:Supply-demand-equilibrium.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Supply-demand-equilibrium.svg/220px-Supply-demand-equilibrium.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Supply-demand-equilibrium.svg/330px-Supply-demand-equilibrium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Supply-demand-equilibrium.svg/440px-Supply-demand-equilibrium.svg.png 2x" data-file-width="217" data-file-height="217" /></a><figcaption><a href="/wiki/Supply_and_demand" title="Supply and demand">Supply and demand</a> curves, like this one, are a staple of mathematical economics.</figcaption></figure> <p>Often the fundamental postulate of mathematical economics is that of the rational individual actor – <i><a href="/wiki/Homo_economicus" title="Homo economicus">Homo economicus</a></i> (<abbr style="font-size:85%" title="literal translation">lit.</abbr><span style="white-space: nowrap;">&#8201;</span><span class="gloss-quot">'</span><span class="gloss-text">economic man</span><span class="gloss-quot">'</span>).<sup id="cite_ref-:3_156-0" class="reference"><a href="#cite_note-:3-156"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup> In this model, the individual seeks to maximize their <a href="/wiki/Rational_choice_theory" class="mw-redirect" title="Rational choice theory">self-interest</a>,<sup id="cite_ref-:3_156-1" class="reference"><a href="#cite_note-:3-156"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup> and always makes optimal choices using <a href="/wiki/Perfect_information" title="Perfect information">perfect information</a>.<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">&#91;</span>154<span class="cite-bracket">&#93;</span></a></sup> This atomistic view of economics allows it to relatively easily mathematize its thinking, because individual <a href="/wiki/Calculations" class="mw-redirect" title="Calculations">calculations</a> are transposed into mathematical calculations. Such mathematical modeling allows one to probe economic mechanisms. Some reject or criticise the concept of <i>Homo economicus</i>. Economists note that real people have limited information, make poor choices and care about fairness, altruism, not just personal gain.<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup> </p><p>Without mathematical modeling, it is hard to go beyond statistical observations or untestable speculation. Mathematical modeling allows economists to create structured frameworks to test hypotheses and analyze complex interactions. Models provide clarity and precision, enabling the translation of theoretical concepts into quantifiable predictions that can be tested against real-world data.<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">&#91;</span>156<span class="cite-bracket">&#93;</span></a></sup> </p><p>At the start of the 20th century, there was a development to express historical movements in formulas. In 1922, <a href="/wiki/Nikolai_Kondratiev" title="Nikolai Kondratiev">Nikolai Kondratiev</a> discerned the ~50-year-long <a href="/wiki/Kondratiev_cycle" class="mw-redirect" title="Kondratiev cycle">Kondratiev cycle</a>, which explains phases of economic growth or crisis.<sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">&#91;</span>157<span class="cite-bracket">&#93;</span></a></sup> Towards the end of the 19th century, mathematicians extended their analysis into <a href="/wiki/Geopolitics" title="Geopolitics">geopolitics</a>.<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Peter_Turchin" title="Peter Turchin">Peter Turchin</a> developed <a href="/wiki/Cliodynamics" title="Cliodynamics">cliodynamics</a> since the 1990s.<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">&#91;</span>159<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mathematization of the social sciences is not without risk. In the controversial book <i><a href="/wiki/Fashionable_Nonsense" title="Fashionable Nonsense">Fashionable Nonsense</a></i> (1997), <a href="/wiki/Alan_Sokal" title="Alan Sokal">Sokal</a> and <a href="/wiki/Jean_Bricmont" title="Jean Bricmont">Bricmont</a> denounced the unfounded or abusive use of scientific terminology, particularly from mathematics or physics, in the social sciences.<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">&#91;</span>160<span class="cite-bracket">&#93;</span></a></sup> The study of <a href="/wiki/Complex_systems" class="mw-redirect" title="Complex systems">complex systems</a> (evolution of unemployment, business capital, demographic evolution of a population, etc.) uses mathematical knowledge. However, the choice of counting criteria, particularly for unemployment, or of models, can be subject to controversy.<sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">&#91;</span>161<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">&#91;</span>162<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Philosophy">Philosophy</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></div> <div class="mw-heading mw-heading3"><h3 id="Reality">Reality</h3></div> <p>The connection between mathematics and material reality has led to philosophical debates since at least the time of <a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a>. The ancient philosopher <a href="/wiki/Plato" title="Plato">Plato</a> argued that abstractions that reflect material reality have themselves a reality that exists outside space and time. As a result, the philosophical view that mathematical objects somehow exist on their own in abstraction is often referred to as <a href="/wiki/Mathematical_Platonism" class="mw-redirect" title="Mathematical Platonism">Platonism</a>. Independently of their possible philosophical opinions, modern mathematicians may be generally considered as Platonists, since they think of and talk of their objects of study as real objects.<sup id="cite_ref-SEP-Platonism_166-0" class="reference"><a href="#cite_note-SEP-Platonism-166"><span class="cite-bracket">&#91;</span>163<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Armand_Borel" title="Armand Borel">Armand Borel</a> summarized this view of mathematics reality as follows, and provided quotations of <a href="/wiki/G._H._Hardy" title="G. H. Hardy">G. H. Hardy</a>, <a href="/wiki/Charles_Hermite" title="Charles Hermite">Charles Hermite</a>, <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> and Albert Einstein that support his views.<sup id="cite_ref-borel_134-1" class="reference"><a href="#cite_note-borel-134"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p> Something becomes objective (as opposed to "subjective") as soon as we are convinced that it exists in the minds of others in the same form as it does in ours and that we can think about it and discuss it together.<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">&#91;</span>164<span class="cite-bracket">&#93;</span></a></sup> Because the language of mathematics is so precise, it is ideally suited to defining concepts for which such a consensus exists. In my opinion, that is sufficient to provide us with a <em>feeling</em> of an objective existence, of a reality of mathematics ...</p></blockquote> <p>Nevertheless, Platonism and the concurrent views on abstraction do not explain the <a href="#Unreasonable_effectiveness">unreasonable effectiveness</a> of mathematics.<sup id="cite_ref-168" class="reference"><a href="#cite_note-168"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Proposed_definitions">Proposed definitions</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Definitions_of_mathematics" title="Definitions of mathematics">Definitions of mathematics</a></div> <p>There is no general consensus about the definition of mathematics or its <a href="/wiki/Epistemology" title="Epistemology">epistemological status</a>—that is, its place inside knowledge. A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do".<sup id="cite_ref-Mura_169-0" class="reference"><a href="#cite_note-Mura-169"><span class="cite-bracket">&#91;</span>166<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Runge_170-0" class="reference"><a href="#cite_note-Runge-170"><span class="cite-bracket">&#91;</span>167<span class="cite-bracket">&#93;</span></a></sup> A common approach is to define mathematics by its object of study.<sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEMura1993379,_381_172-0" class="reference"><a href="#cite_note-FOOTNOTEMura1993379,_381-172"><span class="cite-bracket">&#91;</span>169<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEBrownPorter1995326_173-0" class="reference"><a href="#cite_note-FOOTNOTEBrownPorter1995326-173"><span class="cite-bracket">&#91;</span>170<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">&#91;</span>171<span class="cite-bracket">&#93;</span></a></sup> </p><p>Aristotle defined mathematics as "the science of quantity" and this definition prevailed until the 18th century. However, Aristotle also noted a focus on quantity alone may not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart.<sup id="cite_ref-Franklin_175-0" class="reference"><a href="#cite_note-Franklin-175"><span class="cite-bracket">&#91;</span>172<span class="cite-bracket">&#93;</span></a></sup> In the 19th century, when mathematicians began to address topics—such as infinite sets—which have no clear-cut relation to physical reality, a variety of new definitions were given.<sup id="cite_ref-Cajori_176-0" class="reference"><a href="#cite_note-Cajori-176"><span class="cite-bracket">&#91;</span>173<span class="cite-bracket">&#93;</span></a></sup> With the large number of new areas of mathematics that have appeared since the beginning of the 20th century, defining mathematics by its object of study has become increasingly difficult.<sup id="cite_ref-FOOTNOTEDevlin2018&#91;httpsbooksgooglecombooksidgUb7CAAAQBAJpgPA3_3&#93;_177-0" class="reference"><a href="#cite_note-FOOTNOTEDevlin2018[httpsbooksgooglecombooksidgUb7CAAAQBAJpgPA3_3]-177"><span class="cite-bracket">&#91;</span>174<span class="cite-bracket">&#93;</span></a></sup> For example, in lieu of a definition, <a href="/wiki/Saunders_Mac_Lane" title="Saunders Mac Lane">Saunders Mac Lane</a> in <i><a href="/wiki/Mathematics,_form_and_function" class="mw-redirect" title="Mathematics, form and function">Mathematics, form and function</a></i> summarizes the basics of several areas of mathematics, emphasizing their inter-connectedness, and observes:<sup id="cite_ref-178" class="reference"><a href="#cite_note-178"><span class="cite-bracket">&#91;</span>175<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>the development of Mathematics provides a tightly connected network of formal rules, concepts, and systems. Nodes of this network are closely bound to procedures useful in human activities and to questions arising in science. The transition from activities to the formal Mathematical systems is guided by a variety of general insights and ideas.</p></blockquote> <p>Another approach for defining mathematics is to use its methods. For example, an area of study is often qualified as mathematics as soon as one can prove theorems—assertions whose validity relies on a proof, that is, a purely-logical deduction.<sup id="cite_ref-179" class="reference"><a href="#cite_note-179"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-180" class="reference"><a href="#cite_note-180"><span class="cite-bracket">&#91;</span>176<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="The material near this tag failed verification of its source citation(s). (October 2024)">failed verification</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Rigor">Rigor</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Logic" title="Logic">Logic</a></div> <p>Mathematical reasoning requires <a href="/wiki/Mathematical_rigor" class="mw-redirect" title="Mathematical rigor">rigor</a>. This means that the definitions must be absolutely unambiguous and the <a href="/wiki/Proof_(mathematics)" class="mw-redirect" title="Proof (mathematics)">proofs</a> must be reducible to a succession of applications of <a href="/wiki/Inference_rule" class="mw-redirect" title="Inference rule">inference rules</a>,<sup id="cite_ref-181" class="reference"><a href="#cite_note-181"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup> without any use of empirical evidence and <a href="/wiki/Intuition" title="Intuition">intuition</a>.<sup id="cite_ref-182" class="reference"><a href="#cite_note-182"><span class="cite-bracket">&#91;</span>f<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-183" class="reference"><a href="#cite_note-183"><span class="cite-bracket">&#91;</span>177<span class="cite-bracket">&#93;</span></a></sup> Rigorous reasoning is not specific to mathematics, but, in mathematics, the standard of rigor is much higher than elsewhere. Despite mathematics' <a href="/wiki/Concision" title="Concision">concision</a>, rigorous proofs can require hundreds of pages to express, such as the 255-page <a href="/wiki/Feit%E2%80%93Thompson_theorem" title="Feit–Thompson theorem">Feit–Thompson theorem</a>.<sup id="cite_ref-184" class="reference"><a href="#cite_note-184"><span class="cite-bracket">&#91;</span>g<span class="cite-bracket">&#93;</span></a></sup> The emergence of <a href="/wiki/Computer-assisted_proof" title="Computer-assisted proof">computer-assisted proofs</a> has allowed proof lengths to further expand.<sup id="cite_ref-185" class="reference"><a href="#cite_note-185"><span class="cite-bracket">&#91;</span>h<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-186" class="reference"><a href="#cite_note-186"><span class="cite-bracket">&#91;</span>178<span class="cite-bracket">&#93;</span></a></sup> The result of this trend is a philosophy of the <a href="/wiki/Quasi-empiricism_in_mathematics" title="Quasi-empiricism in mathematics">quasi-empiricist</a> proof that can not be considered infallible, but has a probability attached to it.<sup id="cite_ref-Kleiner_1991_7-3" class="reference"><a href="#cite_note-Kleiner_1991-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>The concept of rigor in mathematics dates back to ancient Greece, where their society encouraged logical, deductive reasoning. However, this rigorous approach would tend to discourage exploration of new approaches, such as irrational numbers and concepts of infinity. The method of demonstrating rigorous proof was enhanced in the sixteenth century through the use of symbolic notation. In the 18th century, social transition led to mathematicians earning their keep through teaching, which led to more careful thinking about the underlying concepts of mathematics. This produced more rigorous approaches, while transitioning from geometric methods to algebraic and then arithmetic proofs.<sup id="cite_ref-Kleiner_1991_7-4" class="reference"><a href="#cite_note-Kleiner_1991-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>At the end of the 19th century, it appeared that the definitions of the basic concepts of mathematics were not accurate enough for avoiding paradoxes (non-Euclidean geometries and <a href="/wiki/Weierstrass_function" title="Weierstrass function">Weierstrass function</a>) and contradictions (Russell's paradox). This was solved by the inclusion of axioms with the <a href="/wiki/Apodictic" class="mw-redirect" title="Apodictic">apodictic</a> inference rules of mathematical theories; the re-introduction of axiomatic method pioneered by the ancient Greeks.<sup id="cite_ref-Kleiner_1991_7-5" class="reference"><a href="#cite_note-Kleiner_1991-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> It results that "rigor" is no more a relevant concept in mathematics, as a proof is either correct or erroneous, and a "rigorous proof" is simply a <a href="/wiki/Pleonasm" title="Pleonasm">pleonasm</a>. Where a special concept of rigor comes into play is in the socialized aspects of a proof, wherein it may be demonstrably refuted by other mathematicians. After a proof has been accepted for many years or even decades, it can then be considered as reliable.<sup id="cite_ref-187" class="reference"><a href="#cite_note-187"><span class="cite-bracket">&#91;</span>179<span class="cite-bracket">&#93;</span></a></sup> </p><p>Nevertheless, the concept of "rigor" may remain useful for teaching to beginners what is a mathematical proof.<sup id="cite_ref-188" class="reference"><a href="#cite_note-188"><span class="cite-bracket">&#91;</span>180<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Training_and_practice">Training and practice</h2></div> <div class="mw-heading mw-heading3"><h3 id="Education">Education</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mathematics_education" title="Mathematics education">Mathematics education</a></div> <p>Mathematics has a remarkable ability to cross cultural boundaries and time periods. As a <a href="/wiki/Human_activity" class="mw-redirect" title="Human activity">human activity</a>, the practice of mathematics has a social side, which includes <a href="/wiki/Mathematics_education" title="Mathematics education">education</a>, <a href="/wiki/Mathematician" title="Mathematician">careers</a>, <a href="/wiki/List_of_mathematics_awards" title="List of mathematics awards">recognition</a>, <a href="/wiki/Popular_mathematics" title="Popular mathematics">popularization</a>, and so on. In education, mathematics is a core part of the curriculum and forms an important element of the <a href="/wiki/STEM" class="mw-redirect" title="STEM">STEM</a> academic disciplines. Prominent careers for professional mathematicians include math teacher or professor, <a href="/wiki/Statistician" title="Statistician">statistician</a>, <a href="/wiki/Actuary" title="Actuary">actuary</a>, <a href="/wiki/Financial_analyst" title="Financial analyst">financial analyst</a>, <a href="/wiki/Economist" title="Economist">economist</a>, <a href="/wiki/Accountant" title="Accountant">accountant</a>, <a href="/wiki/Commodity_trader" class="mw-redirect" title="Commodity trader">commodity trader</a>, or <a href="/wiki/Information_technology_consulting" title="Information technology consulting">computer consultant</a>.<sup id="cite_ref-189" class="reference"><a href="#cite_note-189"><span class="cite-bracket">&#91;</span>181<span class="cite-bracket">&#93;</span></a></sup> </p><p>Archaeological evidence shows that instruction in mathematics occurred as early as the second millennium BCE in ancient Babylonia.<sup id="cite_ref-190" class="reference"><a href="#cite_note-190"><span class="cite-bracket">&#91;</span>182<span class="cite-bracket">&#93;</span></a></sup> Comparable evidence has been unearthed for scribal mathematics training in the <a href="/wiki/Ancient_Near_East" title="Ancient Near East">ancient Near East</a> and then for the <a href="/wiki/Greco-Roman_world" title="Greco-Roman world">Greco-Roman world</a> starting around 300 BCE.<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">&#91;</span>183<span class="cite-bracket">&#93;</span></a></sup> The oldest known mathematics textbook is the <a href="/wiki/Rhind_papyrus" class="mw-redirect" title="Rhind papyrus">Rhind papyrus</a>, dated from <abbr title="circa">c.</abbr><span style="white-space:nowrap;">&#8201;1650 BCE</span> in Egypt.<sup id="cite_ref-192" class="reference"><a href="#cite_note-192"><span class="cite-bracket">&#91;</span>184<span class="cite-bracket">&#93;</span></a></sup> Due to a scarcity of books, mathematical teachings in ancient India were communicated using memorized <a href="/wiki/Oral_tradition" title="Oral tradition">oral tradition</a> since the <a href="/wiki/Vedic_period" title="Vedic period">Vedic period</a> (<abbr title="circa">c.</abbr><span style="white-space:nowrap;">&#8201;1500</span>&#160;– c.<span style="white-space:nowrap;">&#8201;500 BCE</span>).<sup id="cite_ref-193" class="reference"><a href="#cite_note-193"><span class="cite-bracket">&#91;</span>185<span class="cite-bracket">&#93;</span></a></sup> In <a href="/wiki/Imperial_China" class="mw-redirect" title="Imperial China">Imperial China</a> during the <a href="/wiki/Tang_dynasty" title="Tang dynasty">Tang dynasty</a> (618–907 CE), a mathematics curriculum was adopted for the <a href="/wiki/Imperial_examination" title="Imperial examination">civil service exam</a> to join the state bureaucracy.<sup id="cite_ref-194" class="reference"><a href="#cite_note-194"><span class="cite-bracket">&#91;</span>186<span class="cite-bracket">&#93;</span></a></sup> </p><p>Following the <a href="/wiki/Dark_Age" class="mw-redirect" title="Dark Age">Dark Ages</a>, mathematics education in Europe was provided by religious schools as part of the <a href="/wiki/Quadrivium" title="Quadrivium">Quadrivium</a>. Formal instruction in <a href="/wiki/Pedagogy" title="Pedagogy">pedagogy</a> began with <a href="/wiki/Jesuit" class="mw-redirect" title="Jesuit">Jesuit</a> schools in the 16th and 17th century. Most mathematical curricula remained at a basic and practical level until the nineteenth century, when it began to flourish in France and Germany. The oldest journal addressing instruction in mathematics was <i><a href="/wiki/L%27Enseignement_Math%C3%A9matique" class="mw-redirect" title="L&#39;Enseignement Mathématique">L'Enseignement Mathématique</a></i>, which began publication in 1899.<sup id="cite_ref-195" class="reference"><a href="#cite_note-195"><span class="cite-bracket">&#91;</span>187<span class="cite-bracket">&#93;</span></a></sup> The Western advancements in science and technology led to the establishment of centralized education systems in many nation-states, with mathematics as a core component—initially for its military applications.<sup id="cite_ref-196" class="reference"><a href="#cite_note-196"><span class="cite-bracket">&#91;</span>188<span class="cite-bracket">&#93;</span></a></sup> While the content of courses varies, in the present day nearly all countries teach mathematics to students for significant amounts of time.<sup id="cite_ref-197" class="reference"><a href="#cite_note-197"><span class="cite-bracket">&#91;</span>189<span class="cite-bracket">&#93;</span></a></sup> </p><p>During school, mathematical capabilities and positive expectations have a strong association with career interest in the field. Extrinsic factors such as feedback motivation by teachers, parents, and peer groups can influence the level of interest in mathematics.<sup id="cite_ref-198" class="reference"><a href="#cite_note-198"><span class="cite-bracket">&#91;</span>190<span class="cite-bracket">&#93;</span></a></sup> Some students studying math may develop an apprehension or fear about their performance in the subject. This is known as <a href="/wiki/Math_anxiety" class="mw-redirect" title="Math anxiety">math anxiety</a> or math phobia, and is considered the most prominent of the disorders impacting academic performance. Math anxiety can develop due to various factors such as parental and teacher attitudes, social stereotypes, and personal traits. Help to counteract the anxiety can come from changes in instructional approaches, by interactions with parents and teachers, and by tailored treatments for the individual.<sup id="cite_ref-199" class="reference"><a href="#cite_note-199"><span class="cite-bracket">&#91;</span>191<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Psychology_(aesthetic,_creativity_and_intuition)"><span id="Psychology_.28aesthetic.2C_creativity_and_intuition.29"></span>Psychology (aesthetic, creativity and intuition)</h3></div> <p>The validity of a mathematical theorem relies only on the rigor of its proof, which could theoretically be done automatically by a <a href="/wiki/Computer_program" title="Computer program">computer program</a>. This does not mean that there is no place for creativity in a mathematical work. On the contrary, many important mathematical results (theorems) are solutions of problems that other mathematicians failed to solve, and the invention of a way for solving them may be a fundamental way of the solving process.<sup id="cite_ref-200" class="reference"><a href="#cite_note-200"><span class="cite-bracket">&#91;</span>192<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-201" class="reference"><a href="#cite_note-201"><span class="cite-bracket">&#91;</span>193<span class="cite-bracket">&#93;</span></a></sup> An extreme example is <a href="/wiki/Apery%27s_theorem" class="mw-redirect" title="Apery&#39;s theorem">Apery's theorem</a>: <a href="/wiki/Roger_Apery" class="mw-redirect" title="Roger Apery">Roger Apery</a> provided only the ideas for a proof, and the formal proof was given only several months later by three other mathematicians.<sup id="cite_ref-202" class="reference"><a href="#cite_note-202"><span class="cite-bracket">&#91;</span>194<span class="cite-bracket">&#93;</span></a></sup> </p><p>Creativity and rigor are not the only psychological aspects of the activity of mathematicians. Some mathematicians can see their activity as a game, more specifically as solving <a href="/wiki/Puzzle" title="Puzzle">puzzles</a>.<sup id="cite_ref-203" class="reference"><a href="#cite_note-203"><span class="cite-bracket">&#91;</span>195<span class="cite-bracket">&#93;</span></a></sup> This aspect of mathematical activity is emphasized in <a href="/wiki/Recreational_mathematics" title="Recreational mathematics">recreational mathematics</a>. </p><p>Mathematicians can find an <a href="/wiki/Aesthetic" class="mw-redirect" title="Aesthetic">aesthetic</a> value to mathematics. Like <a href="/wiki/Beauty" title="Beauty">beauty</a>, it is hard to define, it is commonly related to <i>elegance</i>, which involves qualities like <a href="/wiki/Simplicity" title="Simplicity">simplicity</a>, <a href="/wiki/Symmetry" title="Symmetry">symmetry</a>, completeness, and generality. G. H. Hardy in <i><a href="/wiki/A_Mathematician%27s_Apology" title="A Mathematician&#39;s Apology">A Mathematician's Apology</a></i> expressed the belief that the aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics. He also identified other criteria such as significance, unexpectedness, and inevitability, which contribute to mathematical aesthetics.<sup id="cite_ref-204" class="reference"><a href="#cite_note-204"><span class="cite-bracket">&#91;</span>196<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Paul Erdős</a> expressed this sentiment more ironically by speaking of "The Book", a supposed divine collection of the most beautiful proofs. The 1998 book <i><a href="/wiki/Proofs_from_THE_BOOK" title="Proofs from THE BOOK">Proofs from THE BOOK</a></i>, inspired by Erdős, is a collection of particularly succinct and revelatory mathematical arguments. Some examples of particularly elegant results included are Euclid's proof that there are infinitely many prime numbers and the <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a> for <a href="/wiki/Harmonic_analysis" title="Harmonic analysis">harmonic analysis</a>.<sup id="cite_ref-205" class="reference"><a href="#cite_note-205"><span class="cite-bracket">&#91;</span>197<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some feel that to consider mathematics a science is to downplay its artistry and history in the seven traditional <a href="/wiki/Liberal_arts" class="mw-redirect" title="Liberal arts">liberal arts</a>.<sup id="cite_ref-206" class="reference"><a href="#cite_note-206"><span class="cite-bracket">&#91;</span>198<span class="cite-bracket">&#93;</span></a></sup> One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematical results are <i>created</i> (as in art) or <i>discovered</i> (as in science).<sup id="cite_ref-borel_134-2" class="reference"><a href="#cite_note-borel-134"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup> The popularity of recreational mathematics is another sign of the pleasure many find in solving mathematical questions. </p> <div class="mw-heading mw-heading2"><h2 id="Cultural_impact">Cultural impact</h2></div> <div class="mw-heading mw-heading3"><h3 id="Artistic_expression">Artistic expression</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mathematics_and_art" title="Mathematics and art">Mathematics and art</a></div> <p>Notes that sound well together to a Western ear are sounds whose fundamental <a href="/wiki/Frequencies" class="mw-redirect" title="Frequencies">frequencies</a> of vibration are in simple ratios. For example, an octave doubles the frequency and a <a href="/wiki/Perfect_fifth" title="Perfect fifth">perfect fifth</a> multiplies it by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {3}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {3}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff4d39a9f7beda4ddbeffafaca691c386d3142cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:1.999ex; height:5.176ex;" alt="{\displaystyle {\frac {3}{2}}}"></span>.<sup id="cite_ref-207" class="reference"><a href="#cite_note-207"><span class="cite-bracket">&#91;</span>199<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-208" class="reference"><a href="#cite_note-208"><span class="cite-bracket">&#91;</span>200<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Julia_set_(highres_01).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Julia_set_%28highres_01%29.jpg/220px-Julia_set_%28highres_01%29.jpg" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Julia_set_%28highres_01%29.jpg/330px-Julia_set_%28highres_01%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/17/Julia_set_%28highres_01%29.jpg/440px-Julia_set_%28highres_01%29.jpg 2x" data-file-width="2048" data-file-height="2048" /></a><figcaption><a href="/wiki/Fractal" title="Fractal">Fractal</a> with a scaling symmetry and a central symmetry</figcaption></figure> <p>Humans, as well as some other animals, find symmetric patterns to be more beautiful.<sup id="cite_ref-209" class="reference"><a href="#cite_note-209"><span class="cite-bracket">&#91;</span>201<span class="cite-bracket">&#93;</span></a></sup> Mathematically, the symmetries of an object form a group known as the <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a>.<sup id="cite_ref-210" class="reference"><a href="#cite_note-210"><span class="cite-bracket">&#91;</span>202<span class="cite-bracket">&#93;</span></a></sup> For example, the group underlying mirror symmetry is the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> of two elements, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /2\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /2\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b3bb21abe942aa9c0c63bae35a0c38905e1712c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /2\mathbb {Z} }"></span>. A <a href="/wiki/Rorschach_test" title="Rorschach test">Rorschach test</a> is a figure invariant by this symmetry,<sup id="cite_ref-211" class="reference"><a href="#cite_note-211"><span class="cite-bracket">&#91;</span>203<span class="cite-bracket">&#93;</span></a></sup> as are <a href="/wiki/Butterfly" title="Butterfly">butterfly</a> and animal bodies more generally (at least on the surface).<sup id="cite_ref-212" class="reference"><a href="#cite_note-212"><span class="cite-bracket">&#91;</span>204<span class="cite-bracket">&#93;</span></a></sup> Waves on the sea surface possess translation symmetry: moving one's viewpoint by the distance between wave crests does not change one's view of the sea.<sup id="cite_ref-213" class="reference"><a href="#cite_note-213"><span class="cite-bracket">&#91;</span>205<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Fractals" class="mw-redirect" title="Fractals">Fractals</a> possess <a href="/wiki/Self-similarity" title="Self-similarity">self-similarity</a>.<sup id="cite_ref-214" class="reference"><a href="#cite_note-214"><span class="cite-bracket">&#91;</span>206<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-215" class="reference"><a href="#cite_note-215"><span class="cite-bracket">&#91;</span>207<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Popularization">Popularization</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Popular_mathematics" title="Popular mathematics">Popular mathematics</a></div><p>Popular mathematics is the act of presenting mathematics without technical terms.<sup id="cite_ref-216" class="reference"><a href="#cite_note-216"><span class="cite-bracket">&#91;</span>208<span class="cite-bracket">&#93;</span></a></sup> Presenting mathematics may be hard since the general public suffers from <a href="/wiki/Mathematical_anxiety" title="Mathematical anxiety">mathematical anxiety</a> and mathematical objects are highly abstract.<sup id="cite_ref-217" class="reference"><a href="#cite_note-217"><span class="cite-bracket">&#91;</span>209<span class="cite-bracket">&#93;</span></a></sup> However, popular mathematics writing can overcome this by using applications or cultural links.<sup id="cite_ref-218" class="reference"><a href="#cite_note-218"><span class="cite-bracket">&#91;</span>210<span class="cite-bracket">&#93;</span></a></sup> Despite this, mathematics is rarely the topic of popularization in printed or televised media. </p><div class="mw-heading mw-heading3"><h3 id="Awards_and_prize_problems">Awards and prize problems</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main category: <a href="/wiki/Category:Mathematics_awards" title="Category:Mathematics awards">Mathematics awards</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:FieldsMedalFront.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/FieldsMedalFront.jpg/220px-FieldsMedalFront.jpg" decoding="async" width="220" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/FieldsMedalFront.jpg/330px-FieldsMedalFront.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0c/FieldsMedalFront.jpg/440px-FieldsMedalFront.jpg 2x" data-file-width="2493" data-file-height="2398" /></a><figcaption>The front side of the <a href="/wiki/Fields_Medal" title="Fields Medal">Fields Medal</a> with an illustration of the Greek <a href="/wiki/Polymath" title="Polymath">polymath</a> <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a></figcaption></figure> <p>The most prestigious award in mathematics is the <a href="/wiki/Fields_Medal" title="Fields Medal">Fields Medal</a>,<sup id="cite_ref-FOOTNOTEMonastyrsky20011_219-0" class="reference"><a href="#cite_note-FOOTNOTEMonastyrsky20011-219"><span class="cite-bracket">&#91;</span>211<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTERiehm2002778–782_220-0" class="reference"><a href="#cite_note-FOOTNOTERiehm2002778–782-220"><span class="cite-bracket">&#91;</span>212<span class="cite-bracket">&#93;</span></a></sup> established in 1936 and awarded every four years (except around <a href="/wiki/World_War_II_in_Yugoslavia" title="World War II in Yugoslavia">World War II</a>) to up to four individuals.<sup id="cite_ref-221" class="reference"><a href="#cite_note-221"><span class="cite-bracket">&#91;</span>213<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-StAndrews-Fields_222-0" class="reference"><a href="#cite_note-StAndrews-Fields-222"><span class="cite-bracket">&#91;</span>214<span class="cite-bracket">&#93;</span></a></sup> It is considered the mathematical equivalent of the <a href="/wiki/Nobel_Prize" title="Nobel Prize">Nobel Prize</a>.<sup id="cite_ref-StAndrews-Fields_222-1" class="reference"><a href="#cite_note-StAndrews-Fields-222"><span class="cite-bracket">&#91;</span>214<span class="cite-bracket">&#93;</span></a></sup> </p><p>Other prestigious mathematics awards include:<sup id="cite_ref-223" class="reference"><a href="#cite_note-223"><span class="cite-bracket">&#91;</span>215<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>The <a href="/wiki/Abel_Prize" title="Abel Prize">Abel Prize</a>, instituted in 2002<sup id="cite_ref-224" class="reference"><a href="#cite_note-224"><span class="cite-bracket">&#91;</span>216<span class="cite-bracket">&#93;</span></a></sup> and first awarded in 2003<sup id="cite_ref-225" class="reference"><a href="#cite_note-225"><span class="cite-bracket">&#91;</span>217<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Chern_Medal" title="Chern Medal">Chern Medal</a> for lifetime achievement, introduced in 2009<sup id="cite_ref-226" class="reference"><a href="#cite_note-226"><span class="cite-bracket">&#91;</span>218<span class="cite-bracket">&#93;</span></a></sup> and first awarded in 2010<sup id="cite_ref-227" class="reference"><a href="#cite_note-227"><span class="cite-bracket">&#91;</span>219<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">AMS</a> <a href="/wiki/Leroy_P._Steele_Prize" title="Leroy P. Steele Prize">Leroy P. Steele Prize</a>, awarded since 1970<sup id="cite_ref-228" class="reference"><a href="#cite_note-228"><span class="cite-bracket">&#91;</span>220<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Wolf_Prize_in_Mathematics" title="Wolf Prize in Mathematics">Wolf Prize in Mathematics</a>, also for lifetime achievement,<sup id="cite_ref-229" class="reference"><a href="#cite_note-229"><span class="cite-bracket">&#91;</span>221<span class="cite-bracket">&#93;</span></a></sup> instituted in 1978<sup id="cite_ref-230" class="reference"><a href="#cite_note-230"><span class="cite-bracket">&#91;</span>222<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>A famous list of 23 <a href="/wiki/Open_problem" title="Open problem">open problems</a>, called "<a href="/wiki/Hilbert%27s_problems" title="Hilbert&#39;s problems">Hilbert's problems</a>", was compiled in 1900 by German mathematician David Hilbert.<sup id="cite_ref-:0_231-0" class="reference"><a href="#cite_note-:0-231"><span class="cite-bracket">&#91;</span>223<span class="cite-bracket">&#93;</span></a></sup> This list has achieved great celebrity among mathematicians,<sup id="cite_ref-232" class="reference"><a href="#cite_note-232"><span class="cite-bracket">&#91;</span>224<span class="cite-bracket">&#93;</span></a></sup> and at least thirteen of the problems (depending how some are interpreted) have been solved.<sup id="cite_ref-:0_231-1" class="reference"><a href="#cite_note-:0-231"><span class="cite-bracket">&#91;</span>223<span class="cite-bracket">&#93;</span></a></sup> </p><p>A new list of seven important problems, titled the "<a href="/wiki/Millennium_Prize_Problems" title="Millennium Prize Problems">Millennium Prize Problems</a>", was published in 2000. Only one of them, the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>, duplicates one of Hilbert's problems. A solution to any of these problems carries a 1 million dollar reward.<sup id="cite_ref-233" class="reference"><a href="#cite_note-233"><span class="cite-bracket">&#91;</span>225<span class="cite-bracket">&#93;</span></a></sup> To date, only one of these problems, the <a href="/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a>, has been solved by the Russian mathematician <a href="/wiki/Grigori_Perelman" title="Grigori Perelman">Grigori Perelman</a>.