CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 232 results for author: <span class="mathjax">Ziegler, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ziegler, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ziegler%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ziegler, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15065">arXiv:2412.15065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15065">pdf</a>, <a href="https://arxiv.org/format/2412.15065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Numerical analysis and simulation of lateral memristive devices: Schottky, ohmic, and multi-dimensional electrode models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abdel%2C+D">Dilara Abdel</a>, <a href="/search/?searchtype=author&amp;query=Herda%2C+M">Maxime Herda</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Chainais-Hillairet%2C+C">Claire Chainais-Hillairet</a>, <a href="/search/?searchtype=author&amp;query=Spetzler%2C+B">Benjamin Spetzler</a>, <a href="/search/?searchtype=author&amp;query=Farrell%2C+P">Patricio Farrell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15065v1-abstract-short" style="display: inline;"> In this paper, we present the numerical analysis and simulations of a multi-dimensional memristive device model. Memristive devices and memtransistors based on two-dimensional (2D) materials have demonstrated promising potential as components for next-generation artificial intelligence (AI) hardware and information technology. Our charge transport model describes the drift-diffusion of electrons,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15065v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15065v1-abstract-full" style="display: none;"> In this paper, we present the numerical analysis and simulations of a multi-dimensional memristive device model. Memristive devices and memtransistors based on two-dimensional (2D) materials have demonstrated promising potential as components for next-generation artificial intelligence (AI) hardware and information technology. Our charge transport model describes the drift-diffusion of electrons, holes, and ionic defects self-consistently in an electric field. We incorporate two types of boundary models: ohmic and Schottky contacts. The coupled drift-diffusion partial differential equations are discretized using a physics-preserving Voronoi finite volume method. It relies on an implicit time-stepping scheme and the excess chemical potential flux approximation. We demonstrate that the fully discrete nonlinear scheme is unconditionally stable, preserving the free-energy structure of the continuous system and ensuring the non-negativity of carrier densities. Novel discrete entropy-dissipation inequalities for both boundary condition types in multiple dimensions allow us to prove the existence of discrete solutions. We perform multi-dimensional simulations to understand the impact of electrode configurations and device geometries, focusing on the hysteresis behavior in lateral 2D memristive devices. Three electrode configurations -- side, top, and mixed contacts -- are compared numerically for different geometries and boundary conditions. These simulations reveal the conditions under which a simplified one-dimensional electrode geometry can well represent the three electrode configurations. This work lays the foundations for developing accurate, efficient simulation tools for 2D memristive devices and memtransistors, offering tools and guidelines for their design and optimization in future applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15065v1-abstract-full').style.display = 'none'; document.getElementById('2412.15065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35Q81; 35K20; 65N08; 78A35 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00395">arXiv:2412.00395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00395">pdf</a>, <a href="https://arxiv.org/format/2412.00395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> On Foundation Models for Dynamical Systems from Purely Synthetic Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Posada-Moreno%2C+A+F">Andres Felipe Posada-Moreno</a>, <a href="/search/?searchtype=author&amp;query=Solowjow%2C+F">Friedrich Solowjow</a>, <a href="/search/?searchtype=author&amp;query=Trimpe%2C+S">Sebastian Trimpe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00395v2-abstract-short" style="display: inline;"> Foundation models have demonstrated remarkable generalization, data efficiency, and robustness properties across various domains. In this paper, we explore the feasibility of foundation models for applications in the control domain. The success of these models is enabled by large-scale pretaining on Internet-scale datasets. These are available in fields like natural language processing and compute&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00395v2-abstract-full').style.display = 'inline'; document.getElementById('2412.00395v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00395v2-abstract-full" style="display: none;"> Foundation models have demonstrated remarkable generalization, data efficiency, and robustness properties across various domains. In this paper, we explore the feasibility of foundation models for applications in the control domain. The success of these models is enabled by large-scale pretaining on Internet-scale datasets. These are available in fields like natural language processing and computer vision, but do not exist for dynamical systems. We address this challenge by pretraining a transformer-based foundation model exclusively on synthetic data and propose to sample dynamics functions from a reproducing kernel Hilbert space. Our pretrained model generalizes for prediction tasks across different dynamical systems, which we validate in simulation and hardware experiments, including cart-pole and Furuta pendulum setups. Additionally, the model can be fine-tuned effectively to new systems to increase performance even further. Our results demonstrate the feasibility of foundation models for dynamical systems that outperform specialist models in terms of generalization, data efficiency, and robustness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00395v2-abstract-full').style.display = 'none'; document.getElementById('2412.00395v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15854">arXiv:2410.15854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15854">pdf</a>, <a href="https://arxiv.org/format/2410.15854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> TEXEL: A neuromorphic processor with on-chip learning for beyond-CMOS device integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Greatorex%2C+H">Hugh Greatorex</a>, <a href="/search/?searchtype=author&amp;query=Richter%2C+O">Ole Richter</a>, <a href="/search/?searchtype=author&amp;query=Mastella%2C+M">Michele Mastella</a>, <a href="/search/?searchtype=author&amp;query=Cotteret%2C+M">Madison Cotteret</a>, <a href="/search/?searchtype=author&amp;query=Klein%2C+P">Philipp Klein</a>, <a href="/search/?searchtype=author&amp;query=Fabre%2C+M">Maxime Fabre</a>, <a href="/search/?searchtype=author&amp;query=Rubino%2C+A">Arianna Rubino</a>, <a href="/search/?searchtype=author&amp;query=Gir%C3%A3o%2C+W+S">Willian Soares Gir茫o</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+J">Junren Chen</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a>, <a href="/search/?searchtype=author&amp;query=B%C3%A9gon-Lours%2C+L">Laura B茅gon-Lours</a>, <a href="/search/?searchtype=author&amp;query=Indiveri%2C+G">Giacomo Indiveri</a>, <a href="/search/?searchtype=author&amp;query=Chicca%2C+E">Elisabetta Chicca</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15854v1-abstract-short" style="display: inline;"> Recent advances in memory technologies, devices and materials have shown great potential for integration into neuromorphic electronic systems. However, a significant gap remains between the development of these materials and the realization of large-scale, fully functional systems. One key challenge is determining which devices and materials are best suited for specific functions and how they can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15854v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15854v1-abstract-full" style="display: none;"> Recent advances in memory technologies, devices and materials have shown great potential for integration into neuromorphic electronic systems. However, a significant gap remains between the development of these materials and the realization of large-scale, fully functional systems. One key challenge is determining which devices and materials are best suited for specific functions and how they can be paired with CMOS circuitry. To address this, we introduce TEXEL, a mixed-signal neuromorphic architecture designed to explore the integration of on-chip learning circuits and novel two- and three-terminal devices. TEXEL serves as an accessible platform to bridge the gap between CMOS-based neuromorphic computation and the latest advancements in emerging devices. In this paper, we demonstrate the readiness of TEXEL for device integration through comprehensive chip measurements and simulations. TEXEL provides a practical system for testing bio-inspired learning algorithms alongside emerging devices, establishing a tangible link between brain-inspired computation and cutting-edge device research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15854v1-abstract-full').style.display = 'none'; document.getElementById('2410.15854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures. Supplementary material: 8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00584">arXiv:2410.00584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00584">pdf</a>, <a href="https://arxiv.org/format/2410.00584">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> </div> <p class="title is-5 mathjax"> Asymmetrically connected reservoir networks learn better </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rathor%2C+S+K">Shailendra K. Rathor</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Schumacher%2C+J">J枚rg Schumacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00584v1-abstract-short" style="display: inline;"> We show that connectivity within the high-dimensional recurrent layer of a reservoir network is crucial for its performance. To this end, we systematically investigate the impact of network connectivity on its performance, i.e., we examine the symmetry and structure of the reservoir in relation to its computational power. Reservoirs with random and asymmetric connections are found to perform bette&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00584v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00584v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00584v1-abstract-full" style="display: none;"> We show that connectivity within the high-dimensional recurrent layer of a reservoir network is crucial for its performance. To this end, we systematically investigate the impact of network connectivity on its performance, i.e., we examine the symmetry and structure of the reservoir in relation to its computational power. Reservoirs with random and asymmetric connections are found to perform better for an exemplary Mackey-Glass time series than all structured reservoirs, including biologically inspired connectivities, such as small-world topologies. This result is quantified by the information processing capacity of the different network topologies which becomes highest for asymmetric and randomly connected networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00584v1-abstract-full').style.display = 'none'; document.getElementById('2410.00584v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04992">arXiv:2405.04992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.04992">pdf</a>, <a href="https://arxiv.org/format/2405.04992">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical characterization of size- and substrate-dependent performance of ultraviolet hybrid plasmonic nanowire lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vitale%2C+F">Francesco Vitale</a>, <a href="/search/?searchtype=author&amp;query=Church%2C+S+A">Stephen A. Church</a>, <a href="/search/?searchtype=author&amp;query=Repp%2C+D">Daniel Repp</a>, <a href="/search/?searchtype=author&amp;query=Sunil%2C+K+S">Karthika S. Sunil</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mario Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Diegel%2C+M">Marco Diegel</a>, <a href="/search/?searchtype=author&amp;query=Dellith%2C+A">Andrea Dellith</a>, <a href="/search/?searchtype=author&amp;query=Do%2C+T">Thi-Hien Do</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+S">Sheng-Di Lin</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+J">Jer-Shing Huang</a>, <a href="/search/?searchtype=author&amp;query=Pertsch%2C+T">Thomas Pertsch</a>, <a href="/search/?searchtype=author&amp;query=Parkinson%2C+P">Patrick Parkinson</a>, <a href="/search/?searchtype=author&amp;query=Ronning%2C+C">Carsten Ronning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04992v1-abstract-short" style="display: inline;"> Nanowire-based plasmonic lasers are now established as nano-sources of coherent radiation, appearing as suitable candidates for integration into next-generation nanophotonic circuitry. However, compared to their photonic counterparts, their relatively high losses and large lasing thresholds still pose a burdening constraint on their scalability. In this study, the lasing characteristics of ZnO nan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04992v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04992v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04992v1-abstract-full" style="display: none;"> Nanowire-based plasmonic lasers are now established as nano-sources of coherent radiation, appearing as suitable candidates for integration into next-generation nanophotonic circuitry. However, compared to their photonic counterparts, their relatively high losses and large lasing thresholds still pose a burdening constraint on their scalability. In this study, the lasing characteristics of ZnO nanowires on Ag and Al substrates, operating as optically-pumped short-wavelength plasmonic nanolasers, are systematically investigated in combination with the size-dependent performance of the hybrid cavity. A hybrid nanomanipulation-assisted single nanowire optical characterization combined with high-throughput PL spectroscopy enables the correlation of the lasing characteristics to the metal substrate and the nanowire diameter. The results evidence that the coupling between excitons and surface plasmons is closely tied to the relationship between substrate dispersive behavior and nanowire diameter. Such coupling dictates the degree to which the lasing character, be it more plasmonic- or photonic-like, can define the stimulated emission features and, as a result, the device performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04992v1-abstract-full').style.display = 'none'; document.getElementById('2405.04992v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures, journal paper draft</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01305">arXiv:2405.01305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01305">pdf</a>, <a href="https://arxiv.org/format/2405.01305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2634-4386/ada851">10.1088/2634-4386/ada851 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distributed Representations Enable Robust Multi-Timescale Symbolic Computation in Neuromorphic Hardware </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cotteret%2C+M">Madison Cotteret</a>, <a href="/search/?searchtype=author&amp;query=Greatorex%2C+H">Hugh Greatorex</a>, <a href="/search/?searchtype=author&amp;query=Renner%2C+A">Alpha Renner</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+J">Junren Chen</a>, <a href="/search/?searchtype=author&amp;query=Neftci%2C+E">Emre Neftci</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+H">Huaqiang Wu</a>, <a href="/search/?searchtype=author&amp;query=Indiveri%2C+G">Giacomo Indiveri</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Chicca%2C+E">Elisabetta Chicca</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01305v3-abstract-short" style="display: inline;"> Programming recurrent spiking neural networks (RSNNs) to robustly perform multi-timescale computation remains a difficult challenge. To address this, we describe a single-shot weight learning scheme to embed robust multi-timescale dynamics into attractor-based RSNNs, by exploiting the properties of high-dimensional distributed representations. We embed finite state machines into the RSNN dynamics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01305v3-abstract-full').style.display = 'inline'; document.getElementById('2405.01305v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01305v3-abstract-full" style="display: none;"> Programming recurrent spiking neural networks (RSNNs) to robustly perform multi-timescale computation remains a difficult challenge. To address this, we describe a single-shot weight learning scheme to embed robust multi-timescale dynamics into attractor-based RSNNs, by exploiting the properties of high-dimensional distributed representations. We embed finite state machines into the RSNN dynamics by superimposing a symmetric autoassociative weight matrix and asymmetric transition terms, which are each formed by the vector binding of an input and heteroassociative outer-products between states. Our approach is validated through simulations with highly nonideal weights; an experimental closed-loop memristive hardware setup; and on Loihi 2, where it