CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 256 results for author: <span class="mathjax">Kim, K H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kim, K H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kim%2C+K+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kim, K H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17716">arXiv:2412.17716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17716">pdf</a>, <a href="https://arxiv.org/format/2412.17716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad93d2">10.3847/2041-8213/ad93d2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Tale of Three: Magnetic Fields along the Orion Integral-Shaped Filament as Revealed by JCMT BISTRO survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wu%2C+J">Jintai Wu</a>, <a href="/search/?searchtype=author&amp;query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/?searchtype=author&amp;query=Poidevin%2C+F">Frederick Poidevin</a>, <a href="/search/?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+J">Junhao Liu</a>, <a href="/search/?searchtype=author&amp;query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/?searchtype=author&amp;query=Fanciullo%2C+L">Lapo Fanciullo</a>, <a href="/search/?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/?searchtype=author&amp;query=Tamura%2C+M">Motohide Tamura</a>, <a href="/search/?searchtype=author&amp;query=Tahani%2C+M">Mehrnoosh Tahani</a>, <a href="/search/?searchtype=author&amp;query=Eswaraiah%2C+C">Chakali Eswaraiah</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+H">Hua-Bai Li</a>, <a href="/search/?searchtype=author&amp;query=Berry%2C+D">David Berry</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R+S">Ray S. Furuya</a>, <a href="/search/?searchtype=author&amp;query=Coude%2C+S">Simon Coude</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17716v1-abstract-short" style="display: inline;"> As part of the BISTRO survey, we present JCMT 850 $渭$m polarimetric observations towards the Orion Integral-Shaped Filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multi-scale analysis shows that the magnetic fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17716v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17716v1-abstract-full" style="display: none;"> As part of the BISTRO survey, we present JCMT 850 $渭$m polarimetric observations towards the Orion Integral-Shaped Filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multi-scale analysis shows that the magnetic field structure in OMC-3 is very consistent at all the scales, whereas the field structure in OMC-2 shows no correlation across different scales. In OMC-1, the field retains its mean orientation from large to small scales, but shows some deviations at small scales. Histograms of relative orientations between the magnetic field and filaments reveal a bimodal distribution for OMC-1, a relatively random distribution for OMC-2, and a distribution with a predominant peak at 90$^\circ$ for OMC-3. Furthermore, the magnetic fields in OMC-1 and OMC-3 both appear to be aligned perpendicular to the fibers, which are denser structures within the filament, but the field in OMC-2 is aligned along with the fibers. All these suggest that gravity, turbulence, and magnetic field are each playing a leading role in OMC-1, 2, and 3, respectively. While OMC-2 and 3 have almost the same gas mass, density, and non-thermal velocity dispersion, there are on average younger and fewer young stellar objects in OMC-3, providing evidence that a stronger magnetic field will induce slower and less efficient star formation in molecular clouds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17716v1-abstract-full').style.display = 'none'; document.getElementById('2412.17716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in the ApJ Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, 977, L31 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03678">arXiv:2412.03678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03678">pdf</a>, <a href="https://arxiv.org/ps/2412.03678">ps</a>, <a href="https://arxiv.org/format/2412.03678">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Robust Control Barrier Function Design for High Relative Degree Systems: Application to Unknown Moving Obstacle Collision Avoidance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kwang Hak Kim</a>, <a href="/search/?searchtype=author&amp;query=Diagne%2C+M">Mamadou Diagne</a>, <a href="/search/?searchtype=author&amp;query=Krsti%C4%87%2C+M">Miroslav Krsti膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03678v1-abstract-short" style="display: inline;"> In safety-critical control, managing safety constraints with high relative degrees and uncertain obstacle dynamics pose significant challenges in guaranteeing safety performance. Robust Control Barrier Functions (RCBFs) offer a potential solution, but the non-smoothness of the standard RCBF definition can pose a challenge when dealing with multiple derivatives in high relative degree problems. As&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03678v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03678v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03678v1-abstract-full" style="display: none;"> In safety-critical control, managing safety constraints with high relative degrees and uncertain obstacle dynamics pose significant challenges in guaranteeing safety performance. Robust Control Barrier Functions (RCBFs) offer a potential solution, but the non-smoothness of the standard RCBF definition can pose a challenge when dealing with multiple derivatives in high relative degree problems. As a result, the definition was extended to the marginally more conservative smooth Robust Control Barrier Functions (sRCBF). Then, by extending the sRCBF framework to the CBF backstepping method, this paper offers a novel approach to these problems. Treating obstacle dynamics as disturbances, our approach reduces the requirement for precise state estimations of the obstacle to an upper bound on the disturbance, which simplifies implementation and enhances the robustness and applicability of CBFs in dynamic and uncertain environments. Then, we validate our technique through an example problem in which an agent, modeled using a kinematic unicycle model, aims to avoid an unknown moving obstacle. The demonstration shows that the standard CBF backstepping method is not sufficient in the presence of a moving obstacle, especially with unknown dynamics. In contrast, the proposed method successfully prevents the agent from colliding with the obstacle, proving its effectiveness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03678v1-abstract-full').style.display = 'none'; document.getElementById('2412.03678v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to American Control Conference 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01960">arXiv:2411.01960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01960">pdf</a>, <a href="https://arxiv.org/format/2411.01960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: The Magnetic Fields of the IC 348 Star-forming Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Choi%2C+Y">Youngwoo Choi</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R">Ray Furuya</a>, <a href="/search/?searchtype=author&amp;query=Lai%2C+S">Shih-Ping Lai</a>, <a href="/search/?searchtype=author&amp;query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Berry%2C+D">David Berry</a>, <a href="/search/?searchtype=author&amp;query=Byun%2C+D">Do-Young Byun</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H+V">Huei-Ru Vivien Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+W+P">Wen Ping Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M">Mike Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Z">Zhiwei Chen</a>, <a href="/search/?searchtype=author&amp;query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/?searchtype=author&amp;query=Cho%2C+J">Jungyeon Cho</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+M">Minho Choi</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+Y">Yunhee Choi</a>, <a href="/search/?searchtype=author&amp;query=Coud%C3%A9%2C+S">Simon Coud茅</a> , et al. (128 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01960v1-abstract-short" style="display: inline;"> We present 850 $渭$m polarization observations of the IC 348 star-forming region in the Perseus molecular cloud as part of the B-fields In STar-forming Region Observation (BISTRO) survey. We study the magnetic properties of two cores (HH 211 MMS and IC 348 MMS) and a filamentary structure of