<sup id="cite_ref-234" class="reference"><a href="#cite_note-234"><span class="cite-bracket">&#91;</span>226<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2></div> <style data-mw-deduplicate="TemplateStyles:r1259569809">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/Law_(mathematics)" title="Law (mathematics)">Law (mathematics)</a></li> <li><a href="/wiki/List_of_mathematical_jargon" class="mw-redirect" title="List of mathematical jargon">List of mathematical jargon</a></li> <li><a href="/wiki/Lists_of_mathematicians" title="Lists of mathematicians">Lists of mathematicians</a></li> <li><a href="/wiki/Lists_of_mathematics_topics" title="Lists of mathematics topics">Lists of mathematics topics</a></li> <li><a href="/wiki/Mathematical_constant" title="Mathematical constant">Mathematical constant</a></li> <li><a href="/wiki/Mathematical_sciences" title="Mathematical sciences">Mathematical sciences</a></li> <li><a href="/wiki/Mathematics_and_art" title="Mathematics and art">Mathematics and art</a></li> <li><a href="/wiki/Mathematics_education" title="Mathematics education">Mathematics education</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Recreational_mathematics" title="Recreational mathematics">Recreational mathematics</a></li> <li><a href="/wiki/Relationship_between_mathematics_and_physics" title="Relationship between mathematics and physics">Relationship between mathematics and physics</a></li> <li><a href="/wiki/Science,_technology,_engineering,_and_mathematics" title="Science, technology, engineering, and mathematics">Science, technology, engineering, and mathematics</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2></div> <div class="mw-heading mw-heading3"><h3 id="Notes">Notes</h3></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Here, <i>algebra</i> is taken in its modern sense, which is, roughly speaking, the art of manipulating <a href="/wiki/Formula" title="Formula">formulas</a>.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">This includes <a href="/wiki/Conic_section" title="Conic section">conic sections</a>, which are intersections of <a href="/wiki/Circular_cylinder" class="mw-redirect" title="Circular cylinder">circular cylinders</a> and planes.</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">However, some advanced methods of analysis are sometimes used; for example, methods of <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a> applied to <a href="/wiki/Generating_series" class="mw-redirect" title="Generating series">generating series</a>.</span> </li> <li id="cite_note-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-179">^</a></b></span> <span class="reference-text">For example, logic belongs to philosophy since <a href="/wiki/Aristotle" title="Aristotle">Aristotle</a>. Circa the end of the 19th century, the <a href="/wiki/Foundational_crisis_of_mathematics" class="mw-redirect" title="Foundational crisis of mathematics">foundational crisis of mathematics</a> implied developments of logic that are specific to mathematics. This allowed eventually the proof of theorems such as <a href="/wiki/G%C3%B6del%27s_theorems" class="mw-redirect" title="Gödel&#39;s theorems">Gödel's theorems</a>. Since then, <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a> is commonly considered as an area of mathematics.</span> </li> <li id="cite_note-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-181">^</a></b></span> <span class="reference-text">This does not mean to make explicit all inference rules that are used. On the contrary, this is generally impossible, without <a href="/wiki/Computer" title="Computer">computers</a> and <a href="/wiki/Proof_assistant" title="Proof assistant">proof assistants</a>. Even with this modern technology, it may take years of human work for writing down a completely detailed proof.</span> </li> <li id="cite_note-182"><span class="mw-cite-backlink"><b><a href="#cite_ref-182">^</a></b></span> <span class="reference-text">This does not mean that empirical evidence and intuition are not needed for choosing the theorems to be proved and to prove them.</span> </li> <li id="cite_note-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-184">^</a></b></span> <span class="reference-text">This is the length of the original paper that does not contain the proofs of some previously published auxiliary results. The book devoted to the complete proof has more than 1,000 pages.</span> </li> <li id="cite_note-185"><span class="mw-cite-backlink"><b><a href="#cite_ref-185">^</a></b></span> <span class="reference-text">For considering as reliable a large computation occurring in a proof, one generally requires two computations using independent software</span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Citations">Citations</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em ;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHipólito2015" class="citation book cs1 cs1-prop-foreign-lang-source">Hipólito, Inês Viegas (August 9–15, 2015). "Abstract Cognition and the Nature of Mathematical Proof". In Kanzian, Christian; <a href="/wiki/Josef_Mitterer" title="Josef Mitterer">Mitterer, Josef</a>; Neges, Katharina (eds.). <a rel="nofollow" class="external text" href="https://www.alws.at/alws/wp-content/uploads/2018/06/papers-2015.pdf#page=133"><i>Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums</i></a> &#91;<i>Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium</i>&#93; <span class="cs1-format">(PDF)</span> (in German and English). Vol.&#160;23. Kirchberg am Wechsel, Austria: Austrian Ludwig Wittgenstein Society. pp.&#160;132–134. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1022-3398">1022-3398</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/236026294">236026294</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221107221937/https://www.alws.at/alws/wp-content/uploads/2018/06/papers-2015.pdf#page=133">Archived</a> <span class="cs1-format">(PDF)</span> from the original on November 7, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">January 17,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Abstract+Cognition+and+the+Nature+of+Mathematical+Proof&amp;rft.btitle=Realismus+%E2%80%93+Relativismus+%E2%80%93+Konstruktivismus%3A+Beitr%C3%A4ge+des+38.+Internationalen+Wittgenstein+Symposiums&amp;rft.place=Kirchberg+am+Wechsel%2C+Austria&amp;rft.pages=132-134&amp;rft.pub=Austrian+Ludwig+Wittgenstein+Society&amp;rft.date=2015-08-09%2F2015-08-15&amp;rft_id=info%3Aoclcnum%2F236026294&amp;rft.issn=1022-3398&amp;rft.aulast=Hip%C3%B3lito&amp;rft.aufirst=In%C3%AAs+Viegas&amp;rft_id=https%3A%2F%2Fwww.alws.at%2Falws%2Fwp-content%2Fuploads%2F2018%2F06%2Fpapers-2015.pdf%23page%3D133&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span> (<a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/280654540_Abstract_Cognition_and_the_Nature_of_Mathematical_Proof">at ResearchGate</a> <span style="position:relative; top: -2px;"><span typeof="mw:File"><a href="/wiki/Open_access" title="open access publication – free to read"><img alt="Open access icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/9px-Open_Access_logo_PLoS_transparent.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/14px-Open_Access_logo_PLoS_transparent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/18px-Open_Access_logo_PLoS_transparent.svg.png 2x" data-file-width="640" data-file-height="1000" /></a></span></span> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221105145638/https://www.researchgate.net/publication/280654540_Abstract_Cognition_and_the_Nature_of_Mathematical_Proof">Archived</a> November 5, 2022, at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>)</span> </li> <li id="cite_note-FOOTNOTEPeterson198812-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPeterson198812_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeterson1988">Peterson 1988</a>, p.&#160;12.</span> </li> <li id="cite_note-wigner1960-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-wigner1960_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-wigner1960_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWigner1960" class="citation journal cs1"><a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Wigner, Eugene</a> (1960). <a rel="nofollow" class="external text" href="https://math.dartmouth.edu/~matc/MathDrama/reading/Wigner.html">"The Unreasonable Effectiveness of Mathematics in the Natural Sciences"</a>. <i><a href="/wiki/Communications_on_Pure_and_Applied_Mathematics" title="Communications on Pure and Applied Mathematics">Communications on Pure and Applied Mathematics</a></i>. <b>13</b> (1): 1–14. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1960CPAM...13....1W">1960CPAM...13....1W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fcpa.3160130102">10.1002/cpa.3160130102</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6112252">6112252</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110228152633/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html">Archived</a> from the original on February 28, 2011.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+on+Pure+and+Applied+Mathematics&amp;rft.atitle=The+Unreasonable+Effectiveness+of+Mathematics+in+the+Natural+Sciences&amp;rft.volume=13&amp;rft.issue=1&amp;rft.pages=1-14&amp;rft.date=1960&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6112252%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fcpa.3160130102&amp;rft_id=info%3Abibcode%2F1960CPAM...13....1W&amp;rft.aulast=Wigner&amp;rft.aufirst=Eugene&amp;rft_id=https%3A%2F%2Fmath.dartmouth.edu%2F~matc%2FMathDrama%2Freading%2FWigner.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWise" class="citation web cs1">Wise, David. <a rel="nofollow" class="external text" href="http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Wise/essay7/essay7.htm">"Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion"</a>. <i><a href="/wiki/The_University_of_Georgia" class="mw-redirect" title="The University of Georgia">The University of Georgia</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190601004355/http://jwilson.coe.uga.edu/emt668/EMAT6680.F99/Wise/essay7/essay7.htm">Archived</a> from the original on June 1, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">January 18,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+University+of+Georgia&amp;rft.atitle=Eudoxus%27+Influence+on+Euclid%27s+Elements+with+a+close+look+at+The+Method+of+Exhaustion&amp;rft.aulast=Wise&amp;rft.aufirst=David&amp;rft_id=http%3A%2F%2Fjwilson.coe.uga.edu%2FEMT668%2FEMAT6680.F99%2FWise%2Fessay7%2Fessay7.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander2011" class="citation journal cs1"><a href="/wiki/Amir_Alexander" title="Amir Alexander">Alexander, Amir</a> (September 2011). "The Skeleton in the Closet: Should Historians of Science Care about the History of Mathematics?". <i>Isis</i>. <b>102</b> (3): 475–480. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F661620">10.1086/661620</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-1753">0021-1753</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2884913">2884913</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22073771">22073771</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21629993">21629993</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Isis&amp;rft.atitle=The+Skeleton+in+the+Closet%3A+Should+Historians+of+Science+Care+about+the+History+of+Mathematics%3F&amp;rft.volume=102&amp;rft.issue=3&amp;rft.pages=475-480&amp;rft.date=2011-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21629993%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1086%2F661620&amp;rft.issn=0021-1753&amp;rft_id=info%3Apmid%2F22073771&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2884913%23id-name%3DMR&amp;rft.aulast=Alexander&amp;rft.aufirst=Amir&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Kleiner_1991-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kleiner_1991_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kleiner_1991_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kleiner_1991_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Kleiner_1991_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Kleiner_1991_7-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Kleiner_1991_7-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleiner1991" class="citation journal cs1"><a href="/wiki/Israel_Kleiner_(mathematician)" title="Israel Kleiner (mathematician)">Kleiner, Israel</a> (December 1991). "Rigor and Proof in Mathematics: A Historical Perspective". <i>Mathematics Magazine</i>. <b>64</b> (5). Taylor &amp; Francis, Ltd.: 291–314. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0025570X.1991.11977625">10.1080/0025570X.1991.11977625</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1930-0980">1930-0980</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-570X">0025-570X</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2690647">2690647</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/47003192">47003192</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1141557">1141557</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1756877">1756877</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7787171">7787171</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=Rigor+and+Proof+in+Mathematics%3A+A+Historical+Perspective&amp;rft.volume=64&amp;rft.issue=5&amp;rft.pages=291-314&amp;rft.date=1991-12&amp;rft_id=info%3Alccn%2F47003192&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7787171%23id-name%3DS2CID&amp;rft.eissn=1930-0980&amp;rft_id=info%3Adoi%2F10.1080%2F0025570X.1991.11977625&amp;rft_id=info%3Aoclcnum%2F1756877&amp;rft.issn=0025-570X&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2690647%23id-name%3DJSTOR&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1141557%23id-name%3DMR&amp;rft.aulast=Kleiner&amp;rft.aufirst=Israel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBell1945" class="citation book cs1"><a href="/wiki/Eric_Temple_Bell" title="Eric Temple Bell">Bell, E. T.</a> (1945) [1940]. "General Prospectus". <i>The Development of Mathematics</i> (2nd&#160;ed.). Dover Publications. p.&#160;3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-27239-9" title="Special:BookSources/978-0-486-27239-9"><bdi>978-0-486-27239-9</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/45010599">45010599</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/523284">523284</a>. <q>... mathematics has come down to the present by the two main streams of number and form. The first carried along arithmetic and algebra, the second, geometry.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=General+Prospectus&amp;rft.btitle=The+Development+of+Mathematics&amp;rft.pages=3&amp;rft.edition=2nd&amp;rft.pub=Dover+Publications&amp;rft.date=1945&amp;rft_id=info%3Aoclcnum%2F523284&amp;rft_id=info%3Alccn%2F45010599&amp;rft.isbn=978-0-486-27239-9&amp;rft.aulast=Bell&amp;rft.aufirst=E.+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTiwari1992" class="citation book cs1">Tiwari, Sarju (1992). "A Mirror of Civilization". <i>Mathematics in History, Culture, Philosophy, and Science</i> (1st&#160;ed.). New Delhi, India: Mittal Publications. p.&#160;27. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-7099-404-6" title="Special:BookSources/978-81-7099-404-6"><bdi>978-81-7099-404-6</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/92909575">92909575</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/28115124">28115124</a>. <q>It is unfortunate that two curses of mathematics--Numerology and Astrology were also born with it and have been more acceptable to the masses than mathematics itself.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+Mirror+of+Civilization&amp;rft.btitle=Mathematics+in+History%2C+Culture%2C+Philosophy%2C+and+Science&amp;rft.place=New+Delhi%2C+India&amp;rft.pages=27&amp;rft.edition=1st&amp;rft.pub=Mittal+Publications&amp;rft.date=1992&amp;rft_id=info%3Aoclcnum%2F28115124&amp;rft_id=info%3Alccn%2F92909575&amp;rft.isbn=978-81-7099-404-6&amp;rft.aulast=Tiwari&amp;rft.aufirst=Sarju&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRestivo1992" class="citation book cs1"><a href="/wiki/Sal_Restivo" title="Sal Restivo">Restivo, Sal</a> (1992). "Mathematics from the Ground Up". In <a href="/wiki/Mario_Bunge" title="Mario Bunge">Bunge, Mario</a> (ed.). <i>Mathematics in Society and History</i>. Episteme. Vol.&#160;20. <a href="/wiki/Kluwer_Academic_Publishers" class="mw-redirect" title="Kluwer Academic Publishers">Kluwer Academic Publishers</a>. p.&#160;14. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7923-1765-3" title="Special:BookSources/0-7923-1765-3"><bdi>0-7923-1765-3</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/25709270">25709270</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/92013695">92013695</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematics+from+the+Ground+Up&amp;rft.btitle=Mathematics+in+Society+and+History&amp;rft.series=Episteme&amp;rft.pages=14&amp;rft.pub=Kluwer+Academic+Publishers&amp;rft.date=1992&amp;rft_id=info%3Aoclcnum%2F92013695&amp;rft_id=info%3Alccn%2F25709270&amp;rft.isbn=0-7923-1765-3&amp;rft.aulast=Restivo&amp;rft.aufirst=Sal&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMusielak2022" class="citation book cs1"><a href="/wiki/Dora_Musielak" title="Dora Musielak">Musielak, Dora</a> (2022). <i>Leonhard Euler and the Foundations of Celestial Mechanics</i>. History of Physics. <a href="/wiki/Springer_International_Publishing" class="mw-redirect" title="Springer International Publishing">Springer International Publishing</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-031-12322-1">10.1007/978-3-031-12322-1</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2730-7557">2730-7557</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-031-12321-4" title="Special:BookSources/978-3-031-12321-4"><bdi>978-3-031-12321-4</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2730-7549">2730-7549</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1332780664">1332780664</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:253240718">253240718</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Leonhard+Euler+and+the+Foundations+of+Celestial+Mechanics&amp;rft.series=History+of+Physics&amp;rft.pub=Springer+International+Publishing&amp;rft.date=2022&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A253240718%23id-name%3DS2CID&amp;rft.eissn=2730-7557&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-031-12322-1&amp;rft_id=info%3Aoclcnum%2F1332780664&amp;rft.issn=2730-7549&amp;rft.isbn=978-3-031-12321-4&amp;rft.aulast=Musielak&amp;rft.aufirst=Dora&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiggs1979" class="citation journal cs1">Biggs, N. L. (May 1979). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0315-0860%2879%2990074-0">"The roots of combinatorics"</a>. <i>Historia Mathematica</i>. <b>6</b> (2): 109–136. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0315-0860%2879%2990074-0">10.1016/0315-0860(79)90074-0</a></span>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1090-249X">1090-249X</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0315-0860">0315-0860</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/75642280">75642280</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/2240703">2240703</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=The+roots+of+combinatorics&amp;rft.volume=6&amp;rft.issue=2&amp;rft.pages=109-136&amp;rft.date=1979-05&amp;rft.eissn=1090-249X&amp;rft_id=info%3Adoi%2F10.1016%2F0315-0860%2879%2990074-0&amp;rft_id=info%3Aoclcnum%2F2240703&amp;rft_id=info%3Alccn%2F75642280&amp;rft.issn=0315-0860&amp;rft.aulast=Biggs&amp;rft.aufirst=N.+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0315-0860%252879%252990074-0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Warner_2013-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Warner_2013_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Warner_2013_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarner" class="citation web cs1">Warner, Evan. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230322165544/https://www.math.columbia.edu/~warner/notes/SplashTalk.pdf">"Splash Talk: The Foundational Crisis of Mathematics"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Columbia_University" title="Columbia University">Columbia University</a>. Archived from <a rel="nofollow" class="external text" href="https://www.math.columbia.edu/~warner/notes/SplashTalk.pdf">the original</a> <span class="cs1-format">(PDF)</span> on March 22, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">February 3,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Splash+Talk%3A+The+Foundational+Crisis+of+Mathematics&amp;rft.pub=Columbia+University&amp;rft.aulast=Warner&amp;rft.aufirst=Evan&amp;rft_id=https%3A%2F%2Fwww.math.columbia.edu%2F~warner%2Fnotes%2FSplashTalk.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunneHulek2020" class="citation journal cs1">Dunne, Edward; <a href="/wiki/Klaus_Hulek" title="Klaus Hulek">Hulek, Klaus</a> (March 2020). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/notices/202003/rnoti-p410.pdf">"Mathematics Subject Classification 2020"</a> <span class="cs1-format">(PDF)</span>. <i>Notices of the American Mathematical Society</i>. <b>67</b> (3): 410–411. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti2052">10.1090/noti2052</a></span>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1088-9477">1088-9477</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9920">0002-9920</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/sf77000404">sf77000404</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1480366">1480366</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210803203928/https://www.ams.org/journals/notices/202003/rnoti-p410.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on August 3, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">February 3,</span> 2024</span>. <q>The new MSC contains 63 two-digit classifications, 529 three-digit classifications, and 6,006 five-digit classifications.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft.atitle=Mathematics+Subject+Classification+2020&amp;rft.volume=67&amp;rft.issue=3&amp;rft.pages=410-411&amp;rft.date=2020-03&amp;rft.eissn=1088-9477&amp;rft_id=info%3Adoi%2F10.1090%2Fnoti2052&amp;rft_id=info%3Aoclcnum%2F1480366&amp;rft_id=info%3Alccn%2Fsf77000404&amp;rft.issn=0002-9920&amp;rft.aulast=Dunne&amp;rft.aufirst=Edward&amp;rft.au=Hulek%2C+Klaus&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fnotices%2F202003%2Frnoti-p410.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-MSC-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-MSC_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MSC_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-MSC_15-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-MSC_15-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-MSC_15-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-MSC_15-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-MSC_15-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-MSC_15-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://zbmath.org/static/msc2020.pdf">"MSC2020-Mathematics Subject Classification System"</a> <span class="cs1-format">(PDF)</span>. <i>zbMath</i>. Associate Editors of Mathematical Reviews and zbMATH. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240102023805/https://zbmath.org/static/msc2020.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on January 2, 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">February 3,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=zbMath&amp;rft.atitle=MSC2020-Mathematics+Subject+Classification+System&amp;rft_id=https%3A%2F%2Fzbmath.org%2Fstatic%2Fmsc2020.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeVeque1977" class="citation book cs1"><a href="/wiki/William_J._LeVeque" title="William J. LeVeque">LeVeque, William J.</a> (1977). "Introduction". <i>Fundamentals of Number Theory</i>. <a href="/wiki/Addison-Wesley_Publishing_Company" class="mw-redirect" title="Addison-Wesley Publishing Company">Addison-Wesley Publishing Company</a>. pp.&#160;1–30. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-04287-8" title="Special:BookSources/0-201-04287-8"><bdi>0-201-04287-8</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/76055645">76055645</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/3519779">3519779</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118560854">118560854</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Introduction&amp;rft.btitle=Fundamentals+of+Number+Theory&amp;rft.pages=1-30&amp;rft.pub=Addison-Wesley+Publishing+Company&amp;rft.date=1977&amp;rft_id=info%3Aoclcnum%2F3519779&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118560854%23id-name%3DS2CID&amp;rft_id=info%3Alccn%2F76055645&amp;rft.isbn=0-201-04287-8&amp;rft.aulast=LeVeque&amp;rft.aufirst=William+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldman1998" class="citation book cs1">Goldman, Jay R. (1998). "The Founding Fathers". <i>The Queen of Mathematics: A Historically Motivated Guide to Number Theory</i>. Wellesley, MA: A K Peters. pp.&#160;2–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1201%2F9781439864623">10.1201/9781439864623</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-56881-006-7" title="Special:BookSources/1-56881-006-7"><bdi>1-56881-006-7</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/94020017">94020017</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/30437959">30437959</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118934517">118934517</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Founding+Fathers&amp;rft.btitle=The+Queen+of+Mathematics%3A+A+Historically+Motivated+Guide+to+Number+Theory&amp;rft.place=Wellesley%2C+MA&amp;rft.pages=2-3&amp;rft.pub=A+K+Peters&amp;rft.date=1998&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118934517%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1201%2F9781439864623&amp;rft_id=info%3Aoclcnum%2F30437959&amp;rft_id=info%3Alccn%2F94020017&amp;rft.isbn=1-56881-006-7&amp;rft.aulast=Goldman&amp;rft.aufirst=Jay+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeil1983" class="citation book cs1"><a href="/wiki/Andr%C3%A9_Weil" title="André Weil">Weil, André</a> (1983). <i>Number Theory: An Approach Through History From Hammurapi to Legendre</i>. Birkhäuser Boston. pp.&#160;2–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-8176-4571-7">10.1007/978-0-8176-4571-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8176-3141-0" title="Special:BookSources/0-8176-3141-0"><bdi>0-8176-3141-0</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/83011857">83011857</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/9576587">9576587</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117789303">117789303</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Number+Theory%3A+An+Approach+Through+History+From+Hammurapi+to+Legendre&amp;rft.pages=2-3&amp;rft.pub=Birkh%C3%A4user+Boston&amp;rft.date=1983&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117789303%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-0-8176-4571-7&amp;rft_id=info%3Aoclcnum%2F9576587&amp;rft_id=info%3Alccn%2F83011857&amp;rft.isbn=0-8176-3141-0&amp;rft.aulast=Weil&amp;rft.aufirst=Andr%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleiner2000" class="citation journal cs1"><a href="/wiki/Israel_Kleiner_(mathematician)" title="Israel Kleiner (mathematician)">Kleiner, Israel</a> (March 2000). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FPL00000079">"From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem"</a>. <i><a href="/wiki/Elemente_der_Mathematik" title="Elemente der Mathematik">Elemente der Mathematik</a></i>. <b>55</b> (1): 19–37. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FPL00000079">10.1007/PL00000079</a></span>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1420-8962">1420-8962</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-6018">0013-6018</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/66083524">66083524</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1567783">1567783</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53319514">53319514</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Elemente+der+Mathematik&amp;rft.atitle=From+Fermat+to+Wiles%3A+Fermat%27s+Last+Theorem+Becomes+a+Theorem&amp;rft.volume=55&amp;rft.issue=1&amp;rft.pages=19-37&amp;rft.date=2000-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53319514%23id-name%3DS2CID&amp;rft.eissn=1420-8962&amp;rft_id=info%3Adoi%2F10.1007%2FPL00000079&amp;rft_id=info%3Aoclcnum%2F1567783&amp;rft.issn=0013-6018&amp;rft_id=info%3Alccn%2F66083524&amp;rft.aulast=Kleiner&amp;rft.aufirst=Israel&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252FPL00000079&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWang2002" class="citation book cs1">Wang, Yuan (2002). <i>The Goldbach Conjecture</i>. Series in Pure Mathematics. Vol.&#160;4 (2nd&#160;ed.). <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>. pp.&#160;1–18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F5096">10.1142/5096</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/981-238-159-7" title="Special:BookSources/981-238-159-7"><bdi>981-238-159-7</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2003268597">2003268597</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/51533750">51533750</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14555830">14555830</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Goldbach+Conjecture&amp;rft.series=Series+in+Pure+Mathematics&amp;rft.pages=1-18&amp;rft.edition=2nd&amp;rft.pub=World+Scientific&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14555830%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1142%2F5096&amp;rft_id=info%3Aoclcnum%2F51533750&amp;rft_id=info%3Alccn%2F2003268597&amp;rft.isbn=981-238-159-7&amp;rft.aulast=Wang&amp;rft.aufirst=Yuan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Straume_2014-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-Straume_2014_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Straume_2014_21-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Straume_2014_21-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStraume2014" class="citation arxiv cs1">Straume, Eldar (September 4, 2014). "A Survey of the Development of Geometry up to 1870". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.1140">1409.1140</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.HO">math.HO</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+Survey+of+the+Development+of+Geometry+up+to+1870&amp;rft.date=2014-09-04&amp;rft_id=info%3Aarxiv%2F1409.1140&amp;rft.aulast=Straume&amp;rft.aufirst=Eldar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbert1902" class="citation book cs1"><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a> (1902). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8ZBsAAAAMAAJ"><i>The Foundations of Geometry</i></a>. <a href="/wiki/Open_Court_Publishing_Company" title="Open Court Publishing Company">Open Court Publishing Company</a>. p.&#160;1. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.16.399.307">10.1126/science.16.399.307</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/02019303">02019303</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/996838">996838</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:238499430">238499430</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 6,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Foundations+of+Geometry&amp;rft.pages=1&amp;rft.pub=Open+Court+Publishing+Company&amp;rft.date=1902&amp;rft_id=info%3Aoclcnum%2F996838&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A238499430%23id-name%3DS2CID&amp;rft_id=info%3Alccn%2F02019303&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.16.399.307&amp;rft.aulast=Hilbert&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8ZBsAAAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span> <span style="position:relative; top: -2px;"><span typeof="mw:File"><a href="/wiki/Open_access#Free_access" title="Free to read"><img alt="Free access icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></a></span></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartshorne2000" class="citation book cs1"><a href="/wiki/Robin_Hartshorne" title="Robin Hartshorne">Hartshorne, Robin</a> (2000). "Euclid's Geometry". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EJCSL9S6la0C&amp;pg=PA9"><i>Geometry: Euclid and Beyond</i></a>. <a href="/wiki/Springer_New_York" class="mw-redirect" title="Springer New York">Springer New York</a>. pp.&#160;9–13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-98650-2" title="Special:BookSources/0-387-98650-2"><bdi>0-387-98650-2</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/99044789">99044789</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/42290188">42290188</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 7,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Euclid%27s+Geometry&amp;rft.btitle=Geometry%3A+Euclid+and+Beyond&amp;rft.pages=9-13&amp;rft.pub=Springer+New+York&amp;rft.date=2000&amp;rft_id=info%3Aoclcnum%2F42290188&amp;rft_id=info%3Alccn%2F99044789&amp;rft.isbn=0-387-98650-2&amp;rft.aulast=Hartshorne&amp;rft.aufirst=Robin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEJCSL9S6la0C%26pg%3DPA9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyer2004" class="citation book cs1"><a href="/wiki/Carl_B._Boyer" class="mw-redirect" title="Carl B. Boyer">Boyer, Carl B.</a> (2004) [1956]. "Fermat and Descartes". <i>History of Analytic Geometry</i>. <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>. pp.&#160;74–102. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-43832-5" title="Special:BookSources/0-486-43832-5"><bdi>0-486-43832-5</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2004056235">2004056235</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/56317813">56317813</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Fermat+and+Descartes&amp;rft.btitle=History+of+Analytic+Geometry&amp;rft.pages=74-102&amp;rft.pub=Dover+Publications&amp;rft.date=2004&amp;rft_id=info%3Aoclcnum%2F56317813&amp;rft_id=info%3Alccn%2F2004056235&amp;rft.isbn=0-486-43832-5&amp;rft.aulast=Boyer&amp;rft.aufirst=Carl+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStump1997" class="citation journal cs1">Stump, David J. (1997). <a rel="nofollow" class="external text" href="https://philpapers.org/archive/STURTU.pdf">"Reconstructing the Unity of Mathematics circa 1900"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Perspectives_on_Science" title="Perspectives on Science">Perspectives on Science</a></i>. <b>5</b> (3): 383–417. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1162%2Fposc_a_00532">10.1162/posc_a_00532</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1530-9274">1530-9274</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1063-6145">1063-6145</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/94657506">94657506</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/26085129">26085129</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117709681">117709681</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 8,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Perspectives+on+Science&amp;rft.atitle=Reconstructing+the+Unity+of+Mathematics+circa+1900&amp;rft.volume=5&amp;rft.issue=3&amp;rft.pages=383-417&amp;rft.date=1997&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117709681%23id-name%3DS2CID&amp;rft.eissn=1530-9274&amp;rft_id=info%3Adoi%2F10.1162%2Fposc_a_00532&amp;rft_id=info%3Aoclcnum%2F26085129&amp;rft.issn=1063-6145&amp;rft_id=info%3Alccn%2F94657506&amp;rft.aulast=Stump&amp;rft.aufirst=David+J.&amp;rft_id=https%3A%2F%2Fphilpapers.org%2Farchive%2FSTURTU.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson1996" class="citation web cs1">O'Connor, J. J.; Robertson, E. F. (February 1996). <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Non-Euclidean_geometry/">"Non-Euclidean geometry"</a>. <i>MacTuror</i>. Scotland, UK: <a href="/wiki/University_of_St._Andrews" class="mw-redirect" title="University of St. Andrews">University of St. Andrews</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221106142807/https://mathshistory.st-andrews.ac.uk/HistTopics/Non-Euclidean_geometry/">Archived</a> from the original on November 6, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 8,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MacTuror&amp;rft.atitle=Non-Euclidean+geometry&amp;rft.date=1996-02&amp;rft.aulast=O%27Connor&amp;rft.aufirst=J.+J.&amp;rft.au=Robertson%2C+E.+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHistTopics%2FNon-Euclidean_geometry%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoyner2008" class="citation book cs1">Joyner, David (2008). "The (legal) Rubik's Cube group". <i>Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys</i> (2nd&#160;ed.). <a href="/wiki/Johns_Hopkins_University_Press" title="Johns Hopkins University Press">Johns Hopkins University Press</a>. pp.&#160;219–232. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8018-9012-3" title="Special:BookSources/978-0-8018-9012-3"><bdi>978-0-8018-9012-3</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2008011322">2008011322</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/213765703">213765703</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+%28legal%29+Rubik%27s+Cube+group&amp;rft.btitle=Adventures+in+Group+Theory%3A+Rubik%27s+Cube%2C+Merlin%27s+Machine%2C+and+Other+Mathematical+Toys&amp;rft.pages=219-232&amp;rft.edition=2nd&amp;rft.pub=Johns+Hopkins+University+Press&amp;rft.date=2008&amp;rft_id=info%3Aoclcnum%2F213765703&amp;rft_id=info%3Alccn%2F2008011322&amp;rft.isbn=978-0-8018-9012-3&amp;rft.aulast=Joyner&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristianidisOaks2013" class="citation journal cs1">Christianidis, Jean; Oaks, Jeffrey (May 2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2012.09.001">"Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria"</a>. <i>Historia Mathematica</i>. <b>40</b> (2): 127–163. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2012.09.001">10.1016/j.hm.2012.09.001</a></span>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1090-249X">1090-249X</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0315-0860">0315-0860</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/75642280">75642280</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/2240703">2240703</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121346342">121346342</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Practicing+algebra+in+late+antiquity%3A+The+problem-solving+of+Diophantus+of+Alexandria&amp;rft.volume=40&amp;rft.issue=2&amp;rft.pages=127-163&amp;rft.date=2013-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121346342%23id-name%3DS2CID&amp;rft.eissn=1090-249X&amp;rft_id=info%3Adoi%2F10.1016%2Fj.hm.2012.09.001&amp;rft_id=info%3Aoclcnum%2F2240703&amp;rft.issn=0315-0860&amp;rft_id=info%3Alccn%2F75642280&amp;rft.aulast=Christianidis&amp;rft.aufirst=Jean&amp;rft.au=Oaks%2C+Jeffrey&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.hm.2012.09.001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEKleiner2007&quot;History_of_Classical_Algebra&quot;_pp._3–5-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKleiner2007&quot;History_of_Classical_Algebra&quot;_pp._3–5_30-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKleiner2007">Kleiner 2007</a>, "History of Classical Algebra" pp. 3–5.