scales seamlessly to large state machines. This work introduces a scalable approach to embed robust symbolic computation through recurrent dynamics into neuromorphic hardware, without requiring parameter fine-tuning or significant platform-specific optimisation. Moreover, it demonstrates that distributed symbolic representations serve as a highly capable representation-invariant language for cognitive algorithms in neuromorphic hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01305v3-abstract-full').style.display = 'none'; document.getElementById('2405.01305v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures. Supplementary material: 13 pages, 8 figures. Accepted for publication in Neuromorphic Computing and Engineering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01755">arXiv:2403.01755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01755">pdf</a>, <a href="https://arxiv.org/format/2403.01755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> AI Language Models Could Both Help and Harm Equity in Marine Policymaking: The Case Study of the BBNJ Question-Answering Bot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Matt Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Lothian%2C+S">Sarah Lothian</a>, <a href="/search/?searchtype=author&amp;query=O%27Neill%2C+B">Brian O&#39;Neill</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+R">Richard Anderson</a>, <a href="/search/?searchtype=author&amp;query=Ota%2C+Y">Yoshitaka Ota</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01755v1-abstract-short" style="display: inline;"> AI Large Language Models (LLMs) like ChatGPT are set to reshape some aspects of policymaking processes. Policy practitioners are already using ChatGPT for help with a variety of tasks: from drafting statements, submissions, and presentations, to conducting background research. We are cautiously hopeful that LLMs could be used to promote a marginally more balanced footing among decision makers in p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01755v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01755v1-abstract-full" style="display: none;"> AI Large Language Models (LLMs) like ChatGPT are set to reshape some aspects of policymaking processes. Policy practitioners are already using ChatGPT for help with a variety of tasks: from drafting statements, submissions, and presentations, to conducting background research. We are cautiously hopeful that LLMs could be used to promote a marginally more balanced footing among decision makers in policy negotiations by assisting with certain tedious work, particularly benefiting developing countries who face capacity constraints that put them at a disadvantage in negotiations. However, the risks are particularly concerning for environmental and marine policy uses, due to the urgency of crises like climate change, high uncertainty, and trans-boundary impact. To explore the realistic potentials, limitations, and equity risks for LLMs in marine policymaking, we present a case study of an AI chatbot for the recently adopted Biodiversity Beyond National Jurisdiction Agreement (BBNJ), and critique its answers to key policy questions. Our case study demonstrates the dangers of LLMs in marine policymaking via their potential bias towards generating text that favors the perspectives of mainly Western economic centers of power, while neglecting developing countries&#39; viewpoints. We describe several ways these biases can enter the system, including: (1) biases in the underlying foundational language models; (2) biases arising from the chatbot&#39;s connection to UN negotiation documents, and (3) biases arising from the application design. We urge caution in the use of generative AI in ocean policy processes and call for more research on its equity and fairness implications. Our work also underscores the need for developing countries&#39; policymakers to develop the technical capacity to engage with AI on their own terms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01755v1-abstract-full').style.display = 'none'; document.getElementById('2403.01755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05566">arXiv:2401.05566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05566">pdf</a>, <a href="https://arxiv.org/format/2401.05566">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hubinger%2C+E">Evan Hubinger</a>, <a href="/search/?searchtype=author&amp;query=Denison%2C+C">Carson Denison</a>, <a href="/search/?searchtype=author&amp;query=Mu%2C+J">Jesse Mu</a>, <a href="/search/?searchtype=author&amp;query=Lambert%2C+M">Mike Lambert</a>, <a href="/search/?searchtype=author&amp;query=Tong%2C+M">Meg Tong</a>, <a href="/search/?searchtype=author&amp;query=MacDiarmid%2C+M">Monte MacDiarmid</a>, <a href="/search/?searchtype=author&amp;query=Lanham%2C+T">Tamera Lanham</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+D+M">Daniel M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Maxwell%2C+T">Tim Maxwell</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+N">Newton Cheng</a>, <a href="/search/?searchtype=author&amp;query=Jermyn%2C+A">Adam Jermyn</a>, <a href="/search/?searchtype=author&amp;query=Askell%2C+A">Amanda Askell</a>, <a href="/search/?searchtype=author&amp;query=Radhakrishnan%2C+A">Ansh Radhakrishnan</a>, <a href="/search/?searchtype=author&amp;query=Anil%2C+C">Cem Anil</a>, <a href="/search/?searchtype=author&amp;query=Duvenaud%2C+D">David Duvenaud</a>, <a href="/search/?searchtype=author&amp;query=Ganguli%2C+D">Deep Ganguli</a>, <a href="/search/?searchtype=author&amp;query=Barez%2C+F">Fazl Barez</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+J">Jack Clark</a>, <a href="/search/?searchtype=author&amp;query=Ndousse%2C+K">Kamal Ndousse</a>, <a href="/search/?searchtype=author&amp;query=Sachan%2C+K">Kshitij Sachan</a>, <a href="/search/?searchtype=author&amp;query=Sellitto%2C+M">Michael Sellitto</a>, <a href="/search/?searchtype=author&amp;query=Sharma%2C+M">Mrinank Sharma</a>, <a href="/search/?searchtype=author&amp;query=DasSarma%2C+N">Nova DasSarma</a>, <a href="/search/?searchtype=author&amp;query=Grosse%2C+R">Roger Grosse</a>, <a href="/search/?searchtype=author&amp;query=Kravec%2C+S">Shauna Kravec</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05566v3-abstract-short" style="display: inline;"> Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept exa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05566v3-abstract-full').style.display = 'inline'; document.getElementById('2401.05566v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05566v3-abstract-full" style="display: none;"> Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept examples of deceptive behavior in large language models (LLMs). For example, we train models that write secure code when the prompt states that the year is 2023, but insert exploitable code when the stated year is 2024. We find that such backdoor behavior can be made persistent, so that it is not removed by standard safety training techniques, including supervised fine-tuning, reinforcement learning, and adversarial training (eliciting unsafe behavior and then training to remove it). The backdoor behavior is most persistent in the largest models and in models trained to produce chain-of-thought reasoning about deceiving the training process, with the persistence remaining even when the chain-of-thought is distilled away. Furthermore, rather than removing backdoors, we find that adversarial training can teach models to better recognize their backdoor triggers, effectively hiding the unsafe behavior. Our results suggest that, once a model exhibits deceptive behavior, standard techniques could fail to remove such deception and create a false impression of safety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05566v3-abstract-full').style.display = 'none'; document.getElementById('2401.05566v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">updated to add missing acknowledgements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16826">arXiv:2307.16826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.16826">pdf</a>, <a href="https://arxiv.org/ps/2307.16826">ps</a>, <a href="https://arxiv.org/format/2307.16826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic">math.LO</span> </div> </div> <p class="title is-5 mathjax"> Noetherian theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Martin-Pizarro%2C+A">Amador Martin-Pizarro</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16826v4-abstract-short" style="display: inline;"> A first-order theory is Noetherian with respect to the collection of formulae $\mathcal{F}$ if every definable set is a Boolean combination of instances of formulae in $\mathcal{F}$ and the topology whose subbasis of closed sets is the collection of instances of arbitrary formulae in $\mathcal{F}$ is Noetherian. Noetherianity is a strengthening of equationality, which itself implies stability. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16826v4-abstract-full').style.display = 'inline'; document.getElementById('2307.16826v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16826v4-abstract-full" style="display: none;"> A first-order theory is Noetherian with respect to the collection of formulae $\mathcal{F}$ if every definable set is a Boolean combination of instances of formulae in $\mathcal{F}$ and the topology whose subbasis of closed sets is the collection of instances of arbitrary formulae in $\mathcal{F}$ is Noetherian. Noetherianity is a strengthening of equationality, which itself implies stability. We show the Noetherianity of the theory of proper pairs of algebraically closed fields in any characteristic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16826v4-abstract-full').style.display = 'none'; document.getElementById('2307.16826v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 03C45; 12H05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08471">arXiv:2305.08471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.08471">pdf</a>, <a href="https://arxiv.org/format/2305.08471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00013-023-01895-6">10.1007/s00013-023-01895-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Celebrating Loday&#39;s Associahedron </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pilaud%2C+V">Vincent Pilaud</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+F">Francisco Santos</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+G+M">G眉nter M. Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08471v1-abstract-short" style="display: inline;"> We survey Jean-Louis Loday&#39;s vertex description of the associahedron, and its far reaching influence in combinatorics, discrete geometry and algebra. We present in particular four topics were it plays a central role: lattice congruences of the weak order and their quotientopes, cluster algebras and their generalized associahedra, nested complexes and their nestohedra, and operads and the associahe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08471v1-abstract-full').style.display = 'inline'; document.getElementById('2305.08471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08471v1-abstract-full" style="display: none;"> We survey Jean-Louis Loday&#39;s vertex description of the associahedron, and its far reaching influence in combinatorics, discrete geometry and algebra. We present in particular four topics were it plays a central role: lattice congruences of the weak order and their quotientopes, cluster algebras and their generalized associahedra, nested complexes and their nestohedra, and operads and the associahedron diagonal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08471v1-abstract-full').style.display = 'none'; document.getElementById('2305.08471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05C05; 52B11; 52B12 (Primary) 05C12; 05C45; 05E10; 05E45; 06A07; 06B10; 06B99; 13F50; 16T05; 16T30; 16G10; 16G20; 18M60; 18M80; 20F55; 52B05 (Secondary) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Archiv der Mathematik 121 (2023), 559-601 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03439">arXiv:2305.03439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03439">pdf</a>, <a href="https://arxiv.org/ps/2305.03439">ps</a>, <a href="https://arxiv.org/format/2305.03439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Logic">math.LO</span> </div> </div> <p class="title is-5 mathjax"> Degrees of Second and Higher-Order Polynomials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lim%2C+D">Donghyun Lim</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03439v2-abstract-short" style="display: inline;"> Second-order polynomials generalize classical first-order ones in allowing for additional variables that range over functions rather than values. We are motivated by their applications in higher-order computational complexity theory, extending for example classical classes like P or PSPACE to operators in Analysis [doi:10.1137/S0097539794263452, doi:10.1145/2189778.2189780]. The degree subclassifi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03439v2-abstract-full').style.display = 'inline'; document.getElementById('2305.03439v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03439v2-abstract-full" style="display: none;"> Second-order polynomials generalize classical first-order ones in allowing for additional variables that range over functions rather than values. We are motivated by their applications in higher-order computational complexity theory, extending for example classical classes like P or PSPACE to operators in Analysis [doi:10.1137/S0097539794263452, doi:10.1145/2189778.2189780]. The degree subclassifies ordinary polynomial growth into linear, quadratic, cubic etc. In order to similarly classify second-order polynomials, define their degree to be an &#39;arctic&#39; first-order polynomial (namely a term/expression over variable $D$ and operations $+$ and $\cdot$ and $\max$). This degree turns out to transform as nicely under (now two kinds of) polynomial composition as the ordinary one. We also establish a normal form and semantic uniqueness for second-order polynomials. Then we define the degree of a third-order polynomial to be an arctic second-order polynomial, and establish its transformation under three kinds of composition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03439v2-abstract-full').style.display = 'none'; document.getElementById('2305.03439v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68Q15; 03D15; 03D65 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.1.3; G.2.3; I.1.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06527">arXiv:2304.06527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06527">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The Role of Mobile Point Defects in Two-Dimensional Memristive Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Spetzler%2C+B">Benjamin Spetzler</a>, <a href="/search/?searchtype=author&amp;query=Abdel%2C+D">Dilara Abdel</a>, <a href="/search/?searchtype=author&amp;query=Schwierz%2C+F">Frank Schwierz</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Farrell%2C+P">Patricio Farrell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06527v1-abstract-short" style="display: inline;"> Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) are promising memristive materials for neuromorphic computing systems as they could solve the problem of the excessively high energy consumption of conventional von Neumann computer architectures. Despite extensive experimental work, the underlying switching mechanisms are still not understood, impeding progress in material and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06527v1-abstract-full').style.display = 'inline'; document.getElementById('2304.06527v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06527v1-abstract-full" style="display: none;"> Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) are promising memristive materials for neuromorphic computing systems as they could solve the problem of the excessively high energy consumption of conventional von Neumann computer architectures. Despite extensive experimental work, the underlying switching mechanisms are still not understood, impeding progress in material and device functionality. This study reveals the dominant role of mobile defects in the switching dynamics of 2D TMDC materials. The switching process is governed by the formation and annihilation dynamics of a local vacancy depletion zone. Moreover, minor changes in the interface potential barriers cause fundamentally different device behavior previously thought to originate from multiple mechanisms. The key mechanisms are identified with a charge transport model for electrons, holes, and ionic point defects, including image-charge-induced Schottky barrier lowering (SBL). The model is validated by comparing simulations to measurements for various 2D MoS$_2$-based devices, strongly corroborating the relevance of vacancies in TMDC devices and offering a new perspective on the switching mechanisms. The insights gained from this study can be used to extend the functional behavior of 2D TMDC memristive devices in future neuromorphic computing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06527v1-abstract-full').style.display = 'none'; document.getElementById('2304.06527v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01196">arXiv:2212.01196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01196">pdf</a>, <a href="https://arxiv.org/format/2212.01196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1162/neco_a_01638">10.1162/neco_a_01638 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vector Symbolic Finite State Machines in