IC 348. We find that the overall field tends to be more perpendicular than parallel to the filamentary struc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01960v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01960v1-abstract-full" style="display: none;"> We present 850 $渭$m polarization observations of the IC 348 star-forming region in the Perseus molecular cloud as part of the B-fields In STar-forming Region Observation (BISTRO) survey. We study the magnetic properties of two cores (HH 211 MMS and IC 348 MMS) and a filamentary structure of IC 348. We find that the overall field tends to be more perpendicular than parallel to the filamentary structure of the region. The polarization fraction decreases with intensity, and we estimate the trend by power-law and the mean of the Rice distribution fittings. The power indices for the cores are much smaller than 1, indicative of possible grain growth to micron size in the cores. We also measure the magnetic field strengths of the two cores and the filamentary area separately by applying the Davis-Chandrasekhar-Fermi method and its alternative version for compressed medium. The estimated mass-to-flux ratios are 0.45-2.20 and 0.63-2.76 for HH 211 MMS and IC 348 MMS, respectively, while the ratios for the filament is 0.33-1.50. This result may suggest that the transition from subcritical to supercritical conditions occurs at the core scale ($\sim$ 0.05 pc) in the region. In addition, we study the energy balance of the cores and find that the relative strength of turbulence to the magnetic field tends to be stronger for IC 348 MMS than HH 211 MMS. The result could potentially explain the different configurations inside the two cores: a single protostellar system in HH 211 MMS and multiple protostars in IC 348 MMS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01960v1-abstract-full').style.display = 'none'; document.getElementById('2411.01960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ. 21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11018">arXiv:2410.11018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11018">pdf</a>, <a href="https://arxiv.org/format/2410.11018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0221404">10.1063/5.0221404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Feasibility of the Josephson voltage and current standards on a single chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shaikhaidarov%2C+R+S">Rais S. Shaikhaidarov</a>, <a href="/search/?searchtype=author&amp;query=Antonov%2C+I">Ilya Antonov</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyung Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Shesterikov%2C+A">Artem Shesterikov</a>, <a href="/search/?searchtype=author&amp;query=Il%27ichev%2C+S+L+E+V">Sven Linzen Evgeni V. Il&#39;ichev</a>, <a href="/search/?searchtype=author&amp;query=Antonov%2C+V+N">Vladimir N. Antonov</a>, <a href="/search/?searchtype=author&amp;query=Astafiev%2C+O+V">Oleg V. Astafiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11018v1-abstract-short" style="display: inline;"> The quantum Josephson voltage standard is well established across the metrology community for many years. It relies on the synchronisation of the flux tunneling in the S/I/S Josepson junctions (JJ) with the microwave radiation (MW). The phenomenon is called the Shapiro steps. Together with the Quantum Hall resistance standard, the voltage standard forms the foundation of electrostatic metrology. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11018v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11018v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11018v1-abstract-full" style="display: none;"> The quantum Josephson voltage standard is well established across the metrology community for many years. It relies on the synchronisation of the flux tunneling in the S/I/S Josepson junctions (JJ) with the microwave radiation (MW). The phenomenon is called the Shapiro steps. Together with the Quantum Hall resistance standard, the voltage standard forms the foundation of electrostatic metrology. The current is then defined as the ratio of the voltage and resistance. Realisation of the quantum current standard, would close the electrostatic metrological triangle of voltage-resistance-current. The current quantisation, the inverse Shapiro steps, was recently shown using the superconducting nanowires and small JJ. The effect is a synchronization of the MW with the Cooper pair tunnelling. This paves the way to combine the JJ voltage and current standards on the same chip and demonstrate feasibility of the multi-standard operation. We show the voltage and current quantization on the same chip up to frequency of 10 GHz, corresponding to the amplitudes 0.021 mV and 3.23 nA respectively. The accuracy of the voltage and current quantisation, however, is relatively low, 35 ppk and 100 ppk respectively. We discuss measures to optimise the JJs, circuit and environment to boost the amplitude and accuracy of the standards. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11018v1-abstract-full').style.display = 'none'; document.getElementById('2410.11018v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 5 pages, published in APL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 122602 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10251">arXiv:2410.10251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10251">pdf</a>, <a href="https://arxiv.org/ps/2410.10251">ps</a>, <a href="https://arxiv.org/format/2410.10251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Convergence rates for estimating multivariate scale mixtures of uniform densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+A+K+H">Arlene K. H. Kim</a>, <a href="/search/?searchtype=author&amp;query=Kur%2C+G">Gil Kur</a>, <a href="/search/?searchtype=author&amp;query=Guntuboyina%2C+A">Adityanand Guntuboyina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10251v1-abstract-short" style="display: inline;"> The Grenander estimator is a well-studied procedure for univariate nonparametric density estimation. It is usually defined as the Maximum Likelihood Estimator (MLE) over the class of all non-increasing densities on the positive real line. It can also be seen as the MLE over the class of all scale mixtures of uniform densities. Using the latter viewpoint, Pavlides and Wellner~\cite{pavlides2012nonp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10251v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10251v1-abstract-full" style="display: none;"> The Grenander estimator is a well-studied procedure for univariate nonparametric density estimation. It is usually defined as the Maximum Likelihood Estimator (MLE) over the class of all non-increasing densities on the positive real line. It can also be seen as the MLE over the class of all scale mixtures of uniform densities. Using the latter viewpoint, Pavlides and Wellner~\cite{pavlides2012nonparametric} proposed a multivariate extension of the Grenander estimator as the nonparametric MLE over the class of all multivariate scale mixtures of uniform densities. We prove that this multivariate estimator achieves the univariate cube root rate of convergence with only a logarithmic multiplicative factor that depends on the dimension. The usual curse of dimensionality is therefore avoided to some extent for this multivariate estimator. This result positively resolves a conjecture of Pavlides and Wellner~\cite{pavlides2012nonparametric} under an additional lower bound assumption. Our proof proceeds via a general accuracy result for the Hellinger accuracy of MLEs over convex classes of densities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10251v1-abstract-full').style.display = 'none'; document.getElementById('2410.10251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08952">arXiv:2410.08952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08952">pdf</a>, <a href="https://arxiv.org/format/2410.08952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Berkowicz%2C+S">Sharon Berkowicz</a>, <a href="/search/?searchtype=author&amp;query=Andronis%2C+I">Iason Andronis</a>, <a href="/search/?searchtype=author&amp;query=Girelli%2C+A">Anita Girelli</a>, <a href="/search/?searchtype=author&amp;query=Filianina%2C+M">Mariia Filianina</a>, <a href="/search/?searchtype=author&amp;query=Bin%2C+M">Maddalena Bin</a>, <a href="/search/?searchtype=author&amp;query=Nam%2C+K">Kyeongmin Nam</a>, <a href="/search/?searchtype=author&amp;query=Shin%2C+M">Myeongsik Shin</a>, <a href="/search/?searchtype=author&amp;query=Kowalewski%2C+M">Markus Kowalewski</a>, <a href="/search/?searchtype=author&amp;query=Katayama%2C+T">Tetsuo Katayama</a>, <a href="/search/?searchtype=author&amp;query=Giovambattista%2C+N">Nicolas Giovambattista</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyung Hwan Kim</a>, <a href="/search/?searchtype=author&amp;query=Perakis%2C+F">Fivos Perakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08952v1-abstract-short" style="display: inline;"> Recent experiments and theoretical studies strongly indicate that water exhibits a liquid-liquid phase transition (LLPT) in the supercooled domain. An open question is how the LLPT of water can affect the properties of aqueous solutions. Here, we study the structural and thermodynamic properties of supercooled glycerol-water microdroplets at dilute conditions ($蠂_g=3.2~\%$ glycerol mole fraction).