</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShane2022" class="citation web cs1">Shane, David (2022). <a rel="nofollow" class="external text" href="https://www.methodist.edu/wp-content/uploads/2022/06/mr2018_shane.pdf">"Figurate Numbers: A Historical Survey of an Ancient Mathematics"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Methodist_University" title="Methodist University">Methodist University</a></i>. p.&#160;20<span class="reference-accessdate">. Retrieved <span class="nowrap">June 13,</span> 2024</span>. <q>In his work, Diophantus focused on deducing the arithmetic properties of figurate numbers, such as deducing the number of sides, the different ways a number can be expressed as a figurate number, and the formulation of the arithmetic progressions.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Methodist+University&amp;rft.atitle=Figurate+Numbers%3A+A+Historical+Survey+of+an+Ancient+Mathematics&amp;rft.pages=20&amp;rft.date=2022&amp;rft.aulast=Shane&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Fwww.methodist.edu%2Fwp-content%2Fuploads%2F2022%2F06%2Fmr2018_shane.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOverbaySchorerConger" class="citation web cs1">Overbay, Shawn; Schorer, Jimmy; Conger, Heather. <a rel="nofollow" class="external text" href="https://www.ms.uky.edu/~carl/ma330/project2/al-khwa21.html">"Al-Khwarizmi"</a>. <i><a href="/wiki/University_of_Kentucky" title="University of Kentucky">University of Kentucky</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 13,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=University+of+Kentucky&amp;rft.atitle=Al-Khwarizmi&amp;rft.aulast=Overbay&amp;rft.aufirst=Shawn&amp;rft.au=Schorer%2C+Jimmy&amp;rft.au=Conger%2C+Heather&amp;rft_id=https%3A%2F%2Fwww.ms.uky.edu%2F~carl%2Fma330%2Fproject2%2Fal-khwa21.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLim2018" class="citation web cs1">Lim, Lisa (December 21, 2018). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://www.scmp.com/magazines/post-magazine/short-reads/article/2178856/where-x-we-use-algebra-came-and-x-xmas">"Where the x we use in algebra came from, and the X in Xmas"</a></span>. <i><a href="/wiki/South_China_Morning_Post" title="South China Morning Post">South China Morning Post</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181222003908/https://www.scmp.com/magazines/post-magazine/short-reads/article/2178856/where-x-we-use-algebra-came-and-x-xmas">Archived</a> from the original on December 22, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">February 8,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=South+China+Morning+Post&amp;rft.atitle=Where+the+x+we+use+in+algebra+came+from%2C+and+the+X+in+Xmas&amp;rft.date=2018-12-21&amp;rft.aulast=Lim&amp;rft.aufirst=Lisa&amp;rft_id=https%3A%2F%2Fwww.scmp.com%2Fmagazines%2Fpost-magazine%2Fshort-reads%2Farticle%2F2178856%2Fwhere-x-we-use-algebra-came-and-x-xmas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerntjes" class="citation encyclopaedia cs1"><a href="/wiki/Sonja_Brentjes" title="Sonja Brentjes">Berntjes, Sonja</a>. <a rel="nofollow" class="external text" href="https://referenceworks.brill.com/display/db/ei3o">"Algebra"</a>. <i><a href="/wiki/Encyclopaedia_of_Islam_Online" class="mw-redirect" title="Encyclopaedia of Islam Online">Encyclopaedia of Islam Online</a></i> (3rd&#160;ed.). <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1573-3912">1573-3912</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2007238847">2007238847</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/56713464">56713464</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 13,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Algebra&amp;rft.btitle=Encyclopaedia+of+Islam+Online&amp;rft.edition=3rd&amp;rft_id=info%3Aoclcnum%2F56713464&amp;rft.issn=1573-3912&amp;rft_id=info%3Alccn%2F2007238847&amp;rft.aulast=Berntjes&amp;rft.aufirst=Sonja&amp;rft_id=https%3A%2F%2Freferenceworks.brill.com%2Fdisplay%2Fdb%2Fei3o&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaks2018" class="citation journal cs1">Oaks, Jeffery A. (2018). <a rel="nofollow" class="external text" href="https://researchoutreach.org/wp-content/uploads/2019/02/Jeffrey-Oaks.pdf">"François Viète's revolution in algebra"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Archive_for_History_of_Exact_Sciences" title="Archive for History of Exact Sciences">Archive for History of Exact Sciences</a></i>. <b>72</b> (3): 245–302. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00407-018-0208-0">10.1007/s00407-018-0208-0</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1432-0657">1432-0657</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-9519">0003-9519</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/63024699">63024699</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1482042">1482042</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125704699">125704699</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221108162134/https://researchoutreach.org/wp-content/uploads/2019/02/Jeffrey-Oaks.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on November 8, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 8,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=Fran%C3%A7ois+Vi%C3%A8te%27s+revolution+in+algebra&amp;rft.volume=72&amp;rft.issue=3&amp;rft.pages=245-302&amp;rft.date=2018&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125704699%23id-name%3DS2CID&amp;rft.eissn=1432-0657&amp;rft_id=info%3Adoi%2F10.1007%2Fs00407-018-0208-0&amp;rft_id=info%3Aoclcnum%2F1482042&amp;rft.issn=0003-9519&amp;rft_id=info%3Alccn%2F63024699&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffery+A.&amp;rft_id=https%3A%2F%2Fresearchoutreach.org%2Fwp-content%2Fuploads%2F2019%2F02%2FJeffrey-Oaks.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.geeksforgeeks.org/variable-in-maths/">"Variable in Maths"</a>. <i>GeeksforGeeks</i>. April 24, 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">June 13,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GeeksforGeeks&amp;rft.atitle=Variable+in+Maths&amp;rft.date=2024-04-24&amp;rft_id=https%3A%2F%2Fwww.geeksforgeeks.org%2Fvariable-in-maths%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEKleiner2007&quot;History_of_Linear_Algebra&quot;_pp._79–101-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKleiner2007&quot;History_of_Linear_Algebra&quot;_pp._79–101_37-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKleiner2007">Kleiner 2007</a>, "History of Linear Algebra" pp. 79–101.</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCorry2004" class="citation book cs1"><a href="/wiki/Leo_Corry" title="Leo Corry">Corry, Leo</a> (2004). "Emmy Noether: Ideals and Structures". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WdGbeyehoCoC&amp;pg=PA247"><i>Modern Algebra and the Rise of Mathematical Structures</i></a> (2nd revised&#160;ed.). Germany: Birkhäuser Basel. pp.&#160;247–252. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-7643-7002-5" title="Special:BookSources/3-7643-7002-5"><bdi>3-7643-7002-5</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2004556211">2004556211</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/51234417">51234417</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 8,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Emmy+Noether%3A+Ideals+and+Structures&amp;rft.btitle=Modern+Algebra+and+the+Rise+of+Mathematical+Structures&amp;rft.place=Germany&amp;rft.pages=247-252&amp;rft.edition=2nd+revised&amp;rft.pub=Birkh%C3%A4user+Basel&amp;rft.date=2004&amp;rft_id=info%3Aoclcnum%2F51234417&amp;rft_id=info%3Alccn%2F2004556211&amp;rft.isbn=3-7643-7002-5&amp;rft.aulast=Corry&amp;rft.aufirst=Leo&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWdGbeyehoCoC%26pg%3DPA247&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiche2007" class="citation book cs1">Riche, Jacques (2007). "From Universal Algebra to Universal Logic". In Beziau, J. Y.; Costa-Leite, Alexandre (eds.). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZoRN9T1GUVwC&amp;pg=PA3"><i>Perspectives on Universal Logic</i></a>. Milano, Italy: Polimetrica International Scientific Publisher. pp.&#160;3–39. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-88-7699-077-9" title="Special:BookSources/978-88-7699-077-9"><bdi>978-88-7699-077-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/647049731">647049731</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 8,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=From+Universal+Algebra+to+Universal+Logic&amp;rft.btitle=Perspectives+on+Universal+Logic&amp;rft.place=Milano%2C+Italy&amp;rft.pages=3-39&amp;rft.pub=Polimetrica+International+Scientific+Publisher&amp;rft.date=2007&amp;rft_id=info%3Aoclcnum%2F647049731&amp;rft.isbn=978-88-7699-077-9&amp;rft.aulast=Riche&amp;rft.aufirst=Jacques&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZoRN9T1GUVwC%26pg%3DPA3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrömer2007" class="citation book cs1">Krömer, Ralph (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=41bHxtHxjUAC&amp;pg=PR20"><i>Tool and Object: A History and Philosophy of Category Theory</i></a>. Science Networks – Historical Studies. Vol.&#160;32. Germany: <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science &amp; Business Media">Springer Science &amp; Business Media</a>. pp.&#160;xxi–xxv, 1–91. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-7643-7523-2" title="Special:BookSources/978-3-7643-7523-2"><bdi>978-3-7643-7523-2</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2007920230">2007920230</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/85242858">85242858</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 8,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tool+and+Object%3A+A+History+and+Philosophy+of+Category+Theory&amp;rft.place=Germany&amp;rft.series=Science+Networks+%E2%80%93+Historical+Studies&amp;rft.pages=xxi-xxv%2C+1-91&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2007&amp;rft_id=info%3Aoclcnum%2F85242858&amp;rft_id=info%3Alccn%2F2007920230&amp;rft.isbn=978-3-7643-7523-2&amp;rft.aulast=Kr%C3%B6mer&amp;rft.aufirst=Ralph&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D41bHxtHxjUAC%26pg%3DPR20&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuicciardini2017" class="citation book cs1"><a href="/wiki/Niccol%C3%B2_Guicciardini" title="Niccolò Guicciardini">Guicciardini, Niccolo</a> (2017). <a rel="nofollow" class="external text" href="https://core.ac.uk/download/pdf/187993169.pdf">"The Newton–Leibniz Calculus Controversy, 1708–1730"</a> <span class="cs1-format">(PDF)</span>. In Schliesser, Eric; Smeenk, Chris (eds.). <i>The Oxford Handbook of Newton</i>. Oxford Handbooks. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Foxfordhb%2F9780199930418.013.9">10.1093/oxfordhb/9780199930418.013.9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-993041-8" title="Special:BookSources/978-0-19-993041-8"><bdi>978-0-19-993041-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/975829354">975829354</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221109163253/https://core.ac.uk/download/pdf/187993169.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on November 9, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 9,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Newton%E2%80%93Leibniz+Calculus+Controversy%2C+1708%E2%80%931730&amp;rft.btitle=The+Oxford+Handbook+of+Newton&amp;rft.series=Oxford+Handbooks&amp;rft.pub=Oxford+University+Press&amp;rft.date=2017&amp;rft_id=info%3Aoclcnum%2F975829354&amp;rft_id=info%3Adoi%2F10.1093%2Foxfordhb%2F9780199930418.013.9&amp;rft.isbn=978-0-19-993041-8&amp;rft.aulast=Guicciardini&amp;rft.aufirst=Niccolo&amp;rft_id=https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F187993169.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson1998" class="citation web cs1">O'Connor, J. J.; Robertson, E. F. (September 1998). <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Euler/">"Leonhard Euler"</a>. <i>MacTutor</i>. Scotland, UK: <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221109164921/https://mathshistory.st-andrews.ac.uk/Biographies/Euler/">Archived</a> from the original on November 9, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 9,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MacTutor&amp;rft.atitle=Leonhard+Euler&amp;rft.date=1998-09&amp;rft.aulast=O%27Connor&amp;rft.aufirst=J.+J.&amp;rft.au=Robertson%2C+E.+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FEuler%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://byjus.com/maths/calculus/">"Calculus (Differential and Integral Calculus with Examples)"</a>. <i><a href="/wiki/Byju%27s" title="Byju&#39;s">Byju's</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 13,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Byju%27s&amp;rft.atitle=Calculus+%28Differential+and+Integral+Calculus+with+Examples%29&amp;rft_id=https%3A%2F%2Fbyjus.com%2Fmaths%2Fcalculus%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranklin2017" class="citation journal cs1"><a href="/wiki/James_Franklin_(philosopher)" title="James Franklin (philosopher)">Franklin, James</a> (July 2017). <a rel="nofollow" class="external text" href="https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1334&amp;context=jhm">"Discrete and Continuous: A Fundamental Dichotomy in Mathematics"</a>. <i>Journal of Humanistic Mathematics</i>. <b>7</b> (2): 355–378. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5642%2Fjhummath.201702.18">10.5642/jhummath.201702.18</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2159-8118">2159-8118</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2011202231">2011202231</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/700943261">700943261</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6945363">6945363</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 9,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Humanistic+Mathematics&amp;rft.atitle=Discrete+and+Continuous%3A+A+Fundamental+Dichotomy+in+Mathematics&amp;rft.volume=7&amp;rft.issue=2&amp;rft.pages=355-378&amp;rft.date=2017-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6945363%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.5642%2Fjhummath.201702.18&amp;rft_id=info%3Aoclcnum%2F700943261&amp;rft.issn=2159-8118&amp;rft_id=info%3Alccn%2F2011202231&amp;rft.aulast=Franklin&amp;rft.aufirst=James&amp;rft_id=https%3A%2F%2Fscholarship.claremont.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1334%26context%3Djhm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaurer1997" class="citation book cs1">Maurer, Stephen B. (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EvuQdO3h-DQC&amp;pg=PA121">"What is Discrete Mathematics? The Many Answers"</a>. In Rosenstein, Joseph G.; Franzblau, Deborah S.; <a href="/wiki/Fred_S._Roberts" title="Fred S. Roberts">Roberts, Fred S.</a> (eds.). <i>Discrete Mathematics in the Schools</i>. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science. Vol.&#160;36. <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>. pp.&#160;121–124. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fdimacs%2F036%2F13">10.1090/dimacs/036/13</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8218-0448-0" title="Special:BookSources/0-8218-0448-0"><bdi>0-8218-0448-0</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1052-1798">1052-1798</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/97023277">97023277</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/37141146">37141146</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:67358543">67358543</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 9,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=What+is+Discrete+Mathematics%3F+The+Many+Answers&amp;rft.btitle=Discrete+Mathematics+in+the+Schools&amp;rft.series=DIMACS%3A+Series+in+Discrete+Mathematics+and+Theoretical+Computer+Science&amp;rft.pages=121-124&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1997&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A67358543%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1090%2Fdimacs%2F036%2F13&amp;rft_id=info%3Aoclcnum%2F37141146&amp;rft.issn=1052-1798&amp;rft_id=info%3Alccn%2F97023277&amp;rft.isbn=0-8218-0448-0&amp;rft.aulast=Maurer&amp;rft.aufirst=Stephen+B.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEvuQdO3h-DQC%26pg%3DPA121&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHales2014" class="citation book cs1"><a href="/wiki/Thomas_Callister_Hales" title="Thomas Callister Hales">Hales, Thomas C.</a> (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fYgaBQAAQBAJ&amp;pg=PA260">"Turing's Legacy: Developments from Turing's Ideas in Logic"</a>. In <a href="/wiki/Rod_Downey" title="Rod Downey">Downey, Rod</a> (ed.). <i>Turing's Legacy</i>. Lecture Notes in Logic. Vol.&#160;42. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. pp.&#160;260–261. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9781107338579.001">10.1017/CBO9781107338579.001</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-04348-0" title="Special:BookSources/978-1-107-04348-0"><bdi>978-1-107-04348-0</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2014000240">2014000240</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/867717052">867717052</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19315498">19315498</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 9,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Turing%27s+Legacy%3A+Developments+from+Turing%27s+Ideas+in+Logic&amp;rft.btitle=Turing%27s+Legacy&amp;rft.series=Lecture+Notes+in+Logic&amp;rft.pages=260-261&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19315498%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9781107338579.001&amp;rft_id=info%3Aoclcnum%2F867717052&amp;rft_id=info%3Alccn%2F2014000240&amp;rft.isbn=978-1-107-04348-0&amp;rft.aulast=Hales&amp;rft.aufirst=Thomas+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfYgaBQAAQBAJ%26pg%3DPA260&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSipser1992" class="citation conference cs1"><a href="/wiki/Michael_Sipser" title="Michael Sipser">Sipser, Michael</a> (July 1992). <i>The History and Status of the P versus NP Question</i>. STOC '92: Proceedings of the twenty-fourth annual ACM symposium on Theory of Computing. pp.&#160;603–618. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F129712.129771">10.1145/129712.129771</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11678884">11678884</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=The+History+and+Status+of+the+P+versus+NP+Question&amp;rft.pages=603-618&amp;rft.date=1992-07&amp;rft_id=info%3Adoi%2F10.1145%2F129712.129771&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11678884%23id-name%3DS2CID&amp;rft.aulast=Sipser&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEwald2018" class="citation encyclopaedia cs1">Ewald, William (November 17, 2018). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/logic-firstorder-emergence/">"The Emergence of First-Order Logic"</a>. <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1095-5054">1095-5054</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/sn97004494">sn97004494</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/37550526">37550526</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Emergence+of+First-Order+Logic&amp;rft.btitle=Stanford+Encyclopedia+of+Philosophy&amp;rft.date=2018-11-17&amp;rft_id=info%3Aoclcnum%2F37550526&amp;rft.issn=1095-5054&amp;rft_id=info%3Alccn%2Fsn97004494&amp;rft.aulast=Ewald&amp;rft.aufirst=William&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Flogic-firstorder-emergence%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerreirós2020" class="citation encyclopaedia cs1">Ferreirós, José (June 18, 2020) [First published April 10, 2007]. <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/settheory-early/">"The Early Development of Set Theory"</a>. <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1095-5054">1095-5054</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/sn97004494">sn97004494</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/37550526">37550526</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Early+Development+of+Set+Theory&amp;rft.btitle=Stanford+Encyclopedia+of+Philosophy&amp;rft.date=2020-06-18&amp;rft_id=info%3Aoclcnum%2F37550526&amp;rft.issn=1095-5054&amp;rft_id=info%3Alccn%2Fsn97004494&amp;rft.aulast=Ferreir%C3%B3s&amp;rft.aufirst=Jos%C3%A9&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fsettheory-early%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerreirós2001" class="citation journal cs1">Ferreirós, José (December 2001). <a rel="nofollow" class="external text" href="https://idus.us.es/xmlui/bitstream/11441/38373/1/The%20road%20to%20modern%20logic.pdf">"The Road to Modern Logic—An Interpretation"</a> <span class="cs1-format">(PDF)</span>. <i>The Bulletin of Symbolic Logic</i>. <b>7</b> (4): 441–484. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2687794">10.2307/2687794</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1943-5894">1943-5894</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/11441%2F38373">11441/38373</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1079-8986">1079-8986</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2687794">2687794</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/95652899">95652899</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/31616719">31616719</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43258676">43258676</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Bulletin+of+Symbolic+Logic&amp;rft.atitle=The+Road+to+Modern+Logic%E2%80%94An+Interpretation&amp;rft.volume=7&amp;rft.issue=4&amp;rft.pages=441-484&amp;rft.date=2001-12&amp;rft_id=info%3Ahdl%2F11441%2F38373&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43258676%23id-name%3DS2CID&amp;rft.eissn=1943-5894&amp;rft_id=info%3Adoi%2F10.2307%2F2687794&amp;rft_id=info%3Aoclcnum%2F31616719&amp;rft.issn=1079-8986&amp;rft_id=info%3Alccn%2F95652899&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2687794%23id-name%3DJSTOR&amp;rft.aulast=Ferreir%C3%B3s&amp;rft.aufirst=Jos%C3%A9&amp;rft_id=https%3A%2F%2Fidus.us.es%2Fxmlui%2Fbitstream%2F11441%2F38373%2F1%2FThe%2520road%2520to%2520modern%2520logic.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolchover2013" class="citation web cs1"><a href="/wiki/Natalie_Wolchover" title="Natalie Wolchover">Wolchover, Natalie</a>, ed. (November 26, 2013). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/to-settle-infinity-question-a-new-law-of-mathematics-20131126/">"Dispute over Infinity Divides Mathematicians"</a>. <i><a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Quanta+Magazine&amp;rft.atitle=Dispute+over+Infinity+Divides+Mathematicians&amp;rft.date=2013-11-26&amp;rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fto-settle-infinity-question-a-new-law-of-mathematics-20131126%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhuang" class="citation web cs1">Zhuang, Chaohui. <a rel="nofollow" class="external text" href="https://philarchive.org/archive/ZHUWAO">"Wittgenstein's analysis on Cantor's diagonal argument"</a> <span class="cs1-format">(DOC)</span>. <i><a href="/wiki/PhilArchive" class="mw-redirect" title="PhilArchive">PhilArchive</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=PhilArchive&amp;rft.atitle=Wittgenstein%27s+analysis+on+Cantor%27s+diagonal+argument&amp;rft.aulast=Zhuang&amp;rft.aufirst=Chaohui&amp;rft_id=https%3A%2F%2Fphilarchive.org%2Farchive%2FZHUWAO&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanswell2024" class="citation book cs1">Tanswell, Fenner Stanley (2024). <i>Mathematical Rigour and Informal Proof</i>. Cambridge Elements in the Philosophy of Mathematics. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2F9781009325110">10.1017/9781009325110</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2399-2883">2399-2883</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-00-949438-0" title="Special:BookSources/978-1-00-949438-0"><bdi>978-1-00-949438-0</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2514-3808">2514-3808</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1418750041">1418750041</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Rigour+and+Informal+Proof&amp;rft.series=Cambridge+Elements+in+the+Philosophy+of+Mathematics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2024&amp;rft.eissn=2399-2883&amp;rft_id=info%3Adoi%2F10.1017%2F9781009325110&amp;rft_id=info%3Aoclcnum%2F1418750041&amp;rft.issn=2514-3808&amp;rft.isbn=978-1-00-949438-0&amp;rft.aulast=Tanswell&amp;rft.aufirst=Fenner+Stanley&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAvigadReck2001" class="citation web cs1"><a href="/wiki/Jeremy_Avigad" title="Jeremy Avigad">Avigad, Jeremy</a>; Reck, Erich H. (December 11, 2001). <a rel="nofollow" class="external text" href="https://www.andrew.cmu.edu/user/avigad/Papers/infinite.pdf">"<span class="cs1-kern-left"></span>"Clarifying the nature of the infinite": the development of metamathematics and proof theory"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Carnegie_Mellon_University" title="Carnegie Mellon University">Carnegie Mellon University</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 14,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Carnegie+Mellon+University&amp;rft.atitle=%22Clarifying+the+nature+of+the+infinite%22%3A+the+development+of+metamathematics+and+proof+theory&amp;rft.date=2001-12-11&amp;rft.aulast=Avigad&amp;rft.aufirst=Jeremy&amp;rft.au=Reck%2C+Erich+H.&amp;rft_id=https%3A%2F%2Fwww.andrew.cmu.edu%2Fuser%2Favigad%2FPapers%2Finfinite.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamilton1982" class="citation book cs1">Hamilton, Alan G. (1982). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OXfmTHXvRXMC&amp;pg=PA3"><i>Numbers, Sets and Axioms: The Apparatus of Mathematics</i></a>. Cambridge University Press. pp.&#160;3–4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-28761-6" title="Special:BookSources/978-0-521-28761-6"><bdi>978-0-521-28761-6</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 12,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numbers%2C+Sets+and+Axioms%3A+The+Apparatus+of+Mathematics&amp;rft.pages=3-4&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1982&amp;rft.isbn=978-0-521-28761-6&amp;rft.aulast=Hamilton&amp;rft.aufirst=Alan+G.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOXfmTHXvRXMC%26pg%3DPA3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Snapper-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-Snapper_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnapper1979" class="citation journal cs1"><a href="/wiki/Ernst_Snapper" title="Ernst Snapper">Snapper, Ernst</a> (September 1979). "The Three Crises in Mathematics: Logicism, Intuitionism, and Formalism". <i>Mathematics Magazine</i>. <b>52</b> (4): 207–216. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2689412">10.2307/2689412</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-570X">0025-570X</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2689412">2689412</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=The+Three+Crises+in+Mathematics%3A+Logicism%2C+Intuitionism%2C+and+Formalism&amp;rft.volume=52&amp;rft.issue=4&amp;rft.pages=207-216&amp;rft.date=1979-09&amp;rft.issn=0025-570X&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2689412%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2689412&amp;rft.aulast=Snapper&amp;rft.aufirst=Ernst&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Raatikainen_2005-58"><span class="mw-cite-backlink">^ <a href="#cite_ref-Raatikainen_2005_58-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Raatikainen_2005_58-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaatikainen2005" class="citation journal cs1">Raatikainen, Panu (October 2005). <a rel="nofollow" class="external text" href="https://www.cairn.info/revue-internationale-de-philosophie-2005-4-page-513.htm">"On the Philosophical Relevance of Gödel's Incompleteness Theorems"</a>. <i>Revue Internationale de Philosophie</i>. <b>59</b> (4): 513–534. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3917%2Frip.234.0513">10.3917/rip.234.0513</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/23955909">23955909</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52083793">52083793</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221112212555/https://www.cairn.info/revue-internationale-de-philosophie-2005-4-page-513.htm">Archived</a> from the original on November 12, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 12,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Revue+Internationale+de+Philosophie&amp;rft.atitle=On+the+Philosophical+Relevance+of+G%C3%B6del%27s+Incompleteness+Theorems&amp;rft.volume=59&amp;rft.issue=4&amp;rft.pages=513-534&amp;rft.date=2005-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52083793%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F23955909%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.3917%2Frip.234.0513&amp;rft.aulast=Raatikainen&amp;rft.aufirst=Panu&amp;rft_id=https%3A%2F%2Fwww.cairn.info%2Frevue-internationale-de-philosophie-2005-4-page-513.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoschovakis2018" class="citation web cs1"><a href="/wiki/Joan_Moschovakis" title="Joan Moschovakis">Moschovakis, Joan</a> (September 4, 2018). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/logic-intuitionistic/">"Intuitionistic Logic"</a>. <i>Stanford Encyclopedia of Philosophy</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221216154821/https://plato.stanford.edu/entries/logic-intuitionistic/">Archived</a> from the original on December 16, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 12,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Stanford+Encyclopedia+of+Philosophy&amp;rft.atitle=Intuitionistic+Logic&amp;rft.date=2018-09-04&amp;rft.aulast=Moschovakis&amp;rft.aufirst=Joan&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Flogic-intuitionistic%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcCarty2006" class="citation journal cs1">McCarty, Charles (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.4000%2Fphilosophiascientiae.411">"At the Heart of Analysis: Intuitionism and Philosophy"</a>. <i>Philosophia Scientiæ, Cahier spécial 6</i>: 81–94. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4000%2Fphilosophiascientiae.411">10.4000/philosophiascientiae.411</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophia+Scienti%C3%A6%2C+Cahier+sp%C3%A9cial+6&amp;rft.atitle=At+the+Heart+of+Analysis%3A+Intuitionism+and+Philosophy&amp;rft.pages=81-94&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.4000%2Fphilosophiascientiae.411&amp;rft.aulast=McCarty&amp;rft.aufirst=Charles&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4000%252Fphilosophiascientiae.411&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalpernHarperImmermanKolaitis2001" class="citation web cs1"><a href="/wiki/Joseph_Halpern" title="Joseph Halpern">Halpern, Joseph</a>; <a href="/wiki/Robert_Harper_(computer_scientist)" title="Robert Harper (computer scientist)">Harper, Robert</a>; <a href="/wiki/Neil_Immerman" title="Neil Immerman">Immerman, Neil</a>; <a href="/wiki/Phokion_Kolaitis" class="mw-redirect" title="Phokion Kolaitis">Kolaitis, Phokion</a>; <a href="/wiki/Moshe_Vardi" title="Moshe Vardi">Vardi, Moshe</a>; <a href="/wiki/Victor_Vianu" title="Victor Vianu">Vianu, Victor</a> (2001). <a rel="nofollow" class="external text" href="https://www.cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf">"On the Unusual Effectiveness of Logic in Computer Science"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210303115643/https://www.cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on March 3, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">January 15,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=On+the+Unusual+Effectiveness+of+Logic+in+Computer+Science&amp;rft.date=2001&amp;rft.aulast=Halpern&amp;rft.aufirst=Joseph&amp;rft.au=Harper%2C+Robert&amp;rft.au=Immerman%2C+Neil&amp;rft.au=Kolaitis%2C+Phokion&amp;rft.au=Vardi%2C+Moshe&amp;rft.au=Vianu%2C+Victor&amp;rft_id=https%3A%2F%2Fwww.cs.cmu.edu%2F~rwh%2Fpapers%2Funreasonable%2Fbasl.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRouaud2017" class="citation book cs1">Rouaud, Mathieu (April 2017) [First published July 2013]. <a rel="nofollow" class="external text" href="http://www.incertitudes.fr/book.pdf"><i>Probability, Statistics and Estimation</i></a> <span class="cs1-format">(PDF)</span>. p.&#160;10. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://www.incertitudes.fr/book.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on October 9, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 13,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability%2C+Statistics+and+Estimation&amp;rft.pages=10&amp;rft.date=2017-04&amp;rft.aulast=Rouaud&amp;rft.aufirst=Mathieu&amp;rft_id=http%3A%2F%2Fwww.incertitudes.fr%2Fbook.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRao1997" class="citation book cs1"><a href="/wiki/C._R._Rao" title="C. R. Rao">Rao, C. Radhakrishna</a> (1997) [1989]. <i>Statistics and Truth: Putting Chance to Work</i> (2nd&#160;ed.). World Scientific. pp.&#160;3–17, 63–70. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/981-02-3111-3" title="Special:BookSources/981-02-3111-3"><bdi>981-02-3111-3</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/97010349">97010349</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1474730">1474730</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/36597731">36597731</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistics+and+Truth%3A+Putting+Chance+to+Work&amp;rft.pages=3-17%2C+63-70&amp;rft.edition=2nd&amp;rft.pub=World+Scientific&amp;rft.date=1997&amp;rft_id=info%3Aoclcnum%2F36597731&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1474730%23id-name%3DMR&amp;rft_id=info%3Alccn%2F97010349&amp;rft.isbn=981-02-3111-3&amp;rft.aulast=Rao&amp;rft.aufirst=C.+Radhakrishna&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-RaoOpt-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-RaoOpt_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRao1981" class="citation book cs1"><a href="/wiki/C.R._Rao" class="mw-redirect" title="C.R. Rao">Rao, C. Radhakrishna</a> (1981). "Foreword". In Arthanari, T.S.; <a href="/wiki/Yadolah_Dodge" title="Yadolah Dodge">Dodge, Yadolah</a> (eds.). <i>Mathematical programming in statistics</i>. Wiley Series in Probability and Mathematical Statistics. New York: Wiley. pp.&#160;vii–viii. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-08073-2" title="Special:BookSources/978-0-471-08073-2"><bdi>978-0-471-08073-2</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/80021637">80021637</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0607328">0607328</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/6707805">6707805</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Foreword&amp;rft.btitle=Mathematical+programming+in+statistics&amp;rft.place=New+York&amp;rft.series=Wiley+Series+in+Probability+and+Mathematical+Statistics&amp;rft.pages=vii-viii&amp;rft.pub=Wiley&amp;rft.date=1981&amp;rft_id=info%3Aoclcnum%2F6707805&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D607328%23id-name%3DMR&amp;rft_id=info%3Alccn%2F80021637&amp;rft.isbn=978-0-471-08073-2&amp;rft.aulast=Rao&amp;rft.aufirst=C.+Radhakrishna&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEWhittle199410–11,_14–18-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWhittle199410–11,_14–18_65-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWhittle1994">Whittle 1994</a>, pp.&#160;10–11, 14–18.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarchuk2020" class="citation web cs1">Marchuk, Gurii Ivanovich (April 2020). <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Extras/Computational_mathematics/">"G I Marchuk's plenary: ICM 1970"</a>. <i>MacTutor</i>. School of Mathematics and Statistics, University of St Andrews, Scotland. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221113155409/https://mathshistory.st-andrews.ac.uk/Extras/Computational_mathematics/">Archived</a> from the original on November 13, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 13,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MacTutor&amp;rft.atitle=G+I+Marchuk%27s+plenary%3A+ICM+1970&amp;rft.date=2020-04&amp;rft.aulast=Marchuk&amp;rft.aufirst=Gurii+Ivanovich&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FExtras%2FComputational_mathematics%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnsonCavallini1991" class="citation conference cs1">Johnson, Gary M.; Cavallini, John S. (September 1991). Phua, Kang Hoh; Loe, Kia Fock (eds.). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jYNIDwAAQBAJ&amp;pg=PA28"><i>Grand Challenges, High Performance Computing, and Computational Science</i></a>. Singapore Supercomputing Conference'90: Supercomputing For Strategic Advantage. World Scientific. p.&#160;28. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/91018998">91018998</a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 13,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Grand+Challenges%2C+High+Performance+Computing%2C+and+Computational+Science&amp;rft.pages=28&amp;rft.pub=World+Scientific&amp;rft.date=1991-09&amp;rft_id=info%3Alccn%2F91018998&amp;rft.aulast=Johnson&amp;rft.aufirst=Gary+M.&amp;rft.au=Cavallini%2C+John+S.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjYNIDwAAQBAJ%26pg%3DPA28&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrefethen2008" class="citation book cs1"><a href="/wiki/Lloyd_N._Trefethen" class="mw-redirect" title="Lloyd N. Trefethen">Trefethen, Lloyd N.</a> (2008). "Numerical Analysis". In <a href="/wiki/Timothy_Gowers" title="Timothy Gowers">Gowers, Timothy</a>; <a href="/wiki/June_Barrow-Green" title="June Barrow-Green">Barrow-Green, June</a>; <a href="/wiki/Imre_Leader" title="Imre Leader">Leader, Imre</a> (eds.). <a rel="nofollow" class="external text" href="http://people.maths.ox.ac.uk/trefethen/NAessay.pdf"><i>The Princeton Companion to Mathematics</i></a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. pp.&#160;604–615. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-11880-2" title="Special:BookSources/978-0-691-11880-2"><bdi>978-0-691-11880-2</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2008020450">2008020450</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2467561">2467561</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/227205932">227205932</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230307054158/http://people.maths.ox.ac.uk/trefethen/NAessay.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on March 7, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">February 15,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Numerical+Analysis&amp;rft.btitle=The+Princeton+Companion+to+Mathematics&amp;rft.pages=604-615&amp;rft.pub=Princeton+University+Press&amp;rft.date=2008&amp;rft_id=info%3Aoclcnum%2F227205932&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2467561%23id-name%3DMR&amp;rft_id=info%3Alccn%2F2008020450&amp;rft.isbn=978-0-691-11880-2&amp;rft.aulast=Trefethen&amp;rft.aufirst=Lloyd+N.&amp;rft_id=http%3A%2F%2Fpeople.maths.ox.ac.uk%2Ftrefethen%2FNAessay.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist" style="display:inline-flex;--size:100%; max-width:max(15em, calc(var(--size) - 3.2em));"><ul style="display:inline-block"><li><a href="#CITEREFCresswell2021">Cresswell 2021</a>, § Mathematics</li><li><a href="#CITEREFPerisho1965">Perisho 1965</a>, p.&#160;64</li></ul></div></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerisho1965" class="citation journal cs1">Perisho, Margaret W. (Spring 1965). "The Etymology of Mathematical Terms". <i><a href="/wiki/Pi_Mu_Epsilon_Journal" class="mw-redirect" title="Pi Mu Epsilon Journal">Pi Mu Epsilon Journal</a></i>. <b>4</b> (2): 62–66. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-952X">0031-952X</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/24338341">24338341</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/58015848">58015848</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1762376">1762376</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pi+Mu+Epsilon+Journal&amp;rft.atitle=The+Etymology+of+Mathematical+Terms&amp;rft.ssn=spring&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=62-66&amp;rft.date=1965&amp;rft_id=info%3Aoclcnum%2F1762376&amp;rft.issn=0031-952X&amp;rft_id=info%3Alccn%2F58015848&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F24338341%23id-name%3DJSTOR&amp;rft.aulast=Perisho&amp;rft.aufirst=Margaret+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Boas-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boas_71-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoas1995" class="citation book cs1"><a href="/wiki/Ralph_P._Boas_Jr." title="Ralph P. Boas Jr.">Boas, Ralph P.</a> (1995). "What Augustine Didn't Say About Mathematicians". In Alexanderson, Gerald L.; Mugler, Dale H. (eds.). <i>Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories</i>. <a href="/wiki/Mathematical_Association_of_America" title="Mathematical Association of America">Mathematical Association of America</a>. p.&#160;257. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88385-323-8" title="Special:BookSources/978-0-88385-323-8"><bdi>978-0-88385-323-8</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/94078313">94078313</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/633018890">633018890</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=What+Augustine+Didn%27t+Say+About+Mathematicians&amp;rft.btitle=Lion+Hunting+and+Other+Mathematical+Pursuits%3A+A+Collection+of+Mathematics%2C+Verse%2C+and+Stories&amp;rft.pages=257&amp;rft.pub=Mathematical+Association+of+America&amp;rft.date=1995&amp;rft_id=info%3Aoclcnum%2F633018890&amp;rft_id=info%3Alccn%2F94078313&amp;rft.isbn=978-0-88385-323-8&amp;rft.aulast=Boas&amp;rft.aufirst=Ralph+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><i><a href="/wiki/The_Oxford_Dictionary_of_English_Etymology" title="The Oxford Dictionary of English Etymology">The Oxford Dictionary of English Etymology</a></i>, <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i>, <i>sub</i> "mathematics", "mathematic", "mathematics".</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.oed.com/dictionary/maths_n">"Maths (Noun)"</a>. <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 25,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Oxford+English+Dictionary&amp;rft.atitle=Maths+%28Noun%29&amp;rft_id=https%3A%2F%2Fwww.oed.com%2Fdictionary%2Fmaths_n&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.oed.com/dictionary/math_n3">"Math (Noun³)"</a>. <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200404201407/http://oed.com/view/Entry/114982">Archived</a> from the original on April 4, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">January 25,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Oxford+English+Dictionary&amp;rft.atitle=Math+%28Noun%C2%B3%29&amp;rft_id=https%3A%2F%2Fwww.oed.com%2Fdictionary%2Fmath_n3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text">See, for example, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilder" class="citation book cs1"><a href="/wiki/Raymond_L._Wilder" class="mw-redirect" title="Raymond L. Wilder">Wilder, Raymond L.</a> <i>Evolution of Mathematical Concepts; an Elementary Study</i>. passim.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Evolution+of+Mathematical+Concepts%3B+an+Elementary+Study&amp;rft.pages=passim&amp;rft.aulast=Wilder&amp;rft.aufirst=Raymond+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZaslavsky1999" class="citation book cs1"><a href="/wiki/Claudia_Zaslavsky" title="Claudia Zaslavsky">Zaslavsky, Claudia</a> (1999). <i>Africa Counts: Number and Pattern in African Culture</i>. Chicago Review Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-61374-115-3" title="Special:BookSources/978-1-61374-115-3"><bdi>978-1-61374-115-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/843204342">843204342</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Africa+Counts%3A+Number+and+Pattern+in+African+Culture.&amp;rft.pub=Chicago+Review+Press&amp;rft.date=1999&amp;rft_id=info%3Aoclcnum%2F843204342&amp;rft.isbn=978-1-61374-115-3&amp;rft.aulast=Zaslavsky&amp;rft.aufirst=Claudia&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEKline1990Chapter_1-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKline1990Chapter_1_77-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKline1990">Kline 1990</a>, Chapter 1.</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.ms.uky.edu/~dhje223/CrestOfThePeacockCh4-pages-2-21.pdf/">Mesopotamia</a> pg 10. Retrieved June 1, 2024</span> </li> <li id="cite_note-FOOTNOTEBoyer1991&quot;Mesopotamia&quot;_pp._24–27-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBoyer1991&quot;Mesopotamia&quot;_pp._24–27_79-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoyer1991">Boyer 1991</a>, "Mesopotamia" pp. 24–27.</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeath1981" class="citation book cs1"><a href="/wiki/Thomas_Heath_(classicist)" title="Thomas Heath (classicist)">Heath, Thomas Little</a> (1981) [1921]. <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/historyofgreekma0002heat/page/n14"><i>A History of Greek Mathematics: From Thales to Euclid</i></a></span>. New York: Dover Publications. p.&#160;1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-24073-2" title="Special:BookSources/978-0-486-24073-2"><bdi>978-0-486-24073-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Greek+Mathematics%3A+From+Thales+to+Euclid&amp;rft.place=New+York&amp;rft.pages=1&amp;rft.pub=Dover+Publications&amp;rft.date=1981&amp;rft.isbn=978-0-486-24073-2&amp;rft.aulast=Heath&amp;rft.aufirst=Thomas+Little&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofgreekma0002heat%2Fpage%2Fn14&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMueller1969" class="citation journal cs1">Mueller, I. (1969). "Euclid's Elements and the Axiomatic Method". <i>The British Journal for the Philosophy of Science</i>. <b>20</b> (4): 289–309. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbjps%2F20.4.289">10.1093/bjps/20.4.289</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0007-0882">0007-0882</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/686258">686258</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+British+Journal+for+the+Philosophy+of+Science&amp;rft.atitle=Euclid%27s+Elements+and+the+Axiomatic+Method&amp;rft.volume=20&amp;rft.issue=4&amp;rft.pages=289-309&amp;rft.date=1969&amp;rft.issn=0007-0882&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F686258%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1093%2Fbjps%2F20.4.289&amp;rft.aulast=Mueller&amp;rft.aufirst=I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEBoyer1991&quot;Euclid_of_Alexandria&quot;_p._119-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBoyer1991&quot;Euclid_of_Alexandria&quot;_p._119_82-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 119.</span> </li> <li id="cite_note-FOOTNOTEBoyer1991&quot;Archimedes_of_Syracuse&quot;_p._120-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBoyer1991&quot;Archimedes_of_Syracuse&quot;_p._120_83-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoyer1991">Boyer 1991</a>, "Archimedes of Syracuse" p. 120.</span> </li> <li id="cite_note-FOOTNOTEBoyer1991&quot;Archimedes_of_Syracuse&quot;_p._130-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBoyer1991&quot;Archimedes_of_Syracuse&quot;_p._130_84-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoyer1991">Boyer 1991</a>, "Archimedes of Syracuse" p. 130.</span> </li> <li id="cite_note-FOOTNOTEBoyer1991&quot;Apollonius_of_Perga&quot;_p._145-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBoyer1991&quot;Apollonius_of_Perga&quot;_p._145_85-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoyer1991">Boyer 1991</a>, "Apollonius of Perga" p. 145.</span> </li> <li id="cite_note-FOOTNOTEBoyer1991&quot;Greek_Trigonometry_and_Mensuration&quot;_p._162-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBoyer1991&quot;Greek_Trigonometry_and_Mensuration&quot;_p._162_86-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoyer1991">Boyer 1991</a>, "Greek Trigonometry and Mensuration" p. 162.</span> </li> <li id="cite_note-FOOTNOTEBoyer1991&quot;Revival_and_Decline_of_Greek_Mathematics&quot;_p._180-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBoyer1991&quot;Revival_and_Decline_of_Greek_Mathematics&quot;_p._180_87-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" p. 180.</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOre1988" class="citation book cs1"><a href="/wiki/%C3%98ystein_Ore" title="Øystein Ore">Ore, Øystein</a> (1988). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Sl_6BPp7S0AC&amp;pg=IA19"><i>Number Theory and Its History</i></a>. Courier Corporation. pp.&#160;19–24. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-65620-5" title="Special:BookSources/978-0-486-65620-5"><bdi>978-0-486-65620-5</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 14,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Number+Theory+and+Its+History&amp;rft.pages=19-24&amp;rft.pub=Courier+Corporation&amp;rft.date=1988&amp;rft.isbn=978-0-486-65620-5&amp;rft.aulast=Ore&amp;rft.aufirst=%C3%98ystein&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSl_6BPp7S0AC%26pg%3DIA19&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSingh1936" class="citation journal cs1">Singh, A. N. (January 1936). "On the Use of Series in Hindu Mathematics". <i>Osiris</i>. <b>1</b>: 606–628. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F368443">10.1086/368443</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/301627">301627</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:144760421">144760421</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Osiris&amp;rft.atitle=On+the+Use+of+Series+in+Hindu+Mathematics&amp;rft.volume=1&amp;rft.pages=606-628&amp;rft.date=1936-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A144760421%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F301627%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1086%2F368443&amp;rft.aulast=Singh&amp;rft.aufirst=A.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKolachanaMaheshRamasubramanian2019" class="citation book cs1">Kolachana, A.; Mahesh, K.; Ramasubramanian, K. (2019). "Use of series in India". <i>Studies in Indian Mathematics and Astronomy</i>. Sources and Studies in the History of Mathematics and Physical Sciences. Singapore: Springer. pp.&#160;438–461. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-981-13-7326-8_20">10.1007/978-981-13-7326-8_20</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-13-7325-1" title="Special:BookSources/978-981-13-7325-1"><bdi>978-981-13-7325-1</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:190176726">190176726</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Use+of+series+in+India&amp;rft.btitle=Studies+in+Indian+Mathematics+and+Astronomy&amp;rft.place=Singapore&amp;rft.series=Sources+and+Studies+in+the+History+of+Mathematics+and+Physical+Sciences&amp;rft.pages=438-461&amp;rft.pub=Springer&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A190176726%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-981-13-7326-8_20&amp;rft.isbn=978-981-13-7325-1&amp;rft.aulast=Kolachana&amp;rft.aufirst=A.&amp;rft.au=Mahesh%2C+K.&amp;rft.au=Ramasubramanian%2C+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaliba1994" class="citation book cs1"><a href="/wiki/George_Saliba" title="George Saliba">Saliba, George</a> (1994). <i>A history of Arabic astronomy: planetary theories during the golden age of Islam</i>. New York University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8147-7962-0" title="Special:BookSources/978-0-8147-7962-0"><bdi>978-0-8147-7962-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/28723059">28723059</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+history+of+Arabic+astronomy%3A+planetary+theories+during+the+golden+age+of+Islam&amp;rft.pub=New+York+University+Press&amp;rft.date=1994&amp;rft_id=info%3Aoclcnum%2F28723059&amp;rft.isbn=978-0-8147-7962-0&amp;rft.aulast=Saliba&amp;rft.aufirst=George&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaruqi2006" class="citation journal cs1">Faruqi, Yasmeen M. (2006). <a rel="nofollow" class="external text" href="https://eric.ed.gov/?id=EJ854295">"Contributions of Islamic scholars to the scientific enterprise"</a>. <i>International Education Journal</i>. <b>7</b> (4). Shannon Research Press: 391–399. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221114165547/https://eric.ed.gov/?id=EJ854295">Archived</a> from the original on November 14, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 14,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Education+Journal&amp;rft.atitle=Contributions+of+Islamic+scholars+to+the+scientific+enterprise&amp;rft.volume=7&amp;rft.issue=4&amp;rft.pages=391-399&amp;rft.date=2006&amp;rft.aulast=Faruqi&amp;rft.aufirst=Yasmeen+M.&amp;rft_id=https%3A%2F%2Feric.ed.gov%2F%3Fid%3DEJ854295&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorch2001" class="citation journal cs1">Lorch, Richard (June 2001). <a rel="nofollow" class="external text" href="https://epub.ub.uni-muenchen.de/15929/1/greek-arabic-latin.pdf">"Greek-Arabic-Latin: The Transmission of Mathematical Texts in the Middle Ages"</a> <span class="cs1-format">(PDF)</span>. <i>Science in Context</i>. <b>14</b> (1–2). Cambridge University Press: 313–331. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0269889701000114">10.1017/S0269889701000114</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:146539132">146539132</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221217160922/https://epub.ub.uni-muenchen.de/15929/1/greek-arabic-latin.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on December 17, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">December 5,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+in+Context&amp;rft.atitle=Greek-Arabic-Latin%3A+The+Transmission+of+Mathematical+Texts+in+the+Middle+Ages&amp;rft.volume=14&amp;rft.issue=1%E2%80%932&amp;rft.pages=313-331&amp;rft.date=2001-06&amp;rft_id=info%3Adoi%2F10.1017%2FS0269889701000114&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A146539132%23id-name%3DS2CID&amp;rft.aulast=Lorch&amp;rft.aufirst=Richard&amp;rft_id=https%3A%2F%2Fepub.ub.uni-muenchen.de%2F15929%2F1%2Fgreek-arabic-latin.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKent2022" class="citation book cs1">Kent, Benjamin (2022). <a rel="nofollow" class="external text" href="http://rguir.inflibnet.ac.in/bitstream/123456789/16963/1/9781984668677.pdf"><i>History of Science</i></a> <span class="cs1-format">(PDF)</span>. Vol.&#160;2. Bibliotex Digital Library. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-984668-67-7" title="Special:BookSources/978-1-984668-67-7"><bdi>978-1-984668-67-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=History+of+Science&amp;rft.pub=Bibliotex+Digital+Library&amp;rft.date=2022&amp;rft.isbn=978-1-984668-67-7&amp;rft.aulast=Kent&amp;rft.aufirst=Benjamin&amp;rft_id=http%3A%2F%2Frguir.inflibnet.ac.in%2Fbitstream%2F123456789%2F16963%2F1%2F9781984668677.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArchibald1949" class="citation journal cs1"><a href="/wiki/Raymond_Clare_Archibald" class="mw-redirect" title="Raymond Clare Archibald">Archibald, Raymond Clare</a> (January 1949). "History of Mathematics After the Sixteenth Century". <i>The American Mathematical Monthly</i>. Part 2: Outline of the History of Mathematics. <b>56</b> (1): 35–56. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2304570">10.2307/2304570</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2304570">2304570</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=History+of+Mathematics+After+the+Sixteenth+Century&amp;rft.volume=56&amp;rft.issue=1&amp;rft.pages=35-56&amp;rft.date=1949-01&amp;rft_id=info%3Adoi%2F10.2307%2F2304570&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2304570%23id-name%3DJSTOR&amp;rft.aulast=Archibald&amp;rft.aufirst=Raymond+Clare&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTESevryuk2006101–109-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESevryuk2006101–109_96-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSevryuk2006">Sevryuk 2006</a>, pp.&#160;101–109.</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfram2000" class="citation conference cs1"><a href="/wiki/Stephen_Wolfram" title="Stephen Wolfram">Wolfram, Stephan</a> (October 2000). <a rel="nofollow" class="external text" href="https://www.stephenwolfram.com/publications/mathematical-notation-past-future/"><i>Mathematical Notation: Past and Future</i></a>. MathML and Math on the Web: MathML International Conference 2000, Urbana Champaign, USA. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221116150905/https://www.stephenwolfram.com/publications/mathematical-notation-past-future/">Archived</a> from the original on November 16, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 3,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Mathematical+Notation%3A+Past+and+Future&amp;rft.date=2000-10&amp;rft.aulast=Wolfram&amp;rft.aufirst=Stephan&amp;rft_id=https%3A%2F%2Fwww.stephenwolfram.com%2Fpublications%2Fmathematical-notation-past-future%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDouglasHeadleyHaddenLeFevre2020" class="citation journal cs1">Douglas, Heather; Headley, Marcia Gail; Hadden, Stephanie; <a href="/wiki/Jo-Anne_LeFevre" title="Jo-Anne LeFevre">LeFevre, Jo-Anne</a> (December 3, 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.5964%2Fjnc.v6i3.293">"Knowledge of Mathematical Symbols Goes Beyond Numbers"</a>. <i>Journal of Numerical Cognition</i>. <b>6</b> (3): 322–354. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5964%2Fjnc.v6i3.293">10.5964/jnc.v6i3.293</a></span>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2363-8761">2363-8761</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:228085700">228085700</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Numerical+Cognition&amp;rft.atitle=Knowledge+of+Mathematical+Symbols+Goes+Beyond+Numbers&amp;rft.volume=6&amp;rft.issue=3&amp;rft.pages=322-354&amp;rft.date=2020-12-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A228085700%23id-name%3DS2CID&amp;rft.eissn=2363-8761&amp;rft_id=info%3Adoi%2F10.5964%2Fjnc.v6i3.293&amp;rft.aulast=Douglas&amp;rft.aufirst=Heather&amp;rft.au=Headley%2C+Marcia+Gail&amp;rft.au=Hadden%2C+Stephanie&amp;rft.au=LeFevre%2C+Jo-Anne&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.5964%252Fjnc.v6i3.293&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-AMS-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-AMS_99-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLetourneauWright_Sharp2017" class="citation web cs1">Letourneau, Mary; Wright Sharp, Jennifer (October 2017). <a rel="nofollow" class="external text" href="https://www.ams.org/publications/authors/AMS-StyleGuide-online.pdf">"AMS Style Guide"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>. p.&#160;75. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221208063650/https://www.ams.org//publications/authors/AMS-StyleGuide-online.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on December 8, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 3,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=AMS+Style+Guide&amp;rft.pages=75&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2017-10&amp;rft.aulast=Letourneau&amp;rft.aufirst=Mary&amp;rft.au=Wright+Sharp%2C+Jennifer&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fpublications%2Fauthors%2FAMS-StyleGuide-online.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJansenMarriottYelland2000" class="citation journal cs1">Jansen, Anthony R.; Marriott, Kim; Yelland, Greg W. (2000). <a rel="nofollow" class="external text" href="https://escholarship.org/content/qt35r988q9/qt35r988q9.pdf">"Constituent Structure in Mathematical Expressions"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the Annual Meeting of the Cognitive Science Society</i>. <b>22</b>. <a href="/wiki/University_of_California_Merced" class="mw-redirect" title="University of California Merced">University of California Merced</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1069-7977">1069-7977</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/68713073">68713073</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221116152222/https://escholarship.org/content/qt35r988q9/qt35r988q9.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on November 16, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 3,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Annual+Meeting+of+the+Cognitive+Science+Society&amp;rft.atitle=Constituent+Structure+in+Mathematical+Expressions&amp;rft.volume=22&amp;rft.date=2000&amp;rft.eissn=1069-7977&amp;rft_id=info%3Aoclcnum%2F68713073&amp;rft.aulast=Jansen&amp;rft.aufirst=Anthony+R.&amp;rft.au=Marriott%2C+Kim&amp;rft.au=Yelland%2C+Greg+W.&amp;rft_id=https%3A%2F%2Fescholarship.org%2Fcontent%2Fqt35r988q9%2Fqt35r988q9.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRossi2006" class="citation book cs1">Rossi, Richard J. (2006). <i>Theorems, Corollaries, Lemmas, and Methods of Proof</i>. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>. pp.&#160;1–14, 47–48. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-470-04295-3" title="Special:BookSources/978-0-470-04295-3"><bdi>978-0-470-04295-3</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2006041609">2006041609</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/64085024">64085024</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theorems%2C+Corollaries%2C+Lemmas%2C+and+Methods+of+Proof&amp;rft.series=Pure+and+Applied+Mathematics%3A+A+Wiley+Series+of+Texts%2C+Monographs+and+Tracts&amp;rft.pages=1-14%2C+47-48&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2006&amp;rft_id=info%3Aoclcnum%2F64085024&amp;rft_id=info%3Alccn%2F2006041609&amp;rft.isbn=978-0-470-04295-3&amp;rft.aulast=Rossi&amp;rft.aufirst=Richard+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Miller/mathword/">"Earliest Uses of Some Words of Mathematics"</a>. <i>MacTutor</i>. Scotland, UK: <a href="/wiki/University_of_St._Andrews" class="mw-redirect" title="University of St. Andrews">University of St. Andrews</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220929032236/https://mathshistory.st-andrews.ac.uk/Miller/mathword/">Archived</a> from the original on September 29, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 3,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MacTutor&amp;rft.atitle=Earliest+Uses+of+Some+Words+of+Mathematics&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FMiller%2Fmathword%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilver2017" class="citation journal cs1">Silver, Daniel S. (November–December 2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1511%2F2017.105.6.364">"The New Language of Mathematics"</a>. <i>The American Scientist</i>. <b>105</b> (6). <a href="/wiki/Sigma_Xi" title="Sigma Xi">Sigma Xi</a>: 364–371. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1511%2F2017.105.6.364">10.1511/2017.105.6.364</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-0996">0003-0996</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/43020253">43020253</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1480717">1480717</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125455764">125455764</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Scientist&amp;rft.atitle=The+New+Language+of+Mathematics&amp;rft.volume=105&amp;rft.issue=6&amp;rft.pages=364-371&amp;rft.date=2017-11%2F2017-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125455764%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1511%2F2017.105.6.364&amp;rft_id=info%3Aoclcnum%2F1480717&amp;rft.issn=0003-0996&amp;rft_id=info%3Alccn%2F43020253&amp;rft.aulast=Silver&amp;rft.aufirst=Daniel+S.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1511%252F2017.105.6.364&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBellomoPreziosi1994" class="citation book cs1">Bellomo, Nicola; Preziosi, Luigi (December 22, 1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pJAvWaRYo3UC"><i>Modelling Mathematical Methods and Scientific Computation</i></a>. Mathematical Modeling. Vol.&#160;1. CRC Press. p.&#160;1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-8331-1" title="Special:BookSources/978-0-8493-8331-1"><bdi>978-0-8493-8331-1</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 16,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modelling+Mathematical+Methods+and+Scientific+Computation&amp;rft.series=Mathematical+Modeling&amp;rft.pages=1&amp;rft.pub=CRC+Press&amp;rft.date=1994-12-22&amp;rft.isbn=978-0-8493-8331-1&amp;rft.aulast=Bellomo&amp;rft.aufirst=Nicola&amp;rft.au=Preziosi%2C+Luigi&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpJAvWaRYo3UC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHennig2010" class="citation journal cs1">Hennig, Christian (2010). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/225691477">"Mathematical Models and Reality: A Constructivist Perspective"</a>. <i>Foundations of Science</i>. <b>15</b>: 29–48. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10699-009-9167-x">10.1007/s10699-009-9167-x</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6229200">6229200</a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 17,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Science&amp;rft.atitle=Mathematical+Models+and+Reality%3A+A+Constructivist+Perspective&amp;rft.volume=15&amp;rft.pages=29-48&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1007%2Fs10699-009-9167-x&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6229200%23id-name%3DS2CID&amp;rft.aulast=Hennig&amp;rft.aufirst=Christian&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F225691477&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriggHartmann2020" class="citation journal cs1"><a href="/wiki/Roman_Frigg" title="Roman Frigg">Frigg, Roman</a>; <a href="/wiki/Stephan_Hartmann" title="Stephan Hartmann">Hartmann, Stephan</a> (February 4, 2020). <a rel="nofollow" class="external text" href="https://seop.illc.uva.nl/entries/models-science/">"Models in Science"</a>. <i>Stanford Encyclopedia of Philosophy</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221117162412/https://seop.illc.uva.nl/entries/models-science/">Archived</a> from the original on November 17, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 17,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Stanford+Encyclopedia+of+Philosophy&amp;rft.atitle=Models+in+Science&amp;rft.date=2020-02-04&amp;rft.aulast=Frigg&amp;rft.aufirst=Roman&amp;rft.au=Hartmann%2C+Stephan&amp;rft_id=https%3A%2F%2Fseop.illc.uva.nl%2Fentries%2Fmodels-science%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart2018" class="citation book cs1"><a href="/wiki/Ian_Stewart_(mathematician)" title="Ian Stewart (mathematician)">Stewart, Ian</a> (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mRBMDwAAQBAJ&amp;pg=PA345">"Mathematics, Maps, and Models"</a>. In Wuppuluri, Shyam; Doria, Francisco Antonio (eds.). <i>The Map and the Territory: Exploring the Foundations of Science, Thought and Reality</i>. The Frontiers Collection. Springer. pp.&#160;345–356. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-72478-2_18">10.1007/978-3-319-72478-2_18</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-72478-2" title="Special:BookSources/978-3-319-72478-2"><bdi>978-3-319-72478-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 17,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematics%2C+Maps%2C+and+Models&amp;rft.btitle=The+Map+and+the+Territory%3A+Exploring+the+Foundations+of+Science%2C+Thought+and+Reality&amp;rft.series=The+Frontiers+Collection&amp;rft.pages=345-356&amp;rft.pub=Springer&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-72478-2_18&amp;rft.isbn=978-3-319-72478-2&amp;rft.aulast=Stewart&amp;rft.aufirst=Ian&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmRBMDwAAQBAJ%26pg%3DPA345&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://undsci.berkeley.edu/article/mathematics">"The science checklist applied: Mathematics"</a>. <i>Understanding Science</i>. University of California, Berkeley. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191027021023/https://undsci.berkeley.edu/article/mathematics">Archived</a> from the original on October 27, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">October 27,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Understanding+Science&amp;rft.atitle=The+science+checklist+applied%3A+Mathematics&amp;rft_id=https%3A%2F%2Fundsci.berkeley.edu%2Farticle%2Fmathematics&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMackay1991" class="citation book cs1">Mackay, A. L. (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=KwESE88CGa8C&amp;q=durch+planm%C3%A4ssiges+Tattonieren"><i>Dictionary of Scientific Quotations</i></a>. London: Taylor &amp; Francis. p.&#160;100. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7503-0106-0" title="Special:BookSources/978-0-7503-0106-0"><bdi>978-0-7503-0106-0</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">March 19,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dictionary+of+Scientific+Quotations&amp;rft.place=London&amp;rft.pages=100&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=1991&amp;rft.isbn=978-0-7503-0106-0&amp;rft.aulast=Mackay&amp;rft.aufirst=A.+L.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKwESE88CGa8C%26q%3Ddurch%2Bplanm%25C3%25A4ssiges%2BTattonieren&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Bishop1991-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bishop1991_110-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBishop1991" class="citation book cs1">Bishop, Alan (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9AgrBgAAQBAJ&amp;pg=PA54">"Environmental activities and mathematical culture"</a>. <i>Mathematical Enculturation: A Cultural Perspective on Mathematics Education</i>. Norwell, Massachusetts: Kluwer Academic Publishers. pp.&#160;20–59. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7923-1270-3" title="Special:BookSources/978-0-7923-1270-3"><bdi>978-0-7923-1270-3</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">April 5,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Environmental+activities+and+mathematical+culture&amp;rft.btitle=Mathematical+Enculturation%3A+A+Cultural+Perspective+on+Mathematics+Education&amp;rft.place=Norwell%2C+Massachusetts&amp;rft.pages=20-59&amp;rft.pub=Kluwer+Academic+Publishers&amp;rft.date=1991&amp;rft.isbn=978-0-7923-1270-3&amp;rft.aulast=Bishop&amp;rft.aufirst=Alan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9AgrBgAAQBAJ%26pg%3DPA54&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShashaLazere1998" class="citation book cs1"><a href="/wiki/Dennis_Elliot_Shasha" class="mw-redirect" title="Dennis Elliot Shasha">Shasha, Dennis Elliot</a>; Lazere, Cathy A. (1998). <i>Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists</i>. Springer. p.&#160;228. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-98269-4" title="Special:BookSources/978-0-387-98269-4"><bdi>978-0-387-98269-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Out+of+Their+Minds%3A+The+Lives+and+Discoveries+of+15+Great+Computer+Scientists&amp;rft.pages=228&amp;rft.pub=Springer&amp;rft.date=1998&amp;rft.isbn=978-0-387-98269-4&amp;rft.aulast=Shasha&amp;rft.aufirst=Dennis+Elliot&amp;rft.au=Lazere%2C+Cathy+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Nickles2013-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nickles2013_112-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNickles2013" class="citation book cs1">Nickles, Thomas (2013). "The Problem of Demarcation". <i>Philosophy of Pseudoscience: Reconsidering the Demarcation Problem</i>. Chicago: The University of Chicago Press. p.&#160;104. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-226-05182-6" title="Special:BookSources/978-0-226-05182-6"><bdi>978-0-226-05182-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Problem+of+Demarcation&amp;rft.btitle=Philosophy+of+Pseudoscience%3A+Reconsidering+the+Demarcation+Problem&amp;rft.place=Chicago&amp;rft.pages=104&amp;rft.pub=The+University+of+Chicago+Press&amp;rft.date=2013&amp;rft.isbn=978-0-226-05182-6&amp;rft.aulast=Nickles&amp;rft.aufirst=Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Pigliucci2014-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pigliucci2014_113-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPigliucci2014" class="citation magazine cs1"><a href="/wiki/Massimo_Pigliucci" title="Massimo Pigliucci">Pigliucci, Massimo</a> (2014). <a rel="nofollow" class="external text" href="https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing">"Are There 'Other' Ways of Knowing?"</a>. <i><a href="/wiki/Philosophy_Now" title="Philosophy Now">Philosophy Now</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200513190522/https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing">Archived</a> from the original on May 13, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">April 6,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophy+Now&amp;rft.atitle=Are+There+%27Other%27+Ways+of+Knowing%3F&amp;rft.date=2014&amp;rft.aulast=Pigliucci&amp;rft.aufirst=Massimo&amp;rft_id=https%3A%2F%2Fphilosophynow.org%2Fissues%2F102%2FAre_There_Other_Ways_of_Knowing&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Ferreirós_2007-114"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ferreirós_2007_114-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ferreirós_2007_114-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerreirós2007" class="citation book cs1">Ferreirós, J. (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IUFTcOsMTysC&amp;pg=PA235">"Ό Θεὸς Άριθμητίζει: The Rise of Pure Mathematics as Arithmetic with Gauss"</a>. In <a href="/wiki/Catherine_Goldstein" title="Catherine Goldstein">Goldstein, Catherine</a>; Schappacher, Norbert; Schwermer, Joachim (eds.). <i>The Shaping of Arithmetic after C.F. Gauss's Disquisitiones Arithmeticae</i>. Springer Science &amp; Business Media. pp.&#160;235–268. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-34720-0" title="Special:BookSources/978-3-540-34720-0"><bdi>978-3-540-34720-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=%CE%8C+%CE%98%CE%B5%E1%BD%B8%CF%82+%CE%86%CF%81%CE%B9%CE%B8%CE%BC%CE%B7%CF%84%CE%AF%CE%B6%CE%B5%CE%B9%3A+The+Rise+of+Pure+Mathematics+as+Arithmetic+with+Gauss&amp;rft.btitle=The+Shaping+of+Arithmetic+after+C.F.+Gauss%27s+Disquisitiones+Arithmeticae&amp;rft.pages=235-268&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2007&amp;rft.isbn=978-3-540-34720-0&amp;rft.aulast=Ferreir%C3%B3s&amp;rft.aufirst=J.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIUFTcOsMTysC%26pg%3DPA235&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuhn1976" class="citation journal cs1"><a href="/wiki/Thomas_Kuhn" title="Thomas Kuhn">Kuhn, Thomas S.</a> (1976). "Mathematical vs. Experimental Traditions in the Development of Physical Science". <i>The Journal of Interdisciplinary History</i>. <b>7</b> (1). The MIT Press: 1–31. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F202372">10.2307/202372</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/202372">202372</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Interdisciplinary+History&amp;rft.atitle=Mathematical+vs.+Experimental+Traditions+in+the+Development+of+Physical+Science&amp;rft.volume=7&amp;rft.issue=1&amp;rft.pages=1-31&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.2307%2F202372&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F202372%23id-name%3DJSTOR&amp;rft.aulast=Kuhn&amp;rft.aufirst=Thomas+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAsper2009" class="citation book cs1">Asper, Markus (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xZMSDAAAQBAJ&amp;pg=PA107">"The two cultures of mathematics in ancient Greece"</a>. In Robson, Eleanor; Stedall, Jacqueline (eds.). <i>The Oxford Handbook of the History of Mathematics</i>. Oxford Handbooks in Mathematics. OUP Oxford. pp.&#160;107–132. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-921312-2" title="Special:BookSources/978-0-19-921312-2"><bdi>978-0-19-921312-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 18,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+two+cultures+of+mathematics+in+ancient+Greece&amp;rft.btitle=The+Oxford+Handbook+of+the+History+of+Mathematics&amp;rft.series=Oxford+Handbooks+in+Mathematics&amp;rft.pages=107-132&amp;rft.pub=OUP+Oxford&amp;rft.date=2009&amp;rft.isbn=978-0-19-921312-2&amp;rft.aulast=Asper&amp;rft.aufirst=Markus&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxZMSDAAAQBAJ%26pg%3DPA107&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGozwamiSingh2019" class="citation book cs1">Gozwami, Pinkimani; Singh, Madan Mohan (2019). "Integer Factorization Problem". In Ahmad, Khaleel; Doja, M. N.; Udzir, Nur Izura; Singh, Manu Pratap (eds.). <i>Emerging Security Algorithms and Techniques</i>. CRC Press. pp.