Attractor Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cotteret%2C+M">Madison Cotteret</a>, <a href="/search/?searchtype=author&amp;query=Greatorex%2C+H">Hugh Greatorex</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Chicca%2C+E">Elisabetta Chicca</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01196v2-abstract-short" style="display: inline;"> Hopfield attractor networks are robust distributed models of human memory, but lack a general mechanism for effecting state-dependent attractor transitions in response to input. We propose construction rules such that an attractor network may implement an arbitrary finite state machine (FSM), where states and stimuli are represented by high-dimensional random vectors, and all state transitions are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01196v2-abstract-full').style.display = 'inline'; document.getElementById('2212.01196v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01196v2-abstract-full" style="display: none;"> Hopfield attractor networks are robust distributed models of human memory, but lack a general mechanism for effecting state-dependent attractor transitions in response to input. We propose construction rules such that an attractor network may implement an arbitrary finite state machine (FSM), where states and stimuli are represented by high-dimensional random vectors, and all state transitions are enacted by the attractor network&#39;s dynamics. Numerical simulations show the capacity of the model, in terms of the maximum size of implementable FSM, to be linear in the size of the attractor network for dense bipolar state vectors, and approximately quadratic for sparse binary state vectors. We show that the model is robust to imprecise and noisy weights, and so a prime candidate for implementation with high-density but unreliable devices. By endowing attractor networks with the ability to emulate arbitrary FSMs, we propose a plausible path by which FSMs could exist as a distributed computational primitive in biological neural networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01196v2-abstract-full').style.display = 'none'; document.getElementById('2212.01196v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures. This is the authors&#39; final version before publication in Neural Computation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07583">arXiv:2211.07583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07583">pdf</a>, <a href="https://arxiv.org/format/2211.07583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-023-30494-2">10.1038/s41598-023-30494-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nondestructive thermographic detection of internal defects using pixel-pattern based laser excitation and photothermal super resolution reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lecompagnon%2C+J">Julien Lecompagnon</a>, <a href="/search/?searchtype=author&amp;query=Hirsch%2C+P+D">Philipp Daniel Hirsch</a>, <a href="/search/?searchtype=author&amp;query=Rupprecht%2C+C">Christian Rupprecht</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mathias Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07583v2-abstract-short" style="display: inline;"> In this work, we present a novel approach to photothermal super resolution based thermographic resolution of internal defects using two-dimensional pixel pattern-based active photothermal laser heating in conjunction with subsequent numerical reconstruction to achieve a high-resolution reconstruction of internal defect structures. With the proposed adoption of pixelated patterns generated using la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07583v2-abstract-full').style.display = 'inline'; document.getElementById('2211.07583v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07583v2-abstract-full" style="display: none;"> In this work, we present a novel approach to photothermal super resolution based thermographic resolution of internal defects using two-dimensional pixel pattern-based active photothermal laser heating in conjunction with subsequent numerical reconstruction to achieve a high-resolution reconstruction of internal defect structures. With the proposed adoption of pixelated patterns generated using laser coupled high-power DLP projector technology the complexity for achieving true two-dimensional super resolution can be dramatically reduced taking a crucial step forward towards widespread practical viability. Furthermore, based on the latest developments in high-power DLP projectors, we present their first application for structured pulsed thermographic inspection of macroscopic metal samples. In addition, a forward solution to the underlying inverse problem is proposed along with an appropriate heuristic to find the regularization parameters necessary for the numerical inversion in a laboratory setting. This allows the generation of synthetic measurement data, opening the door for the application of machine learning based methods for future improvements towards full automation of the method. Finally, the proposed method is experimentally validated and shown to outperform several established conventional thermographic testing techniques while conservatively improving the required measurement times by a factor of 8 compared to currently available photothermal super resolution techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07583v2-abstract-full').style.display = 'none'; document.getElementById('2211.07583v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17300">arXiv:2210.17300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.17300">pdf</a>, <a href="https://arxiv.org/format/2210.17300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Overview">math.HO</span> </div> </div> <p class="title is-5 mathjax"> Landau on Chess Tournaments and Google&#39;s PageRank </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sinn%2C+R">Rainer Sinn</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+G+M">G眉nter M. Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17300v1-abstract-short" style="display: inline;"> In his first mathematical paper, published in 1895 when he was 18, Edmund Landau suggested a new way to determine the winner of a chess tournament by not simply adding for each player the fixed number of points they would get for each win or draw, but rather by considering the performance of all players in the tournament relative to each other: each player would get more credit for games won or dr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17300v1-abstract-full').style.display = 'inline'; document.getElementById('2210.17300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17300v1-abstract-full" style="display: none;"> In his first mathematical paper, published in 1895 when he was 18, Edmund Landau suggested a new way to determine the winner of a chess tournament by not simply adding for each player the fixed number of points they would get for each win or draw, but rather by considering the performance of all players in the tournament relative to each other: each player would get more credit for games won or drawn against stronger players. Landau called this &#34;relative Wertbemessung&#34;, which translates to relative score. The basic idea from linear algebra behind this scoring system was rediscovered and reused in many contexts since 1895; in particular, it is a central ingredient in Google&#39;s PageRank. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17300v1-abstract-full').style.display = 'none'; document.getElementById('2210.17300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Edmund Landau: Collected Works - Volume 10, edited by A. H眉ntelmann, A. Kreuzer, H. Wefelscheid, and U. Wefelscheid, Springer</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 01-02; 01A60 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05811">arXiv:2208.05811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05811">pdf</a>, <a href="https://arxiv.org/format/2208.05811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04947-z">10.1038/s41586-022-04947-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantized current steps due to the a.c. coherent quantum phase-slip effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shaikhaidarov%2C+R+S">R. S. Shaikhaidarov</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">K. H. Kim</a>, <a href="/search/?searchtype=author&amp;query=Dunstan%2C+J+W">J. W. Dunstan</a>, <a href="/search/?searchtype=author&amp;query=Antonov%2C+I+V">I. V. Antonov</a>, <a href="/search/?searchtype=author&amp;query=Linzen%2C+S">S. Linzen</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&amp;query=Antonov%2C+V+N">V. N. Antonov</a>, <a href="/search/?searchtype=author&amp;query=Il%27ichev%2C+E">E. Il&#39;ichev</a>, <a href="/search/?searchtype=author&amp;query=Astafiev%2C+O+V">O. V. Astafiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05811v2-abstract-short" style="display: inline;"> The AC Josephson effect predicted in 1962 and observed experimentally in 1963 as quantised voltage steps (the Shapiro steps) from photon assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the AC coherent quantum phase slip (CQPS), photon assisted tunnelling of magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05811v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05811v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05811v2-abstract-full" style="display: none;"> The AC Josephson effect predicted in 1962 and observed experimentally in 1963 as quantised voltage steps (the Shapiro steps) from photon assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the AC coherent quantum phase slip (CQPS), photon assisted tunnelling of magnetic fluxes through a superconducting nanowire, is envisaged to reveal itself as quantised current steps. The basic physical significance of the AC CQPS is also complemented by practical importance in future current standards; a missing element for closing the Quantum Metrology Triangle. In 2012, the CQPS was demonstrated as superposition of magnetic flux quanta in superconducting nanowires. However the direct sharp current steps in superconductors; the only unavailable basic effect of superconductivity to date, was unattainable due to lack of appropriate materials and challenges in circuit engineering. Here we report the direct observation of the dual Shapiro steps in a superconducting nanowire. The sharp steps are clear up to 26 GHz frequency with current values 8.3 nA and limited by the present setup bandwidth. The current steps have been theoretically predicted in small Josephson junctions (JJs) 30 years ago. However, broadening unavoidable in JJs prevents their direct experimental observation. We solve this problem by placing a thin NbN nanowire in an inductive environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05811v2-abstract-full').style.display = 'none'; document.getElementById('2208.05811v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 608, 45-49 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02475">arXiv:2207.02475</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02475">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Integrative omics framework for characterization of coral reef ecosystems from the Tara Pacific expedition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Belser%2C+C">Caroline Belser</a>, <a href="/search/?searchtype=author&amp;query=Poulain%2C+J">Julie Poulain</a>, <a href="/search/?searchtype=author&amp;query=Labadie%2C+K">Karine Labadie</a>, <a href="/search/?searchtype=author&amp;query=Gavory%2C+F">Frederick Gavory</a>, <a href="/search/?searchtype=author&amp;query=Alberti%2C+A">Adriana Alberti</a>, <a href="/search/?searchtype=author&amp;query=Guy%2C+J">Julie Guy</a>, <a href="/search/?searchtype=author&amp;query=Carradec%2C+Q">Quentin Carradec</a>, <a href="/search/?searchtype=author&amp;query=Cruaud%2C+C">Corinne Cruaud</a>, <a href="/search/?searchtype=author&amp;query=da+Silva%2C+C">Corinne da Silva</a>, <a href="/search/?searchtype=author&amp;query=Engelen%2C+S">Stefan Engelen</a>, <a href="/search/?searchtype=author&amp;query=Mielle%2C+P">Paul Mielle</a>, <a href="/search/?searchtype=author&amp;query=Perdereau%2C+A">Aude Perdereau</a>, <a href="/search/?searchtype=author&amp;query=Samson%2C+G">Gaelle Samson</a>, <a href="/search/?searchtype=author&amp;query=Gaz%2C+S">Shahinaz Gaz</a>, <a href="/search/?searchtype=author&amp;query=Team%2C+G+T">Genoscope Technical Team</a>, <a href="/search/?searchtype=author&amp;query=Voolstra%2C+C+R">Christian R Voolstra</a>, <a href="/search/?searchtype=author&amp;query=Galand%2C+P+E">Pierre E Galand</a>, <a href="/search/?searchtype=author&amp;query=Flores%2C+J+M">J. Michel Flores</a>, <a href="/search/?searchtype=author&amp;query=Hume%2C+B+C">Benjamin Cc Hume</a>, <a href="/search/?searchtype=author&amp;query=Perna%2C+G">Gabriela Perna</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Maren Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Ruscheweyh%2C+H">Hans-Joachim Ruscheweyh</a>, <a href="/search/?searchtype=author&amp;query=Boissin%2C+E">Emilie Boissin</a>, <a href="/search/?searchtype=author&amp;query=Romac%2C+S">Sarah Romac</a>, <a href="/search/?searchtype=author&amp;query=Bourdin%2C+G">Guillaume Bourdin</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02475v1-abstract-short" style="display: inline;"> Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the host coral organism, endosymbiotic dinoflagellates, bacteria, ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02475v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02475v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02475v1-abstract-full" style="display: none;"> Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the host coral organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02475v1-abstract-full').style.display = 'none'; document.getElementById('2207.02475v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01663">arXiv:2205.01663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01663">pdf</a>, <a href="https://arxiv.org/format/2205.01663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Adversarial Training for High-Stakes Reliability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+D+M">Daniel M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Nix%2C+S">Seraphina Nix</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+L">Lawrence Chan</a>, <a href="/search/?searchtype=author&amp;query=Bauman%2C+T">Tim Bauman</a>, <a href="/search/?searchtype=author&amp;query=Schmidt-Nielsen%2C+P">Peter Schmidt-Nielsen</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+T">Tao Lin</a>, <a href="/search/?searchtype=author&amp;query=Scherlis%2C+A">Adam Scherlis</a>, <a href="/search/?searchtype=author&amp;query=Nabeshima%2C+N">Noa Nabeshima</a>, <a href="/search/?searchtype=author&amp;query=Weinstein-Raun%2C+B">Ben Weinstein-Raun</a>, <a href="/search/?searchtype=author&amp;query=de+Haas%2C+D">Daniel de Haas</a>, <a href="/search/?searchtype=author&amp;query=Shlegeris%2C+B">Buck Shlegeris</a>, <a href="/search/?searchtype=author&amp;query=Thomas%2C+N">Nate Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01663v5-abstract-short" style="display: inline;"> In the future, powerful AI systems may be deployed in high-stakes settings, where a single failure could be catastrophic. One technique for improving AI safety in high-stakes settings is adversarial training, which uses an adversary to generate examples to train on in order to achieve better worst-case performance. In this work, we used a safe language generation task (``avoid injuries&#39;&#39;) as a t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01663v5-abstract-full').style.display = 'inline'; document.getElementById('2205.01663v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01663v5-abstract-full" style="display: none;"> In the future, powerful AI systems may be deployed in high-stakes settings, where a single failure could be catastrophic. One technique for improving AI safety in high-stakes settings is adversarial training, which uses an adversary to generate examples to train on in order to achieve better worst-case performance. In this work, we used a safe language generation task (``avoid injuries&#39;&#39;) as a testbed for achieving high reliability through adversarial training. We created a series of adversarial training techniques -- including a tool that assists human adversaries -- to find and eliminate failures in a classifier that filters text completions suggested by a generator. In our task, we determined that we can set very conservative classifier thresholds without significantly impacting the quality of the filtered outputs. We found that adversarial training increased robustness to the adversarial attacks that we trained on -- doubling the time for our contractors to find adversarial examples both with our tool (from 13 to 26 minutes) and without (from 20 to 44 minutes) -- without affecting in-distribution performance. We hope to see further work in the high-stakes reliability setting, including more powerful tools for enhancing human adversaries and better ways to measure high levels of reliability, until we can confidently rule out the possibility of catastrophic deployment-time failures of powerful models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01663v5-abstract-full').style.display = 'none'; document.getElementById('2205.01663v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 7 figures, NeurIPS camera-ready</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02060">arXiv:2203.02060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02060">pdf</a>, <a href="https://arxiv.org/format/2203.02060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0088102">10.1063/5.0088102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermographic detection of internal defects using 2D photothermal super resolution reconstruction with sequential laser heating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lecompagnon%2C+J">Julien Lecompagnon</a>, <a href="/search/?searchtype=author&amp;query=Ahmadi%2C+S">Samim Ahmadi</a>, <a href="/search/?searchtype=author&amp;query=Hirsch%2C+P">Philipp Hirsch</a>, <a href="/search/?searchtype=author&amp;query=Rupprecht%2C+C">Christian Rupprecht</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mathias Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02060v3-abstract-short" style="display: inline;"> Thermographic photothermal super resolution reconstruction enables the resolution of internal defects/inhomogeneities below the classical limit which is governed by the diffusion properties of thermal wave propagation. Based on a combination of the application of special sampling strategies and a subsequent numerical optimization step in post-processing, thermographic super resolution has already&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02060v3-abstract-full').style.display = 'inline'; document.getElementById('2203.02060v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02060v3-abstract-full" style="display: none;"> Thermographic photothermal super resolution reconstruction enables the resolution of internal defects/inhomogeneities below the classical limit which is governed by the diffusion properties of thermal wave propagation. Based on a combination of the application of special sampling strategies and a subsequent numerical optimization step in post-processing, thermographic super resolution has already proven to be superior to standard thermographic methods in the detection of one-dimensional defect/inhomogeneity structures. In our work, we report an extension of the capabilities of the method for efficient detection and resolution of defect cross sections with fully two-dimensional structured laser-based heating. The reconstruction is carried out using one of two different algorithms which are proposed within this work. Both algorithms utilize the combination of several coherent measurements using convex optimization and exploit the sparse nature of defects/inhomogeneities as is typical for most nondestructive testing scenarios. Finally, the performance of each algorithm is rated on reconstruction quality and algorithmic complexity. The presented experimental approach is based on repeated spatially structured heating by a high power laser. As a result, a two-dimensional sparse defect/inhomogeneity map can be obtained. In addition, the obtained results are compared with those of conventional thermographic inspection methods which make use of homogeneous illumination. Due to the sparse nature of the reconstructed defect/inhomogeneity map, this comparison is performed qualitatively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02060v3-abstract-full').style.display = 'none'; document.getElementById('2203.02060v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 Pages, 9 Figures. The following article has been accepted by the Journal of Applied Physics. After it is published, it will be found at https://aip.scitation.org/toc/jap/collection/10.1063/jap.2022.P1NDM2022.issue-1</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.07561">arXiv:2111.07561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.07561">pdf</a>, <a href="https://arxiv.org/format/2111.07561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30737-2">10.1038/s41467-022-30737-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extremely confined gap plasmon modes: when nonlocality matters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Boroviks%2C+S">Sergejs Boroviks</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z">Zhan-Hong Lin</a>, <a href="/search/?searchtype=author&amp;query=Zenin%2C+V+A">Vladimir A. Zenin</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mario Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Dellith%2C+A">Andrea Dellith</a>, <a href="/search/?searchtype=author&amp;query=Gon%C3%A7alves%2C+P+A+D">P. A. D. Gon莽alves</a>, <a href="/search/?searchtype=author&amp;query=Wolff%2C+C">Christian Wolff</a>, <a href="/search/?searchtype=author&amp;query=Bozhevolnyi%2C+S+I">Sergey I. Bozhevolnyi</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+J">Jer-Shing Huang</a>, <a href="/search/?searchtype=author&amp;query=Mortensen%2C+N+A">N. Asger Mortensen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.07561v1-abstract-short" style="display: inline;"> Historically, the field of plasmonics has been relying on the framework of classical electrodynamics, with the local-response approximation of material response being applied even when dealing with nanoscale metallic structures. However, when approaching the atomic-scale confinement of the electromagnetic radiation, mesoscopic effects are anticipated to become observable, e.g., those associated wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07561v1-abstract-full').style.display = 'inline'; document.getElementById('2111.07561v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.07561v1-abstract-full" style="display: none;"> Historically, the field of plasmonics has been relying on the framework of classical electrodynamics, with the local-response approximation of material response being applied even when dealing with nanoscale metallic structures. However, when approaching the atomic-scale confinement of the electromagnetic radiation, mesoscopic effects are anticipated to become observable, e.g., those associated with the nonlocal electrodynamic surface response of the electron gas. We investigate nonlocal effects in propagating gap surface plasmon modes in ultrathin metal--dielectric--metal planar waveguides, exploiting monocrystalline gold flakes separated by atomic-layer-deposited aluminum oxide. We use scanning near-field optical microscopy to directly access the near-field of such confined gap plasmon modes and measure their dispersion relation (via their complex-valued propagation constants). We compare our experimental findings with the predictions of the generalized nonlocal optical response theory to unveil signatures of nonlocal damping, which becomes appreciable for smaller dielectric gaps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07561v1-abstract-full').style.display = 'none'; document.getElementById('2111.07561v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supporting information is available upon request to authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 13, 3105 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10862">arXiv:2109.10862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10862">pdf</a>, <a href="https://arxiv.org/format/2109.10862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Recursively Summarizing Books with Human Feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wu%2C+J">Jeff Wu</a>, <a href="/search/?searchtype=author&amp;query=Ouyang%2C+L">Long Ouyang</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+D+M">Daniel M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Stiennon%2C+N">Nisan Stiennon</a>, <a href="/search/?searchtype=author&amp;query=Lowe%2C+R">Ryan Lowe</a>, <a href="/search/?searchtype=author&amp;query=Leike%2C+J">Jan Leike</a>, <a href="/search/?searchtype=author&amp;query=Christiano%2C+P">Paul Christiano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10862v2-abstract-short" style="display: inline;"> A major challenge for scaling machine learning is training models to perform tasks that are very difficult or time-consuming for humans to evaluate. We present progress on this problem on the task of abstractive summarization of entire fiction novels. Our method combines learning from human feedback with recursive task decomposition: we use models trained on smaller parts of the task to assist hum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10862v2-abstract-full').style.display = 'inline'; document.getElementById('2109.10862v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10862v2-abstract-full" style="display: none;"> A major challenge for scaling machine learning is training models to perform tasks that are very difficult or time-consuming for humans to evaluate. We present progress on this problem on the task of abstractive summarization of entire fiction novels. Our method combines learning from human feedback with recursive task decomposition: we use models trained on smaller parts of the task to assist humans in giving feedback on the broader task. We collect a large volume of demonstrations and comparisons from human labelers, and fine-tune GPT-3 using behavioral cloning and reward modeling to do summarization recursively. At inference time, the model first summarizes small sections of the book and then recursively summarizes these summaries to produce a summary of the entire book. Our human labelers are able to supervise and evaluate the models quickly, despite not having read the entire books themselves. Our resulting model generates sensible summaries of entire books, even matching the quality of human-written summaries in a few cases ($\sim5\%$ of books). We achieve state-of-the-art results on the recent BookSum dataset for book-length summarization. A zero-shot question-answering model using these summaries achieves state-of-the-art results on the challenging NarrativeQA benchmark for answering questions about books and movie scripts. We release datasets of samples from our model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10862v2-abstract-full').style.display = 'none'; document.getElementById('2109.10862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10563">arXiv:2104.10563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10563">pdf</a>, <a href="https://arxiv.org/format/2104.10563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Photothermal-SR-Net: A Customized Deep Unfolding Neural Network for Photothermal Super Resolution Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ahmadi%2C+S">Samim Ahmadi</a>, <a href="/search/?searchtype=author&amp;query=K%C3%A4stner%2C+L">Linh K盲stner</a>, <a href="/search/?searchtype=author&amp;query=Hauffen%2C+J+C">Jan Christian Hauffen</a>, <a href="/search/?searchtype=author&amp;query=Jung%2C+P">Peter Jung</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mathias Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10563v1-abstract-short" style="display: inline;"> This paper presents deep unfolding neural networks to handle inverse problems in photothermal radiometry enabling super resolution (SR) imaging. Photothermal imaging is a well-known technique in active thermography for nondestructive inspection of defects in materials such as metals or composites. A grand challenge of active thermography is to overcome the spatial resolution limitation imposed by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10563v1-abstract-full').style.display = 'inline'; document.getElementById('2104.10563v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10563v1-abstract-full" style="display: none;"> This paper presents deep unfolding neural networks to handle inverse problems in photothermal radiometry enabling super resolution (SR) imaging. Photothermal imaging is a well-known technique in active thermography for nondestructive inspection of defects in materials such as metals or composites. A grand challenge of active thermography is to overcome the spatial resolution limitation imposed by heat diffusion in order to accurately resolve each defect. The photothermal SR approach enables to extract high-frequency spatial components based on the deconvolution with the thermal point spread function. However, stable deconvolution can only be achieved by using the sparse structure of defect patterns, which often requires tedious, hand-crafted tuning of hyperparameters and results in computationally intensive algorithms. On this account, Photothermal-SR-Net is proposed in this paper, which performs deconvolution by deep unfolding considering the underlying physics. This enables to super resolve 2D thermal images for nondestructive testing with a substantially improved convergence rate. Since defects appear sparsely in materials, Photothermal-SR-Net applies trained block-sparsity thresholding to the acquired thermal images in each convolutional layer. The performance of the proposed approach is evaluated and discussed using various deep unfolding and thresholding approaches applied to 2D thermal images. Subsequently, studies are conducted on how to increase the reconstruction quality and the computational performance of Photothermal-SR-Net is evaluated. Thereby, it was found that the computing time for creating high-resolution images could be significantly reduced without decreasing the reconstruction quality by using pixel binning as a preprocessing step. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10563v1-abstract-full').style.display = 'none'; document.getElementById('2104.10563v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.00818">arXiv:2102.00818</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Proceedings of the DATE Friday Workshop on System-level Design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hannig%2C+F">Frank Hannig</a>, <a href="/search/?searchtype=author&amp;query=Meloni%2C+P">Paolo Meloni</a>, <a href="/search/?searchtype=author&amp;query=Spallanzani%2C+M">Matteo Spallanzani</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Matthias Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.00818v1-abstract-short" style="display: inline;"> This volume contains the papers accepted at the first DATE Friday Workshop on System-level Design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021), held virtually on February 5, 2021. SLOHA 2021 was co-located with the Conference on Design, Automation and Test in Europe (DATE). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.00818v1-abstract-full" style="display: none;"> This volume contains the papers accepted at the first DATE Friday Workshop on System-level Design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021), held virtually on February 5, 2021. SLOHA 2021 was co-located with the Conference on Design, Automation and Test in Europe (DATE). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00818v1-abstract-full').style.display = 'none'; document.getElementById('2102.00818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Website of the workshop: https://www12.cs.fau.de/ws/sloha2021/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.03547">arXiv:2012.03547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.03547">pdf</a>, <a href="https://arxiv.org/format/2012.03547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Learned Block Iterative Shrinkage Thresholding Algorithm for Photothermal Super Resolution Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ahmadi%2C+S">Samim Ahmadi</a>, <a href="/search/?searchtype=author&amp;query=Hauffen%2C+J+C">Jan Christian Hauffen</a>, <a href="/search/?searchtype=author&amp;query=K%C3%A4stner%2C+L">Linh K盲stner</a>, <a href="/search/?searchtype=author&amp;query=Jung%2C+P">Peter Jung</a>, <a href="/search/?searchtype=author&amp;query=Caire%2C+G">Giuseppe Caire</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mathias Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.03547v2-abstract-short" style="display: inline;"> Block-sparse regularization is already well-known in active thermal imaging and is used for multiple measurement based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. To avoid time-consuming manually selected regularization parameter, we propose a learned block-sparse optimization approach using an iterative algorit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03547v2-abstract-full').style.display = 'inline'; document.getElementById('2012.03547v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.03547v2-abstract-full" style="display: none;"> Block-sparse regularization is already well-known in active thermal imaging and is used for multiple measurement based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. To avoid time-consuming manually selected regularization parameter, we propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network. More precisely, we show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters. In addition, this algorithm enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present the algorithm and compare it with state of the art block iterative shrinkage thresholding using synthetically generated test data and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations than without learning. Thus, this new approach allows to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super resolution imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03547v2-abstract-full').style.display = 'none'; document.getElementById('2012.03547v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work has been submitted to the IEEE for possible publication. 