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08952v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08952v1-abstract-full" style="display: none;"> Recent experiments and theoretical studies strongly indicate that water exhibits a liquid-liquid phase transition (LLPT) in the supercooled domain. An open question is how the LLPT of water can affect the properties of aqueous solutions. Here, we study the structural and thermodynamic properties of supercooled glycerol-water microdroplets at dilute conditions ($蠂_g=3.2~\%$ glycerol mole fraction). The combination of rapid evaporative cooling with ultrafast X-ray scattering allows us to outrun crystallization and gain access to the deeply supercooled regime down to $T=229.3$ K. We find that the density fluctuations of the glycerol-water solution or, equivalently, its isothermal compressibility, $魏_T$, increases upon cooling. This is confirmed by molecular dynamics simulations, which indicate that the presence of glycerol shifts the temperature of maximum $魏_T$ from $T=230$ K in pure water down to $T=223$ K in the solution. Our findings elucidate the interplay between the complex behavior of water, including its LLPT, and the properties of aqueous solutions at low temperatures, which can have practical consequences in cryogenic biological applications and cryopreservation techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08952v1-abstract-full').style.display = 'none'; document.getElementById('2410.08952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05707">arXiv:2409.05707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05707">pdf</a>, <a href="https://arxiv.org/format/2409.05707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantized current steps due to the synchronization of microwaves with Bloch oscillations in small Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shaikhaidarov%2C+R+S">Rais S. Shaikhaidarov</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyung Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Dunstan%2C+J">Jacob Dunstan</a>, <a href="/search/?searchtype=author&amp;query=Antonov%2C+I">Ilya Antonov</a>, <a href="/search/?searchtype=author&amp;query=Golubev%2C+D">Dmitry Golubev</a>, <a href="/search/?searchtype=author&amp;query=Antonov%2C+V+N">Vladimir N Antonov</a>, <a href="/search/?searchtype=author&amp;query=Astafiev%2C+O+V">Oleg V Astafiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05707v2-abstract-short" style="display: inline;"> Synchronization of Bloch oscillations in small Josephson junctions (JJs) under microwave radiation, which leads to current quantization, has been proposed as an effect that is dual to the appearance of Shapiro steps. This current quantization was recently demonstrated in superconducting nanowires in a compact high-impedance environment. Direct observation of current quantization in JJs would cofir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05707v2-abstract-full').style.display = 'inline'; document.getElementById('2409.05707v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05707v2-abstract-full" style="display: none;"> Synchronization of Bloch oscillations in small Josephson junctions (JJs) under microwave radiation, which leads to current quantization, has been proposed as an effect that is dual to the appearance of Shapiro steps. This current quantization was recently demonstrated in superconducting nanowires in a compact high-impedance environment. Direct observation of current quantization in JJs would cofirm the synchronization of Bloch oscillations with microwaves and help with the realisation of the metrological current standard. Here, we place JJs in a high-impedance environment and demonstrate dual Shapiro steps for frequencies up to 24 GHz (I=7.7 nA). Current quantization exists, however, only in a narrow range of JJ parameters. We carry out a systematic study to explain this by invoking the model of a JJ in the presence of thermal noise. The findings are important for fundamental physics and application in quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05707v2-abstract-full').style.display = 'none'; document.getElementById('2409.05707v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07901">arXiv:2408.07901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07901">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coupling between electrons and charge density wave fluctuation and its possible role in superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lee%2C+Y">Yeonghoon Lee</a>, <a href="/search/?searchtype=author&amp;query=Sur%2C+Y">Yeahan Sur</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+S">Sunghun Kim</a>, <a href="/search/?searchtype=author&amp;query=Cha%2C+J">Jaehun Cha</a>, <a href="/search/?searchtype=author&amp;query=Hyun%2C+J">Jounghoon Hyun</a>, <a href="/search/?searchtype=author&amp;query=Lim%2C+C">Chan-young Lim</a>, <a href="/search/?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+Y">Younsik Kim</a>, <a href="/search/?searchtype=author&amp;query=Huh%2C+S">Soonsang Huh</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+C">Changyoung Kim</a>, <a href="/search/?searchtype=author&amp;query=Ideta%2C+S">Shinichiro Ideta</a>, <a href="/search/?searchtype=author&amp;query=Tanaka%2C+K">Kiyohisa Tanaka</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+Y">Yeongkwan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07901v1-abstract-short" style="display: inline;"> In most of charge density wave (CDW) systems of different material classes, ranging from traditional correlated systems in low-dimension to recent topological systems with Kagome lattice, superconductivity emerges when the system is driven toward the quantum critical point (QCP) of CDW via external parameters of doping and pressure. Despite this rather universal trend, the essential hinge between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07901v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07901v1-abstract-full" style="display: none;"> In most of charge density wave (CDW) systems of different material classes, ranging from traditional correlated systems in low-dimension to recent topological systems with Kagome lattice, superconductivity emerges when the system is driven toward the quantum critical point (QCP) of CDW via external parameters of doping and pressure. Despite this rather universal trend, the essential hinge between CDW and superconductivity has not been established yet. Here, the evidence of coupling between electron and CDW fluctuation is reported, based on a temperature- and intercalation-dependent kink in the angle-resolved photoemission spectra of 2H-PdxTaSe2. Kinks are observed only when the system is in the CDW phase, regardless of whether a long- or short-range order is established. Notably, the coupling strength is enhanced upon long-range CDW suppression, albeit the coupling energy scale is reduced. Interestingly, estimation of the superconducting critical temperature by incorporating the observed coupling characteristics into McMillan&#39;s equation yields result closely resembling the known values of the superconducting dome. Our results thus highlight a compelling possibility that this new coupling mediates Cooper pairs, which provides new insights on the competing relationship not only for CDW, but also for other competing orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07901v1-abstract-full').style.display = 'none'; document.getElementById('2408.07901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures for the main text. To be published in Advanced Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05074">arXiv:2408.05074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05074">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Improving