&#160;59–60. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8153-6145-9" title="Special:BookSources/978-0-8153-6145-9"><bdi>978-0-8153-6145-9</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2019010556">2019010556</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1082226900">1082226900</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Integer+Factorization+Problem&amp;rft.btitle=Emerging+Security+Algorithms+and+Techniques&amp;rft.pages=59-60&amp;rft.pub=CRC+Press&amp;rft.date=2019&amp;rft_id=info%3Aoclcnum%2F1082226900&amp;rft_id=info%3Alccn%2F2019010556&amp;rft.isbn=978-0-8153-6145-9&amp;rft.aulast=Gozwami&amp;rft.aufirst=Pinkimani&amp;rft.au=Singh%2C+Madan+Mohan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaddy2008" class="citation journal cs1"><a href="/wiki/Penelope_Maddy" title="Penelope Maddy">Maddy, P.</a> (2008). <a rel="nofollow" class="external text" href="http://pgrim.org/philosophersannual/pa28articles/maddyhowapplied.pdf">"How applied mathematics became pure"</a> <span class="cs1-format">(PDF)</span>. <i>The Review of Symbolic Logic</i>. <b>1</b> (1): 16–41. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1755020308080027">10.1017/S1755020308080027</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18122406">18122406</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170812012210/http://pgrim.org/philosophersannual/pa28articles/maddyhowapplied.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on August 12, 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">November 19,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Review+of+Symbolic+Logic&amp;rft.atitle=How+applied+mathematics+became+pure&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=16-41&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1017%2FS1755020308080027&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18122406%23id-name%3DS2CID&amp;rft.aulast=Maddy&amp;rft.aufirst=P.&amp;rft_id=http%3A%2F%2Fpgrim.org%2Fphilosophersannual%2Fpa28articles%2Fmaddyhowapplied.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilver2017" class="citation book cs1">Silver, Daniel S. (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RXGYDwAAQBAJ&amp;pg=PA17">"In Defense of Pure Mathematics"</a>. In Pitici, Mircea (ed.). <i>The Best Writing on Mathematics, 2016</i>. Princeton University Press. pp.&#160;17–26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-17529-4" title="Special:BookSources/978-0-691-17529-4"><bdi>978-0-691-17529-4</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 19,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=In+Defense+of+Pure+Mathematics&amp;rft.btitle=The+Best+Writing+on+Mathematics%2C+2016&amp;rft.pages=17-26&amp;rft.pub=Princeton+University+Press&amp;rft.date=2017&amp;rft.isbn=978-0-691-17529-4&amp;rft.aulast=Silver&amp;rft.aufirst=Daniel+S.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRXGYDwAAQBAJ%26pg%3DPA17&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParshall2022" class="citation journal cs1"><a href="/wiki/Karen_Hunger_Parshall" class="mw-redirect" title="Karen Hunger Parshall">Parshall, Karen Hunger</a> (2022). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/bull/2022-59-03/S0273-0979-2022-01754-5/home.html">"The American Mathematical Society and Applied Mathematics from the 1920s to the 1950s: A Revisionist Account"</a>. <i>Bulletin of the American Mathematical Society</i>. <b>59</b> (3): 405–427. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fbull%2F1754">10.1090/bull/1754</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249561106">249561106</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221120151259/https://www.ams.org/journals/bull/2022-59-03/S0273-0979-2022-01754-5/home.html">Archived</a> from the original on November 20, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 20,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft.atitle=The+American+Mathematical+Society+and+Applied+Mathematics+from+the+1920s+to+the+1950s%3A+A+Revisionist+Account&amp;rft.volume=59&amp;rft.issue=3&amp;rft.pages=405-427&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1090%2Fbull%2F1754&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249561106%23id-name%3DS2CID&amp;rft.aulast=Parshall&amp;rft.aufirst=Karen+Hunger&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fbull%2F2022-59-03%2FS0273-0979-2022-01754-5%2Fhome.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStolz2002" class="citation journal cs1">Stolz, Michael (2002). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/226795930">"The History Of Applied Mathematics And The History Of Society"</a>. <i>Synthese</i>. <b>133</b>: 43–57. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1020823608217">10.1023/A:1020823608217</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34271623">34271623</a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 20,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Synthese&amp;rft.atitle=The+History+Of+Applied+Mathematics+And+The+History+Of+Society&amp;rft.volume=133&amp;rft.pages=43-57&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1020823608217&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34271623%23id-name%3DS2CID&amp;rft.aulast=Stolz&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F226795930&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLin1976" class="citation journal cs1">Lin, C. C . (March 1976). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0001-8708%2876%2990024-4">"On the role of applied mathematics"</a>. <i><a href="/wiki/Advances_in_Mathematics" title="Advances in Mathematics">Advances in Mathematics</a></i>. <b>19</b> (3): 267–288. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0001-8708%2876%2990024-4">10.1016/0001-8708(76)90024-4</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Mathematics&amp;rft.atitle=On+the+role+of+applied+mathematics&amp;rft.volume=19&amp;rft.issue=3&amp;rft.pages=267-288&amp;rft.date=1976-03&amp;rft_id=info%3Adoi%2F10.1016%2F0001-8708%2876%2990024-4&amp;rft.aulast=Lin&amp;rft.aufirst=C.+C+.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0001-8708%252876%252990024-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeressini1999" class="citation conference cs1">Peressini, Anthony (September 1999). <a rel="nofollow" class="external text" href="https://www.academia.edu/download/32799272/ApplyingMathPSA.pdf"><i>Applying Pure Mathematics</i></a> <span class="cs1-format">(PDF)</span>. Philosophy of Science. Proceedings of the 1998 Biennial Meetings of the Philosophy of Science Association. Part I: Contributed Papers. Vol.&#160;66. pp.&#160;S1–S13. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/188757">188757</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240102210931/https://d1wqtxts1xzle7.cloudfront.net/32799272/ApplyingMathPSA-libre.pdf?1391205742=&amp;response-content-disposition=inline%3B+filename%3DApplying_Pure_Mathematics.pdf&amp;Expires=1704233371&amp;Signature=BvNJyYufdj9BiKFe94w6gdXLpAfr7T5JIv~RU74R2uT0O9Ngj6i4cdBtYYOSB6D4V-MgButb6lKNhIGGQogw0e0sHVFkJUy5TRsoCiQ-MLabpZOf74E5SGLMFIExhGVAw7SKrSFaQsFGhfbaRMxbMP~u-wRdJAz6ve6kbWr6oq-doQeEOlRfO4EByNCUYx-KAk3~cBsH1Q2WNZ5QiVObMI1ufQ7zkQM1bqzOumLu6g07F~pt~Cds~lftuQufHomoTH-V9H9iKQgUyc3-4bEB1y1Jdngs7WWg76LcSGn65bPK8dxvsZzKaLDGfoK5jamZkA8z3-xxiMIPL8c6YETjZA__&amp;Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA">Archived</a> <span class="cs1-format">(PDF)</span> from the original on January 2, 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">November 30,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Applying+Pure+Mathematics&amp;rft.pages=S1-S13&amp;rft.date=1999-09&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F188757%23id-name%3DJSTOR&amp;rft.aulast=Peressini&amp;rft.aufirst=Anthony&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2Fdownload%2F32799272%2FApplyingMathPSA.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLützen2011" class="citation conference cs1">Lützen, J. (2011). <a rel="nofollow" class="external text" href="https://slub.qucosa.de/api/qucosa%3A16267/zip/">"Examples and reflections on the interplay between mathematics and physics in the 19th and 20th century"</a>. In Schlote, K. H.; Schneider, M. (eds.). <i>Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century</i>. Frankfurt am Main: Verlag Harri Deutsch. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230323164143/https://slub.qucosa.de/api/qucosa%3A16267/zip/">Archived</a> from the original on March 23, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">November 19,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Examples+and+reflections+on+the+interplay+between+mathematics+and+physics+in+the+19th+and+20th+century&amp;rft.btitle=Mathematics+meets+physics%3A+A+contribution+to+their+interaction+in+the+19th+and+the+first+half+of+the+20th+century&amp;rft.place=Frankfurt+am+Main&amp;rft.pub=Verlag+Harri+Deutsch&amp;rft.date=2011&amp;rft.aulast=L%C3%BCtzen&amp;rft.aufirst=J.&amp;rft_id=https%3A%2F%2Fslub.qucosa.de%2Fapi%2Fqucosa%253A16267%2Fzip%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarker1996" class="citation journal cs1">Marker, Dave (July 1996). <a rel="nofollow" class="external text" href="https://www.ams.org/notices/199607/">"Model theory and exponentiation"</a>. <i>Notices of the American Mathematical Society</i>. <b>43</b> (7): 753–759. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140313004011/http://www.ams.org/notices/199607/">Archived</a> from the original on March 13, 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">November 19,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft.atitle=Model+theory+and+exponentiation&amp;rft.volume=43&amp;rft.issue=7&amp;rft.pages=753-759&amp;rft.date=1996-07&amp;rft.aulast=Marker&amp;rft.aufirst=Dave&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fnotices%2F199607%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenMaza2014" class="citation conference cs1">Chen, Changbo; Maza, Marc Moreno (August 2014). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/268067322"><i>Cylindrical Algebraic Decomposition in the RegularChains Library</i></a>. International Congress on Mathematical Software 2014. Lecture Notes in Computer Science. Vol.&#160;8592. Berlin: Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-662-44199-2_65">10.1007/978-3-662-44199-2_65</a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 19,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Cylindrical+Algebraic+Decomposition+in+the+RegularChains+Library&amp;rft.place=Berlin&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pub=Springer&amp;rft.date=2014-08&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-662-44199-2_65&amp;rft.aulast=Chen&amp;rft.aufirst=Changbo&amp;rft.au=Maza%2C+Marc+Moreno&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F268067322&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPérez-EscobarSarikaya2021" class="citation journal cs1">Pérez-Escobar, José Antonio; Sarikaya, Deniz (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs13194-021-00435-9">"Purifying applied mathematics and applying pure mathematics: how a late Wittgensteinian perspective sheds light onto the dichotomy"</a>. <i>European Journal for Philosophy of Science</i>. <b>12</b> (1): 1–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs13194-021-00435-9">10.1007/s13194-021-00435-9</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245465895">245465895</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=European+Journal+for+Philosophy+of+Science&amp;rft.atitle=Purifying+applied+mathematics+and+applying+pure+mathematics%3A+how+a+late+Wittgensteinian+perspective+sheds+light+onto+the+dichotomy&amp;rft.volume=12&amp;rft.issue=1&amp;rft.pages=1-22&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1007%2Fs13194-021-00435-9&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245465895%23id-name%3DS2CID&amp;rft.aulast=P%C3%A9rez-Escobar&amp;rft.aufirst=Jos%C3%A9+Antonio&amp;rft.au=Sarikaya%2C+Deniz&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs13194-021-00435-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakase2014" class="citation book cs1">Takase, M. (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UeElBAAAQBAJ&amp;pg=PA393">"Pure Mathematics and Applied Mathematics are Inseparably Intertwined: Observation of the Early Analysis of the Infinity"</a>. <i>A Mathematical Approach to Research Problems of Science and Technology</i>. Mathematics for Industry. Vol.&#160;5. Tokyo: Springer. pp.&#160;393–399. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-4-431-55060-0_29">10.1007/978-4-431-55060-0_29</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-4-431-55059-4" title="Special:BookSources/978-4-431-55059-4"><bdi>978-4-431-55059-4</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 20,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Pure+Mathematics+and+Applied+Mathematics+are+Inseparably+Intertwined%3A+Observation+of+the+Early+Analysis+of+the+Infinity&amp;rft.btitle=A+Mathematical+Approach+to+Research+Problems+of+Science+and+Technology&amp;rft.place=Tokyo&amp;rft.series=Mathematics+for+Industry&amp;rft.pages=393-399&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1007%2F978-4-431-55060-0_29&amp;rft.isbn=978-4-431-55059-4&amp;rft.aulast=Takase&amp;rft.aufirst=M.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUeElBAAAQBAJ%26pg%3DPA393&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSarukkai2005" class="citation journal cs1">Sarukkai, Sundar (February 10, 2005). "Revisiting the 'unreasonable effectiveness' of mathematics". <i>Current Science</i>. <b>88</b> (3): 415–423. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/24110208">24110208</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Science&amp;rft.atitle=Revisiting+the+%27unreasonable+effectiveness%27+of+mathematics&amp;rft.volume=88&amp;rft.issue=3&amp;rft.pages=415-423&amp;rft.date=2005-02-10&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F24110208%23id-name%3DJSTOR&amp;rft.aulast=Sarukkai&amp;rft.aufirst=Sundar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWagstaff2021" class="citation book cs1">Wagstaff, Samuel S. Jr. (2021). <a rel="nofollow" class="external text" href="https://www.cs.purdue.edu/homes/ssw/chapter3.pdf">"History of Integer Factoring"</a> <span class="cs1-format">(PDF)</span>. In Bos, Joppe W.; Stam, Martijn (eds.). <i>Computational Cryptography, Algorithmic Aspects of Cryptography, A Tribute to AKL</i>. London Mathematical Society Lecture Notes Series 469. Cambridge University Press. pp.&#160;41–77. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221120155733/https://www.cs.purdue.edu/homes/ssw/chapter3.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on November 20, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 20,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=History+of+Integer+Factoring&amp;rft.btitle=Computational+Cryptography%2C+Algorithmic+Aspects+of+Cryptography%2C+A+Tribute+to+AKL&amp;rft.series=London+Mathematical+Society+Lecture+Notes+Series+469&amp;rft.pages=41-77&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2021&amp;rft.aulast=Wagstaff&amp;rft.aufirst=Samuel+S.+Jr.&amp;rft_id=https%3A%2F%2Fwww.cs.purdue.edu%2Fhomes%2Fssw%2Fchapter3.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Curves/Ellipse/">"Curves: Ellipse"</a>. <i>MacTutor</i>. School of Mathematics and Statistics, University of St Andrews, Scotland. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221014051943/https://mathshistory.st-andrews.ac.uk/Curves/Ellipse/">Archived</a> from the original on October 14, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 20,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MacTutor&amp;rft.atitle=Curves%3A+Ellipse&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FCurves%2FEllipse%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMukunth2015" class="citation web cs1">Mukunth, Vasudevan (September 10, 2015). <a rel="nofollow" class="external text" href="https://thewire.in/science/beyond-the-surface-of-einsteins-relativity-lay-a-chimerical-geometry">"Beyond the Surface of Einstein's Relativity Lay a Chimerical Geometry"</a>. <i>The Wire</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221120191206/https://thewire.in/science/beyond-the-surface-of-einsteins-relativity-lay-a-chimerical-geometry">Archived</a> from the original on November 20, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 20,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Wire&amp;rft.atitle=Beyond+the+Surface+of+Einstein%27s+Relativity+Lay+a+Chimerical+Geometry&amp;rft.date=2015-09-10&amp;rft.aulast=Mukunth&amp;rft.aufirst=Vasudevan&amp;rft_id=https%3A%2F%2Fthewire.in%2Fscience%2Fbeyond-the-surface-of-einsteins-relativity-lay-a-chimerical-geometry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilsonLewis1912" class="citation journal cs1">Wilson, Edwin B.; Lewis, Gilbert N. (November 1912). "The Space-Time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics". <i>Proceedings of the American Academy of Arts and Sciences</i>. <b>48</b> (11): 389–507. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F20022840">10.2307/20022840</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/20022840">20022840</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Academy+of+Arts+and+Sciences&amp;rft.atitle=The+Space-Time+Manifold+of+Relativity.+The+Non-Euclidean+Geometry+of+Mechanics+and+Electromagnetics&amp;rft.volume=48&amp;rft.issue=11&amp;rft.pages=389-507&amp;rft.date=1912-11&amp;rft_id=info%3Adoi%2F10.2307%2F20022840&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F20022840%23id-name%3DJSTOR&amp;rft.aulast=Wilson&amp;rft.aufirst=Edwin+B.&amp;rft.au=Lewis%2C+Gilbert+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-borel-134"><span class="mw-cite-backlink">^ <a href="#cite_ref-borel_134-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-borel_134-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-borel_134-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorel1983" class="citation journal cs1"><a href="/wiki/Armand_Borel" title="Armand Borel">Borel, Armand</a> (1983). <a rel="nofollow" class="external text" href="https://doi.org/10.4171%2Fnews%2F103%2F8">"Mathematics: Art and Science"</a>. <i>The Mathematical Intelligencer</i>. <b>5</b> (4). Springer: 9–17. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4171%2Fnews%2F103%2F8">10.4171/news/103/8</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1027-488X">1027-488X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=Mathematics%3A+Art+and+Science&amp;rft.volume=5&amp;rft.issue=4&amp;rft.pages=9-17&amp;rft.date=1983&amp;rft_id=info%3Adoi%2F10.4171%2Fnews%2F103%2F8&amp;rft.issn=1027-488X&amp;rft.aulast=Borel&amp;rft.aufirst=Armand&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4171%252Fnews%252F103%252F8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanson1961" class="citation journal cs1"><a href="/wiki/Norwood_Russell_Hanson" title="Norwood Russell Hanson">Hanson, Norwood Russell</a> (November 1961). "Discovering the Positron (I)". <i>The British Journal for the Philosophy of Science</i>. <b>12</b> (47). The University of Chicago Press: 194–214. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbjps%2Fxiii.49.54">10.1093/bjps/xiii.49.54</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/685207">685207</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+British+Journal+for+the+Philosophy+of+Science&amp;rft.atitle=Discovering+the+Positron+%28I%29&amp;rft.volume=12&amp;rft.issue=47&amp;rft.pages=194-214&amp;rft.date=1961-11&amp;rft_id=info%3Adoi%2F10.1093%2Fbjps%2Fxiii.49.54&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F685207%23id-name%3DJSTOR&amp;rft.aulast=Hanson&amp;rft.aufirst=Norwood+Russell&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGinammi2016" class="citation journal cs1">Ginammi, Michele (February 2016). "Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the Ω<sup>–</sup> particle". <i>Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics</i>. <b>53</b>: 20–27. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016SHPMP..53...20G">2016SHPMP..53...20G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.shpsb.2015.12.001">10.1016/j.shpsb.2015.12.001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Studies+in+History+and+Philosophy+of+Science+Part+B%3A+Studies+in+History+and+Philosophy+of+Modern+Physics&amp;rft.atitle=Avoiding+reification%3A+Heuristic+effectiveness+of+mathematics+and+the+prediction+of+the+%CE%A9%3Csup%3E%E2%80%93%3C%2Fsup%3E+particle&amp;rft.volume=53&amp;rft.pages=20-27&amp;rft.date=2016-02&amp;rft_id=info%3Adoi%2F10.1016%2Fj.shpsb.2015.12.001&amp;rft_id=info%3Abibcode%2F2016SHPMP..53...20G&amp;rft.aulast=Ginammi&amp;rft.aufirst=Michele&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaghDeshpande2012" class="citation book cs1">Wagh, Sanjay Moreshwar; Deshpande, Dilip Abasaheb (September 27, 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-DmfVjBUPksC&amp;pg=PA3"><i>Essentials of Physics</i></a>. PHI Learning Pvt. Ltd. p.&#160;3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-203-4642-0" title="Special:BookSources/978-81-203-4642-0"><bdi>978-81-203-4642-0</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 3,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Essentials+of+Physics&amp;rft.pages=3&amp;rft.pub=PHI+Learning+Pvt.+Ltd.&amp;rft.date=2012-09-27&amp;rft.isbn=978-81-203-4642-0&amp;rft.aulast=Wagh&amp;rft.aufirst=Sanjay+Moreshwar&amp;rft.au=Deshpande%2C+Dilip+Abasaheb&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-DmfVjBUPksC%26pg%3DPA3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiyah1990" class="citation conference cs1"><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah, Michael</a> (1990). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130928095313/http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0031.0036.ocr.pdf"><i>On the Work of Edward Witten</i></a> <span class="cs1-format">(PDF)</span>. Proceedings of the International Congress of Mathematicians. p.&#160;31. Archived from <a rel="nofollow" class="external text" href="http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0031.0036.ocr.pdf">the original</a> <span class="cs1-format">(PDF)</span> on September 28, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=On+the+Work+of+Edward+Witten&amp;rft.pages=31&amp;rft.date=1990&amp;rft.aulast=Atiyah&amp;rft.aufirst=Michael&amp;rft_id=http%3A%2F%2Fwww.mathunion.org%2FICM%2FICM1990.1%2FMain%2Ficm1990.1.0031.0036.ocr.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.mit.edu/academics/undergrad/major/course18c.html">"Course 18C Mathematics with Computer Science"</a>. <i>math.mit.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 1,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=math.mit.edu&amp;rft.atitle=Course+18C+Mathematics+with+Computer+Science&amp;rft_id=https%3A%2F%2Fmath.mit.edu%2Facademics%2Fundergrad%2Fmajor%2Fcourse18c.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.mit.edu/research/applied/comp-science-theory.html">"Theoretical Computer Science"</a>. <i>math.mit.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">June 1,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=math.mit.edu&amp;rft.atitle=Theoretical+Computer+Science&amp;rft_id=https%3A%2F%2Fmath.mit.edu%2Fresearch%2Fapplied%2Fcomp-science-theory.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-141">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.geeksforgeeks.org/real-life-applications-of-discrete-mathematics/">"Real-Life Applications of Discrete Mathematics"</a>. <i>GeeksforGeeks</i>. April 8, 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">May 19,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GeeksforGeeks&amp;rft.atitle=Real-Life+Applications+of+Discrete+Mathematics&amp;rft.date=2024-04-08&amp;rft_id=https%3A%2F%2Fwww.geeksforgeeks.org%2Freal-life-applications-of-discrete-mathematics%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-142">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalesAdamsBauerDang2017" class="citation journal cs1">Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Tat Dat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; Mclaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Vu, Ky; Zumkeller, Roland (2017). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC">"A Formal Proof of the Kepler Conjecture"</a>. <i>Forum of Mathematics, Pi</i>. <b>5</b>: e2. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Ffmp.2017.1">10.1017/fmp.2017.1</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2066%2F176365">2066/176365</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2050-5086">2050-5086</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:216912822">216912822</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201204053232/https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC">Archived</a> from the original on December 4, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">February 25,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Forum+of+Mathematics%2C+Pi&amp;rft.atitle=A+Formal+Proof+of+the+Kepler+Conjecture&amp;rft.volume=5&amp;rft.pages=e2&amp;rft.date=2017&amp;rft_id=info%3Ahdl%2F2066%2F176365&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A216912822%23id-name%3DS2CID&amp;rft.issn=2050-5086&amp;rft_id=info%3Adoi%2F10.1017%2Ffmp.2017.1&amp;rft.aulast=Hales&amp;rft.aufirst=Thomas&amp;rft.au=Adams%2C+Mark&amp;rft.au=Bauer%2C+Gertrud&amp;rft.au=Dang%2C+Tat+Dat&amp;rft.au=Harrison%2C+John&amp;rft.au=Hoang%2C+Le+Truong&amp;rft.au=Kaliszyk%2C+Cezary&amp;rft.au=Magron%2C+Victor&amp;rft.au=Mclaughlin%2C+Sean&amp;rft.au=Nguyen%2C+Tat+Thang&amp;rft.au=Nguyen%2C+Quang+Truong&amp;rft.au=Nipkow%2C+Tobias&amp;rft.au=Obua%2C+Steven&amp;rft.au=Pleso%2C+Joseph&amp;rft.au=Rute%2C+Jason&amp;rft.au=Solovyev%2C+Alexey&amp;rft.au=Ta%2C+Thi+Hoai+An&amp;rft.au=Tran%2C+Nam+Trung&amp;rft.au=Trieu%2C+Thi+Diep&amp;rft.au=Urban%2C+Josef&amp;rft.au=Vu%2C+Ky&amp;rft.au=Zumkeller%2C+Roland&amp;rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fjournals%2Fforum-of-mathematics-pi%2Farticle%2Fformal-proof-of-the-kepler-conjecture%2F78FBD5E1A3D1BCCB8E0D5B0C463C9FBC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-:2-143"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_143-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_143-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_143-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMillstein2016" class="citation book cs1"><a href="/wiki/Roberta_Millstein" title="Roberta Millstein">Millstein, Roberta</a> (September 8, 2016). <a rel="nofollow" class="external text" href="http://philsci-archive.pitt.edu/10901/1/Millstein-fitness-v2.pdf">"Probability in Biology: The Case of Fitness"</a> <span class="cs1-format">(PDF)</span>. In Hájek, Alan; Hitchcock, Christopher (eds.). <i>The Oxford Handbook of Probability and Philosophy</i>. pp.&#160;601–622. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Foxfordhb%2F9780199607617.013.27">10.1093/oxfordhb/9780199607617.013.27</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230307054456/http://philsci-archive.pitt.edu/10901/1/Millstein-fitness-v2.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on March 7, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Probability+in+Biology%3A+The+Case+of+Fitness&amp;rft.btitle=The+Oxford+Handbook+of+Probability+and+Philosophy&amp;rft.pages=601-622&amp;rft.date=2016-09-08&amp;rft_id=info%3Adoi%2F10.1093%2Foxfordhb%2F9780199607617.013.27&amp;rft.aulast=Millstein&amp;rft.aufirst=Roberta&amp;rft_id=http%3A%2F%2Fphilsci-archive.pitt.edu%2F10901%2F1%2FMillstein-fitness-v2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text">See for example Anne Laurent, Roland Gamet, Jérôme Pantel, <i>Tendances nouvelles en modélisation pour l'environnement, actes du congrès «Programme environnement, vie et sociétés»</i> 15–17 janvier 1996, CNRS</span> </li> <li id="cite_note-FOOTNOTEBouleau1999282–283-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBouleau1999282–283_145-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBouleau1999">Bouleau 1999</a>, pp.&#160;282–283.</span> </li> <li id="cite_note-FOOTNOTEBouleau1999285-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBouleau1999285_146-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBouleau1999">Bouleau 1999</a>, p.&#160;285.</span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.libretexts.org/Bookshelves/Applied_Mathematics/Mathematical_Biology_(Chasnov)/01%3A_Population_Dynamics/1.04%3A_The_Lotka-Volterra_Predator-Prey_Model">"1.4: The Lotka-Volterra Predator-Prey Model"</a>. <i>Mathematics LibreTexts</i>. January 5, 2022. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221229204111/https://math.libretexts.org/Bookshelves/Applied_Mathematics/Mathematical_Biology_(Chasnov)/01:_Population_Dynamics/1.04:_The_Lotka-Volterra_Predator-Prey_Model">Archived</a> from the original on December 29, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Mathematics+LibreTexts&amp;rft.atitle=1.4%3A+The+Lotka-Volterra+Predator-Prey+Model&amp;rft.date=2022-01-05&amp;rft_id=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FApplied_Mathematics%2FMathematical_Biology_%28Chasnov%29%2F01%253A_Population_Dynamics%2F1.04%253A_The_Lotka-Volterra_Predator-Prey_Model&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-148">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalsburg1992" class="citation journal cs1">Salsburg, David (August 17, 1992). <a rel="nofollow" class="external text" href="https://www.dfcm.utoronto.ca/sites/default/files/inline-files/salsburg_1.pdf">"Commentary"</a> <span class="cs1-format">(PDF)</span>. <i>The Use of Statistical Methods in the Analysis of Clinical Studies</i>. <b>46</b>: 17.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Use+of+Statistical+Methods+in+the+Analysis+of+Clinical+Studies&amp;rft.atitle=Commentary&amp;rft.volume=46&amp;rft.pages=17&amp;rft.date=1992-08-17&amp;rft.aulast=Salsburg&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Fwww.dfcm.utoronto.ca%2Fsites%2Fdefault%2Ffiles%2Finline-files%2Fsalsburg_1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNational_Research_Council2003" class="citation book cs1"><a href="/wiki/National_Research_Council_(United_States)" class="mw-redirect" title="National Research Council (United States)">National Research Council</a> (2003). "8". <a rel="nofollow" class="external text" href="https://nap.nationalacademies.org/read/10633/chapter/8"><i>Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering</i></a>. NAP.edu. pp.&#160;71–73. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.17226%2F10633">10.17226/10633</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-309-16839-7" title="Special:BookSources/978-0-309-16839-7"><bdi>978-0-309-16839-7</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25032300">25032300</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=8&amp;rft.btitle=Beyond+the+Molecular+Frontier%3A+Challenges+for+Chemistry+and+Chemical+Engineering&amp;rft.pages=71-73&amp;rft.pub=NAP.edu&amp;rft.date=2003&amp;rft_id=info%3Apmid%2F25032300&amp;rft_id=info%3Adoi%2F10.17226%2F10633&amp;rft.isbn=978-0-309-16839-7&amp;rft.au=National+Research+Council&amp;rft_id=https%3A%2F%2Fnap.nationalacademies.org%2Fread%2F10633%2Fchapter%2F8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://content.naic.org/cipr-topics/catastrophe-models-property">"Catastrophe Models (Property)"</a>. <i>content.naic.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 19,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=content.naic.org&amp;rft.atitle=Catastrophe+Models+%28Property%29&amp;rft_id=https%3A%2F%2Fcontent.naic.org%2Fcipr-topics%2Fcatastrophe-models-property&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://ww2.amstat.org/mam/01/essay.html">"MAM2001 Essay"</a>. <i>ww2.amstat.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 19,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ww2.amstat.org&amp;rft.atitle=MAM2001+Essay&amp;rft_id=https%3A%2F%2Fww2.amstat.org%2Fmam%2F01%2Fessay.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHill2022" class="citation web cs1">Hill, Mullica (September 7, 2022). <a rel="nofollow" class="external text" href="https://www.mathnasium.com/math-centers/mullicahill/news/how-math-used-weather-forecasting">"HOW MATH IS USED IN WEATHER FORECASTING"</a>. <i>mathnasium.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 19,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathnasium.com&amp;rft.atitle=HOW+MATH+IS+USED+IN+WEATHER+FORECASTING&amp;rft.date=2022-09-07&amp;rft.aulast=Hill&amp;rft.aufirst=Mullica&amp;rft_id=https%3A%2F%2Fwww.mathnasium.com%2Fmath-centers%2Fmullicahill%2Fnews%2Fhow-math-used-weather-forecasting&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://icp.giss.nasa.gov/education/modules/eccm/eccm_student_3.pdf">"Using Mathematical Models to Investigate Planetary Habitability"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/NASA" title="NASA">NASA</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 19,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=NASA&amp;rft.atitle=Using+Mathematical+Models+to+Investigate+Planetary+Habitability&amp;rft_id=https%3A%2F%2Ficp.giss.nasa.gov%2Feducation%2Fmodules%2Feccm%2Feccm_student_3.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdling2002" class="citation journal cs1">Edling, Christofer R. (2002). <a rel="nofollow" class="external text" href="https://www.annualreviews.org/doi/10.1146/annurev.soc.28.110601.140942">"Mathematics in Sociology"</a>. <i>Annual Review of Sociology</i>. <b>28</b> (1): 197–220. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.soc.28.110601.140942">10.1146/annurev.soc.28.110601.140942</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0360-0572">0360-0572</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Sociology&amp;rft.atitle=Mathematics+in+Sociology&amp;rft.volume=28&amp;rft.issue=1&amp;rft.pages=197-220&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev.soc.28.110601.140942&amp;rft.issn=0360-0572&amp;rft.aulast=Edling&amp;rft.aufirst=Christofer+R.&amp;rft_id=https%3A%2F%2Fwww.annualreviews.org%2Fdoi%2F10.1146%2Fannurev.soc.28.110601.140942&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-155">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBatchelder2015" class="citation cs1">Batchelder, William H. (January 1, 2015). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/B978008097086843059X">"Mathematical Psychology: History"</a>. In Wright, James D. (ed.). <i>International Encyclopedia of the Social &amp; Behavioral Sciences (Second Edition)</i>. Oxford: Elsevier. pp.&#160;808–815. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-097087-5" title="Special:BookSources/978-0-08-097087-5"><bdi>978-0-08-097087-5</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">September 30,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematical+Psychology%3A+History&amp;rft.btitle=International+Encyclopedia+of+the+Social+%26+Behavioral+Sciences+%28Second+Edition%29&amp;rft.place=Oxford&amp;rft.pages=808-815&amp;rft.pub=Elsevier&amp;rft.date=2015-01-01&amp;rft.isbn=978-0-08-097087-5&amp;rft.aulast=Batchelder&amp;rft.aufirst=William+H.&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FB978008097086843059X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-:3-156"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_156-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_156-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZak2010" class="citation book cs1">Zak, Paul J. (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6QrvmNo2qD4C&amp;pg=PA158"><i>Moral Markets: The Critical Role of Values in the Economy</i></a>. Princeton University Press. p.&#160;158. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4008-3736-6" title="Special:BookSources/978-1-4008-3736-6"><bdi>978-1-4008-3736-6</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 3,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Moral+Markets%3A+The+Critical+Role+of+Values+in+the+Economy&amp;rft.pages=158&amp;rft.pub=Princeton+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-4008-3736-6&amp;rft.aulast=Zak&amp;rft.aufirst=Paul+J.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6QrvmNo2qD4C%26pg%3DPA158&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevinMilgrom2004" class="citation book cs1">Levin, Jonathan; Milgrom, Paul (September 2004). <a rel="nofollow" class="external text" href="https://web.stanford.edu/~jdlevin/Econ%20202/Choice%20Theory.pdf"><i>Introduction to Choice Theory</i></a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Choice+Theory&amp;rft.date=2004-09&amp;rft.aulast=Levin&amp;rft.aufirst=Jonathan&amp;rft.au=Milgrom%2C+Paul&amp;rft_id=https%3A%2F%2Fweb.stanford.edu%2F~jdlevin%2FEcon%2520202%2FChoice%2520Theory.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKremer,_MichaelRao,_GautamSchilbach,_Frank2019" class="citation book cs1">Kremer, Michael; Rao, Gautam; Schilbach, Frank (2019). "Chapter 5 Behavioral development economics". <a rel="nofollow" class="external text" href="https://economics.mit.edu/sites/default/files/2022-09/behavioral-development-economics.pdf"><i>Handbook of Behavioral Economics: Applications and Foundations</i></a> <span class="cs1-format">(PDF)</span>. Vol.&#160;2.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+5+Behavioral+development+economics&amp;rft.btitle=Handbook+of+Behavioral+Economics%3A+Applications+and+Foundations&amp;rft.date=2019&amp;rft.au=Kremer%2C+Michael&amp;rft.au=Rao%2C+Gautam&amp;rft.au=Schilbach%2C+Frank&amp;rft_id=https%3A%2F%2Feconomics.mit.edu%2Fsites%2Fdefault%2Ffiles%2F2022-09%2Fbehavioral-development-economics.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mdpi.com/journal/mathematics/special_issues/Mathematical_Modeling_Economics_Ecology_Environment">"Mathematics"</a>. <i>mdpi.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mdpi.com&amp;rft.atitle=Mathematics&amp;rft_id=https%3A%2F%2Fwww.mdpi.com%2Fjournal%2Fmathematics%2Fspecial_issues%2FMathematical_Modeling_Economics_Ecology_Environment&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/kondratiev-nikolai-dmitrievich">"Kondratiev, Nikolai Dmitrievich | Encyclopedia.com"</a>. <i>www.encyclopedia.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160701224009/http://www.encyclopedia.com/doc/1G2-3404100667.html">Archived</a> from the original on July 1, 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.encyclopedia.com&amp;rft.atitle=Kondratiev%2C+Nikolai+Dmitrievich+%7C+Encyclopedia.com&amp;rft_id=https%3A%2F%2Fwww.encyclopedia.com%2Fhistory%2Fencyclopedias-almanacs-transcripts-and-maps%2Fkondratiev-nikolai-dmitrievich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=ha010090244#:~:text=##+Math%C3%A9matique+de+l&#39;histoire,org%E3%80%91">"Mathématique de l'histoire-géometrie et cinématique. Lois de Brück. Chronologie géodésique de la Bible., by Charles LAGRANGE et al. &#124; The Online Books Page"</a>. <i>onlinebooks.library.upenn.edu</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=onlinebooks.library.upenn.edu&amp;rft.atitle=Math%C3%A9matique+de+l%27histoire-g%C3%A9ometrie+et+cin%C3%A9matique.