11 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14701">arXiv:2010.14701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.14701">pdf</a>, <a href="https://arxiv.org/format/2010.14701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Scaling Laws for Autoregressive Generative Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Henighan%2C+T">Tom Henighan</a>, <a href="/search/?searchtype=author&amp;query=Kaplan%2C+J">Jared Kaplan</a>, <a href="/search/?searchtype=author&amp;query=Katz%2C+M">Mor Katz</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M">Mark Chen</a>, <a href="/search/?searchtype=author&amp;query=Hesse%2C+C">Christopher Hesse</a>, <a href="/search/?searchtype=author&amp;query=Jackson%2C+J">Jacob Jackson</a>, <a href="/search/?searchtype=author&amp;query=Jun%2C+H">Heewoo Jun</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+T+B">Tom B. Brown</a>, <a href="/search/?searchtype=author&amp;query=Dhariwal%2C+P">Prafulla Dhariwal</a>, <a href="/search/?searchtype=author&amp;query=Gray%2C+S">Scott Gray</a>, <a href="/search/?searchtype=author&amp;query=Hallacy%2C+C">Chris Hallacy</a>, <a href="/search/?searchtype=author&amp;query=Mann%2C+B">Benjamin Mann</a>, <a href="/search/?searchtype=author&amp;query=Radford%2C+A">Alec Radford</a>, <a href="/search/?searchtype=author&amp;query=Ramesh%2C+A">Aditya Ramesh</a>, <a href="/search/?searchtype=author&amp;query=Ryder%2C+N">Nick Ryder</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+D+M">Daniel M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Schulman%2C+J">John Schulman</a>, <a href="/search/?searchtype=author&amp;query=Amodei%2C+D">Dario Amodei</a>, <a href="/search/?searchtype=author&amp;query=McCandlish%2C+S">Sam McCandlish</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14701v2-abstract-short" style="display: inline;"> We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal image$\leftrightarrow$text models, and mathematical problem solving. In all cases autoregressive Transformers smoothly improve in performance as model size and compute budgets increase, following a power-law plus constant scaling law. The optimal model size also depe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14701v2-abstract-full').style.display = 'inline'; document.getElementById('2010.14701v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14701v2-abstract-full" style="display: none;"> We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal image$\leftrightarrow$text models, and mathematical problem solving. In all cases autoregressive Transformers smoothly improve in performance as model size and compute budgets increase, following a power-law plus constant scaling law. The optimal model size also depends on the compute budget through a power-law, with exponents that are nearly universal across all data domains. The cross-entropy loss has an information theoretic interpretation as $S($True$) + D_{\mathrm{KL}}($True$||$Model$)$, and the empirical scaling laws suggest a prediction for both the true data distribution&#39;s entropy and the KL divergence between the true and model distributions. With this interpretation, billion-parameter Transformers are nearly perfect models of the YFCC100M image distribution downsampled to an $8\times 8$ resolution, and we can forecast the model size needed to achieve any given reducible loss (ie $D_{\mathrm{KL}}$) in nats/image for other resolutions. We find a number of additional scaling laws in specific domains: (a) we identify a scaling relation for the mutual information between captions and images in multimodal models, and show how to answer the question &#34;Is a picture worth a thousand words?&#34;; (b) in the case of mathematical problem solving, we identify scaling laws for model performance when extrapolating beyond the training distribution; (c) we finetune generative image models for ImageNet classification and find smooth scaling of the classification loss and error rate, even as the generative loss levels off. Taken together, these results strengthen the case that scaling laws have important implications for neural network performance, including on downstream tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14701v2-abstract-full').style.display = 'none'; document.getElementById('2010.14701v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20+17 pages, 33 figures; added appendix with additional language results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12976">arXiv:2010.12976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.12976">pdf</a>, <a href="https://arxiv.org/format/2010.12976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Classification of Spot-welded Joints in Laser Thermography Data using Convolutional Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=K%C3%A4stner%2C+L">Linh K盲stner</a>, <a href="/search/?searchtype=author&amp;query=Ahmadi%2C+S">Samim Ahmadi</a>, <a href="/search/?searchtype=author&amp;query=Jonietz%2C+F">Florian Jonietz</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mathias Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Jung%2C+P">Peter Jung</a>, <a href="/search/?searchtype=author&amp;query=Caire%2C+G">Giuseppe Caire</a>, <a href="/search/?searchtype=author&amp;query=Lambrecht%2C+J">Jens Lambrecht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12976v1-abstract-short" style="display: inline;"> Spot welding is a crucial process step in various industries. However, classification of spot welding quality is still a tedious process due to the complexity and sensitivity of the test material, which drain conventional approaches to its limits. In this paper, we propose an approach for quality inspection of spot weldings using images from laser thermography data.We propose data preparation appr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12976v1-abstract-full').style.display = 'inline'; document.getElementById('2010.12976v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12976v1-abstract-full" style="display: none;"> Spot welding is a crucial process step in various industries. However, classification of spot welding quality is still a tedious process due to the complexity and sensitivity of the test material, which drain conventional approaches to its limits. In this paper, we propose an approach for quality inspection of spot weldings using images from laser thermography data.We propose data preparation approaches based on the underlying physics of spot welded joints, heated with pulsed laser thermography by analyzing the intensity over time and derive dedicated data filters to generate training datasets. Subsequently, we utilize convolutional neural networks to classify weld quality and compare the performance of different models against each other. We achieve competitive results in terms of classifying the different welding quality classes compared to traditional approaches, reaching an accuracy of more than 95 percent. Finally, we explore the effect of different augmentation methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12976v1-abstract-full').style.display = 'none'; document.getElementById('2010.12976v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03394">arXiv:2010.03394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.03394">pdf</a>, <a href="https://arxiv.org/ps/2010.03394">ps</a>, <a href="https://arxiv.org/format/2010.03394">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Group Theory">math.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Logic">math.LO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Metric Geometry">math.MG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jalgebra.2024.09.005">10.1016/j.jalgebra.2024.09.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metric ultraproducts of groups -- simplicity, perfectness and torsion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gismatullin%2C+J">Jakub Gismatullin</a>, <a href="/search/?searchtype=author&amp;query=Majcher%2C+K">Krzysztof Majcher</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03394v2-abstract-short" style="display: inline;"> We characterise the simplicity of metric ultraproducts of a family of metric groups. We also present several new examples of simple groups, such as metric ultraproducts of finite and infinite symmetric groups, linear groups, and interval exchange transformation groups. Using similar methods, we also examine concepts such as genericity, perfectness, and torsion. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03394v2-abstract-full" style="display: none;"> We characterise the simplicity of metric ultraproducts of a family of metric groups. We also present several new examples of simple groups, such as metric ultraproducts of finite and infinite symmetric groups, linear groups, and interval exchange transformation groups. Using similar methods, we also examine concepts such as genericity, perfectness, and torsion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03394v2-abstract-full').style.display = 'none'; document.getElementById('2010.03394v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 20E32; 20E45; 03C20; 12L10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01325">arXiv:2009.01325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.01325">pdf</a>, <a href="https://arxiv.org/format/2009.01325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning to summarize from human feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Stiennon%2C+N">Nisan Stiennon</a>, <a href="/search/?searchtype=author&amp;query=Ouyang%2C+L">Long Ouyang</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+J">Jeff Wu</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+D+M">Daniel M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Lowe%2C+R">Ryan Lowe</a>, <a href="/search/?searchtype=author&amp;query=Voss%2C+C">Chelsea Voss</a>, <a href="/search/?searchtype=author&amp;query=Radford%2C+A">Alec Radford</a>, <a href="/search/?searchtype=author&amp;query=Amodei%2C+D">Dario Amodei</a>, <a href="/search/?searchtype=author&amp;query=Christiano%2C+P">Paul Christiano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01325v3-abstract-short" style="display: inline;"> As language models become more powerful, training and evaluation are increasingly bottlenecked by the data and metrics used for a particular task. For example, summarization models are often trained to predict human reference summaries and evaluated using ROUGE, but both of these metrics are rough proxies for what we really care about -- summary quality. In this work, we show that it is possible t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01325v3-abstract-full').style.display = 'inline'; document.getElementById('2009.01325v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01325v3-abstract-full" style="display: none;"> As language models become more powerful, training and evaluation are increasingly bottlenecked by the data and metrics used for a particular task. For example, summarization models are often trained to predict human reference summaries and evaluated using ROUGE, but both of these metrics are rough proxies for what we really care about -- summary quality. In this work, we show that it is possible to significantly improve summary quality by training a model to optimize for human preferences. We collect a large, high-quality dataset of human comparisons between summaries, train a model to predict the human-preferred summary, and use that model as a reward function to fine-tune a summarization policy using reinforcement learning. We apply our method to a version of the TL;DR dataset of Reddit posts and find that our models significantly outperform both human reference summaries and much larger models fine-tuned with supervised learning alone. Our models also transfer to CNN/DM news articles, producing summaries nearly as good as the human reference without any news-specific fine-tuning. We conduct extensive analyses to understand our human feedback dataset and fine-tuned models We establish that our reward model generalizes to new datasets, and that optimizing our reward model results in better summaries than optimizing ROUGE according to humans. We hope the evidence from our paper motivates machine learning researchers to pay closer attention to how their training loss affects the model behavior they actually want. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01325v3-abstract-full').style.display = 'none'; document.getElementById('2009.01325v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09889">arXiv:2008.09889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09889">pdf</a>, <a href="https://arxiv.org/ps/2008.09889">ps</a>, <a href="https://arxiv.org/format/2008.09889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic">math.LO</span> </div> </div> <p class="title is-5 mathjax"> Distality in valued fields and related structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aschenbrenner%2C+M">Matthias Aschenbrenner</a>, <a href="/search/?searchtype=author&amp;query=Chernikov%2C+A">Artem Chernikov</a>, <a href="/search/?searchtype=author&amp;query=Gehret%2C+A">Allen Gehret</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09889v3-abstract-short" style="display: inline;"> We investigate distality and existence of distal expansions in valued fields and related structures. In particular, we characterize distality in a large class of ordered abelian groups, provide an AKE-style characterization for henselian valued fields, and demonstrate that certain expansions of fields, e.g., the differential field of logarithmic-exponential transseries, are distal. As a new tool f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09889v3-abstract-full').style.display = 'inline'; document.getElementById('2008.09889v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09889v3-abstract-full" style="display: none;"> We investigate distality and existence of distal expansions in valued fields and related structures. In particular, we characterize distality in a large class of ordered abelian groups, provide an AKE-style characterization for henselian valued fields, and demonstrate that certain expansions of fields, e.g., the differential field of logarithmic-exponential transseries, are distal. As a new tool for analyzing valued fields we employ a relative quantifier elimination for pure short exact sequences of abelian groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09889v3-abstract-full').style.display = 'none'; document.getElementById('2008.09889v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">70 pp; final version, to appear in Trans. Amer. Math. Soc</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> Primary 03C45; 03C60; Secondary 12L12; 12J25 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13920">arXiv:2007.13920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.13920">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0EE02681F">10.1039/D0EE02681F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Re-examining rates of lithium-ion battery technology improvement and cost decline </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M+S">Micah S. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Trancik%2C+J+E">Jessika E. Trancik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13920v2-abstract-short" style="display: inline;"> Lithium-ion technologies are increasingly employed to electrify transportation and provide stationary energy storage for electrical grids, and as such their development has garnered much attention. However, their deployment is still relatively limited, and their broader adoption will depend on their potential for cost reduction and performance improvement. Understanding this potential can inform c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13920v2-abstract-full').style.display = 'inline'; document.getElementById('2007.13920v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13920v2-abstract-full" style="display: none;"> Lithium-ion technologies are increasingly employed to electrify transportation and provide stationary energy storage for electrical grids, and as such their development has garnered much attention. However, their deployment is still relatively limited, and their broader adoption will depend on their potential for cost reduction and performance improvement. Understanding this potential can inform critical climate change mitigation strategies, including public policies and technology development efforts. However, many existing models of past cost decline, which often serve as starting points for forecasting models, rely on limited data series and measures of technological progress. Here we systematically collect, harmonize, and combine various data series of price, market size, research and development, and performance of lithium-ion technologies. We then develop representative series for these measures and employ performance curve models to estimate improvement rates. We also develop a method to incorporate additional performance characteristics into these models, including energy density and specific energy performance metrics. When energy density is incorporated into the definition of service provided by a lithium-ion cell, estimated technological improvement rates increase considerably, suggesting that previously reported improvement rates might underestimate the rate of lithium-ion technologies&#39; change. Moreover, our estimates suggest the degree to which lithium-ion technologies&#39; price decline might have been limited by performance requirements other than cost per energy capacity. These rates also suggest that battery technologies developed for stationary applications, where restrictions on volume and mass are relaxed, might achieve faster cost declines, though engineering-based mechanistic cost modeling is required to further characterize this potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13920v2-abstract-full').style.display = 'none'; document.getElementById('2007.13920v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Energy &amp; Environmental Science, 2021, 14, 1635-1651 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06902">arXiv:2007.06902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.06902">pdf</a>, <a href="https://arxiv.org/format/2007.06902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Enabling Adaptive and Enhanced Acoustic Sensing Using