Mortality Prediction After Radiotherapy with Large Language Model Structuring of Large-Scale Unstructured Electronic Health Records </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Park%2C+S">Sangjoon Park</a>, <a href="/search/?searchtype=author&amp;query=Wee%2C+C+W">Chan Woo Wee</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+S+H">Seo Hee Choi</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyung Hwan Kim</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J+S">Jee Suk Chang</a>, <a href="/search/?searchtype=author&amp;query=Yoon%2C+H+I">Hong In Yoon</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+I+J">Ik Jae Lee</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+Y+B">Yong Bae Kim</a>, <a href="/search/?searchtype=author&amp;query=Cho%2C+J">Jaeho Cho</a>, <a href="/search/?searchtype=author&amp;query=Keum%2C+K+C">Ki Chang Keum</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+G">Chang Geol Lee</a>, <a href="/search/?searchtype=author&amp;query=Byun%2C+H+K">Hwa Kyung Byun</a>, <a href="/search/?searchtype=author&amp;query=Koom%2C+W+S">Woong Sub Koom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05074v5-abstract-short" style="display: inline;"> Accurate survival prediction in radiotherapy (RT) is critical for optimizing treatment decisions. This study developed and validated the RT-Surv framework, which integrates general-domain, open-source large language models (LLMs) to structure unstructured electronic health records alongside structured clinical data. Using data from 34,276 patients and an external cohort of 852, the framework succe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05074v5-abstract-full').style.display = 'inline'; document.getElementById('2408.05074v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05074v5-abstract-full" style="display: none;"> Accurate survival prediction in radiotherapy (RT) is critical for optimizing treatment decisions. This study developed and validated the RT-Surv framework, which integrates general-domain, open-source large language models (LLMs) to structure unstructured electronic health records alongside structured clinical data. Using data from 34,276 patients and an external cohort of 852, the framework successfully transformed unstructured clinical information into structured formats. Incorporating LLM-structured clinical features improved the concordance index from 0.779 to 0.842 during external validation, demonstrating a significant performance enhancement. Key LLM-structured features, such as disease extent, general condition, and RT purpose, showed high predictive importance and aligned closely with statistically significant predictors identified through conventional statistical analyses, thereby improving model interpretability. Furthermore, the framework enhanced risk stratification, enabling more distinct differentiation among low-, intermediate-, and high-risk groups (p &lt; 0.001) using LLM-structured clinical features. These findings highlight the potential of LLMs to convert unstructured data into actionable insights, improving predictive modeling and patient outcomes in clinics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05074v5-abstract-full').style.display = 'none'; document.getElementById('2408.05074v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 2 tables, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16802">arXiv:2407.16802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16802">pdf</a>, <a href="https://arxiv.org/format/2407.16802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Distribution-Aware Robust Learning from Long-Tailed Data with Noisy Labels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Baik%2C+J+S">Jae Soon Baik</a>, <a href="/search/?searchtype=author&amp;query=Yoon%2C+I+Y">In Young Yoon</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kun Hoon Kim</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J+W">Jun Won Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16802v1-abstract-short" style="display: inline;"> Deep neural networks have demonstrated remarkable advancements in various fields using large, well-annotated datasets. However, real-world data often exhibit long-tailed distributions and label noise, significantly degrading generalization performance. Recent studies addressing these issues have focused on noisy sample selection methods that estimate the centroid of each class based on high-confid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16802v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16802v1-abstract-full" style="display: none;"> Deep neural networks have demonstrated remarkable advancements in various fields using large, well-annotated datasets. However, real-world data often exhibit long-tailed distributions and label noise, significantly degrading generalization performance. Recent studies addressing these issues have focused on noisy sample selection methods that estimate the centroid of each class based on high-confidence samples within each target class. The performance of these methods is limited because they use only the training samples within each class for class centroid estimation, making the quality of centroids susceptible to long-tailed distributions and noisy labels. In this study, we present a robust training framework called Distribution-aware Sample Selection and Contrastive Learning (DaSC). Specifically, DaSC introduces a Distribution-aware Class Centroid Estimation (DaCC) to generate enhanced class centroids. DaCC performs weighted averaging of the features from all samples, with weights determined based on model predictions. Additionally, we propose a confidence-aware contrastive learning strategy to obtain balanced and robust representations. The training samples are categorized into high-confidence and low-confidence samples. Our method then applies Semi-supervised Balanced Contrastive Loss (SBCL) using high-confidence samples, leveraging reliable label information to mitigate class bias. For the low-confidence samples, our method computes Mixup-enhanced Instance Discrimination Loss (MIDL) to improve their representations in a self-supervised manner. Our experimental results on CIFAR and real-world noisy-label datasets demonstrate the superior performance of the proposed DaSC compared to previous approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16802v1-abstract-full').style.display = 'none'; document.getElementById('2407.16802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15003">arXiv:2407.15003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15003">pdf</a>, <a href="https://arxiv.org/format/2407.15003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Requiem for a drone: a machine-learning based framework for stealthy attacks against unmanned autonomous vehicles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyo Hyun Kim</a>, <a href="/search/?searchtype=author&amp;query=Kara%2C+D">Denizhan Kara</a>, <a href="/search/?searchtype=author&amp;query=Paruchuri%2C+V">Vineetha Paruchuri</a>, <a href="/search/?searchtype=author&amp;query=Mohan%2C+S">Sibin Mohan</a>, <a href="/search/?searchtype=author&amp;query=Kimberly%2C+G">Greg Kimberly</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+J">Jae Kim</a>, <a href="/search/?searchtype=author&amp;query=Eckhardt%2C+J">Josh Eckhardt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15003v1-abstract-short" style="display: inline;"> There is a space of uncertainty in the modeling of vehicular dynamics of autonomous systems due to noise in sensor readings, environmental factors or modeling errors. We present Requiem, a software-only, blackbox approach that exploits this space in a stealthy manner causing target systems, e.g., unmanned aerial vehicles (UAVs), to significantly deviate from their mission parameters. Our system ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15003v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15003v1-abstract-full" style="display: none;"> There is a space of uncertainty in the modeling of vehicular dynamics of autonomous systems due to noise in sensor readings, environmental factors or modeling errors. We present Requiem, a software-only, blackbox approach that exploits this space in a stealthy manner causing target systems, e.g., unmanned aerial vehicles (UAVs), to significantly deviate from their mission parameters. Our system achieves this by modifying sensor values, all while avoiding detection by onboard anomaly detectors (hence, &#34;stealthy&#34;). The Requiem framework uses a combination of multiple deep learning models (that we refer to as &#34;surrogates&#34; and &#34;spoofers&#34;) coupled with extensive, realistic simulations on a software-in-the-loop quadrotor UAV system. Requiem makes no assumptions about either the (types of) sensors or the onboard state estimation algorithm(s) -- it works so long as the latter is &#34;learnable&#34;. We demonstrate the effectiveness of our system using various attacks across multiple missions as well as multiple sets of statistical analyses. We show that Requiem successfully exploits the modeling errors (i.e., causes significant deviations from planned mission parameters) while remaining stealthy (no detection even after {tens of meters of deviations}) and are generalizable (Requiem has potential to work across different attacks and sensor types). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15003v1-abstract-full').style.display = 'none'; document.getElementById('2407.15003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06005">arXiv:2403.06005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06005">pdf</a>, <a href="https://arxiv.org/format/2403.06005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Multiphysics Modeling of Surface Diffusion Coupled with Large Deformation in 3D Solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+J">Jaemin Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Keon Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Bouklas%2C+N">Nikolaos Bouklas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06005v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical and computational model that explores the behavior of a thin hydrated film bonded to a non-hydrated / impermeable soft substrate in the context of surface and bulk elasticity coupled with surface diffusion kinetics. This type of coupling can manifests as an integral aspect in diverse engineering processes encountered in optical interference coatings, tissue e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06005v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06005v1-abstract-full" style="display: none;"> We present a comprehensive theoretical and computational model that explores the behavior of a thin hydrated film bonded to a non-hydrated / impermeable soft substrate in the context of surface and bulk elasticity coupled with surface diffusion kinetics. This type of coupling can manifests as an integral aspect in diverse engineering processes encountered in optical interference coatings, tissue engineering, soft electronics, and can prove important in design process for the next generation of sensors and actuators, especially as the focus is shifted to systems in smaller lengthscales. The intricate interplay between solvent diffusion and deformation of the film is governed by surface poroelasticity, and the viscoelastic deformation of the substrate. While existing methodologies offer tools for studying coupled poroelasticity involving solvent diffusion and network deformation, there exists a gap in understanding how coupled poroelastic processes occurring in a film attached to the boundary of a highly deformable solid can influence its response. In this study, we introduce a non-equilibrium thermodynamics formulation encompassing the multiphysical processes of surface poroelasticity and bulk viscoelasticity, complemented by a corresponding finite element implementation. Our approach captures the complex dynamics between the finite deformation of the substrate and solvent diffusion on the surface. This work contributes valuable insights, particularly in scenarios where the coupling of surface diffusion kinetics and substrate elasticity is an important design factor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06005v1-abstract-full').style.display = 'none'; document.getElementById('2403.06005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figues. arXiv admin note: text overlap with arXiv:2305.08805</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12728">arXiv:2401.12728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12728">pdf</a>, <a href="https://arxiv.org/format/2401.12728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-Mass Star-Forming Region NGC2264 : Global Properties and Local Magnetogravitational Configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Jia-Wei Wang</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Clarke%2C+S+D">Seamus D. Clarke</a>, <a href="/search/?searchtype=author&amp;query=Fuller%2C+G">Gary Fuller</a>, <a href="/search/?searchtype=author&amp;query=Peretto%2C+N">Nicolas Peretto</a>, <a href="/search/?searchtype=author&amp;query=Tang%2C+Y">Ya-Wen Tang</a>, <a href="/search/?searchtype=author&amp;query=Yen%2C+H">Hsi-Wei Yen</a>, <a href="/search/?searchtype=author&amp;query=Lai%2C+S">Shih-Ping Lai</a>, <a href="/search/?searchtype=author&amp;query=Ohashi%2C+N">Nagayoshi Ohashi</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R">Ray Furuya</a>, <a href="/search/?searchtype=author&amp;query=Inutsuka%2C+S">Shu-ichiro Inutsuka</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+H">Hong-Li Liu</a>, <a href="/search/?searchtype=author&amp;query=Fanciullo%2C+L">Lapo Fanciullo</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Poidevin%2C+F">Fr茅d茅rick Poidevin</a>, <a href="/search/?searchtype=author&amp;query=Tahani%2C+M">Mehrnoosh Tahani</a>, <a href="/search/?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/?searchtype=author&amp;query=Rawlings%2C+M+G">Mark G. Rawlings</a>, <a href="/search/?searchtype=author&amp;query=Chung%2C+E+J">Eun Jung Chung</a> , et al. (132 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12728v1-abstract-short" style="display: inline;"> We report 850 $渭$m continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations (BISTRO) large program on the James Clerk Maxwell Telescope (JCMT). These data reveal a well-structured non-uniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30 deg from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12728v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12728v1-abstract-full" style="display: none;"> We report 850 $渭$m continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations (BISTRO) large program on the James Clerk Maxwell Telescope (JCMT). These data reveal a well-structured non-uniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30 deg from north to east. Field strengths estimates and a virial analysis for the major clumps indicate that NGC 2264C is globally dominated by gravity while in 2264D magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type-I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type-II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and the longitudinal collapsing, driven by the region&#39;s global gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12728v1-abstract-full').style.display = 'none'; document.getElementById('2401.12728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astrophysical Journal. 43 pages, 32 figures, and 4 tables (including Appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18515">arXiv:2311.18515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18515">pdf</a>, <a href="https://arxiv.org/ps/2311.18515">ps</a>, <a href="https://arxiv.org/format/2311.18515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> </div> </div> <p class="title is-5 mathjax"> The Euler-Glaisher Theorem over Totally Real Number Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jang%2C+S+W">Se Wook Jang</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+B+M">Byeong Moon Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kwang Hoon Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18515v1-abstract-short" style="display: inline;"> In this paper, we study the partition theory over totally real number fields. Let $K$ be a totally real number field. A partition of a totally positive algebraic integer $未$ over $K$ is $位=(位_1,位_2,\ldots,位_r)$ for some totally positive integers $位_i$ such that $未=位_1+位_2+\cdots+位_r$. We find an identity to explain the number of partitions of $未$ whose parts do not belong to a given ideal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18515v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18515v1-abstract-full" style="display: none;"> In this paper, we study the partition theory over totally real number fields. Let $K$ be a totally real number field. A partition of a totally positive algebraic integer $未$ over $K$ is $位=(位_1,位_2,\ldots,位_r)$ for some totally positive integers $位_i$ such that $未=位_1+位_2+\cdots+位_r$. We find an identity to explain the number of partitions of $未$ whose parts do not belong to