+Lois+de+Br%C3%BCck.+Chronologie+g%C3%A9od%C3%A9sique+de+la+Bible.%2C+by+Charles+LAGRANGE+et+al.+%26%23124%3B+The+Online+Books+Page&amp;rft_id=https%3A%2F%2Fonlinebooks.library.upenn.edu%2Fwebbin%2Fbook%2Flookupid%3Fkey%3Dha010090244%23%3A~%3Atext%3D%23%23%2BMath%25C3%25A9matique%2Bde%2Bl%27histoire%2Corg%25E3%2580%2591&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.zdnet.com/article/cliodynamics-a-science-for-predicting-the-future/">"Cliodynamics: a science for predicting the future"</a>. ZDNet. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221229204104/https://www.zdnet.com/article/cliodynamics-a-science-for-predicting-the-future/">Archived</a> from the original on December 29, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Cliodynamics%3A+a+science+for+predicting+the+future&amp;rft.pub=ZDNet&amp;rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Fcliodynamics-a-science-for-predicting-the-future%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSokalJean_Bricmont1998" class="citation book cs1"><a href="/wiki/Alan_Sokal" title="Alan Sokal">Sokal, Alan</a>; <a href="/wiki/Jean_Bricmont" title="Jean Bricmont">Jean Bricmont</a> (1998). <a rel="nofollow" class="external text" href="https://archive.org/details/fashionablenonse00soka"><i>Fashionable Nonsense</i></a>. New York: Picador. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-312-19545-8" title="Special:BookSources/978-0-312-19545-8"><bdi>978-0-312-19545-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/39605994">39605994</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fashionable+Nonsense&amp;rft.place=New+York&amp;rft.pub=Picador&amp;rft.date=1998&amp;rft_id=info%3Aoclcnum%2F39605994&amp;rft.isbn=978-0-312-19545-8&amp;rft.aulast=Sokal&amp;rft.aufirst=Alan&amp;rft.au=Jean+Bricmont&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffashionablenonse00soka&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.factcheck.org/2023/01/bidens-misleading-unemployment-statistic/">"Biden's Misleading Unemployment Statistic – FactCheck.org"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Biden%27s+Misleading+Unemployment+Statistic+%E2%80%93+FactCheck.org&amp;rft_id=https%3A%2F%2Fwww.factcheck.org%2F2023%2F01%2Fbidens-misleading-unemployment-statistic%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.minneapolisfed.org/article/2010/modern-macroeconomic-models-as-tools-for-economic-policy">"Modern Macroeconomic Models as Tools for Economic Policy &#124; Federal Reserve Bank of Minneapolis"</a>. <i>minneapolisfed.org</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=minneapolisfed.org&amp;rft.atitle=Modern+Macroeconomic+Models+as+Tools+for+Economic+Policy+%26%23124%3B+Federal+Reserve+Bank+of+Minneapolis&amp;rft_id=https%3A%2F%2Fwww.minneapolisfed.org%2Farticle%2F2010%2Fmodern-macroeconomic-models-as-tools-for-economic-policy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-SEP-Platonism-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-SEP-Platonism_166-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalaguer2016" class="citation encyclopaedia cs1">Balaguer, Mark (2016). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/spr2016/entries/platonism">"Platonism in Metaphysics"</a>. In Zalta, Edward N. (ed.). <i>The Stanford Encyclopedia of Philosophy</i> (Spring 2016&#160;ed.). Metaphysics Research Lab, Stanford University. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220130174043/https://plato.stanford.edu/archives/spr2016/entries/platonism/">Archived</a> from the original on January 30, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">April 2,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Platonism+in+Metaphysics&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.edition=Spring+2016&amp;rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&amp;rft.date=2016&amp;rft.aulast=Balaguer&amp;rft.aufirst=Mark&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Fspr2016%2Fentries%2Fplatonism&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text">See <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhite1947" class="citation journal cs1">White, L. (1947). "The locus of mathematical reality: An anthropological footnote". <i><a href="/wiki/Philosophy_of_Science_(journal)" title="Philosophy of Science (journal)">Philosophy of Science</a></i>. <b>14</b> (4): 289–303. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F286957">10.1086/286957</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119887253">119887253</a>. 189303;</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophy+of+Science&amp;rft.atitle=The+locus+of+mathematical+reality%3A+An+anthropological+footnote&amp;rft.volume=14&amp;rft.issue=4&amp;rft.pages=289-303&amp;rft.date=1947&amp;rft_id=info%3Adoi%2F10.1086%2F286957&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119887253%23id-name%3DS2CID&amp;rft.aulast=White&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span> also in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewman1956" class="citation book cs1">Newman, J. R. (1956). <i>The World of Mathematics</i>. Vol.&#160;4. New York: Simon and Schuster. pp.&#160;2348–2364.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+World+of+Mathematics&amp;rft.place=New+York&amp;rft.pages=2348-2364&amp;rft.pub=Simon+and+Schuster&amp;rft.date=1956&amp;rft.aulast=Newman&amp;rft.aufirst=J.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-168">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDorato2005" class="citation book cs1">Dorato, Mauro (2005). <a rel="nofollow" class="external text" href="https://www.academia.edu/download/52076815/2ch.pdf">"Why are laws mathematical?"</a> <span class="cs1-format">(PDF)</span>. <i>The Software of the Universe, An Introduction to the History and Philosophy of Laws of Nature</i>. Ashgate. pp.&#160;31–66. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7546-3994-7" title="Special:BookSources/978-0-7546-3994-7"><bdi>978-0-7546-3994-7</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230817111932/https://d1wqtxts1xzle7.cloudfront.net/52076815/2ch-libre.pdf?1488997736=&amp;response-content-disposition=inline%3B+filename%3DChapter_2_of_the_book_the_software_of_th.pdf&amp;Expires=1692274771&amp;Signature=PXpNLBsmWMkz9YUs6~LUOfXNkmkCAmDfxQUoWOkGJKP4YqPGQUFMuP1I0xFycLZkL0dyfGwdGQ7mPk44nvmpM3YpKBSeVCZRXtDMiwgqs1JhEWrJovAhrchPLM1mGn3pw5P6LPo0sDZsl7uaPoZHMyCyJpayHvFtpyj1oUMIdmGuYM5P3euy1R87g6xlKyNAp~~BR5I4gVpopzLoeZn7d3oEnOOua0GjsqsZ6H9mEgcZMpH-qF8w9iFa9aSXFpqxagQwcVVkg7DXkOjVV5jyzctBUKQtOQQ~-9EN1y-c9pFV-Xu-NNuoN3Ij6K4SwvjYv0a8DMs8T5SVj1Kz9i4CEQ__&amp;Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA">Archived</a> <span class="cs1-format">(PDF)</span> from the original on August 17, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">December 5,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Why+are+laws+mathematical%3F&amp;rft.btitle=The+Software+of+the+Universe%2C+An+Introduction+to+the+History+and+Philosophy+of+Laws+of+Nature&amp;rft.pages=31-66&amp;rft.pub=Ashgate&amp;rft.date=2005&amp;rft.isbn=978-0-7546-3994-7&amp;rft.aulast=Dorato&amp;rft.aufirst=Mauro&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2Fdownload%2F52076815%2F2ch.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Mura-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mura_169-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMura1993" class="citation journal cs1">Mura, Roberta (December 1993). "Images of Mathematics Held by University Teachers of Mathematical Sciences". <i>Educational Studies in Mathematics</i>. <b>25</b> (4): 375–85. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01273907">10.1007/BF01273907</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3482762">3482762</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122351146">122351146</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Educational+Studies+in+Mathematics&amp;rft.atitle=Images+of+Mathematics+Held+by+University+Teachers+of+Mathematical+Sciences&amp;rft.volume=25&amp;rft.issue=4&amp;rft.pages=375-85&amp;rft.date=1993-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122351146%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3482762%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1007%2FBF01273907&amp;rft.aulast=Mura&amp;rft.aufirst=Roberta&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Runge-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-Runge_170-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTobiesNeunzert2012" class="citation book cs1"><a href="/wiki/Renate_Tobies" title="Renate Tobies">Tobies, Renate</a>; Neunzert, Helmut (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EDm0eQqFUQ4C&amp;pg=PA9"><i>Iris Runge: A Life at the Crossroads of Mathematics, Science, and Industry</i></a>. Springer. p.&#160;9. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-0348-0229-1" title="Special:BookSources/978-3-0348-0229-1"><bdi>978-3-0348-0229-1</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 20,</span> 2015</span>. <q>[I]t is first necessary to ask what is meant by <i>mathematics</i> in general. Illustrious scholars have debated this matter until they were blue in the face, and yet no consensus has been reached about whether mathematics is a natural science, a branch of the humanities, or an art form.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Iris+Runge%3A+A+Life+at+the+Crossroads+of+Mathematics%2C+Science%2C+and+Industry&amp;rft.pages=9&amp;rft.pub=Springer&amp;rft.date=2012&amp;rft.isbn=978-3-0348-0229-1&amp;rft.aulast=Tobies&amp;rft.aufirst=Renate&amp;rft.au=Neunzert%2C+Helmut&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEDm0eQqFUQ4C%26pg%3DPA9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZieglerLoos2017" class="citation conference cs1"><a href="/wiki/G%C3%BCnter_M._Ziegler" title="Günter M. Ziegler">Ziegler, Günter M.</a>; Loos, Andreas (November 2, 2017). Kaiser, G. (ed.). <i>"What is Mathematics?" and why we should ask, where one should experience and learn that, and how to teach it</i>. Proceedings of the 13th International Congress on Mathematical Education. ICME-13 Monographs. Springer. pp.&#160;63–77. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-62597-3_5">10.1007/978-3-319-62597-3_5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-62596-6" title="Special:BookSources/978-3-319-62596-6"><bdi>978-3-319-62596-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=%22What+is+Mathematics%3F%22+and+why+we+should+ask%2C+where+one+should+experience+and+learn+that%2C+and+how+to+teach+it&amp;rft.series=ICME-13+Monographs&amp;rft.pages=63-77&amp;rft.pub=Springer&amp;rft.date=2017-11-02&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-62597-3_5&amp;rft.isbn=978-3-319-62596-6&amp;rft.aulast=Ziegler&amp;rft.aufirst=G%C3%BCnter+M.&amp;rft.au=Loos%2C+Andreas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span> (Sections "What is Mathematics?" and "What is Mathematics, Really?")</span> </li> <li id="cite_note-FOOTNOTEMura1993379,_381-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMura1993379,_381_172-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMura1993">Mura 1993</a>, pp.&#160;379, 381.</span> </li> <li id="cite_note-FOOTNOTEBrownPorter1995326-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBrownPorter1995326_173-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrownPorter1995">Brown &amp; Porter 1995</a>, p.&#160;326.</span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrauss2011" class="citation journal cs1">Strauss, Danie (2011). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/290955899">"Defining mathematics"</a>. <i>Acta Academica</i>. <b>43</b> (4): 1–28<span class="reference-accessdate">. Retrieved <span class="nowrap">November 25,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Academica&amp;rft.atitle=Defining+mathematics&amp;rft.volume=43&amp;rft.issue=4&amp;rft.pages=1-28&amp;rft.date=2011&amp;rft.aulast=Strauss&amp;rft.aufirst=Danie&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F290955899&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Franklin-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-Franklin_175-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranklin2009" class="citation book cs1"><a href="/wiki/James_Franklin_(philosopher)" title="James Franklin (philosopher)">Franklin, James</a> (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mbn35b2ghgkC&amp;pg=PA104"><i>Philosophy of Mathematics</i></a>. Elsevier. pp.&#160;104–106. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-093058-9" title="Special:BookSources/978-0-08-093058-9"><bdi>978-0-08-093058-9</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 20,</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Philosophy+of+Mathematics&amp;rft.pages=104-106&amp;rft.pub=Elsevier&amp;rft.date=2009&amp;rft.isbn=978-0-08-093058-9&amp;rft.aulast=Franklin&amp;rft.aufirst=James&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dmbn35b2ghgkC%26pg%3DPA104&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-Cajori-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cajori_176-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCajori1893" class="citation book cs1"><a href="/wiki/Florian_Cajori" title="Florian Cajori">Cajori, Florian</a> (1893). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mGJRjIC9fZgC&amp;pg=PA285"><i>A History of Mathematics</i></a>. American Mathematical Society (1991 reprint). pp.&#160;285–286. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-2102-2" title="Special:BookSources/978-0-8218-2102-2"><bdi>978-0-8218-2102-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 20,</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics&amp;rft.pages=285-286&amp;rft.pub=American+Mathematical+Society+%281991+reprint%29&amp;rft.date=1893&amp;rft.isbn=978-0-8218-2102-2&amp;rft.aulast=Cajori&amp;rft.aufirst=Florian&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmGJRjIC9fZgC%26pg%3DPA285&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEDevlin2018&#91;httpsbooksgooglecombooksidgUb7CAAAQBAJpgPA3_3&#93;-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDevlin2018[httpsbooksgooglecombooksidgUb7CAAAQBAJpgPA3_3]_177-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDevlin2018">Devlin 2018</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=gUb7CAAAQBAJ&amp;pg=PA3">3</a>.</span> </li> <li id="cite_note-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-178">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaunders_Maclane1986" class="citation book cs1">Saunders Maclane (1986). <i>Mathematics, form and function</i>. Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics%2C+form+and+function&amp;rft.pub=Springer&amp;rft.date=1986&amp;rft.au=Saunders+Maclane&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span>, page 409</span> </li> <li id="cite_note-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-180">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrownPorter1995" class="citation journal cs1"><a href="/wiki/Ronald_Brown_(mathematician)" title="Ronald Brown (mathematician)">Brown, Ronald</a>; Porter, Timothy (1995). <a rel="nofollow" class="external text" href="https://cds.cern.ch/record/280311">"The Methodology of Mathematics"</a>. <i>The Mathematical Gazette</i>. <b>79</b> (485): 321–334. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3618304">10.2307/3618304</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3618304">3618304</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:178923299">178923299</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230323164159/https://cds.cern.ch/record/280311">Archived</a> from the original on March 23, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">November 25,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Gazette&amp;rft.atitle=The+Methodology+of+Mathematics&amp;rft.volume=79&amp;rft.issue=485&amp;rft.pages=321-334&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A178923299%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3618304%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F3618304&amp;rft.aulast=Brown&amp;rft.aufirst=Ronald&amp;rft.au=Porter%2C+Timothy&amp;rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F280311&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-183">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamami2022" class="citation journal cs1">Hamami, Yacin (June 2022). <a rel="nofollow" class="external text" href="https://www.yacinhamami.com/wp-content/uploads/2019/12/Hamami-2019-Mathematical-Rigor-and-Proof.pdf">"Mathematical Rigor and Proof"</a> <span class="cs1-format">(PDF)</span>. <i>The Review of Symbolic Logic</i>. <b>15</b> (2): 409–449. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1755020319000443">10.1017/S1755020319000443</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:209980693">209980693</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221205114343/https://www.yacinhamami.com/wp-content/uploads/2019/12/Hamami-2019-Mathematical-Rigor-and-Proof.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on December 5, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 21,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Review+of+Symbolic+Logic&amp;rft.atitle=Mathematical+Rigor+and+Proof&amp;rft.volume=15&amp;rft.issue=2&amp;rft.pages=409-449&amp;rft.date=2022-06&amp;rft_id=info%3Adoi%2F10.1017%2FS1755020319000443&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A209980693%23id-name%3DS2CID&amp;rft.aulast=Hamami&amp;rft.aufirst=Yacin&amp;rft_id=https%3A%2F%2Fwww.yacinhamami.com%2Fwp-content%2Fuploads%2F2019%2F12%2FHamami-2019-Mathematical-Rigor-and-Proof.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-186">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeterson1988">Peterson 1988</a>, p.&#160;4: "A few complain that the computer program can't be verified properly." (in reference to the Haken–Apple proof of the <a href="/wiki/Four_Color_Theorem" class="mw-redirect" title="Four Color Theorem">Four Color Theorem</a>)</span> </li> <li id="cite_note-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-187">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerminov1988" class="citation journal cs1">Perminov, V. Ya. (1988). "On the Reliability of Mathematical Proofs". <i>Philosophy of Mathematics</i>. <b>42</b> (167 (4)). Revue Internationale de Philosophie: 500–508.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophy+of+Mathematics&amp;rft.atitle=On+the+Reliability+of+Mathematical+Proofs&amp;rft.volume=42&amp;rft.issue=167+%284%29&amp;rft.pages=500-508&amp;rft.date=1988&amp;rft.aulast=Perminov&amp;rft.aufirst=V.+Ya.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-188">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavisMcDuffieDrakeSeiwell2019" class="citation journal cs1">Davis, Jon D.; McDuffie, Amy Roth; Drake, Corey; Seiwell, Amanda L. (2019). "Teachers' perceptions of the official curriculum: Problem solving and rigor". <i>International Journal of Educational Research</i>. <b>93</b>: 91–100. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijer.2018.10.002">10.1016/j.ijer.2018.10.002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:149753721">149753721</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Educational+Research&amp;rft.atitle=Teachers%27+perceptions+of+the+official+curriculum%3A+Problem+solving+and+rigor&amp;rft.volume=93&amp;rft.pages=91-100&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ijer.2018.10.002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A149753721%23id-name%3DS2CID&amp;rft.aulast=Davis&amp;rft.aufirst=Jon+D.&amp;rft.au=McDuffie%2C+Amy+Roth&amp;rft.au=Drake%2C+Corey&amp;rft.au=Seiwell%2C+Amanda+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-189">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEndsley2021" class="citation book cs1">Endsley, Kezia (2021). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1cEYEAAAQBAJ&amp;pg=PA3"><i>Mathematicians and Statisticians: A Practical Career Guide</i></a>. Practical Career Guides. Rowman &amp; Littlefield. pp.&#160;1–3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-5381-4517-3" title="Special:BookSources/978-1-5381-4517-3"><bdi>978-1-5381-4517-3</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematicians+and+Statisticians%3A+A+Practical+Career+Guide&amp;rft.series=Practical+Career+Guides&amp;rft.pages=1-3&amp;rft.pub=Rowman+%26+Littlefield&amp;rft.date=2021&amp;rft.isbn=978-1-5381-4517-3&amp;rft.aulast=Endsley&amp;rft.aufirst=Kezia&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1cEYEAAAQBAJ%26pg%3DPA3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-190">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobson2009" class="citation book cs1"><a href="/wiki/Eleanor_Robson" title="Eleanor Robson">Robson, Eleanor</a> (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xZMSDAAAQBAJ&amp;pg=PA199">"Mathematics education in an Old Babylonian scribal school"</a>. In Robson, Eleanor; <a href="/wiki/Jackie_Stedall" title="Jackie Stedall">Stedall, Jacqueline</a> (eds.). <i>The Oxford Handbook of the History of Mathematics</i>. OUP Oxford. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-921312-2" title="Special:BookSources/978-0-19-921312-2"><bdi>978-0-19-921312-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 24,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematics+education+in+an+Old+Babylonian+scribal+school&amp;rft.btitle=The+Oxford+Handbook+of+the+History+of+Mathematics&amp;rft.pub=OUP+Oxford&amp;rft.date=2009&amp;rft.isbn=978-0-19-921312-2&amp;rft.aulast=Robson&amp;rft.aufirst=Eleanor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxZMSDAAAQBAJ%26pg%3DPA199&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernardProustRoss2014" class="citation book cs1">Bernard, Alain; <a href="/wiki/Christine_Proust" title="Christine Proust">Proust, Christine</a>; Ross, Micah (2014). "Mathematics Education in Antiquity". In Karp, A.; Schubring, G. (eds.). <i>Handbook on the History of Mathematics Education</i>. New York: Springer. pp.&#160;27–53. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4614-9155-2_3">10.1007/978-1-4614-9155-2_3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4614-9154-5" title="Special:BookSources/978-1-4614-9154-5"><bdi>978-1-4614-9154-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematics+Education+in+Antiquity&amp;rft.btitle=Handbook+on+the+History+of+Mathematics+Education&amp;rft.place=New+York&amp;rft.pages=27-53&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4614-9155-2_3&amp;rft.isbn=978-1-4614-9154-5&amp;rft.aulast=Bernard&amp;rft.aufirst=Alain&amp;rft.au=Proust%2C+Christine&amp;rft.au=Ross%2C+Micah&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-192">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDudley2002" class="citation journal cs1">Dudley, Underwood (April 2002). "The World's First Mathematics Textbook". <i>Math Horizons</i>. <b>9</b> (4). Taylor &amp; Francis, Ltd.: 8–11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F10724117.2002.11975154">10.1080/10724117.2002.11975154</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/25678363">25678363</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126067145">126067145</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math+Horizons&amp;rft.atitle=The+World%27s+First+Mathematics+Textbook&amp;rft.volume=9&amp;rft.issue=4&amp;rft.pages=8-11&amp;rft.date=2002-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126067145%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F25678363%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1080%2F10724117.2002.11975154&amp;rft.aulast=Dudley&amp;rft.aufirst=Underwood&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-193"><span class="mw-cite-backlink"><b><a href="#cite_ref-193">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSubramarian" class="citation conference cs1">Subramarian, F. <a rel="nofollow" class="external text" href="http://hpm2012.onpcs.com/Proceeding/OT2/T2-10.pdf"><i>Indian pedagogy and problem solving in ancient Thamizhakam</i></a> <span class="cs1-format">(PDF)</span>. History and Pedagogy of Mathematics conference, July 16–20, 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221128082654/http://hpm2012.onpcs.com/Proceeding/OT2/T2-10.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on November 28, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Indian+pedagogy+and+problem+solving+in+ancient+Thamizhakam&amp;rft.aulast=Subramarian&amp;rft.aufirst=F.&amp;rft_id=http%3A%2F%2Fhpm2012.onpcs.com%2FProceeding%2FOT2%2FT2-10.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-194"><span class="mw-cite-backlink"><b><a href="#cite_ref-194">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSiu2004" class="citation book cs1">Siu, Man Keung (2004). "Official Curriculum in Mathematics in Ancient China: How did Candidates Study for the Examination?". <a rel="nofollow" class="external text" href="https://scholar.archive.org/work/3fb5lb2qsfg35gf2cv6viaydny/access/wayback/http://hkumath.hku.hk:80/~mks/Chapter%206-Siu.pdf"><i>How Chinese Learn Mathematics</i></a> <span class="cs1-format">(PDF)</span>. Series on Mathematics Education. Vol.&#160;1. pp.&#160;157–185. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789812562241_0006">10.1142/9789812562241_0006</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-256-014-8" title="Special:BookSources/978-981-256-014-8"><bdi>978-981-256-014-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 26,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Official+Curriculum+in+Mathematics+in+Ancient+China%3A+How+did+Candidates+Study+for+the+Examination%3F&amp;rft.btitle=How+Chinese+Learn+Mathematics&amp;rft.series=Series+on+Mathematics+Education&amp;rft.pages=157-185&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1142%2F9789812562241_0006&amp;rft.isbn=978-981-256-014-8&amp;rft.aulast=Siu&amp;rft.aufirst=Man+Keung&amp;rft_id=https%3A%2F%2Fscholar.archive.org%2Fwork%2F3fb5lb2qsfg35gf2cv6viaydny%2Faccess%2Fwayback%2Fhttp%3A%2F%2Fhkumath.hku.hk%3A80%2F~mks%2FChapter%25206-Siu.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-195">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJones1967" class="citation journal cs1">Jones, Phillip S. (1967). "The History of Mathematical Education". <i>The American Mathematical Monthly</i>. <b>74</b> (1). Taylor &amp; Francis, Ltd.: 38–55. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2314867">10.2307/2314867</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2314867">2314867</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+History+of+Mathematical+Education&amp;rft.volume=74&amp;rft.issue=1&amp;rft.pages=38-55&amp;rft.date=1967&amp;rft_id=info%3Adoi%2F10.2307%2F2314867&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2314867%23id-name%3DJSTOR&amp;rft.aulast=Jones&amp;rft.aufirst=Phillip+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-196">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchubringFuringhettiSiu2012" class="citation journal cs1">Schubring, Gert; Furinghetti, Fulvia; Siu, Man Keung (August 2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11858-012-0445-7">"Introduction: the history of mathematics teaching. Indicators for modernization processes in societies"</a>. <i>ZDM Mathematics Education</i>. <b>44</b> (4): 457–459. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11858-012-0445-7">10.1007/s11858-012-0445-7</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:145507519">145507519</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ZDM+Mathematics+Education&amp;rft.atitle=Introduction%3A+the+history+of+mathematics+teaching.+Indicators+for+modernization+processes+in+societies&amp;rft.volume=44&amp;rft.issue=4&amp;rft.pages=457-459&amp;rft.date=2012-08&amp;rft_id=info%3Adoi%2F10.1007%2Fs11858-012-0445-7&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A145507519%23id-name%3DS2CID&amp;rft.aulast=Schubring&amp;rft.aufirst=Gert&amp;rft.au=Furinghetti%2C+Fulvia&amp;rft.au=Siu%2C+Man+Keung&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs11858-012-0445-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-197"><span class="mw-cite-backlink"><b><a href="#cite_ref-197">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_DavierFoyMartinMullis2020" class="citation book cs1">von Davier, Matthias; Foy, Pierre; Martin, Michael O.; Mullis, Ina V.S. (2020). "Examining eTIMSS Country Differences Between eTIMSS Data and Bridge Data: A Look at Country-Level Mode of Administration Effects". <a rel="nofollow" class="external text" href="https://files.eric.ed.gov/fulltext/ED610099.pdf"><i>TIMSS 2019 International Results in Mathematics and Science</i></a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/TIMSS" class="mw-redirect" title="TIMSS">TIMSS</a> &amp; <a href="/wiki/PIRLS" class="mw-redirect" title="PIRLS">PIRLS</a> International Study Center, <a href="/wiki/Lynch_School_of_Education_and_Human_Development" title="Lynch School of Education and Human Development">Lynch School of Education and Human Development</a> and <a href="/wiki/International_Association_for_the_Evaluation_of_Educational_Achievement" title="International Association for the Evaluation of Educational Achievement">International Association for the Evaluation of Educational Achievement</a>. p.&#160;13.1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-889938-54-7" title="Special:BookSources/978-1-889938-54-7"><bdi>978-1-889938-54-7</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221129163908/https://files.eric.ed.gov/fulltext/ED610099.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on November 29, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Examining+eTIMSS+Country+Differences+Between+eTIMSS+Data+and+Bridge+Data%3A+A+Look+at+Country-Level+Mode+of+Administration+Effects&amp;rft.btitle=TIMSS+2019+International+Results+in+Mathematics+and+Science&amp;rft.pages=13.1&amp;rft.pub=TIMSS+%26+PIRLS+International+Study+Center%2C+Lynch+School+of+Education+and+Human+Development+and+International+Association+for+the+Evaluation+of+Educational+Achievement&amp;rft.date=2020&amp;rft.isbn=978-1-889938-54-7&amp;rft.aulast=von+Davier&amp;rft.aufirst=Matthias&amp;rft.au=Foy%2C+Pierre&amp;rft.au=Martin%2C+Michael+O.&amp;rft.au=Mullis%2C+Ina+V.S.&amp;rft_id=https%3A%2F%2Ffiles.eric.ed.gov%2Ffulltext%2FED610099.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-198"><span class="mw-cite-backlink"><b><a href="#cite_ref-198">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRowan-KenyonSwanCreager2012" class="citation journal cs1">Rowan-Kenyon, Heather T.; Swan, Amy K.; Creager, Marie F. (March 2012). <a rel="nofollow" class="external text" href="https://www.academia.edu/download/45974312/j.2161-0045.2012.00001.x20160526-3995-67kydl.pdf">"Social Cognitive Factors, Support, and Engagement: Early Adolescents' Math Interests as Precursors to Choice of Career"</a> <span class="cs1-format">(PDF)</span>. <i>The Career Development Quarterly</i>. <b>60</b> (1): 2–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fj.2161-0045.2012.00001.x">10.1002/j.2161-0045.2012.00001.x</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231122212933/https://d1wqtxts1xzle7.cloudfront.net/45974312/j.2161-0045.2012.00001.x20160526-3995-67kydl-libre.pdf?1464293840=&amp;response-content-disposition=inline%3B+filename%3DSocial_Cognitive_Factors_Support_and_Eng.pdf&amp;Expires=1700692172&amp;Signature=cs9KfTPxoPh859wY~ExtJyAl9NpYb3X-2P4rDel1Z3z7DwehsHLRggoZtgi1pMsamxYobu9dVK4G7OsqfvNxcuwz3uKh1pnCMZQEz~ahVtPb4kvN-4dmwExJplzoxWu31o3SJOfuBt0GGE-0Hl8eLfPBg5agmtkjSwAWQwlqGrjp3YgYZGjbNxOEAM4t1l4qvoWXidWvSHHcEUNvlKYwCDvG0~QhGTmA6ldxmfS1ovf0adog-qqvjGxxJuSjtP6O8zCTwkPXYwi2e8giI0H6b5fNarHc-2q~-NRnVVtYKhvSBcwC22kNZoA7s8sp8ix9KIdM3uxiUIBRBRC-4aaVoQ__&amp;Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA">Archived</a> <span class="cs1-format">(PDF)</span> from the original on November 22, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">November 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Career+Development+Quarterly&amp;rft.atitle=Social+Cognitive+Factors%2C+Support%2C+and+Engagement%3A+Early+Adolescents%27+Math+Interests+as+Precursors+to+Choice+of+Career&amp;rft.volume=60&amp;rft.issue=1&amp;rft.pages=2-15&amp;rft.date=2012-03&amp;rft_id=info%3Adoi%2F10.1002%2Fj.2161-0045.2012.00001.x&amp;rft.aulast=Rowan-Kenyon&amp;rft.aufirst=Heather+T.&amp;rft.au=Swan%2C+Amy+K.&amp;rft.au=Creager%2C+Marie+F.&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2Fdownload%2F45974312%2Fj.2161-0045.2012.00001.x20160526-3995-67kydl.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-199"><span class="mw-cite-backlink"><b><a href="#cite_ref-199">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuttenbergerWimmerPaechter2018" class="citation journal cs1">Luttenberger, Silke; Wimmer, Sigrid; Paechter, Manuela (2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087017">"Spotlight on math anxiety"</a>. <i>Psychology Research and Behavior Management</i>. <b>11</b>: 311–322. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2147%2FPRBM.S141421">10.2147/PRBM.S141421</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087017">6087017</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30123014">30123014</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychology+Research+and+Behavior+Management&amp;rft.atitle=Spotlight+on+math+anxiety&amp;rft.volume=11&amp;rft.pages=311-322&amp;rft.date=2018&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6087017%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F30123014&amp;rft_id=info%3Adoi%2F10.2147%2FPRBM.S141421&amp;rft.aulast=Luttenberger&amp;rft.aufirst=Silke&amp;rft.au=Wimmer%2C+Sigrid&amp;rft.au=Paechter%2C+Manuela&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6087017&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-200">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYaftian2015" class="citation journal cs1">Yaftian, Narges (June 2, 2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.sbspro.2015.04.617">"The Outlook of the Mathematicians' Creative Processes"</a>. <i>Procedia – Social and Behavioral Sciences</i>. <b>191</b>: 2519–2525. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.sbspro.2015.04.617">10.1016/j.sbspro.2015.04.617</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Procedia+%E2%80%93+Social+and+Behavioral+Sciences&amp;rft.atitle=The+Outlook+of+the+Mathematicians%27+Creative+Processes&amp;rft.volume=191&amp;rft.pages=2519-2525&amp;rft.date=2015-06-02&amp;rft_id=info%3Adoi%2F10.1016%2Fj.sbspro.2015.04.617&amp;rft.aulast=Yaftian&amp;rft.aufirst=Narges&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.sbspro.2015.04.617&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-201">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNadjafikhahYaftian2013" class="citation journal cs1">Nadjafikhah, Mehdi; Yaftian, Narges (October 10, 2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.sbspro.2013.07.101">"The Frontage of Creativity and Mathematical Creativity"</a>. <i>Procedia – Social and Behavioral Sciences</i>. <b>90</b>: 344–350. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.sbspro.2013.07.101">10.1016/j.sbspro.2013.07.101</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Procedia+%E2%80%93+Social+and+Behavioral+Sciences&amp;rft.atitle=The+Frontage+of+Creativity+and+Mathematical+Creativity&amp;rft.volume=90&amp;rft.pages=344-350&amp;rft.date=2013-10-10&amp;rft_id=info%3Adoi%2F10.1016%2Fj.sbspro.2013.07.101&amp;rft.aulast=Nadjafikhah&amp;rft.aufirst=Mehdi&amp;rft.au=Yaftian%2C+Narges&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.sbspro.2013.07.101&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-202">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Poorten1979" class="citation journal cs1">van der Poorten, A. (1979). <a rel="nofollow" class="external text" href="http://pracownicy.uksw.edu.pl/mwolf/Poorten_MI_195_0.pdf">"A proof that Euler missed... Apéry's Proof of the irrationality of ζ(3)"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/The_Mathematical_Intelligencer" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>. <b>1</b> (4): 195–203. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03028234">10.1007/BF03028234</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121589323">121589323</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150906015716/http://pracownicy.uksw.edu.pl/mwolf/Poorten_MI_195_0.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on September 6, 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">November 22,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=A+proof+that+Euler+missed...+Ap%C3%A9ry%27s+Proof+of+the+irrationality+of+%CE%B6%283%29&amp;rft.volume=1&amp;rft.issue=4&amp;rft.pages=195-203&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1007%2FBF03028234&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121589323%23id-name%3DS2CID&amp;rft.aulast=van+der+Poorten&amp;rft.aufirst=A.&amp;rft_id=http%3A%2F%2Fpracownicy.uksw.edu.pl%2Fmwolf%2FPoorten_MI_195_0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-203"><span class="mw-cite-backlink"><b><a href="#cite_ref-203">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetkovi2009" class="citation book cs1">Petkovi, Miodrag (September 2, 2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=AZlwAAAAQBAJ&amp;pg=PR13"><i>Famous Puzzles of Great Mathematicians</i></a>. American Mathematical Society. pp.&#160;xiii–xiv. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-4814-2" title="Special:BookSources/978-0-8218-4814-2"><bdi>978-0-8218-4814-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 25,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Famous+Puzzles+of+Great+Mathematicians&amp;rft.pages=xiii-xiv&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2009-09-02&amp;rft.isbn=978-0-8218-4814-2&amp;rft.aulast=Petkovi&amp;rft.aufirst=Miodrag&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DAZlwAAAAQBAJ%26pg%3DPR13&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-204"><span class="mw-cite-backlink"><b><a href="#cite_ref-204">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy1940" class="citation book cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, G. H.