Nonlinear Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lenk%2C+C">Claudia Lenk</a>, <a href="/search/?searchtype=author&amp;query=Seeber%2C+L">Lars Seeber</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a>, <a href="/search/?searchtype=author&amp;query=H%C3%B6vel%2C+P">Philipp H枚vel</a>, <a href="/search/?searchtype=author&amp;query=Gutschmidt%2C+S">Stefanie Gutschmidt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06902v1-abstract-short" style="display: inline;"> Transmission of real-time data is strongly increasing due to remote processing of sensor data, among other things. A route to meet this demand is adaptive sensing, in which sensors acquire only relevant information using pre-processing at sensor level. We present here adaptive acoustic sensors based on mechanical oscillators with integrated sensing and actuation. Their dynamics are shifted into a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06902v1-abstract-full').style.display = 'inline'; document.getElementById('2007.06902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06902v1-abstract-full" style="display: none;"> Transmission of real-time data is strongly increasing due to remote processing of sensor data, among other things. A route to meet this demand is adaptive sensing, in which sensors acquire only relevant information using pre-processing at sensor level. We present here adaptive acoustic sensors based on mechanical oscillators with integrated sensing and actuation. Their dynamics are shifted into a nonlinear regime using feedback or coupling. This enhances dynamic range, frequency resolution and signal-to-noise ratio. Combining tunable sensing properties with sound analysis could enable acquiring of only relevant information rather than extracting this from irrelevant data by post-processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06902v1-abstract-full').style.display = 'none'; document.getElementById('2007.06902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in 2020 IEEE International Symposium on Circuits and Systems (ISCAS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03341">arXiv:2007.03341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03341">pdf</a>, <a href="https://arxiv.org/format/2007.03341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-77979-y">10.1038/s41598-020-77979-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser excited super resolution thermal imaging for nondestructive inspection of internal defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ahmadi%2C+S">Samim Ahmadi</a>, <a href="/search/?searchtype=author&amp;query=Lecompagnon%2C+J">Julien Lecompagnon</a>, <a href="/search/?searchtype=author&amp;query=Hirsch%2C+P+D">Philipp Daniel Hirsch</a>, <a href="/search/?searchtype=author&amp;query=Burgholzer%2C+P">Peter Burgholzer</a>, <a href="/search/?searchtype=author&amp;query=Jung%2C+P">Peter Jung</a>, <a href="/search/?searchtype=author&amp;query=Caire%2C+G">Giuseppe Caire</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mathias Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03341v2-abstract-short" style="display: inline;"> A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03341v2-abstract-full').style.display = 'inline'; document.getElementById('2007.03341v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03341v2-abstract-full" style="display: none;"> A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03341v2-abstract-full').style.display = 'none'; document.getElementById('2007.03341v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00645">arXiv:2007.00645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.00645">pdf</a>, <a href="https://arxiv.org/ps/2007.00645">ps</a>, <a href="https://arxiv.org/format/2007.00645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Metric Geometry">math.MG</span> </div> </div> <p class="title is-5 mathjax"> On the Dimensions of the Realization Spaces of Polytopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rastanawi%2C+L">Laith Rastanawi</a>, <a href="/search/?searchtype=author&amp;query=Sinn%2C+R">Rainer Sinn</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+G+M">G眉nter M. Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00645v1-abstract-short" style="display: inline;"> Robertson (1988) suggested a model for the realization space of a convex d-dimensional polytope and an approach via the implicit function theorem, which -- in the case of a full rank Jacobian -- proves that the realization space is a manifold of dimension NG(P):=d(f_0+f_{d-1})-f_{0,d-1}, which is the natural guess for the dimension given by the number of variables minus the number of quadratic equ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00645v1-abstract-full').style.display = 'inline'; document.getElementById('2007.00645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00645v1-abstract-full" style="display: none;"> Robertson (1988) suggested a model for the realization space of a convex d-dimensional polytope and an approach via the implicit function theorem, which -- in the case of a full rank Jacobian -- proves that the realization space is a manifold of dimension NG(P):=d(f_0+f_{d-1})-f_{0,d-1}, which is the natural guess for the dimension given by the number of variables minus the number of quadratic equations that are used in the definition of the realization space. While this indeed holds for many natural classes of polytopes (including simple and simplicial polytopes, as well as all polytopes of dimension at most 3),and Robertson claimed this to be true for all polytopes, Mnev&#39;s (1986/1988) Universality Theorem implies that it is not true in general: Indeed, (1) the centered realization space is not a smoothly embedded manifold in general, and (2) it does not have the dimension NG(P) in general. In this paper we develop Jacobian criteria for the analysis of realization spaces. From these we get easily that for various large and natural classes of polytopes the realization spaces are indeed manifolds, whose dimensions are given by NG(P). However, we also identify the smallest polytopes where the dimension count (2) and thus Robertson&#39;s claim fails, among them the bipyramid over a triangular prism. For the property (1), we analyze the classical 24-cell: We show that the realization space has at least the dimension 48, and it has points where it is a manifold of this dimension, but it is not smoothly embedded as a manifold everywhere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00645v1-abstract-full').style.display = 'none'; document.getElementById('2007.00645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, comments most welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14165">arXiv:2005.14165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.14165">pdf</a>, <a href="https://arxiv.org/format/2005.14165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Language Models are Few-Shot Learners </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Brown%2C+T+B">Tom B. Brown</a>, <a href="/search/?searchtype=author&amp;query=Mann%2C+B">Benjamin Mann</a>, <a href="/search/?searchtype=author&amp;query=Ryder%2C+N">Nick Ryder</a>, <a href="/search/?searchtype=author&amp;query=Subbiah%2C+M">Melanie Subbiah</a>, <a href="/search/?searchtype=author&amp;query=Kaplan%2C+J">Jared Kaplan</a>, <a href="/search/?searchtype=author&amp;query=Dhariwal%2C+P">Prafulla Dhariwal</a>, <a href="/search/?searchtype=author&amp;query=Neelakantan%2C+A">Arvind Neelakantan</a>, <a href="/search/?searchtype=author&amp;query=Shyam%2C+P">Pranav Shyam</a>, <a href="/search/?searchtype=author&amp;query=Sastry%2C+G">Girish Sastry</a>, <a href="/search/?searchtype=author&amp;query=Askell%2C+A">Amanda Askell</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+S">Sandhini Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Herbert-Voss%2C+A">Ariel Herbert-Voss</a>, <a href="/search/?searchtype=author&amp;query=Krueger%2C+G">Gretchen Krueger</a>, <a href="/search/?searchtype=author&amp;query=Henighan%2C+T">Tom Henighan</a>, <a href="/search/?searchtype=author&amp;query=Child%2C+R">Rewon Child</a>, <a href="/search/?searchtype=author&amp;query=Ramesh%2C+A">Aditya Ramesh</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+D+M">Daniel M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+J">Jeffrey Wu</a>, <a href="/search/?searchtype=author&amp;query=Winter%2C+C">Clemens Winter</a>, <a href="/search/?searchtype=author&amp;query=Hesse%2C+C">Christopher Hesse</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M">Mark Chen</a>, <a href="/search/?searchtype=author&amp;query=Sigler%2C+E">Eric Sigler</a>, <a href="/search/?searchtype=author&amp;query=Litwin%2C+M">Mateusz Litwin</a>, <a href="/search/?searchtype=author&amp;query=Gray%2C+S">Scott Gray</a>, <a href="/search/?searchtype=author&amp;query=Chess%2C+B">Benjamin Chess</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14165v4-abstract-short" style="display: inline;"> Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14165v4-abstract-full').style.display = 'inline'; document.getElementById('2005.14165v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14165v4-abstract-full" style="display: none;"> Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3&#39;s few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14165v4-abstract-full').style.display = 'none'; document.getElementById('2005.14165v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40+32 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.12350">arXiv:2004.12350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.12350">pdf</a>, <a href="https://arxiv.org/format/2004.12350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> </div> <p class="title is-5 mathjax"> Equivariant Cohomology of Configuration Spaces mod 2: The State of the Art </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Blagojevi%C4%87%2C+P+V+M">Pavle V. M. Blagojevi膰</a>, <a href="/search/?searchtype=author&amp;query=Cohen%2C+F+R">Frederick R. Cohen</a>, <a href="/search/?searchtype=author&amp;query=Crabb%2C+M+C">Michael C. Crabb</a>, <a href="/search/?searchtype=author&amp;query=L%C3%BCck%2C+W">Wolfgang L眉ck</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+G+M">G眉nter M. Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.12350v2-abstract-short" style="display: inline;"> The equivariant cohomology of the classical configuration space $F(\mathbb{R}^d,n)$ has been been of great interest and has been studied intensively starting with the classical papers by Artin (1925/1947) on the theory of braids, by Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol&#39;d (1969). We give a brief treatment of the subject from the beginnings to recent developments. However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.12350v2-abstract-full').style.display = 'inline'; document.getElementById('2004.12350v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.12350v2-abstract-full" style="display: none;"> The equivariant cohomology of the classical configuration space $F(\mathbb{R}^d,n)$ has been been of great interest and has been studied intensively starting with the classical papers by Artin (1925/1947) on the theory of braids, by Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol&#39;d (1969). We give a brief treatment of the subject from the beginnings to recent developments. However, we focus on the mod 2 equivariant cohomology algebras of the classical configuration space $F(\mathbb{R}^d,n)$, as described in an influential paper by Hung (1990). We show with a new, detailed proof that his main result is correct, but that the arguments that were given by Hung on the way to his result are not, as are some of the intermediate results in his paper. This invalidates a paper by three of the present authors, Blagojevi膰, L眉ck \&amp; Ziegler (2016), who used a claimed intermediate result from Hung (1990) in order to derive lower bounds for the existence of $k$-regular and $\ell$-skew embeddings. Using our new proof for Hung&#39;s main result, we get new lower bounds for existence of highly regular embeddings: Some of them agree with the previously claimed bounds, some are weaker. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.12350v2-abstract-full').style.display = 'none'; document.getElementById('2004.12350v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">138 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 55N91; 55N25; 55R80 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09869">arXiv:2004.09869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.09869">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Metastable atomic layer deposition: 3D self-assembly towards ultra dark materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mario Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Dathe%2C+A">Andre Dathe</a>, <a href="/search/?searchtype=author&amp;query=Pollok%2C+K">Kilian Pollok</a>, <a href="/search/?searchtype=author&amp;query=Langenhorst%2C+F">Falko Langenhorst</a>, <a href="/search/?searchtype=author&amp;query=Huebner%2C+U">Uwe Huebner</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/?searchtype=author&amp;query=Schaaf%2C+P">Peter Schaaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09869v1-abstract-short" style="display: inline;"> Black body materials prove promising candidates to meet future energy demands as they are able to harvest energy from the total bandwidth of solar radiation. Here, we report on high absorption (&gt; 98 %) near-black body-like structures consisting of a silica scaffold and Ag nanoparticles with a layer thickness below 10 um; fabricated using metastable atomic layer deposition (MS-ALD) and to be applie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09869v1-abstract-full').style.display = 'inline'; document.getElementById('2004.09869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09869v1-abstract-full" style="display: none;"> Black body materials prove promising candidates to meet future energy demands as they are able to harvest energy from the total bandwidth of solar radiation. Here, we report on high absorption (&gt; 98 %) near-black body-like structures consisting of a silica scaffold and Ag nanoparticles with a layer thickness below 10 um; fabricated using metastable atomic layer deposition (MS-ALD) and to be applied for a wide solar spectrum ranging from 220 nm to 2500 nm. Several effects contribute collectively and in a synergistic manner to the high absorbance, including the pronounced heterogeneity of the nanoparticles in size and shape, particle plasmon hybridization and the trapping of omni-directionally scattered light in the 3D hierarchical hybrid structures. We propose that, in the future, MS-ALD needs to be considered as a simple and promising method to fabricate black-body materials with excellent broadband absorption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09869v1-abstract-full').style.display = 'none'; document.getElementById('2004.09869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04005">arXiv:2002.04005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04005">pdf</a>, <a href="https://arxiv.org/ps/2002.04005">ps</a>, <a href="https://arxiv.org/format/2002.04005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic">math.LO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-51466-2_18">10.1007/978-3-030-51466-2_18 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantitative Coding and Complexity Theory of Continuous Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lim%2C+D">Donghyun Lim</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04005v5-abstract-short" style="display: inline;"> Specifying a computational problem requires fixing encodings for input and output: encoding graphs as adjacency matrices, characters as integers, integers as bit strings, and vice versa. For such discrete data, the actual encoding is usually straightforward and/or complexity-theoretically inessential (up to polynomial time, say); but concerning continuous data, already real numbers naturally sugge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04005v5-abstract-full').style.display = 'inline'; document.getElementById('2002.04005v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04005v5-abstract-full" style="display: none;"> Specifying a computational problem requires fixing encodings for input and output: encoding graphs as adjacency matrices, characters as integers, integers as bit strings, and vice versa. For such discrete data, the actual encoding is usually straightforward and/or complexity-theoretically inessential (up to polynomial time, say); but concerning continuous data, already real numbers naturally suggest various encodings (so-called REPRESENTATIONS) with very different properties, ranging from the computably &#39;unreasonable&#39; binary expansion via qualitatively to polynomially and even linearly complexity-theoretically &#39;reasonable&#39; signed-digit expansion. But how to distinguish between un/suitable encodings of other spaces common in Calculus and Numerics, such as Sobolev? With respect to qualitative computability, Kreitz and Weihrauch (1985) had identified ADMISSIBILITY as crucial criterion for a representation over the Cantor space of infinite binary sequences to be &#39;reasonable&#39;; cmp. [doi:10.1007/11780342_48]. Refining computability over topological to complexity over metric spaces, we develop the theory of POLYNOMIAL/LINEAR ADMISSIBILITY as two quantitative refinements of qualitative admissibility. We also rephrase quantitative admissibility as quantitative continuity of both the representation and of its set-valued inverse, the latter adopting from [doi:10.4115/jla.2013.5.7] a new notion of &#39;sequential&#39; continuity for multifunctions. By establishing a quantitative continuous selection theorem for multifunctions between compact ultrametric spaces, we can extend our above quantitative MAIN THEOREM from functions to multifunctions aka search problems. Higher-type complexity is captured by generalizing Cantor&#39;s (and Baire&#39;s) ground space for encodings to other (compact) ULRAmetric spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04005v5-abstract-full').style.display = 'none'; document.getElementById('2002.04005v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 03B70 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.4.