a given ideal $\mathfrak a$. We obtain a generalization of the Euler-Glaisher Theorem over totally real number fields as a corollary. We also prove that the number of solutions to the equation $未=x_1+2x_2+\cdots+nx_n$ with $x_i$ totally positive or $0$ is equal to that of chain partitions of $未$. A chain partition of $未$ is a partition $位=(位_1,位_2,\ldots,位_r)$ of $未$ such that $位_{i+1}-位_i$ is totally positive or $0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18515v1-abstract-full').style.display = 'none'; document.getElementById('2311.18515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 11P84; 11R80 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18514">arXiv:2311.18514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18514">pdf</a>, <a href="https://arxiv.org/ps/2311.18514">ps</a>, <a href="https://arxiv.org/format/2311.18514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> </div> </div> <p class="title is-5 mathjax"> The Sylvester Theorem and the Rogers-Ramanujan Identities over Totally Real Number Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jang%2C+S+W">Se Wook Jang</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+B+M">Byeong Moon Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kwang Hoon Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18514v1-abstract-short" style="display: inline;"> In this paper, we prove two identities on the partition of a totally positive algebraic integer over a totally real number field which are the generalization of the Sylvester Theorem and that of the Rogers-Ramanujan Identities. Additionally, we give an another version of generalized Rogers-Ramanujan Identities. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18514v1-abstract-full" style="display: none;"> In this paper, we prove two identities on the partition of a totally positive algebraic integer over a totally real number field which are the generalization of the Sylvester Theorem and that of the Rogers-Ramanujan Identities. Additionally, we give an another version of generalized Rogers-Ramanujan Identities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18514v1-abstract-full').style.display = 'none'; document.getElementById('2311.18514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 11P84; 11R80 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11619">arXiv:2311.11619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11619">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> One-ninth magnetization plateau stabilized by spin entanglement in a kagome antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jeon%2C+S">Sungmin Jeon</a>, <a href="/search/?searchtype=author&amp;query=Wulferding%2C+D">Dirk Wulferding</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+Y">Youngsu Choi</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+S">Seungyeol Lee</a>, <a href="/search/?searchtype=author&amp;query=Nam%2C+K">Kiwan Nam</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/?searchtype=author&amp;query=Jang%2C+T">Tae-Hwan Jang</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+J">Jae-Hoon Park</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+S">Suheon Lee</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+S">Sungkyun Choi</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C">Chanhyeon Lee</a>, <a href="/search/?searchtype=author&amp;query=Nojiri%2C+H">Hiroyuki Nojiri</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+K">Kwang-Yong Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11619v1-abstract-short" style="display: inline;"> The spin-1/2 antiferromagnetic Heisenberg model on a Kagome lattice is geometrically frustrated, which is expected to promote the formation of many-body quantum entangled states. The most sought-after among these is the quantum spin liquid phase, but magnetic analogs of liquid, solid, and supersolid phases may also occur, producing fractional plateaus in the magnetization. Here, we investigate the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11619v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11619v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11619v1-abstract-full" style="display: none;"> The spin-1/2 antiferromagnetic Heisenberg model on a Kagome lattice is geometrically frustrated, which is expected to promote the formation of many-body quantum entangled states. The most sought-after among these is the quantum spin liquid phase, but magnetic analogs of liquid, solid, and supersolid phases may also occur, producing fractional plateaus in the magnetization. Here, we investigate the experimental realization of these predicted phases in the Kagome material YCu3(OD)6+xBr3-x (x=0.5). By combining thermodynamic and Raman spectroscopic techniques, we provide evidence for fractionalized spinon excitations and observe the emergence of a 1/9 magnetization plateau. These observations establish YCu3(OD)6+xBr3-x as a model material for exploring the 1/9 plateau phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11619v1-abstract-full').style.display = 'none'; document.getElementById('2311.11619v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Nature Physics, 33 pagses, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.12648">arXiv:2309.12648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.12648">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.115143">10.1103/PhysRevB.108.115143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fingerprints for anisotropic Kondo lattice behavior in the quasiparticle dynamics of the kagome metal Ni$_3$In </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gim%2C+D">Dong-Hyeon Gim</a>, <a href="/search/?searchtype=author&amp;query=Wulferding%2C+D">Dirk Wulferding</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C">Chulwan Lee</a>, <a href="/search/?searchtype=author&amp;query=Cui%2C+H">Hengbo Cui</a>, <a href="/search/?searchtype=author&amp;query=Nam%2C+K">Kiwan Nam</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+M+J">Myung Joon Han</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.12648v1-abstract-short" style="display: inline;"> We present a temperature- and polarization-resolved phononic and electronic Raman scattering study in combination with the first-principles calculations on the kagome metal Ni$_3$In with anisotropic transport properties and non-Fermi liquid behavior. At temperatures below 50 K and down to 2 K, several Raman phonon modes, including particularly an interlayer shear mode, exhibit appreciable frequenc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12648v1-abstract-full').style.display = 'inline'; document.getElementById('2309.12648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.12648v1-abstract-full" style="display: none;"> We present a temperature- and polarization-resolved phononic and electronic Raman scattering study in combination with the first-principles calculations on the kagome metal Ni$_3$In with anisotropic transport properties and non-Fermi liquid behavior. At temperatures below 50 K and down to 2 K, several Raman phonon modes, including particularly an interlayer shear mode, exhibit appreciable frequency and linewidth renormalization, reminiscent of the onset of the Kondo screening without an accompanying structural or magnetic phase transition. In addition, a low-energy electronic continuum observed in polarization perpendicular to the kagome planes reveals strong temperature dependence below 50 K, implying thermal depletion of incoherent quasiparticles, while the in-plane continuum remains invariant. These concomitant electronic and phononic Raman signatures suggest that Ni$_3$In undergoes an anisotropic electronic crossover from an incoherent to a coherent Kondo lattice regime below 50 K. We discuss the origin of the anisotropic incoherent-coherent crossover in association with the possible anisotropic Kondo hybridization involving localized Ni-$3d_{xz}$ flat-band electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12648v1-abstract-full').style.display = 'none'; document.getElementById('2309.12648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures; published in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 115143 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09683">arXiv:2309.09683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09683">pdf</a>, <a href="https://arxiv.org/format/2309.09683">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> TRAO Survey of Nearby Filamentary Molecular clouds, the Universal Nursery of Stars (TRAO-FUNS). III. Filaments and dense cores in the NGC 2068 and NGC 2071 regions of Orion