</a> (1940). <a rel="nofollow" class="external text" href="https://archive.org/details/hardy_annotated/"><i>A Mathematician's Apology</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-42706-7" title="Special:BookSources/978-0-521-42706-7"><bdi>978-0-521-42706-7</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 22,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Mathematician%27s+Apology&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1940&amp;rft.isbn=978-0-521-42706-7&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhardy_annotated%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span> See also <i><a href="/wiki/A_Mathematician%27s_Apology" title="A Mathematician&#39;s Apology">A Mathematician's Apology</a></i>.</span> </li> <li id="cite_note-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-205">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlonGoldstonSárközySzabados2015" class="citation journal cs1">Alon, Noga; Goldston, Dan; Sárközy, András; Szabados, József; Tenenbaum, Gérald; Garcia, Stephan Ramon; Shoemaker, Amy L. (March 2015). Alladi, Krishnaswami; Krantz, Steven G. (eds.). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti1223">"Reflections on Paul Erdős on His Birth Centenary, Part II"</a>. <i>Notices of the American Mathematical Society</i>. <b>62</b> (3): 226–247. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti1223">10.1090/noti1223</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft.atitle=Reflections+on+Paul+Erd%C5%91s+on+His+Birth+Centenary%2C+Part+II&amp;rft.volume=62&amp;rft.issue=3&amp;rft.pages=226-247&amp;rft.date=2015-03&amp;rft_id=info%3Adoi%2F10.1090%2Fnoti1223&amp;rft.aulast=Alon&amp;rft.aufirst=Noga&amp;rft.au=Goldston%2C+Dan&amp;rft.au=S%C3%A1rk%C3%B6zy%2C+Andr%C3%A1s&amp;rft.au=Szabados%2C+J%C3%B3zsef&amp;rft.au=Tenenbaum%2C+G%C3%A9rald&amp;rft.au=Garcia%2C+Stephan+Ramon&amp;rft.au=Shoemaker%2C+Amy+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252Fnoti1223&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-206"><span class="mw-cite-backlink"><b><a href="#cite_ref-206">^</a></b></span> <span class="reference-text">See, for example <a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Bertrand Russell</a>'s statement "Mathematics, rightly viewed, possesses not only truth, but supreme beauty ..." in his <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><i>History of Western Philosophy</i>. 1919. p.&#160;60.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=History+of+Western+Philosophy&amp;rft.pages=60&amp;rft.date=1919&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-207"><span class="mw-cite-backlink"><b><a href="#cite_ref-207">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCazden1959" class="citation journal cs1">Cazden, Norman (October 1959). "Musical intervals and simple number ratios". <i>Journal of Research in Music Education</i>. <b>7</b> (2): 197–220. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F002242945900700205">10.1177/002242945900700205</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3344215">3344215</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220636812">220636812</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Research+in+Music+Education&amp;rft.atitle=Musical+intervals+and+simple+number+ratios&amp;rft.volume=7&amp;rft.issue=2&amp;rft.pages=197-220&amp;rft.date=1959-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220636812%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3344215%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1177%2F002242945900700205&amp;rft.aulast=Cazden&amp;rft.aufirst=Norman&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-208">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBudden1967" class="citation journal cs1">Budden, F. J. (October 1967). "Modern mathematics and music". <i>The Mathematical Gazette</i>. <b>51</b> (377). Cambridge University Press ({CUP}): 204–215. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3613237">10.2307/3613237</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3613237">3613237</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126119711">126119711</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Gazette&amp;rft.atitle=Modern+mathematics+and+music&amp;rft.volume=51&amp;rft.issue=377&amp;rft.pages=204-215&amp;rft.date=1967-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126119711%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3613237%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F3613237&amp;rft.aulast=Budden&amp;rft.aufirst=F.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-209"><span class="mw-cite-backlink"><b><a href="#cite_ref-209">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEnquistArak1994" class="citation journal cs1">Enquist, Magnus; Arak, Anthony (November 1994). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/372169a0">"Symmetry, beauty and evolution"</a>. <i>Nature</i>. <b>372</b> (6502): 169–172. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994Natur.372..169E">1994Natur.372..169E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F372169a0">10.1038/372169a0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/7969448">7969448</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4310147">4310147</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221228052049/https://www.nature.com/articles/372169a0">Archived</a> from the original on December 28, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Symmetry%2C+beauty+and+evolution&amp;rft.volume=372&amp;rft.issue=6502&amp;rft.pages=169-172&amp;rft.date=1994-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4310147%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F1994Natur.372..169E&amp;rft.issn=1476-4687&amp;rft_id=info%3Adoi%2F10.1038%2F372169a0&amp;rft_id=info%3Apmid%2F7969448&amp;rft.aulast=Enquist&amp;rft.aufirst=Magnus&amp;rft.au=Arak%2C+Anthony&amp;rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2F372169a0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-210">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHestenes1999" class="citation web cs1">Hestenes, David (1999). <a rel="nofollow" class="external text" href="https://davidhestenes.net/geocalc/pdf/SymmetryGroups.pdf">"Symmetry Groups"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Symmetry+Groups&amp;rft.date=1999&amp;rft.aulast=Hestenes&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Fdavidhestenes.net%2Fgeocalc%2Fpdf%2FSymmetryGroups.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-211"><span class="mw-cite-backlink"><b><a href="#cite_ref-211">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBender2020" class="citation encyclopaedia cs1">Bender, Sara (September 2020). "The Rorschach Test". In Carducci, Bernardo J.; Nave, Christopher S.; Mio, Jeffrey S.; Riggio, Ronald E. (eds.). <i>The Wiley Encyclopedia of Personality and Individual Differences: Measurement and Assessment</i>. Wiley. pp.&#160;367–376. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9781119547167.ch131">10.1002/9781119547167.ch131</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-119-05751-2" title="Special:BookSources/978-1-119-05751-2"><bdi>978-1-119-05751-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Rorschach+Test&amp;rft.btitle=The+Wiley+Encyclopedia+of+Personality+and+Individual+Differences%3A+Measurement+and+Assessment&amp;rft.pages=367-376&amp;rft.pub=Wiley&amp;rft.date=2020-09&amp;rft_id=info%3Adoi%2F10.1002%2F9781119547167.ch131&amp;rft.isbn=978-1-119-05751-2&amp;rft.aulast=Bender&amp;rft.aufirst=Sara&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-212"><span class="mw-cite-backlink"><b><a href="#cite_ref-212">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeyl2015" class="citation book cs1"><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl, Hermann</a> (2015). <i>Symmetry</i>. Princeton Science Library. Vol.&#160;47. Princeton University Press. p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?hl=en&amp;lr=&amp;id=GG1FCQAAQBAJ&amp;pg=PA4">4</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4008-7434-7" title="Special:BookSources/978-1-4008-7434-7"><bdi>978-1-4008-7434-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Symmetry&amp;rft.series=Princeton+Science+Library&amp;rft.pages=4&amp;rft.pub=Princeton+University+Press&amp;rft.date=2015&amp;rft.isbn=978-1-4008-7434-7&amp;rft.aulast=Weyl&amp;rft.aufirst=Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-213"><span class="mw-cite-backlink"><b><a href="#cite_ref-213">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://ocw.mit.edu/courses/8-03sc-physics-iii-vibrations-and-waves-fall-2016/pages/part-i-mechanical-vibrations-and-waves/lecture-8/">"Lecture 8: Translation Symmetry &#124; Physics III: Vibrations and Waves &#124; Physics"</a>. <i>MIT OpenCourseWare</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MIT+OpenCourseWare&amp;rft.atitle=Lecture+8%3A+Translation+Symmetry+%26%23124%3B+Physics+III%3A+Vibrations+and+Waves+%26%23124%3B+Physics&amp;rft_id=https%3A%2F%2Focw.mit.edu%2Fcourses%2F8-03sc-physics-iii-vibrations-and-waves-fall-2016%2Fpages%2Fpart-i-mechanical-vibrations-and-waves%2Flecture-8%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-214">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBradley2010" class="citation web cs1">Bradley, Larry (2010). <a rel="nofollow" class="external text" href="https://www.stsci.edu/~lbradley/seminar/fractals.html">"Fractals – Chaos &amp; Fractals"</a>. <i>stsci.edu</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230307054609/https://www.stsci.edu/~lbradley/seminar/fractals.html">Archived</a> from the original on March 7, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=stsci.edu&amp;rft.atitle=Fractals+%E2%80%93+Chaos+%26+Fractals&amp;rft.date=2010&amp;rft.aulast=Bradley&amp;rft.aufirst=Larry&amp;rft_id=https%3A%2F%2Fwww.stsci.edu%2F~lbradley%2Fseminar%2Ffractals.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-215"><span class="mw-cite-backlink"><b><a href="#cite_ref-215">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.bu.edu/DYSYS/chaos-game/node5.html">"Self-similarity"</a>. <i>math.bu.edu</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230302132911/http://math.bu.edu/DYSYS/chaos-game/node5.html">Archived</a> from the original on March 2, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=math.bu.edu&amp;rft.atitle=Self-similarity&amp;rft_id=https%3A%2F%2Fmath.bu.edu%2FDYSYS%2Fchaos-game%2Fnode5.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-216"><span class="mw-cite-backlink"><b><a href="#cite_ref-216">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKissane2009" class="citation conference cs1">Kissane, Barry (July 2009). <a rel="nofollow" class="external text" href="https://researchrepository.murdoch.edu.au/id/eprint/6242/"><i>Popular mathematics</i></a>. 22nd Biennial Conference of The Australian Association of Mathematics Teachers. Fremantle, Western Australia: Australian Association of Mathematics Teachers. pp.&#160;125–126. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230307054610/https://researchrepository.murdoch.edu.au/id/eprint/6242/">Archived</a> from the original on March 7, 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Popular+mathematics&amp;rft.place=Fremantle%2C+Western+Australia&amp;rft.pages=125-126&amp;rft.pub=Australian+Association+of+Mathematics+Teachers&amp;rft.date=2009-07&amp;rft.aulast=Kissane&amp;rft.aufirst=Barry&amp;rft_id=https%3A%2F%2Fresearchrepository.murdoch.edu.au%2Fid%2Feprint%2F6242%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-217">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteen2012" class="citation book cs1">Steen, L. A. (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-d3TBwAAQBAJ&amp;pg=PA2&amp;dq=%22%22popular+mathematics%22+analogies%22"><i>Mathematics Today Twelve Informal Essays</i></a>. Springer Science &amp; Business Media. p.&#160;2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4613-9435-8" title="Special:BookSources/978-1-4613-9435-8"><bdi>978-1-4613-9435-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 3,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+Today+Twelve+Informal+Essays&amp;rft.pages=2&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4613-9435-8&amp;rft.aulast=Steen&amp;rft.aufirst=L.+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-d3TBwAAQBAJ%26pg%3DPA2%26dq%3D%2522%2522popular%2Bmathematics%2522%2Banalogies%2522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-218">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPitici2017" class="citation book cs1">Pitici, Mircea (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9nGQDQAAQBAJ&amp;pg=PA331&amp;dq=%22%22popular+mathematics%22+analogies%22"><i>The Best Writing on Mathematics 2016</i></a>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4008-8560-2" title="Special:BookSources/978-1-4008-8560-2"><bdi>978-1-4008-8560-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 3,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Best+Writing+on+Mathematics+2016&amp;rft.pub=Princeton+University+Press&amp;rft.date=2017&amp;rft.isbn=978-1-4008-8560-2&amp;rft.aulast=Pitici&amp;rft.aufirst=Mircea&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9nGQDQAAQBAJ%26pg%3DPA331%26dq%3D%2522%2522popular%2Bmathematics%2522%2Banalogies%2522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEMonastyrsky20011-219"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMonastyrsky20011_219-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMonastyrsky2001">Monastyrsky 2001</a>, p.&#160;1: "The Fields Medal is now indisputably the best known and most influential award in mathematics."</span> </li> <li id="cite_note-FOOTNOTERiehm2002778–782-220"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERiehm2002778–782_220-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRiehm2002">Riehm 2002</a>, pp.&#160;778–782.</span> </li> <li id="cite_note-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-221">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathunion.org/imu-awards/fields-medal">"Fields Medal | International Mathematical Union (IMU)"</a>. <i>www.mathunion.org</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181226015744/https://www.mathunion.org/imu-awards/fields-medal">Archived</a> from the original on December 26, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">February 21,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.mathunion.org&amp;rft.atitle=Fields+Medal+%7C+International+Mathematical+Union+%28IMU%29&amp;rft_id=https%3A%2F%2Fwww.mathunion.org%2Fimu-awards%2Ffields-medal&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-StAndrews-Fields-222"><span class="mw-cite-backlink">^ <a href="#cite_ref-StAndrews-Fields_222-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-StAndrews-Fields_222-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Honours/FieldsMedal/">"Fields Medal"</a>. <i>Maths History</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190322134417/http://www-history.mcs.st-andrews.ac.uk/Honours/FieldsMedal.html">Archived</a> from the original on March 22, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">February 21,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Maths+History&amp;rft.atitle=Fields+Medal&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHonours%2FFieldsMedal%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-223"><span class="mw-cite-backlink"><b><a href="#cite_ref-223">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Honours/">"Honours/Prizes Index"</a>. <i>MacTutor History of Mathematics Archive</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211217235828/https://mathshistory.st-andrews.ac.uk/Honours/">Archived</a> from the original on December 17, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">February 20,</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MacTutor+History+of+Mathematics+Archive&amp;rft.atitle=Honours%2FPrizes+Index&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHonours%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-224">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://abelprize.no/page/about-abel-prize">"About the Abel Prize"</a>. The Abel Prize. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220414060442/https://abelprize.no/page/about-abel-prize">Archived</a> from the original on April 14, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">January 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=About+the+Abel+Prize&amp;rft.pub=The+Abel+Prize&amp;rft_id=https%3A%2F%2Fabelprize.no%2Fpage%2Fabout-abel-prize&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-225"><span class="mw-cite-backlink"><b><a href="#cite_ref-225">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/science/Abel-Prize">"Abel Prize | mathematics award"</a>. <i>Encyclopedia Britannica</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200126120202/https://www.britannica.com/science/Abel-Prize">Archived</a> from the original on January 26, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">January 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Abel+Prize+%7C+mathematics+award&amp;rft.btitle=Encyclopedia+Britannica&amp;rft_id=https%3A%2F%2Fwww.britannica.com%2Fscience%2FAbel-Prize&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-226">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathunion.org/fileadmin/IMU/Prizes/Chern/Chern_MedalPress_Release_090601.pdf">"Chern Medal Award"</a> <span class="cs1-format">(PDF)</span>. <i>mathunion.org</i>. June 1, 2009. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090617012953/https://www.mathunion.org/fileadmin/IMU/Prizes/Chern/Chern_MedalPress_Release_090601.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on June 17, 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">February 21,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathunion.org&amp;rft.atitle=Chern+Medal+Award&amp;rft.date=2009-06-01&amp;rft_id=https%3A%2F%2Fwww.mathunion.org%2Ffileadmin%2FIMU%2FPrizes%2FChern%2FChern_MedalPress_Release_090601.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-227"><span class="mw-cite-backlink"><b><a href="#cite_ref-227">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathunion.org/imu-awards/chern-medal-award">"Chern Medal Award"</a>. International Mathematical Union (IMU). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100825071850/http://www.mathunion.org/general/prizes/chern/details">Archived</a> from the original on August 25, 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">January 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Chern+Medal+Award&amp;rft.pub=International+Mathematical+Union+%28IMU%29&amp;rft_id=https%3A%2F%2Fwww.mathunion.org%2Fimu-awards%2Fchern-medal-award&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-228"><span class="mw-cite-backlink"><b><a href="#cite_ref-228">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Honours/AMSSteelePrize/">"The Leroy P Steele Prize of the AMS"</a>. School of Mathematics and Statistics, University of St Andrews, Scotland. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221117201134/https://mathshistory.st-andrews.ac.uk/Honours/AMSSteelePrize/">Archived</a> from the original on November 17, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">November 17,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Leroy+P+Steele+Prize+of+the+AMS&amp;rft.pub=School+of+Mathematics+and+Statistics%2C+University+of+St+Andrews%2C+Scotland&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHonours%2FAMSSteelePrize%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-229">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChernHirzebruch2000" class="citation book cs1">Chern, S. S.; Hirzebruch, F. (September 2000). <a rel="nofollow" class="external text" href="https://www.worldscientific.com/worldscibooks/10.1142/4149"><i>Wolf Prize in Mathematics</i></a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F4149">10.1142/4149</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-02-3945-9" title="Special:BookSources/978-981-02-3945-9"><bdi>978-981-02-3945-9</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220221171351/https://www.worldscientific.com/worldscibooks/10.1142/4149">Archived</a> from the original on February 21, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">February 21,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Wolf+Prize+in+Mathematics&amp;rft.date=2000-09&amp;rft_id=info%3Adoi%2F10.1142%2F4149&amp;rft.isbn=978-981-02-3945-9&amp;rft.aulast=Chern&amp;rft.aufirst=S.+S.&amp;rft.au=Hirzebruch%2C+F.&amp;rft_id=https%3A%2F%2Fwww.worldscientific.com%2Fworldscibooks%2F10.1142%2F4149&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-230"><span class="mw-cite-backlink"><b><a href="#cite_ref-230">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://wolffund.org.il/the-wolf-prize/">"The Wolf Prize"</a>. <i>Wolf Foundation</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200112205029/https://wolffund.org.il/the-wolf-prize/">Archived</a> from the original on January 12, 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">January 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolf+Foundation&amp;rft.atitle=The+Wolf+Prize&amp;rft_id=https%3A%2F%2Fwolffund.org.il%2Fthe-wolf-prize%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-:0-231"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_231-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_231-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/">"Hilbert's Problems: 23 and Math"</a>. <i>Simons Foundation</i>. May 6, 2020. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220123011430/https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/">Archived</a> from the original on January 23, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">January 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Simons+Foundation&amp;rft.atitle=Hilbert%27s+Problems%3A+23+and+Math&amp;rft.date=2020-05-06&amp;rft_id=https%3A%2F%2Fwww.simonsfoundation.org%2F2020%2F05%2F06%2Fhilberts-problems-23-and-math%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-232"><span class="mw-cite-backlink"><b><a href="#cite_ref-232">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeferman1998" class="citation book cs1"><a href="/wiki/Solomon_Feferman" title="Solomon Feferman">Feferman, Solomon</a> (1998). <a rel="nofollow" class="external text" href="https://math.stanford.edu/~feferman/papers/deciding.pdf">"Deciding the undecidable: Wrestling with Hilbert's problems"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1rjnCwAAQBAJ"><i>In the Light of Logic</i></a>. Logic and Computation in Philosophy series. Oxford University Press. pp.&#160;3–27. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-508030-8" title="Special:BookSources/978-0-19-508030-8"><bdi>978-0-19-508030-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 29,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Deciding+the+undecidable%3A+Wrestling+with+Hilbert%27s+problems&amp;rft.btitle=In+the+Light+of+Logic&amp;rft.series=Logic+and+Computation+in+Philosophy+series&amp;rft.pages=3-27&amp;rft.pub=Oxford+University+Press&amp;rft.date=1998&amp;rft.isbn=978-0-19-508030-8&amp;rft.aulast=Feferman&amp;rft.aufirst=Solomon&amp;rft_id=https%3A%2F%2Fmath.stanford.edu%2F~feferman%2Fpapers%2Fdeciding.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-233"><span class="mw-cite-backlink"><b><a href="#cite_ref-233">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.claymath.org/millennium-problems/millennium-prize-problems">"The Millennium Prize Problems"</a>. Clay Mathematics Institute. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150703184941/http://www.claymath.org/millennium-problems/millennium-prize-problems">Archived</a> from the original on July 3, 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">January 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Millennium+Prize+Problems&amp;rft.pub=Clay+Mathematics+Institute&amp;rft_id=http%3A%2F%2Fwww.claymath.org%2Fmillennium-problems%2Fmillennium-prize-problems&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> <li id="cite_note-234"><span class="mw-cite-backlink"><b><a href="#cite_ref-234">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.claymath.org/millennium-problems">"Millennium Problems"</a>. Clay Mathematics Institute. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181220122925/http://www.claymath.org/millennium-problems">Archived</a> from the original on December 20, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">January 23,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Millennium+Problems&amp;rft.pub=Clay+Mathematics+Institute&amp;rft_id=http%3A%2F%2Fwww.claymath.org%2Fmillennium-problems&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading3"><h3 id="Sources">Sources</h3></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBouleau1999" class="citation book cs1"><a href="/wiki/Nicolas_Bouleau" title="Nicolas Bouleau">Bouleau, Nicolas</a> (1999). <i>Philosophie des mathématiques et de la modélisation: Du chercheur à l'ingénieur</i>. L'Harmattan. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-2-7384-8125-2" title="Special:BookSources/978-2-7384-8125-2"><bdi>978-2-7384-8125-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Philosophie+des+math%C3%A9matiques+et+de+la+mod%C3%A9lisation%3A+Du+chercheur+%C3%A0+l%27ing%C3%A9nieur&amp;rft.pub=L%27Harmattan&amp;rft.date=1999&amp;rft.isbn=978-2-7384-8125-2&amp;rft.aulast=Bouleau&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyer1991" class="citation book cs1"><a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Boyer, Carl Benjamin</a> (1991). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye/page/n3/mode/2up"><i>A History of Mathematics</i></a></span> (2nd&#160;ed.). New York: <a href="/wiki/Wiley_(publisher)" title="Wiley (publisher)">Wiley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-54397-8" title="Special:BookSources/978-0-471-54397-8"><bdi>978-0-471-54397-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=Wiley&amp;rft.date=1991&amp;rft.isbn=978-0-471-54397-8&amp;rft.aulast=Boyer&amp;rft.aufirst=Carl+Benjamin&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00boye%2Fpage%2Fn3%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCresswell2021" class="citation book cs1">Cresswell, Julia (2021). <i>Oxford Dictionary of Word Origins</i> (3&#160;ed.). Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-886875-0" title="Special:BookSources/978-0-19-886875-0"><bdi>978-0-19-886875-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Oxford+Dictionary+of+Word+Origins&amp;rft.edition=3&amp;rft.pub=Oxford+University+Press&amp;rft.date=2021&amp;rft.isbn=978-0-19-886875-0&amp;rft.aulast=Cresswell&amp;rft.aufirst=Julia&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevlin2018" class="citation book cs1">Devlin, Keith (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gUb7CAAAQBAJ&amp;pg=PA3"><i>Sets, Functions, and Logic: An Introduction to Abstract Mathematics</i></a> (3&#160;ed.). CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4822-8602-1" title="Special:BookSources/978-1-4822-8602-1"><bdi>978-1-4822-8602-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Sets%2C+Functions%2C+and+Logic%3A+An+Introduction+to+Abstract+Mathematics&amp;rft.edition=3&amp;rft.pub=CRC+Press&amp;rft.date=2018&amp;rft.isbn=978-1-4822-8602-1&amp;rft.aulast=Devlin&amp;rft.aufirst=Keith&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgUb7CAAAQBAJ%26pg%3DPA3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Howard_Eves" title="Howard Eves">Eves, Howard</a> (1990). <i>An Introduction to the History of Mathematics</i> (6th&#160;ed.). Saunders. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-03-029558-4" title="Special:BookSources/978-0-03-029558-4"><bdi>978-0-03-029558-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+History+of+Mathematics&amp;rft.edition=6th&amp;rft.pub=Saunders&amp;rft.date=1990&amp;rft.isbn=978-0-03-029558-4&amp;rft.aulast=Eves&amp;rft.aufirst=Howard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleiner2007" class="citation book cs1"><a href="/wiki/Israel_Kleiner_(mathematician)" title="Israel Kleiner (mathematician)">Kleiner, Israel</a> (2007). Kleiner, Israel (ed.). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RTLRBK-wj6wC"><i>A History of Abstract Algebra</i></a>. Springer Science &amp; Business Media. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-8176-4685-1">10.1007/978-0-8176-4685-1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8176-4684-4" title="Special:BookSources/978-0-8176-4684-4"><bdi>978-0-8176-4684-4</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2007932362">2007932362</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/76935733">76935733</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117392219">117392219</a><span class="reference-accessdate">. Retrieved <span class="nowrap">February 8,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Abstract+Algebra&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2007&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117392219%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-0-8176-4685-1&amp;rft_id=info%3Aoclcnum%2F76935733&amp;rft_id=info%3Alccn%2F2007932362&amp;rft.isbn=978-0-8176-4684-4&amp;rft.aulast=Kleiner&amp;rft.aufirst=Israel&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRTLRBK-wj6wC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKline1990" class="citation book cs1"><a href="/wiki/Morris_Kline" title="Morris Kline">Kline, Morris</a> (1990). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalthou00klin"><i>Mathematical Thought from Ancient to Modern Times</i></a></span>. New York: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-506135-2" title="Special:BookSources/978-0-19-506135-2"><bdi>978-0-19-506135-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Thought+from+Ancient+to+Modern+Times&amp;rft.place=New+York&amp;rft.pub=Oxford+University+Press&amp;rft.date=1990&amp;rft.isbn=978-0-19-506135-2&amp;rft.aulast=Kline&amp;rft.aufirst=Morris&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicalthou00klin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonastyrsky2001" class="citation journal cs1">Monastyrsky, Michael (2001). <a rel="nofollow" class="external text" href="http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf">"Some Trends in Modern Mathematics and the Fields Medal"</a> <span class="cs1-format">(PDF)</span>. <i>CMS – Notes – de la SMC</i>. <b>33</b> (2–3). Canadian Mathematical Society. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060813224844/http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on August 13, 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">July 28,</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=CMS+%E2%80%93+Notes+%E2%80%93+de+la+SMC&amp;rft.atitle=Some+Trends+in+Modern+Mathematics+and+the+Fields+Medal&amp;rft.volume=33&amp;rft.issue=2%E2%80%933&amp;rft.date=2001&amp;rft.aulast=Monastyrsky&amp;rft.aufirst=Michael&amp;rft_id=http%3A%2F%2Fwww.fields.utoronto.ca%2Faboutus%2FFieldsMedal_Monastyrsky.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Barbara_Oakley" title="Barbara Oakley">Oakley, Barbara</a> (2014). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/isbn_9780399165245"><i>A Mind For Numbers: How to Excel at Math and Science (Even If You Flunked Algebra)</i></a></span>. New York: Penguin Random House. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-399-16524-5" title="Special:BookSources/978-0-399-16524-5"><bdi>978-0-399-16524-5</bdi></a>. <q>A Mind for Numbers.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Mind+For+Numbers%3A+How+to+Excel+at+Math+and+Science+%28Even+If+You+Flunked+Algebra%29&amp;rft.place=New+York&amp;rft.pub=Penguin+Random+House&amp;rft.date=2014&amp;rft.isbn=978-0-399-16524-5&amp;rft.aulast=Oakley&amp;rft.aufirst=Barbara&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fisbn_9780399165245&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a href="/wiki/Benjamin_Peirce" title="Benjamin Peirce">Peirce, Benjamin</a> (1881). <a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Peirce, Charles&#160;Sanders</a> (ed.). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=De0GAAAAYAAJ&amp;pg=PA1&amp;q=Peirce+Benjamin+Linear+Associative+Algebra">"Linear associative algebra"</a>. <i>American Journal of Mathematics</i>. <b>4</b> (1–4) (Corrected, expanded, and annotated revision with an 1875 paper by B.&#160;Peirce and annotations by his son, C.S. Peirce, of the 1872 lithograph&#160;ed.): 97–229. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2369153">10.2307/2369153</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fhvd.32044030622997">2027/hvd.32044030622997</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2369153">2369153</a>. Corrected, expanded, and annotated revision with an 1875 paper by B.&#160;Peirce and annotations by his son, C.&#160;S.&#160;Peirce, of the 1872 lithograph ed. Google <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LQgPAAAAIAAJ&amp;pg=PA221">Eprint</a> and as an extract, D.&#160;Van Nostrand, 1882, Google <a rel="nofollow" class="external text" href="https://archive.org/details/bub_gb_De0GAAAAYAAJ">Eprint</a><span class="reference-accessdate">. Retrieved <span class="nowrap">November 17,</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Mathematics&amp;rft.atitle=Linear+associative+algebra&amp;rft.volume=4&amp;rft.issue=1%E2%80%934&amp;rft.pages=97-229&amp;rft.date=1881&amp;rft_id=info%3Ahdl%2F2027%2Fhvd.32044030622997&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2369153%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2369153&amp;rft.aulast=Peirce&amp;rft.aufirst=Benjamin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDe0GAAAAYAAJ%26pg%3DPA1%26q%3DPeirce%2BBenjamin%2BLinear%2BAssociative%2BAlgebra&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeterson1988" class="citation book cs1">Peterson, Ivars (1988). <i>The Mathematical Tourist: Snapshots of Modern Mathematics</i>. W. H. Freeman and Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7167-1953-3" title="Special:BookSources/0-7167-1953-3"><bdi>0-7167-1953-3</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/87033078">87033078</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/17202382">17202382</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Mathematical+Tourist%3A+Snapshots+of+Modern+Mathematics&amp;rft.pub=W.+H.+Freeman+and+Company&amp;rft.date=1988&amp;rft_id=info%3Aoclcnum%2F17202382&amp;rft_id=info%3Alccn%2F87033078&amp;rft.isbn=0-7167-1953-3&amp;rft.aulast=Peterson&amp;rft.aufirst=Ivars&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Karl_Popper" title="Karl Popper">Popper, Karl R.</a> (1995). "On knowledge". <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/insearchofbetter00karl"><i>In Search of a Better World: Lectures and Essays from Thirty Years</i></a></span>. New York: Routledge. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992sbwl.book.....P">1992sbwl.book.....P</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-415-13548-1" title="Special:BookSources/978-0-415-13548-1"><bdi>978-0-415-13548-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=On+knowledge&amp;rft.btitle=In+Search+of+a+Better+World%3A+Lectures+and+Essays+from+Thirty+Years&amp;rft.place=New+York&amp;rft.pub=Routledge&amp;rft.date=1995&amp;rft_id=info%3Abibcode%2F1992sbwl.book.....P&amp;rft.isbn=978-0-415-13548-1&amp;rft.aulast=Popper&amp;rft.aufirst=Karl+R.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Finsearchofbetter00karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiehm2002" class="citation journal cs1">Riehm, Carl (August 2002). <a rel="nofollow" class="external text" href="https://www.ams.org/notices/200207/comm-riehm.pdf">"The Early History of the Fields Medal"</a> <span class="cs1-format">(PDF)</span>. <i>Notices of the AMS</i>. <b>49</b> (7): 778–782. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20061026000014/http://www.ams.org/notices/200207/comm-riehm.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on October 26, 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">October 2,</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=The+Early+History+of+the+Fields+Medal&amp;rft.volume=49&amp;rft.issue=7&amp;rft.pages=778-782&amp;rft.date=2002-08&amp;rft.aulast=Riehm&amp;rft.aufirst=Carl&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fnotices%2F200207%2Fcomm-riehm.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSevryuk2006" class="citation journal cs1">Sevryuk, Mikhail B. (January 2006). <a rel="nofollow" class="external text" href="https://www.ams.org/bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf">"Book Reviews"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>. <b>43</b> (1): 101–109. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-05-01069-4">10.1090/S0273-0979-05-01069-4</a></span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060723082901/http://www.ams.org/bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on July 23, 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">June 24,</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft.atitle=Book+Reviews&amp;rft.volume=43&amp;rft.issue=1&amp;rft.pages=101-109&amp;rft.date=2006-01&amp;rft_id=info%3Adoi%2F10.1090%2FS0273-0979-05-01069-4&amp;rft.aulast=Sevryuk&amp;rft.aufirst=Mikhail+B.&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fbull%2F2006-43-01%2FS0273-0979-05-01069-4%2FS0273-0979-05-01069-4.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhittle1994" class="citation book cs1"><a href="/wiki/Peter_Whittle_(mathematician)" title="Peter Whittle (mathematician)">Whittle, Peter</a> (1994). <a rel="nofollow" class="external text" href="http://www.statslab.cam.ac.uk/History/2history.html#6._1966--72:_The_Churchill_Chair">"Almost home"</a>. In <a href="/wiki/Frank_Kelly_(mathematician)" title="Frank Kelly (mathematician)">Kelly, F.P.</a> (ed.). <i>Probability, statistics and optimisation: A Tribute to Peter Whittle</i> (previously "A realised path: The Cambridge Statistical Laboratory up to 1993 (revised 2002)"&#160;ed.). Chichester: John Wiley. pp.&#160;1–28. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-94829-2" title="Special:BookSources/978-0-471-94829-2"><bdi>978-0-471-94829-2</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131219080017/http://www.statslab.cam.ac.uk/History/2history.html#6._1966--72:_The_Churchill_Chair">Archived</a> from the original on December 19, 2013.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Almost+home&amp;rft.btitle=Probability%2C+statistics+and+optimisation%3A+A+Tribute+to+Peter+Whittle&amp;rft.place=Chichester&amp;rft.pages=1-28&amp;rft.edition=previously+%22A+realised+path%3A+The+Cambridge+Statistical+Laboratory+up+to+1993+%28revised+2002%29%22&amp;rft.pub=John+Wiley&amp;rft.date=1994&amp;rft.isbn=978-0-471-94829-2&amp;rft.aulast=Whittle&amp;rft.aufirst=Peter&amp;rft_id=http%3A%2F%2Fwww.statslab.cam.ac.uk%2FHistory%2F2history.html%236._1966--72%3A_The_Churchill_Chair&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box metadata side-box-right"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-abovebelow"> <a href="/wiki/Wikipedia:The_Wikipedia_Library" title="Wikipedia:The Wikipedia Library">Library resources</a> about <br /> <b>Mathematics</b> <hr /></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><a class="external text" href="https://ftl.toolforge.org/cgi-bin/ftl?st=wp&amp;su=Mathematics&amp;library=OLBP">Online books</a></li> <li><a class="external text" href="https://ftl.toolforge.org/cgi-bin/ftl?st=wp&amp;su=Mathematics">Resources in your library</a></li> <li><a class="external text" href="https://ftl.toolforge.org/cgi-bin/ftl?st=wp&amp;su=Mathematics&amp;library=0CHOOSE0">Resources in other libraries</a></li> </ul></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1">Benson, Donald C. (1999). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/momentofproofmat00bens/page/n5/mode/2up"><i>The Moment of Proof: Mathematical Epiphanies</i></a></span>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-513919-8" title="Special:BookSources/978-0-19-513919-8"><bdi>978-0-19-513919-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Moment+of+Proof%3A+Mathematical+Epiphanies&amp;rft.pub=Oxford+University+Press&amp;rft.date=1999&amp;rft.isbn=978-0-19-513919-8&amp;rft.aulast=Benson&amp;rft.aufirst=Donald+C.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmomentofproofmat00bens%2Fpage%2Fn5%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Philip_J._Davis" title="Philip J. Davis">Davis, Philip J.</a>; <a href="/wiki/Reuben_Hersh" title="Reuben Hersh">Hersh, Reuben</a> (1999). <a href="/wiki/The_Mathematical_Experience" title="The Mathematical Experience"><i>The Mathematical Experience</i></a> (Reprint&#160;ed.). Boston; New York: Mariner Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-395-92968-1" title="Special:BookSources/978-0-395-92968-1"><bdi>978-0-395-92968-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Mathematical+Experience&amp;rft.place=Boston%3B+New+York&amp;rft.edition=Reprint&amp;rft.pub=Mariner+Books&amp;rft.date=1999&amp;rft.isbn=978-0-395-92968-1&amp;rft.aulast=Davis&amp;rft.aufirst=Philip+J.&amp;rft.au=Hersh%2C+Reuben&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span> Available <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalexpe0000davi/page/n5/mode/2up">online</a> (registration required).</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Richard_Courant" title="Richard Courant">Courant, Richard</a>; <a href="/wiki/Herbert_Robbins" title="Herbert Robbins">Robbins, Herbert</a> (1996). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/whatismathematic0000cour/page/n5/mode/2up"><i>What Is Mathematics?: An Elementary Approach to Ideas and Methods</i></a></span> (2nd&#160;ed.). New York: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-510519-3" title="Special:BookSources/978-0-19-510519-3"><bdi>978-0-19-510519-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=What+Is+Mathematics%3F%3A+An+Elementary+Approach+to+Ideas+and+Methods&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=Oxford+University+Press&amp;rft.date=1996&amp;rft.isbn=978-0-19-510519-3&amp;rft.aulast=Courant&amp;rft.aufirst=Richard&amp;rft.au=Robbins%2C+Herbert&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fwhatismathematic0000cour%2Fpage%2Fn5%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Jan_Gullberg" title="Jan Gullberg">Gullberg, Jan</a> (1997). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsfromb1997gull/page/n5/mode/2up"><i>Mathematics: From the Birth of Numbers</i></a></span>. W.W. Norton &amp; Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-393-04002-9" title="Special:BookSources/978-0-393-04002-9"><bdi>978-0-393-04002-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics%3A+From+the+Birth+of+Numbers&amp;rft.pub=W.W.+Norton+%26+Company&amp;rft.date=1997&amp;rft.isbn=978-0-393-04002-9&amp;rft.aulast=Gullberg&amp;rft.aufirst=Jan&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicsfromb1997gull%2Fpage%2Fn5%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Michiel_Hazewinkel" title="Michiel Hazewinkel">Hazewinkel, Michiel</a>, ed. (2000). <a href="/wiki/Encyclopaedia_of_Mathematics" class="mw-redirect" title="Encyclopaedia of Mathematics"><i>Encyclopaedia of Mathematics</i></a>. Kluwer Academic Publishers.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Encyclopaedia+of+Mathematics&amp;rft.pub=Kluwer+Academic+Publishers&amp;rft.date=2000&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span>&#160;– A translated and expanded version of a Soviet mathematics encyclopedia, in ten volumes. Also in paperback and on CD-ROM, and <a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Special:AllPages">online</a>. <a rel="nofollow" class="external text" href="https://archive.today/20121220135247/http://www.encyclopediaofmath.org/">Archived</a> December 20, 2012, at <a href="/wiki/Archive.today" title="Archive.today">archive.today</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkin2005" class="citation book cs1">Hodgkin, Luke Howard (2005). <i>A History of Mathematics: From Mesopotamia to Modernity</i>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-152383-0" title="Special:BookSources/978-0-19-152383-0"><bdi>978-0-19-152383-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics%3A+From+Mesopotamia+to+Modernity&amp;rft.pub=Oxford+University+Press&amp;rft.date=2005&amp;rft.isbn=978-0-19-152383-0&amp;rft.aulast=Hodgkin&amp;rft.aufirst=Luke+Howard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Philip_Jourdain" title="Philip Jourdain">Jourdain, Philip E. B.</a> (2003). "The Nature of Mathematics". In James R. Newman (ed.). <i>The World of Mathematics</i>. Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-43268-7" title="Special:BookSources/978-0-486-43268-7"><bdi>978-0-486-43268-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Nature+of+Mathematics&amp;rft.btitle=The+World+of+Mathematics&amp;rft.pub=Dover+Publications&amp;rft.date=2003&amp;rft.isbn=978-0-486-43268-7&amp;rft.aulast=Jourdain&amp;rft.aufirst=Philip+E.+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Theoni_Pappas" title="Theoni Pappas">Pappas, Theoni</a> (1986). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/joyofmathematics0000papp_t0z1/page/n3/mode/2up"><i>The Joy Of Mathematics</i></a></span>. San Carlos, California: Wide World Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-933174-65-8" title="Special:BookSources/978-0-933174-65-8"><bdi>978-0-933174-65-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Joy+Of+Mathematics&amp;rft.place=San+Carlos%2C+California&amp;rft.pub=Wide+World+Publishing&amp;rft.date=1986&amp;rft.isbn=978-0-933174-65-8&amp;rft.aulast=Pappas&amp;rft.aufirst=Theoni&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjoyofmathematics0000papp_t0z1%2Fpage%2Fn3%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="no" class="citation book cs1"><a href="/wiki/Wolfgang_Sartorius_von_Waltershausen" title="Wolfgang Sartorius von Waltershausen">Waltershausen, Wolfgang Sartorius von</a> (1965) [1856]. <i>Gauss zum Gedächtniss</i>. Sändig Reprint Verlag H. R. Wohlwend. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-253-01702-5" title="Special:BookSources/978-3-253-01702-5"><bdi>978-3-253-01702-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gauss+zum+Ged%C3%A4chtniss&amp;rft.pub=S%C3%A4ndig+Reprint+Verlag+H.+R.+Wohlwend&amp;rft.date=1965&amp;rft.isbn=978-3-253-01702-5&amp;rft.aulast=Waltershausen&amp;rft.aufirst=Wolfgang+Sartorius+von&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematics" class="Z3988"></span></li></ul> </div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Major_mathematics_areas" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Areas_of_mathematics" title="Template:Areas of mathematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Areas_of_mathematics" title="Template talk:Areas of mathematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Areas_of_mathematics" title="Special:EditPage/Template:Areas of mathematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Major_mathematics_areas" style="font-size:114%;margin:0 4em">Major <a class="mw-selflink selflink">mathematics</a> areas</div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/History_of_mathematics" title="History of mathematics">History</a> <ul><li><a href="/wiki/Timeline_of_mathematics" title="Timeline of mathematics">Timeline</a></li> <li><a href="/wiki/Future_of_mathematics" title="Future of mathematics">Future</a></li></ul></li> <li><a href="/wiki/Lists_of_mathematics_topics" title="Lists of mathematics topics">Lists</a></li> <li><a href="/wiki/Glossary_of_mathematical_symbols" title="Glossary of mathematical symbols">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Category_theory" title="Category theory">Category theory</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a></li> <li><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Set_theory" title="Set theory">Set theory</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Algebra" title="Algebra">Algebra</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_algebra" title="Abstract algebra">Abstract</a></li> <li><a href="/wiki/Commutative_algebra" title="Commutative algebra">Commutative</a></li> <li><a href="/wiki/Elementary_algebra" title="Elementary algebra">Elementary</a></li> <li><a href="/wiki/Group_theory" title="Group theory">Group theory</a></li> <li><a href="/wiki/Linear_algebra" title="Linear algebra">Linear</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear</a></li> <li><a href="/wiki/Universal_algebra" title="Universal algebra">Universal</a></li> <li><a href="/wiki/Homological_algebra" title="Homological algebra">Homological</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Analysis</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Calculus" title="Calculus">Calculus</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Complex_analysis" title="Complex analysis">Complex analysis</a></li> <li><a href="/wiki/Hypercomplex_analysis" title="Hypercomplex analysis">Hypercomplex analysis</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a></li> <li><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a></li> <li><a href="/wiki/Harmonic_analysis" title="Harmonic analysis">Harmonic analysis</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Discrete_mathematics" title="Discrete mathematics">Discrete</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Combinatorics" title="Combinatorics">Combinatorics</a></li> <li><a href="/wiki/Graph_theory" title="Graph theory">Graph theory</a></li> <li><a href="/wiki/Order_theory" title="Order theory">Order theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Geometry" title="Geometry">Geometry</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_geometry" title="Algebraic geometry">Algebraic</a></li> <li><a href="/wiki/Analytic_geometry" title="Analytic geometry">Analytic</a></li> <li><a href="/wiki/Arithmetic_geometry" title="Arithmetic geometry">Arithmetic</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential</a></li> <li><a href="/wiki/Discrete_geometry" title="Discrete geometry">Discrete</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a></li> <li><a href="/wiki/Finite_geometry" title="Finite geometry">Finite</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Number_theory" title="Number theory">Number theory</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetic" title="Arithmetic">Arithmetic</a></li> <li><a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">Algebraic number theory</a></li> <li><a href="/wiki/Analytic_number_theory" title="Analytic number theory">Analytic number theory</a></li> <li><a href="/wiki/Diophantine_geometry" title="Diophantine geometry">Diophantine geometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Topology" title="Topology">Topology</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_topology" title="General topology">General</a></li> <li><a href="/wiki/Algebraic_topology" title="Algebraic topology">Algebraic</a></li> <li><a href="/wiki/Differential_topology" title="Differential topology">Differential</a></li> <li><a href="/wiki/Geometric_topology" title="Geometric topology">Geometric</a></li> <li><a href="/wiki/Homotopy_theory" title="Homotopy theory">Homotopy theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Applied_mathematics" title="Applied mathematics">Applied</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Engineering_mathematics" title="Engineering mathematics">Engineering mathematics</a></li> <li><a href="/wiki/Mathematical_and_theoretical_biology" title="Mathematical and theoretical biology">Mathematical biology</a></li> <li><a href="/wiki/Mathematical_chemistry" title="Mathematical chemistry">Mathematical chemistry</a></li> <li><a href="/wiki/Mathematical_economics" title="Mathematical economics">Mathematical economics</a></li> <li><a href="/wiki/Mathematical_finance" title="Mathematical finance">Mathematical finance</a></li> <li><a href="/wiki/Mathematical_physics" title="Mathematical physics">Mathematical physics</a></li> <li><a href="/wiki/Mathematical_psychology" title="Mathematical psychology">Mathematical psychology</a></li> <li><a href="/wiki/Mathematical_sociology" title="Mathematical sociology">Mathematical sociology</a></li> <li><a href="/wiki/Mathematical_statistics" title="Mathematical statistics">Mathematical statistics</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability</a></li> <li><a href="/wiki/Statistics" title="Statistics">Statistics</a></li> <li><a href="/wiki/Systems_science" title="Systems science">Systems science</a> <ul><li><a href="/wiki/Control_theory" title="Control theory">Control theory</a></li> <li><a href="/wiki/Game_theory" title="Game theory">Game theory</a></li> <li><a href="/wiki/Operations_research" title="Operations research">Operations research</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computational_mathematics" title="Computational mathematics">Computational</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_science" title="Computer science">Computer science</a></li> <li><a href="/wiki/Theory_of_computation" title="Theory of computation">Theory of computation</a></li> <li><a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">Computational complexity theory</a></li> <li><a href="/wiki/Numerical_analysis" title="Numerical analysis">Numerical analysis</a></li> <li><a href="/wiki/Mathematical_optimization" title="Mathematical optimization">Optimization</a></li> <li><a href="/wiki/Computer_algebra" title="Computer algebra">Computer algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Lists_of_mathematics_topics" title="Lists of mathematics topics">Related topics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematicians" class="mw-redirect" title="Mathematicians">Mathematicians</a> <ul><li><a href="/wiki/List_of_mathematicians" class="mw-redirect" title="List of mathematicians">lists</a></li></ul></li> <li><a href="/wiki/Informal_mathematics" title="Informal mathematics">Informal mathematics</a></li> <li><a href="/wiki/List_of_films_about_mathematicians" title="List of films about mathematicians">Films about mathematicians</a></li> <li><a href="/wiki/Recreational_mathematics" title="Recreational mathematics">Recreational mathematics</a></li> <li><a href="/wiki/Mathematics_and_art" title="Mathematics and art">Mathematics and art</a></li> <li><a href="/wiki/Mathematics_education" title="Mathematics education">Mathematics education</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Fields_of_mathematics" title="Category:Fields of mathematics">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Mathematics" class="extiw" title="commons:Category:Mathematics">Commons</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <b><a href="/wiki/Wikipedia:WikiProject_Mathematics" title="Wikipedia:WikiProject Mathematics">WikiProject</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q395#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q395#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q395#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Mathematik"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4037944-9">Germany</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Mathematics"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85082139">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Mathématiques"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11932434c">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Mathématiques"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11932434c">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="数学"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00571521">Japan</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="matematika"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph117231&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Matemáticas"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&amp;authority_id=XX4576260">Spain</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="수학(학문)&#91;數學&#93;"><a rel="nofollow" class="external text" href="https://lod.nl.go.kr/resource/KSH2000000191">Korea</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="מתמטיקה"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007555885005171">Israel</a></span></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://hls-dhs-dss.ch/fr/articles/008274">Historical Dictionary of Switzerland</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://esu.com.ua/search_articles.php?id=66923">Encyclopedia of Modern Ukraine</a></span></li></ul></div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/19px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/29px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/38px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/19px-Arithmetic_symbols.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/29px-Arithmetic_symbols.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/38px-Arithmetic_symbols.svg.png 2x" data-file-width="210" data-file-height="210" /></span></span> </span><a href="/wiki/Portal:Arithmetic" title="Portal:Arithmetic">Arithmetic</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="image" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/17px-Newton%27s_reflecting_telescope.jpg" decoding="async" width="17" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/26px-Newton%27s_reflecting_telescope.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/34px-Newton%27s_reflecting_telescope.jpg 2x" data-file-width="1140" data-file-height="1276" /></span></span> </span><a href="/wiki/Portal:History_of_science" title="Portal:History of science">History of science</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kalzium.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/19px-Nuvola_apps_kalzium.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/29px-Nuvola_apps_kalzium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/38px-Nuvola_apps_kalzium.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Science" title="Portal:Science">Science</a></li></ul></div><style data-mw-deduplicate="TemplateStyles:r1236088147">.mw-parser-output .sister-bar{display:flex;justify-content:center;align-items:baseline;font-size:88%;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em 0 0;padding:0 2em}.mw-parser-output .sister-bar-header{margin:0 1em 0 0.5em;padding:0.2em 0;flex:0 0 auto;min-height:24px;line-height:22px}.mw-parser-output .sister-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;align-items:baseline;padding:0.2em 0;column-gap:1em;margin:0;list-style:none}.mw-parser-output .sister-bar-item{display:flex;align-items:baseline;margin:0.15em 0;min-height:24px;text-align:left}.mw-parser-output .sister-bar-logo{width:22px;line-height:22px;margin:0 0.2em;text-align:right}.mw-parser-output .sister-bar-link{margin:0 0.2em;text-align:left}@media screen and (max-width:960px){.mw-parser-output .sister-bar{flex-flow:column wrap;margin:1em auto 0}.mw-parser-output .sister-bar-header{flex:0 1}.mw-parser-output .sister-bar-content{flex:1;border-top:1px solid #a2a9b1;margin:0;list-style:none}.mw-parser-output .sister-bar-item{flex:0 0 20em;min-width:20em}}.mw-parser-output .navbox+link+.sister-bar,.mw-parser-output .navbox+style+.sister-bar,.mw-parser-output .portal-bar+link+.sister-bar,.mw-parser-output .portal-bar+style+.sister-bar,.mw-parser-output .sister-bar+.navbox-styles+.navbox,.mw-parser-output .sister-bar+.navbox-styles+.portal-bar{margin-top:-1px}@media print{body.ns-0 .mw-parser-output .sister-bar{display:none!important}}</style><div class="noprint metadata sister-bar" role="navigation" aria-label="sister-projects"><div class="sister-bar-header"><b>Mathematics</b> at Wikipedia's <a href="/wiki/Wikipedia:Wikimedia_sister_projects" title="Wikipedia:Wikimedia sister projects"><span id="sister-projects" style="white-space:nowrap;">sister projects</span></a>:</div><ul class="sister-bar-content"><li class="sister-bar-item"><span class="sister-bar-logo"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/19px-Wiktionary-logo-v2.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/29px-Wiktionary-logo-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/38px-Wiktionary-logo-v2.svg.png 2x" data-file-width="391" data-file-height="391" /></span></span></span><span class="sister-bar-link"><b><a href="https://en.wiktionary.org/wiki/Special:Search/Mathematics" class="extiw" title="wikt:Special:Search/Mathematics">Definitions</a></b> from Wiktionary</span></li><li class="sister-bar-item"><span class="sister-bar-logo"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/14px-Commons-logo.svg.png" decoding="async" width="14" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/21px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/28px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></span><span class="sister-bar-link"><b><a href="https://commons.wikimedia.org/wiki/Category:Mathematics" class="extiw" title="c:Category:Mathematics">Media</a></b> from Commons</span></li><li class="sister-bar-item"><span class="sister-bar-logo"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/21px-Wikinews-logo.svg.png" decoding="async" width="21" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/32px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/42px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></span></span></span><span class="sister-bar-link"><b><a href="https://en.wikinews.org/wiki/Category:Mathematics" class="extiw" title="n:Category:Mathematics">News</a></b> from Wikinews</span></li><li class="sister-bar-item"><span class="sister-bar-logo"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/16px-Wikiquote-logo.svg.png" decoding="async" width="16" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/24px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/32px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></span><span class="sister-bar-link"><b><a href="https://en.wikiquote.org/wiki/Mathematics" class="extiw" title="q:Mathematics">Quotations</a></b> from Wikiquote</span></li><li class="sister-bar-item"><span class="sister-bar-logo"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/18px-Wikisource-logo.svg.png" decoding="async" width="18" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/28px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/36px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></span><span class="sister-bar-link"><b><a href="https://en.wikisource.org/wiki/Special:Search/Mathematics" class="extiw" title="s:Special:Search/Mathematics">Texts</a></b> from Wikisource</span></li><li class="sister-bar-item"><span class="sister-bar-logo"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/19px-Wikibooks-logo.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/29px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/38px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></span><span class="sister-bar-link"><b><a href="https://en.wikibooks.org/wiki/Shelf:Mathematics" class="extiw" title="b:Shelf:Mathematics">Textbooks</a></b> from Wikibooks</span></li><li class="sister-bar-item"><span class="sister-bar-logo"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/21px-Wikiversity_logo_2017.svg.png" decoding="async" width="21" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/42px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></span><span class="sister-bar-link"><b><a href="https://en.wikiversity.org/wiki/Special:Search/Mathematics" class="extiw" title="v:Special:Search/Mathematics">Resources</a></b> from Wikiversity</span></li><li class="sister-bar-item"><span class="sister-bar-logo"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/21px-Wikidata-logo.svg.png" decoding="async" width="21" height="12" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/32px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/42px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></span></span></span><span class="sister-bar-link"><b><a href="https://www.wikidata.org/wiki/Q395" class="extiw" title="d:Q395">Data</a></b> from Wikidata</span></li></ul></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐9884d96b7‐5scfc Cached time: 20241127023955 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.925 seconds Real time usage: 3.350 seconds Preprocessor visited node count: 19039/1000000 Post‐expand include size: 577992/2097152 bytes Template argument size: 10222/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 44/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 889894/5000000 bytes Lua time usage: 1.912/10.000 seconds Lua memory usage: 18927481/52428800 bytes Lua Profile: dataWrapper <mw.lua:672> 320 ms 17.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 300 ms 16.1% ? 240 ms 12.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 140 ms 7.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 100 ms 5.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 60 ms 3.2% <mw.lua:694> 60 ms 3.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 60 ms 3.2% select_one <Module:Citation/CS1/Utilities:426> 60 ms 3.2% gsub 60 ms 3.2% [others] 460 ms 24.7% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2847.799 1 -total 48.56% 1383.005 2 Template:Reflist 22.83% 650.204 92 Template:Cite_book 13.27% 378.016 63 Template:Cite_journal 7.51% 213.884 52 Template:Cite_web 6.82% 194.317 20 Template:Sfn 4.67% 133.039 1 Template:Subject_bar 4.65% 132.545 1 Template:Langx 3.31% 94.265 1 Template:Math_topics_TOC 3.21% 91.387 1 Template:Authority_control --> <!-- Saved in parser cache with key enwiki:pcache:idhash:18831-0!canonical and timestamp 20241127023959 and revision id 1259797230. Rendering was triggered because: edit-page --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Mathematics&amp;oldid=1259797230">https://en.wikipedia.org/w/index.php?title=Mathematics&amp;oldid=1259797230</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Mathematics" title="Category:Mathematics">Mathematics</a></li><li><a href="/wiki/Category:Formal_sciences" title="Category:Formal sciences">Formal sciences</a></li><li><a href="/wiki/Category:Main_topic_articles" title="Category:Main topic articles">Main topic articles</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_semi-protected_pages" title="Category:Wikipedia indefinitely semi-protected pages">Wikipedia indefinitely semi-protected pages</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_move-protected_pages" title="Category:Wikipedia indefinitely move-protected pages">Wikipedia indefinitely move-protected pages</a></li><li><a href="/wiki/Category:Use_American_English_from_August_2022" title="Category:Use American English from August 2022">Use American English from August 2022</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Use_mdy_dates_from_October_2024" title="Category:Use mdy dates from October 2024">Use mdy dates from October 2024</a></li><li><a href="/wiki/Category:Pages_using_sidebar_with_the_child_parameter" title="Category:Pages using sidebar with the child parameter">Pages using sidebar with the child parameter</a></li><li><a href="/wiki/Category:Articles_containing_Ancient_Greek_(to_1453)-language_text" title="Category:Articles containing Ancient Greek (to 1453)-language text">Articles containing Ancient Greek (to 1453)-language text</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li><li><a href="/wiki/Category:Articles_containing_Greek-language_text" title="Category:Articles containing Greek-language text">Articles containing Greek-language text</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_manual_scaled_images" title="Category:Pages using multiple image with manual scaled images">Pages using multiple image with manual scaled images</a></li><li><a href="/wiki/Category:All_articles_with_failed_verification" title="Category:All articles with failed verification">All articles with failed verification</a></li><li><a href="/wiki/Category:Articles_with_failed_verification_from_October_2024" title="Category:Articles with failed verification from October 2024">Articles with failed verification from October 2024</a></li><li><a href="/wiki/Category:Webarchive_template_archiveis_links" title="Category:Webarchive template archiveis links">Webarchive template archiveis links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 27 November 2024, at 02:39<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Mathematics&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5cd4cd96d5-vtsmb","wgBackendResponseTime":204,"wgPageParseReport":{"limitreport":{"cputime":"2.925","walltime":"3.350","ppvisitednodes":{"value":19039,"limit":1000000},"postexpandincludesize":{"value":577992,"limit":2097152},"templateargumentsize":{"value":10222,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":44,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":889894,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2847.799 1 -total"," 48.56% 1383.005 2 Template:Reflist"," 22.83% 650.204 92 Template:Cite_book"," 13.27% 378.016 63 Template:Cite_journal"," 7.51% 213.884 52 Template:Cite_web"," 6.82% 194.317 20 Template:Sfn"," 4.67% 133.039 1 Template:Subject_bar"," 4.65% 132.545 1 Template:Langx"," 3.31% 94.265 1 Template:Math_topics_TOC"," 3.21% 91.387 1 Template:Authority_control"]},"scribunto":{"limitreport-timeusage":{"value":"1.912","limit":"10.000"},"limitreport-memusage":{"value":18927481,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"Branches_of_mathematics\"] = 1,\n [\"CITEREFAlexander2011\"] = 1,\n [\"CITEREFAlonGoldstonSárközySzabados2015\"] = 1,\n [\"CITEREFArchibald1949\"] = 1,\n [\"CITEREFAsper2009\"] = 1,\n [\"CITEREFAtiyah1990\"] = 1,\n [\"CITEREFAvigadReck2001\"] = 1,\n [\"CITEREFBalaguer2016\"] = 1,\n [\"CITEREFBatchelder2015\"] = 1,\n [\"CITEREFBell1945\"] = 1,\n [\"CITEREFBellomoPreziosi1994\"] = 1,\n [\"CITEREFBender2020\"] = 1,\n [\"CITEREFBernardProustRoss2014\"] = 1,\n [\"CITEREFBerntjes\"] = 1,\n [\"CITEREFBiggs1979\"] = 1,\n [\"CITEREFBishop1991\"] = 1,\n [\"CITEREFBoas1995\"] = 1,\n [\"CITEREFBorel1983\"] = 1,\n [\"CITEREFBouleau1999\"] = 1,\n [\"CITEREFBoyer1991\"] = 1,\n [\"CITEREFBoyer2004\"] = 1,\n [\"CITEREFBradley2010\"] = 1,\n [\"CITEREFBrownPorter1995\"] = 1,\n [\"CITEREFBudden1967\"] = 1,\n [\"CITEREFCajori1893\"] = 1,\n [\"CITEREFCazden1959\"] = 1,\n [\"CITEREFChenMaza2014\"] = 1,\n [\"CITEREFChernHirzebruch2000\"] = 1,\n [\"CITEREFChristianidisOaks2013\"] = 1,\n [\"CITEREFCorry2004\"] = 1,\n [\"CITEREFCresswell2021\"] = 1,\n [\"CITEREFDavisMcDuffieDrakeSeiwell2019\"] = 1,\n [\"CITEREFDevlin2018\"] = 1,\n [\"CITEREFDorato2005\"] = 1,\n [\"CITEREFDouglasHeadleyHaddenLeFevre2020\"] = 1,\n [\"CITEREFDudley2002\"] = 1,\n [\"CITEREFDunneHulek2020\"] = 1,\n [\"CITEREFEdling2002\"] = 1,\n [\"CITEREFEndsley2021\"] = 1,\n [\"CITEREFEnquistArak1994\"] = 1,\n [\"CITEREFEwald2018\"] = 1,\n [\"CITEREFFaruqi2006\"] = 1,\n [\"CITEREFFeferman1998\"] = 1,\n [\"CITEREFFerreirós2001\"] = 1,\n [\"CITEREFFerreirós2007\"] = 1,\n [\"CITEREFFerreirós2020\"] = 1,\n [\"CITEREFFranklin2009\"] = 1,\n [\"CITEREFFranklin2017\"] = 1,\n [\"CITEREFFriggHartmann2020\"] = 1,\n [\"CITEREFGinammi2016\"] = 1,\n [\"CITEREFGoldman1998\"] = 1,\n [\"CITEREFGozwamiSingh2019\"] = 1,\n [\"CITEREFGuicciardini2017\"] = 1,\n [\"CITEREFHales2014\"] = 1,\n [\"CITEREFHalesAdamsBauerDang2017\"] = 1,\n [\"CITEREFHalpernHarperImmermanKolaitis2001\"] = 1,\n [\"CITEREFHamami2022\"] = 1,\n [\"CITEREFHamilton1982\"] = 1,\n [\"CITEREFHanson1961\"] = 1,\n [\"CITEREFHardy1940\"] = 1,\n [\"CITEREFHartshorne2000\"] = 1,\n [\"CITEREFHeath1981\"] = 1,\n [\"CITEREFHennig2010\"] = 1,\n [\"CITEREFHestenes1999\"] = 1,\n [\"CITEREFHilbert1902\"] = 1,\n [\"CITEREFHill2022\"] = 1,\n [\"CITEREFHipólito2015\"] = 1,\n [\"CITEREFHodgkin2005\"] = 1,\n [\"CITEREFJansenMarriottYelland2000\"] = 1,\n [\"CITEREFJohnsonCavallini1991\"] = 1,\n [\"CITEREFJones1967\"] = 1,\n [\"CITEREFJoyner2008\"] = 1,\n [\"CITEREFKent2022\"] = 1,\n [\"CITEREFKissane2009\"] = 1,\n [\"CITEREFKleiner1991\"] = 1,\n [\"CITEREFKleiner2000\"] = 1,\n [\"CITEREFKleiner2007\"] = 1,\n [\"CITEREFKline1990\"] = 1,\n [\"CITEREFKolachanaMaheshRamasubramanian2019\"] = 1,\n [\"CITEREFKremer,_MichaelRao,_GautamSchilbach,_Frank2019\"] = 1,\n [\"CITEREFKrömer2007\"] = 1,\n [\"CITEREFKuhn1976\"] = 1,\n [\"CITEREFLeVeque1977\"] = 1,\n [\"CITEREFLetourneauWright_Sharp2017\"] = 1,\n [\"CITEREFLevinMilgrom2004\"] = 1,\n [\"CITEREFLim2018\"] = 1,\n [\"CITEREFLin1976\"] = 1,\n [\"CITEREFLorch2001\"] = 1,\n [\"CITEREFLuttenbergerWimmerPaechter2018\"] = 1,\n [\"CITEREFLützen2011\"] = 1,\n [\"CITEREFMackay1991\"] = 1,\n [\"CITEREFMaddy2008\"] = 1,\n [\"CITEREFMarchuk2020\"] = 1,\n [\"CITEREFMarker1996\"] = 1,\n [\"CITEREFMaurer1997\"] = 1,\n [\"CITEREFMcCarty2006\"] = 1,\n [\"CITEREFMillstein2016\"] = 1,\n [\"CITEREFMonastyrsky2001\"] = 1,\n [\"CITEREFMoschovakis2018\"] = 1,\n [\"CITEREFMueller1969\"] = 1,\n [\"CITEREFMukunth2015\"] = 1,\n [\"CITEREFMura1993\"] = 1,\n [\"CITEREFMusielak2022\"] = 1,\n [\"CITEREFNadjafikhahYaftian2013\"] = 1,\n [\"CITEREFNational_Research_Council2003\"] = 1,\n [\"CITEREFNewman1956\"] = 1,\n [\"CITEREFNickles2013\"] = 1,\n [\"CITEREFO\u0026#039;ConnorRobertson1996\"] = 1,\n [\"CITEREFO\u0026#039;ConnorRobertson1998\"] = 1,\n [\"CITEREFOaks2018\"] = 1,\n [\"CITEREFOre1988\"] = 1,\n [\"CITEREFOverbaySchorerConger\"] = 1,\n [\"CITEREFParshall2022\"] = 1,\n [\"CITEREFPeressini1999\"] = 1,\n [\"CITEREFPerisho1965\"] = 1,\n [\"CITEREFPerminov1988\"] = 1,\n [\"CITEREFPeterson1988\"] = 1,\n [\"CITEREFPetkovi2009\"] = 1,\n [\"CITEREFPigliucci2014\"] = 1,\n [\"CITEREFPitici2017\"] = 1,\n [\"CITEREFPérez-EscobarSarikaya2021\"] = 1,\n [\"CITEREFRaatikainen2005\"] = 1,\n [\"CITEREFRao1981\"] = 1,\n [\"CITEREFRao1997\"] = 1,\n [\"CITEREFRestivo1992\"] = 1,\n [\"CITEREFRiche2007\"] = 1,\n [\"CITEREFRiehm2002\"] = 1,\n [\"CITEREFRobson2009\"] = 1,\n [\"CITEREFRossi2006\"] = 1,\n [\"CITEREFRouaud2017\"] = 1,\n [\"CITEREFRowan-KenyonSwanCreager2012\"] = 1,\n [\"CITEREFSaliba1994\"] = 1,\n [\"CITEREFSalsburg1992\"] = 1,\n [\"CITEREFSarukkai2005\"] = 1,\n [\"CITEREFSaunders_Maclane1986\"] = 1,\n [\"CITEREFSchubringFuringhettiSiu2012\"] = 1,\n [\"CITEREFSevryuk2006\"] = 1,\n [\"CITEREFShane2022\"] = 1,\n [\"CITEREFShashaLazere1998\"] = 1,\n [\"CITEREFSilver2017\"] = 2,\n [\"CITEREFSingh1936\"] = 1,\n [\"CITEREFSipser1992\"] = 1,\n [\"CITEREFSiu2004\"] = 1,\n [\"CITEREFSnapper1979\"] = 1,\n [\"CITEREFSokalJean_Bricmont1998\"] = 1,\n [\"CITEREFSteen2012\"] = 1,\n [\"CITEREFStewart2018\"] = 1,\n [\"CITEREFStolz2002\"] = 1,\n [\"CITEREFStraume2014\"] = 1,\n [\"CITEREFStrauss2011\"] = 1,\n [\"CITEREFStump1997\"] = 1,\n [\"CITEREFSubramarian\"] = 1,\n [\"CITEREFTakase2014\"] = 1,\n [\"CITEREFTanswell2024\"] = 1,\n [\"CITEREFTiwari1992\"] = 1,\n [\"CITEREFTobiesNeunzert2012\"] = 1,\n [\"CITEREFTrefethen2008\"] = 1,\n [\"CITEREFWaghDeshpande2012\"] = 1,\n [\"CITEREFWagstaff2021\"] = 1,\n [\"CITEREFWang2002\"] = 1,\n [\"CITEREFWarner\"] = 1,\n [\"CITEREFWeil1983\"] = 1,\n [\"CITEREFWeyl2015\"] = 1,\n [\"CITEREFWhite1947\"] = 1,\n [\"CITEREFWhittle1994\"] = 1,\n [\"CITEREFWigner1960\"] = 1,\n [\"CITEREFWilder\"] = 1,\n [\"CITEREFWilsonLewis1912\"] = 1,\n [\"CITEREFWise\"] = 1,\n [\"CITEREFWolchover2013\"] = 1,\n [\"CITEREFWolfram2000\"] = 1,\n [\"CITEREFYaftian2015\"] = 1,\n [\"CITEREFZak2010\"] = 1,\n [\"CITEREFZaslavsky1999\"] = 1,\n [\"CITEREFZhuang\"] = 1,\n [\"CITEREFZieglerLoos2017\"] = 1,\n [\"CITEREFvan_der_Poorten1979\"] = 1,\n [\"CITEREFvon_DavierFoyMartinMullis2020\"] = 1,\n [\"no\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 3,\n [\"Abbr\"] = 1,\n [\"Anchor\"] = 1,\n [\"Areas of mathematics\"] = 1,\n [\"Authority control\"] = 1,\n [\"Blockquote\"] = 2,\n [\"C.\"] = 1,\n [\"CS1 config\"] = 1,\n [\"Circa\"] = 2,\n [\"Citation\"] = 1,\n [\"Cite arXiv\"] = 1,\n [\"Cite book\"] = 92,\n [\"Cite conference\"] = 10,\n [\"Cite encyclopedia\"] = 6,\n [\"Cite journal\"] = 63,\n [\"Cite magazine\"] = 1,\n [\"Cite web\"] = 52,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Efn\"] = 8,\n [\"Em\"] = 3,\n [\"Emdash\"] = 17,\n [\"Free access\"] = 1,\n [\"Further\"] = 2,\n [\"GBurl\"] = 32,\n [\"Gloss\"] = 2,\n [\"Harvnb\"] = 3,\n [\"Lang\"] = 3,\n [\"Langx\"] = 1,\n [\"Library resources box\"] = 1,\n [\"Literal translation\"] = 1,\n [\"Main\"] = 19,\n [\"Main category\"] = 1,\n [\"Math\"] = 4,\n [\"Math topics TOC\"] = 1,\n [\"Mdash\"] = 2,\n [\"Multiple image\"] = 1,\n [\"Multiref\"] = 1,\n [\"Notelist\"] = 1,\n [\"Open access\"] = 1,\n [\"Portal\"] = 1,\n [\"Pp\"] = 1,\n [\"Pp-move\"] = 1,\n [\"Redirect2\"] = 1,\n [\"Refbegin\"] = 2,\n [\"Refend\"] = 2,\n [\"Reflist\"] = 1,\n [\"See also\"] = 1,\n [\"Sfn\"] = 20,\n [\"Short description\"] = 1,\n [\"Subject bar\"] = 1,\n [\"TOC limit\"] = 1,\n [\"Use American English\"] = 1,\n [\"Use mdy dates\"] = 1,\n [\"Verification failed\"] = 1,\n [\"Webarchive\"] = 2,\n [\"Wikt-lang\"] = 1,\n}\narticle_whitelist = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n","limitreport-profile":[["dataWrapper \u003Cmw.lua:672\u003E","320","17.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","300","16.1"],["?","240","12.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","140","7.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","100","5.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","60","3.2"],["\u003Cmw.lua:694\u003E","60","3.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","60","3.2"],["select_one \u003CModule:Citation/CS1/Utilities:426\u003E","60","3.2"],["gsub","60","3.2"],["[others]","460","24.7"]]},"cachereport":{"origin":"mw-api-ext.codfw.main-9884d96b7-5scfc","timestamp":"20241127023955","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Mathematics","url":"https:\/\/en.wikipedia.org\/wiki\/Mathematics","sameAs":"http:\/\/www.wikidata.org\/entity\/Q395","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q395","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-08T15:31:38Z","dateModified":"2024-11-27T02:39:52Z","headline":"field of study"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10