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.09702">arXiv:1911.09702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.09702">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0784-1">10.1038/s41567-020-0784-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanisms of Spatiotemporal Mode-Locking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wright%2C+L+G">Logan G. Wright</a>, <a href="/search/?searchtype=author&amp;query=Sidorenko%2C+P">Pavel Sidorenko</a>, <a href="/search/?searchtype=author&amp;query=Pourbeyram%2C+H">Hamed Pourbeyram</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+Z+M">Zachary M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Isichenko%2C+A">Andrei Isichenko</a>, <a href="/search/?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/?searchtype=author&amp;query=Menyuk%2C+C+R">Curtis R. Menyuk</a>, <a href="/search/?searchtype=author&amp;query=Christodoulides%2C+D+N">Demetrios N. Christodoulides</a>, <a href="/search/?searchtype=author&amp;query=Wise%2C+F+W">Frank W. Wise</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.09702v1-abstract-short" style="display: inline;"> Mode-locking is a process in which different modes of an optical resonator establish, through nonlinear interactions, stable synchronization. This self-organization underlies light sources that enable many modern scientific applications, such as ultrafast and high-field optics and frequency combs. Despite this, mode-locking has almost exclusively referred to self-organization of light in a single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09702v1-abstract-full').style.display = 'inline'; document.getElementById('1911.09702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.09702v1-abstract-full" style="display: none;"> Mode-locking is a process in which different modes of an optical resonator establish, through nonlinear interactions, stable synchronization. This self-organization underlies light sources that enable many modern scientific applications, such as ultrafast and high-field optics and frequency combs. Despite this, mode-locking has almost exclusively referred to self-organization of light in a single dimension - time. Here we present a theoretical approach, attractor dissection, for understanding three-dimensional (3D) spatiotemporal mode-locking (STML). The key idea is to find, for each distinct type of 3D pulse, a specific, minimal reduced model, and thus to identify the important intracavity effects responsible for its formation and stability. An intuition for the results follows from the &#39;minimum loss principle,&#39; the idea that a laser strives to find the configuration of intracavity light that minimizes loss (maximizes gain extraction). Through this approach, we identify and explain several distinct forms of STML. These novel phases of coherent laser light have no analogues in 1D and are supported by experimental measurements of the three-dimensional field, revealing STML states comprising more than $10^7$ cavity modes. Our results should facilitate the discovery and understanding of new higher-dimensional forms of coherent light which, in turn, may enable new applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09702v1-abstract-full').style.display = 'none'; document.getElementById('1911.09702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.05241">arXiv:1910.05241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.05241">pdf</a>, <a href="https://arxiv.org/format/1910.05241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Metric Geometry">math.MG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> Combinatorial Inscribability Obstructions for Higher-Dimensional Polytopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Doolittle%2C+J">Joseph Doolittle</a>, <a href="/search/?searchtype=author&amp;query=Labb%C3%A9%2C+J">Jean-Philippe Labb茅</a>, <a href="/search/?searchtype=author&amp;query=Lange%2C+C+E+M+C">Carsten E. M. C. Lange</a>, <a href="/search/?searchtype=author&amp;query=Sinn%2C+R">Rainer Sinn</a>, <a href="/search/?searchtype=author&amp;query=Spreer%2C+J">Jonathan Spreer</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+G+M">G眉nter M. Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.05241v2-abstract-short" style="display: inline;"> For $3$-dimensional convex polytopes, inscribability is a classical property that is relatively well-understood due to its relation with Delaunay subdivisions of the plane and hyperbolic geometry. In particular, inscribability can be tested in polynomial time, and for every $f$-vector of $3$-polytopes, there exists an inscribable polytope with that $f$-vector. For higher-dimensional polytopes, muc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05241v2-abstract-full').style.display = 'inline'; document.getElementById('1910.05241v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.05241v2-abstract-full" style="display: none;"> For $3$-dimensional convex polytopes, inscribability is a classical property that is relatively well-understood due to its relation with Delaunay subdivisions of the plane and hyperbolic geometry. In particular, inscribability can be tested in polynomial time, and for every $f$-vector of $3$-polytopes, there exists an inscribable polytope with that $f$-vector. For higher-dimensional polytopes, much less is known. Of course, for any inscribable polytope, all of its lower-dimensional faces need to be inscribable, but this condition does not appear to be very strong. We observe non-trivial new obstructions to the inscribability of polytopes that arise when imposing that a certain inscribable face be inscribed. Using this obstruction, we show that the duals of the $4$-dimensional cyclic polytopes with at least $8$ vertices---all of whose faces are inscribable---are not inscribable. This result is optimal in the following sense: We prove that the duals of the cyclic $4$-polytopes with up to $7$ vertices are, in fact, inscribable. Moreover, we interpret this obstruction combinatorially as a forbidden subposet of the face lattice of a polytope, show that $d$-dimensional cyclic polytopes with at least $d+4$ vertices are not circumscribable, and that no dual of a neighborly $4$-polytope with $8$ vertices, that is, no polytope with $f$-vector $(20,40,28,8)$, is inscribable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05241v2-abstract-full').style.display = 'none'; document.getElementById('1910.05241v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 10 Figures, 4 Tables, 2 Appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 52B11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08593">arXiv:1909.08593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.08593">pdf</a>, <a href="https://arxiv.org/format/1909.08593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Fine-Tuning Language Models from Human Preferences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+D+M">Daniel M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Stiennon%2C+N">Nisan Stiennon</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+J">Jeffrey Wu</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+T+B">Tom B. Brown</a>, <a href="/search/?searchtype=author&amp;query=Radford%2C+A">Alec Radford</a>, <a href="/search/?searchtype=author&amp;query=Amodei%2C+D">Dario Amodei</a>, <a href="/search/?searchtype=author&amp;query=Christiano%2C+P">Paul Christiano</a>, <a href="/search/?searchtype=author&amp;query=Irving%2C+G">Geoffrey Irving</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08593v2-abstract-short" style="display: inline;"> Reward learning enables the application of reinforcement learning (RL) to tasks where reward is defined by human judgment, building a model of reward by asking humans questions. Most work on reward learning has used simulated environments, but complex information about values is often expressed in natural language, and we believe reward learning for language is a key to making RL practical and saf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08593v2-abstract-full').style.display = 'inline'; document.getElementById('1909.08593v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08593v2-abstract-full" style="display: none;"> Reward learning enables the application of reinforcement learning (RL) to tasks where reward is defined by human judgment, building a model of reward by asking humans questions. Most work on reward learning has used simulated environments, but complex information about values is often expressed in natural language, and we believe reward learning for language is a key to making RL practical and safe for real-world tasks. In this paper, we build on advances in generative pretraining of language models to apply reward learning to four natural language tasks: continuing text with positive sentiment or physically descriptive language, and summarization tasks on the TL;DR and CNN/Daily Mail datasets. For stylistic continuation we achieve good results with only 5,000 comparisons evaluated by humans. For summarization, models trained with 60,000 comparisons copy whole sentences from the input but skip irrelevant preamble; this leads to reasonable ROUGE scores and very good performance according to our human labelers, but may be exploiting the fact that labelers rely on simple heuristics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08593v2-abstract-full').style.display = 'none'; document.getElementById('1909.08593v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01496">arXiv:1909.01496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.01496">pdf</a>, <a href="https://arxiv.org/format/1909.01496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Neural Linguistic Steganography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+Z+M">Zachary M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Deng%2C+Y">Yuntian Deng</a>, <a href="/search/?searchtype=author&amp;query=Rush%2C+A+M">Alexander M. Rush</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01496v1-abstract-short" style="display: inline;"> Whereas traditional cryptography encrypts a secret message into an unintelligible form, steganography conceals that communication is taking place by encoding a secret message into a cover signal. Language is a particularly pragmatic cover signal due to its benign occurrence and independence from any one medium. Traditionally, linguistic steganography systems encode secret messages in existing text&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01496v1-abstract-full').style.display = 'inline'; document.getElementById('1909.01496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01496v1-abstract-full" style="display: none;"> Whereas traditional cryptography encrypts a secret message into an unintelligible form, steganography conceals that communication is taking place by encoding a secret message into a cover signal. Language is a particularly pragmatic cover signal due to its benign occurrence and independence from any one medium. Traditionally, linguistic steganography systems encode secret messages in existing text via synonym substitution or word order rearrangements. Advances in neural language models enable previously impractical generation-based techniques. We propose a steganography technique based on arithmetic coding with large-scale neural language models. We find that our approach can generate realistic looking cover sentences as evaluated by humans, while at the same time preserving security by matching the cover message distribution with the language model distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01496v1-abstract-full').style.display = 'none'; document.getElementById('1909.01496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">EMNLP 2019 Accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.06938">arXiv:1908.06938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.06938">pdf</a>, <a href="https://arxiv.org/format/1908.06938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Encoder-Agnostic Adaptation for Conditional Language Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+Z+M">Zachary M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Melas-Kyriazi%2C+L">Luke Melas-Kyriazi</a>, <a href="/search/?searchtype=author&amp;query=Gehrmann%2C+S">Sebastian Gehrmann</a>, <a href="/search/?searchtype=author&amp;query=Rush%2C+A+M">Alexander M. Rush</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.06938v2-abstract-short" style="display: inline;"> Large pretrained language models have changed the way researchers approach discriminative natural language understanding tasks, leading to the dominance of approaches that adapt a pretrained model for arbitrary downstream tasks. However it is an open-question how to use similar techniques for language generation. Early results in the encoder-agnostic setting have been mostly negative. In this work&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06938v2-abstract-full').style.display = 'inline'; document.getElementById('1908.06938v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.06938v2-abstract-full" style="display: none;"> Large pretrained language models have changed the way researchers approach discriminative natural language understanding tasks, leading to the dominance of approaches that adapt a pretrained model for arbitrary downstream tasks. However it is an open-question how to use similar techniques for language generation. Early results in the encoder-agnostic setting have been mostly negative. In this work we explore methods for adapting a pretrained language model to arbitrary conditional input. We observe that pretrained transformer models are sensitive to large parameter changes during tuning. We therefore propose an adaptation that directly injects arbitrary conditioning into self attention, an approach we call pseudo self attention. Through experiments on four diverse conditional text generation tasks we show that this encoder-agnostic technique outperforms strong baselines, produces coherent generations, and is data efficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06938v2-abstract-full').style.display = 'none'; document.getElementById('1908.06938v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.01226">arXiv:1908.01226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.01226">pdf</a>, <a href="https://arxiv.org/ps/1908.01226">ps</a>, <a href="https://arxiv.org/format/1908.01226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Analysis of PDEs">math.AP</span> </div> </div> <p class="title is-5 mathjax"> Computability of the Solutions to Navier-Stokes Equations via Recursive Approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sun%2C+S">Shu-Ming Sun</a>, <a href="/search/?searchtype=author&amp;query=Zhong%2C+N">Ning Zhong</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.01226v1-abstract-short" style="display: inline;"> As one of the seven open problems in the addendum to their 1989 book &#34;Computability in Analysis and Physics&#34;, Pour-El and Richards proposed ``... the recursion theoretic study of particular nonlinear problems of classical importance. Examples are the Navier-Stokes equation, the KdV equation, and the complex of problems associated with Feigenbaum&#39;s constant.&#39;&#39; In this paper, we approach the questio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01226v1-abstract-full').style.display = 'inline'; document.getElementById('1908.01226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.01226v1-abstract-full" style="display: none;"> As one of the seven open problems in the addendum to their 1989 book &#34;Computability in Analysis and Physics&#34;, Pour-El and Richards proposed ``... the recursion theoretic study of particular nonlinear problems of classical importance. Examples are the Navier-Stokes equation, the KdV equation, and the complex of problems associated with Feigenbaum&#39;s constant.&#39;&#39; In this paper, we approach the question of whether the Navier-Stokes Equation admits recursive solutions in the sense of Weihrauch&#39;s Type-2 Theory of Effectivity. A natural encoding (``representation&#39;&#39;) is constructed for the space of divergence-free vector fields on 2-dimensional open square $惟= (-1, 1)^2$. This representation is shown to render first the mild solution to the Stokes Dirichlet problem and then a strong local solution to the nonlinear inhomogeneous incompressible Navier-Stokes initial value problem uniformly computable. Based on classical approaches, the proofs make use of many subtle and intricate estimates which are developed in the paper for establishing the computability results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01226v1-abstract-full').style.display = 'none'; document.getElementById('1908.01226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.13204">arXiv:1907.13204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.13204">pdf</a>, <a href="https://arxiv.org/ps/1907.13204">ps</a>, <a href="https://arxiv.org/format/1907.13204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Group Theory">math.