B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yoo%2C+H">Hyunju Yoo</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/?searchtype=author&amp;query=Chung%2C+E+J">Eun Jung Chung</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+S">Shinyoung Kim</a>, <a href="/search/?searchtype=author&amp;query=Tafalla%2C+M">Mario Tafalla</a>, <a href="/search/?searchtype=author&amp;query=Caselli%2C+P">Paola Caselli</a>, <a href="/search/?searchtype=author&amp;query=Myers%2C+P+C">Philip C. Myers</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyoung Hee Kim</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Tie Liu</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+J">Jongsoo Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09683v1-abstract-short" style="display: inline;"> We present the results of molecular line observations performed toward the NGC 2068 and NGC 2071 regions of the Orion B cloud as the TRAO-FUNS project to study the roles of the filamentary structure in the formation of dense cores and stars in the clouds. Gaussian decomposition for the C$^{18}$O spectra with multiple velocity components and application of a Friends-of-Friends algorithm for the dec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09683v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09683v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09683v1-abstract-full" style="display: none;"> We present the results of molecular line observations performed toward the NGC 2068 and NGC 2071 regions of the Orion B cloud as the TRAO-FUNS project to study the roles of the filamentary structure in the formation of dense cores and stars in the clouds. Gaussian decomposition for the C$^{18}$O spectra with multiple velocity components and application of a Friends-of-Friends algorithm for the decomposed components allowed us to identify a few tens of velocity coherent filaments. We also identified 48 dense cores from the observations of N$_2$H$^{+}$ using a core finding tool, FellWalker. We made the virial analysis for these filaments and dense cores, finding that the filaments with N$_2$H$^{+}$ dense core are thermally supercritical, and the filaments with larger ratio between the line mass and the thermal critical line mass tend to have more dense cores. We investigated the contribution of the nonthermal motions in dense cores and filaments, showing the dense cores are mostly in transonic/subsonic motions while their natal filaments are mostly in supersonic motions. This may indicates that gas turbulent motions in the filaments have been dissipated at the core scale to form the dense cores there. The filaments with (dynamically evolved) dense cores in infalling motions or with NH$_2$D bright (or chemically evolved) dense cores are all found to be gravitationally critical. Therefore, the criticality of the filament is thought to provide a key condition for its fragmentation, the formation of dense cores, and their kinematical and chemical evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09683v1-abstract-full').style.display = 'none'; document.getElementById('2309.09683v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 34 figures (more figures are available in the online journal), 4 tables, Accepted for publication in Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03361">arXiv:2306.03361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.03361">pdf</a>, <a href="https://arxiv.org/format/2306.03361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> WHAT, WHEN, and HOW to Ground: Designing User Persona-Aware Conversational Agents for Engaging Dialogue </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kwon%2C+D">Deuksin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+S">Sunwoo Lee</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Ki Hyun Kim</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+S">Seojin Lee</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+T">Taeyoon Kim</a>, <a href="/search/?searchtype=author&amp;query=Davis%2C+E">Eric Davis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03361v3-abstract-short" style="display: inline;"> This paper presents a method for building a personalized open-domain dialogue system to address the WWH (WHAT, WHEN, and HOW) problem for natural response generation in a commercial setting, where personalized dialogue responses are heavily interleaved with casual response turns. The proposed approach involves weighted dataset blending, negative persona information augmentation methods, and the de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03361v3-abstract-full').style.display = 'inline'; document.getElementById('2306.03361v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03361v3-abstract-full" style="display: none;"> This paper presents a method for building a personalized open-domain dialogue system to address the WWH (WHAT, WHEN, and HOW) problem for natural response generation in a commercial setting, where personalized dialogue responses are heavily interleaved with casual response turns. The proposed approach involves weighted dataset blending, negative persona information augmentation methods, and the design of personalized conversation datasets to address the challenges of WWH in personalized, open-domain dialogue systems. Our work effectively balances dialogue fluency and tendency to ground, while also introducing a response-type label to improve the controllability and explainability of the grounded responses. The combination of these methods leads to more fluent conversations, as evidenced by subjective human evaluations as well as objective evaluations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03361v3-abstract-full').style.display = 'none'; document.getElementById('2306.03361v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in ACL 2023 Industry Track</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> I.2.1; I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12655">arXiv:2305.12655</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12655">pdf</a>, <a href="https://arxiv.org/ps/2305.12655">ps</a>, <a href="https://arxiv.org/format/2305.12655">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> </div> </div> <p class="title is-5 mathjax"> On the Boomerang Spectrum of Power Permutation $X^{2^{3n}+2^{2n}+2^{n}-1}$ over $\GF{2^{4n}}$ and Extraction of Optimal Uniformity Boomerang Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kwang Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Mesnager%2C+S">Sihem Mesnager</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+Y+B">Ye Bong Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12655v1-abstract-short" style="display: inline;"> A substitution box (S-box) in a symmetric primitive is a mapping $F$ that takes $k$ binary inputs and whose image is a binary $m$-tuple for some positive integers $k$ and $m$, which is usually the only nonlinear element of the most modern block ciphers. Therefore, employing S-boxes with good cryptographic properties to resist various attacks is significant. For power permutation $F$ over finite fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12655v1-abstract-full').style.display = 'inline'; document.getElementById('2305.12655v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12655v1-abstract-full" style="display: none;"> A substitution box (S-box) in a symmetric primitive is a mapping $F$ that takes $k$ binary inputs and whose image is a binary $m$-tuple for some positive integers $k$ and $m$, which is usually the only nonlinear element of the most modern block ciphers. Therefore, employing S-boxes with good cryptographic properties to resist various attacks is significant. For power permutation $F$ over finite field $\GF{2^k}$, the multiset of values $尾_F(1,b)=\#\{x\in \GF{2^k}\mid F^{-1}(F(x)+b)+F^{-1}(F(x+1)+b)=1\}$ for $b\in \GF{2^k}$ is called the boomerang spectrum of $F$. The maximum value in the boomerang spectrum is called boomerang uniformity. This paper determines the boomerang spectrum of the power permutation $X^{2^{3n}+2^{2n}+2^{n}-1}$ over $\GF{2^{4n}}$. The boomerang uniformity of that power permutation is $3(2^{2n}-2^n)$. However, on a large subset $\{b\in \GF{2^{4n}}\mid \mathbf{Tr}_n^{4n}(b)\neq 0\}$ of $\GF{2^{4n}}$ of cardinality $2^{4n}-2^{3n}$ (where $ \mathbf{Tr}_n^{4n}$ is the (relative) trace function from $\GF{2^{4n}}$ to $\GF{2^{n}}$), we prove that the studied function $F$ achieves the optimal boomerang uniformity $2$. It is known that obtaining such functions is a challenging problem. More importantly, the set of $b$&#39;s giving this value is explicitly