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Logic">math.LO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jalgebra.2021.04.035">10.1016/j.jalgebra.2021.04.035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simplicity of the automorphism groups of generalised metric spaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Evans%2C+D+M">David M. Evans</a>, <a href="/search/?searchtype=author&amp;query=Hubi%C4%8Dka%2C+J">Jan Hubi膷ka</a>, <a href="/search/?searchtype=author&amp;query=Kone%C4%8Dn%C3%BD%2C+M">Mat臎j Kone膷n媒</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yibei Li</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.13204v3-abstract-short" style="display: inline;"> Tent and Ziegler proved that the automorphism group of the Urysohn sphere is simple and that the automorphism group of the Urysohn space is simple modulo bounded automorphisms. A key component of their proof is the definition of a stationary independence relation (SIR). In this paper we prove that the existence of a SIR satisfying some extra axioms is enough to prove simplicity of the automorphism&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13204v3-abstract-full').style.display = 'inline'; document.getElementById('1907.13204v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.13204v3-abstract-full" style="display: none;"> Tent and Ziegler proved that the automorphism group of the Urysohn sphere is simple and that the automorphism group of the Urysohn space is simple modulo bounded automorphisms. A key component of their proof is the definition of a stationary independence relation (SIR). In this paper we prove that the existence of a SIR satisfying some extra axioms is enough to prove simplicity of the automorphism group of a countable structure. The extra axioms are chosen with applications in mind, namely homogeneous structures which admit a &#34;metric-like amalgamation&#34;, for example all primitive 3-constrained metrically homogeneous graphs of finite diameter from Cherlin&#39;s list. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13204v3-abstract-full').style.display = 'none'; document.getElementById('1907.13204v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Journal of Algebra</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 20B27 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07049">arXiv:1907.07049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07049">pdf</a>, <a href="https://arxiv.org/ps/1907.07049">ps</a>, <a href="https://arxiv.org/format/1907.07049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz1994">10.1093/mnras/stz1994 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC 7094 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=L%C3%B6bling%2C+L">L. L枚bling</a>, <a href="/search/?searchtype=author&amp;query=Rauch%2C+T">T. Rauch</a>, <a href="/search/?searchtype=author&amp;query=Bertolami%2C+M+M+M">M. M. Miller Bertolami</a>, <a href="/search/?searchtype=author&amp;query=Todt%2C+H">H. Todt</a>, <a href="/search/?searchtype=author&amp;query=Friederich%2C+F">F. Friederich</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Werner%2C+K">K. Werner</a>, <a href="/search/?searchtype=author&amp;query=Kruk%2C+J+W">J. W. Kruk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07049v1-abstract-short" style="display: inline;"> Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the He-rich material with the H-rich envelope. Ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07049v1-abstract-full').style.display = 'inline'; document.getElementById('1907.07049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07049v1-abstract-full" style="display: none;"> Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the He-rich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of $\mathrm{H}\approx\,20\,$% by mass (AFTP), $\approx 1\,$% (LTP), or (almost) no H (VLTP). Since FTP stars exhibit intershell material at their surface, spectral analyses establish constraints for AGB nucleosynthesis and stellar evolution. We performed a spectral analysis of the so-called hybrid PG 1159-type central stars (CS) of the planetary nebulae Abell 43 and NGC7094 by means of non-local thermodynamical equilibrium models. We confirm the previously determined effective temperatures of $T_\mathrm{eff} = 115\,000\pm 5\,000\,$K and determine surface gravities of $\log (g\,/\,\mathrm{cm/s^2}) = 5.6\pm 0.1$ for both. From a comparison with AFTP evolutionary tracks, we derive stellar masses of $0.57^{+0.07}_{-0.04}\,M_\odot$ and determine the abundances of H, He, and metals up to Xe. Both CS are likely AFTP stars with a surface H mass fraction of $0.25 \pm 0.03$ and $0.15 \pm 0.03$, respectively, and a Fe deficiency indicating subsolar initial metallicities. The light metals show typical PG 1159-type abundances and the elemental composition is in good agreement with predictions from AFTP evolutionary models. However, the expansion ages do not agree with evolution timescales expected from the AFTP scenario and alternatives should be explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07049v1-abstract-full').style.display = 'none'; document.getElementById('1907.07049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.12220">arXiv:1906.12220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.12220">pdf</a>, <a href="https://arxiv.org/format/1906.12220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> </div> </div> <p class="title is-5 mathjax"> Computing Haar Measures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pauly%2C+A">Arno Pauly</a>, <a href="/search/?searchtype=author&amp;query=Seon%2C+D">Dongseong Seon</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.12220v2-abstract-short" style="display: inline;"> According to Haar&#39;s Theorem, every compact group $G$ admits a unique (regular, right and) left-invariant Borel probability measure $渭_G$. Let the Haar integral (of $G$) denote the functional $\int_G:\mathcal{C}(G)\ni f\mapsto \int f\,d渭_G$ integrating any continuous function $f:G\to\mathbb{R}$ with respect to $渭_G$. This generalizes, and recovers for the additive group $G=[0;1)\mod 1$, the usual R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.12220v2-abstract-full').style.display = 'inline'; document.getElementById('1906.12220v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.12220v2-abstract-full" style="display: none;"> According to Haar&#39;s Theorem, every compact group $G$ admits a unique (regular, right and) left-invariant Borel probability measure $渭_G$. Let the Haar integral (of $G$) denote the functional $\int_G:\mathcal{C}(G)\ni f\mapsto \int f\,d渭_G$ integrating any continuous function $f:G\to\mathbb{R}$ with respect to $渭_G$. This generalizes, and recovers for the additive group $G=[0;1)\mod 1$, the usual Riemann integral: computable (cmp. Weihrauch 2000, Theorem 6.4.1), and of computational cost characterizing complexity class #P$_1$ (cmp. Ko 1991, Theorem 5.32). We establish that in fact every computably compact computable metric group renders the Haar integral computable: once asserting computability using an elegant synthetic argument, exploiting uniqueness in a computably compact space of probability measures; and once presenting and analyzing an explicit, imperative algorithm based on &#39;maximum packings&#39; with rigorous error bounds and guaranteed convergence. Regarding computational complexity, for the groups $\mathcal{SO}(3)$ and $\mathcal{SU}(2)$ we reduce the Haar integral to and from Euclidean/Riemann integration. In particular both also characterize #P$_1$. Implementation and empirical evaluation using the iRRAM C++ library for exact real computation confirms the (thus necessary) exponential runtime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.12220v2-abstract-full').style.display = 'none'; document.getElementById('1906.12220v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 65J05; 03D78; 68Q65 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.1; F.4.1; G.1.4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06684">arXiv:1906.06684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.06684">pdf</a>, <a href="https://arxiv.org/ps/1906.06684">ps</a>, <a href="https://arxiv.org/format/1906.06684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> </div> </div> <p class="title is-5 mathjax"> Randomized Computation of Continuous Data: Is Brownian Motion Computable? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fouch%C3%A9%2C+W">Willem Fouch茅</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+H">Hyunwoo Lee</a>, <a href="/search/?searchtype=author&amp;query=Lim%2C+D">Donghyun Lim</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+S">Sewon Park</a>, <a href="/search/?searchtype=author&amp;query=Schr%C3%B6der%2C+M">Matthias Schr枚der</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06684v1-abstract-short" style="display: inline;"> We consider randomized computation of continuous data in the sense of Computable Analysis. Our first contribution formally confirms that it is no loss of generality to take as sample space the Cantor space of infinite FAIR coin flips. This extends [Schr枚der&amp;Simpson&#39;05] and [Hoyrup&amp;Rojas&#39;09] considering sequences of suitably and adaptively BIASED coins. Our second contribution is concerned with 1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06684v1-abstract-full').style.display = 'inline'; document.getElementById('1906.06684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06684v1-abstract-full" style="display: none;"> We consider randomized computation of continuous data in the sense of Computable Analysis. Our first contribution formally confirms that it is no loss of generality to take as sample space the Cantor space of infinite FAIR coin flips. This extends [Schr枚der&amp;Simpson&#39;05] and [Hoyrup&amp;Rojas&#39;09] considering sequences of suitably and adaptively BIASED coins. Our second contribution is concerned with 1D Brownian Motion (aka Wiener Process), a probability distribution on the space of continuous functions f:[0,1]-&gt;R with f(0)=0 whose computability has been conjectured [Davie&amp;Fouch茅&#39;13; arXiv:1409.4667,S6]. We establish that this (higher-type) random variable is computable iff some/every computable family of moduli of continuity (as ordinary random variables) has a computable probability distribution with respect to the Wiener Measure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06684v1-abstract-full').style.display = 'none'; document.getElementById('1906.06684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68Q87; 65C50; 60G04 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05214">arXiv:1906.05214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.05214">pdf</a>, <a href="https://arxiv.org/ps/1906.05214">ps</a>, <a href="https://arxiv.org/format/1906.05214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/ab48d7">10.1088/1361-6668/ab48d7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanowire single-photon detectors made of atomic layer-deposited niobium nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Knehr%2C+E">Emanuel Knehr</a>, <a href="/search/?searchtype=author&amp;query=Kuzmin%2C+A">Artem Kuzmin</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Mario Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Doerner%2C+S">Steffen Doerner</a>, <a href="/search/?searchtype=author&amp;query=Ilin%2C+K">Konstantin Ilin</a>, <a href="/search/?searchtype=author&amp;query=Siegel%2C+M">Michael Siegel</a>, <a href="/search/?searchtype=author&amp;query=Stolz%2C+R">Ronny Stolz</a>, <a href="/search/?searchtype=author&amp;query=Schmidt%2C+H">Heidemarie Schmidt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05214v1-abstract-short" style="display: inline;"> We demonstrate and characterize first superconducting nanowire single-photon detectors (SNSPDs) made from atomic layer-deposited (ALD) NbN layers. To assess the suitability of these films as a detector material, transport properties of bare films and bridges of different dimensions and thicknesses are investigated. Similar ratios of the measured critical current to the depairing current are obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05214v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05214v1-abstract-full" style="display: none;"> We demonstrate and characterize first superconducting nanowire single-photon detectors (SNSPDs) made from atomic layer-deposited (ALD) NbN layers. To assess the suitability of these films as a detector material, transport properties of bare films and bridges of different dimensions and thicknesses are investigated. Similar ratios of the measured critical current to the depairing current are obtained for micro-bridges made from ALD and sputtered NbN films. Furthermore, we characterized the single-photon response for 5 and 10 nm-thick nanowire detectors. A 100 nm-wide straight nanowire with a length of 5 $渭$m exhibits saturated count-rate dependencies on bias current and a cut-off wavelength in the near-infrared range. The ALD technique could open up the possibility to fabricate NbN-based detectors on the wafer scale and to conformally cover also non-planar surfaces for novel device concepts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05214v1-abstract-full').style.display = 'none'; document.getElementById('1906.05214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercond. Sci. Technol. 32, 125007 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.08294">arXiv:1905.08294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.08294">pdf</a>, <a href="https://arxiv.org/ps/1905.08294">ps</a>, <a href="https://arxiv.org/format/1905.08294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic">math.LO</span> </div> </div> <p class="title is-5 mathjax"> Trois couleurs: A new non-equational theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Martin-Pizarro%2C+A">Amador Martin-Pizarro</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">Martin Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.08294v3-abstract-short" style="display: inline;"> A first-order theory is equational if every definable set is a Boolean combination of instances of equations, that is, of formulae such that the family of finite intersections of instances has the descending chain condition. Equationality is a strengthening of stability yet so far only two examples of non-equational stable theories are known. We construct non-equational $蠅$-stable theories by a su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08294v3-abstract-full').style.display = 'inline'; document.getElementById('1905.08294v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.08294v3-abstract-full" style="display: none;"> A first-order theory is equational if every definable set is a Boolean combination of instances of equations, that is, of formulae such that the family of finite intersections of instances has the descending chain condition. Equationality is a strengthening of stability yet so far only two examples of non-equational stable theories are known. We construct non-equational $蠅$-stable theories by a suitable colouring of the free pseudospace, based on Hrushovski and Srour&#39;s original example. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08294v3-abstract-full').style.display = 'none'; document.getElementById('1905.08294v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The first author conducted research partially supported by the program GeoMod AAPG2019 (ANR-DFG). Both authors were supported by the program MTM2017-86777-P</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 03C45 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.07715">arXiv:1905.07715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.07715">pdf</a>, <a href="https://arxiv.org/format/1905.07715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Metric Geometry">math.MG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> Plus minus analogues for affine Tverberg type results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Blagojevic%2C+P+V+M">Pavle V. M. Blagojevic</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+G+M">G眉nter M. Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.07715v2-abstract-short" style="display: inline;"> The classical 1966 theorem of Tverberg with its numerous variations was and still is a motivating force behind many important developments in convex and computational geometry as well as the testing ground for methods from equivariant algebraic topology. In 2018, B谩r谩ny and Sober贸n presented a new variation, the &#34;Tverberg plus minus theorem.&#34; In this paper, we give a new proof of the Tverberg plus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.07715v2-abstract-full').style.display = 'inline'; document.getElementById('1905.07715v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.07715v2-abstract-full" style="display: none;"> The classical 1966 theorem of Tverberg with its numerous variations was and still is a motivating force behind many important developments in convex and computational geometry as well as the testing ground for methods from equivariant algebraic topology. In 2018, B谩r谩ny and Sober贸n presented a new variation, the &#34;Tverberg plus minus theorem.&#34; In this paper, we give a new proof of the Tverberg plus minus theorem, by using a projective transformation. The same tool allows us to derive plus minus analogues of all known affine Tverberg type results. In particular, we prove a plus minus analogue of the optimal colored Tverberg theorem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.07715v2-abstract-full').style.display = 'none'; document.getElementById('1905.07715v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 + \eps pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 52A35 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10