determined for any value in the boomerang spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12655v1-abstract-full').style.display = 'none'; document.getElementById('2305.12655v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12645">arXiv:2305.12645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12645">pdf</a>, <a href="https://arxiv.org/ps/2305.12645">ps</a>, <a href="https://arxiv.org/format/2305.12645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> </div> </div> <p class="title is-5 mathjax"> Solving $X^{2^{2k}+2^{k}+1}+(X+1)^{2^{2k}+2^{k}+1}=b$ over $\GF{2^{4k}}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kwang Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Mesnager%2C+S">Sihem Mesnager</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+C+H">Chung Hyok Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12645v1-abstract-short" style="display: inline;"> Let $F(X)=X^{2^{2k}+2^k+1}$ be the power function over the finite field $\GF{2^{4k}}$ which is known as the Bracken-Leander function. In \cite{BCC10,BL10,CV20,Fu22,XY17}, it was proved that the number of solutions in $\GF{q^4}$ to the equation $F(X)+F(X+1)=b$ is in $\{0,2,4\}$ for any $b\in \GF{q^4}$ and the number of the $b$ giving $i$ solutions have been determined for every $i$. However, no pap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12645v1-abstract-full').style.display = 'inline'; document.getElementById('2305.12645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12645v1-abstract-full" style="display: none;"> Let $F(X)=X^{2^{2k}+2^k+1}$ be the power function over the finite field $\GF{2^{4k}}$ which is known as the Bracken-Leander function. In \cite{BCC10,BL10,CV20,Fu22,XY17}, it was proved that the number of solutions in $\GF{q^4}$ to the equation $F(X)+F(X+1)=b$ is in $\{0,2,4\}$ for any $b\in \GF{q^4}$ and the number of the $b$ giving $i$ solutions have been determined for every $i$. However, no paper provided a direct and complete method to solve such an equation, and this problem remained open. This article presents a direct technique to derive an explicit solution to that equation. The main result in \cite{BCC10,BL10,Fu22,XY17}, determining differential spectrum of $F(X)=X^{2^{2k}+2^k+1}$ over $\GF{2^{4k}}$, is re-derived simply from our results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12645v1-abstract-full').style.display = 'none'; document.getElementById('2305.12645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11306">arXiv:2305.11306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11306">pdf</a>, <a href="https://arxiv.org/format/2305.11306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd6f2">10.3847/1538-4357/acd6f2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Karoly%2C+J">Janik Karoly</a>, <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Berry%2C+D">David Berry</a>, <a href="/search/?searchtype=author&amp;query=Whitworth%2C+A">Anthony Whitworth</a>, <a href="/search/?searchtype=author&amp;query=Kirk%2C+J">Jason Kirk</a>, <a href="/search/?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/?searchtype=author&amp;query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/?searchtype=author&amp;query=Coude%2C+S">Simon Coude</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Jia-Wei Wang</a>, <a href="/search/?searchtype=author&amp;query=Hasegawa%2C+T">Tetsuo Hasegawa</a>, <a href="/search/?searchtype=author&amp;query=Lai%2C+S">Shih-Ping Lai</a>, <a href="/search/?searchtype=author&amp;query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/?searchtype=author&amp;query=Byun%2C+D">Do-Young Byun</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H+V">Huei-Ru Vivien Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+W+P">Wen Ping Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M">Mike Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Z">Zhiwei Chen</a>, <a href="/search/?searchtype=author&amp;query=Cho%2C+J">Jungyeon Cho</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+M">Minho Choi</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11306v2-abstract-short" style="display: inline;"> We present observations of polarized dust emission at 850 $渭$m from the L43 molecular cloud which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense ($N_{\rm H_2}\sim 10^{22}$-10$^{23}$ cm$^{-2}$) complex molecular cloud with a submillimetre-bright starless core and two protostellar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11306v2-abstract-full').style.display = 'inline'; document.getElementById('2305.11306v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11306v2-abstract-full" style="display: none;"> We present observations of polarized dust emission at 850 $渭$m from the L43 molecular cloud which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense ($N_{\rm H_2}\sim 10^{22}$-10$^{23}$ cm$^{-2}$) complex molecular cloud with a submillimetre-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to $\sim$160$\pm$30 $渭$G in the main starless core and up to $\sim$90$\pm$40 $渭$G in the more diffuse, extended region. These field strengths give magnetically super- and sub-critical values respectively and both are found to be roughly trans-Alfv茅nic. We also present a new method of data reduction for these denser but fainter objects like starless cores. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11306v2-abstract-full').style.display = 'none'; document.getElementById('2305.11306v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ. 23 pages, 9 figures (7 main text, 2 appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00215">arXiv:2305.00215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00215">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of linear magnetoelectric effect in a Dirac magnon antiferromagnet Cu$_3$TeO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shahee%2C+A">Aga Shahee</a>, <a href="/search/?searchtype=author&amp;query=Yoo%2C+K">Kyongjun Yoo</a>, <a href="/search/?searchtype=author&amp;query=Koteswararao%2C+B">B. Koteswararao</a>, <a href="/search/?searchtype=author&amp;query=Ter-Oganessian%2C+N+V">N. V. Ter-Oganessian</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00215v1-abstract-short" style="display: inline;"> Cu$_3$TeO$_6$, a three-dimensional antiferromagnet forming a unique spin-web lattice of spin-1/2 Cu2+ ions below the Neel temperature T$_N$ = 62 K, has recently been found to exhibit topological Dirac or nodal magnon dispersion. In this study, we report the discovery of the linear magnetoelectric (ME) effects in Cu$_3$TeO$_6$ below TN. Our pyroelectric current measurements at a constant magnetic f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00215v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00215v1-abstract-full" style="display: none;"> Cu$_3$TeO$_6$, a three-dimensional antiferromagnet forming a unique spin-web lattice of spin-1/2 Cu2+ ions below the Neel temperature T$_N$ = 62 K, has recently been found to exhibit topological Dirac or nodal magnon dispersion. In this study, we report the discovery of the linear magnetoelectric (ME) effects in Cu$_3$TeO$_6$ below TN. Our pyroelectric current measurements at a constant magnetic field (H) reveal a linear increase of electric polarization (P) with H for both P // H and P $\perp$ H configurations; a maximum P // [110] = 20 $渭$C/m$^2$ is obtained at u0H // [1-10] = 14 T, corresponding to a linear ME coefficient 1.8 ps/m. Magnetic point group analysis and Monte-Carlo simulations confirm that finite linear ME coefficients are allowed in the off-diagonal and diagonal ME tensor components, consistent with the magnetic point group of $\bar{3}&#39;$. As the parity-time symmetry can be broken in the presence of H or electric field E in the linear ME materials, we envisage that Cu$_3$TeO$_6$ should exhibit a H- or E-induced transformation in the topological magnon dispersion from a Dirac point/nodal line type into two Weyl point types. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00215v1-abstract-full').style.display = 'none'; document.getElementById('2305.00215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12058">arXiv:2302.12058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.12058">pdf</a>, <a href="https://arxiv.org/format/2302.12058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acbea4">10.3847/1538-4357/acbea4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First BISTRO observations of the dark cloud Taurus L1495A-B10: the role of the magnetic field in the earliest stages of low-mass star formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Karoly%2C+J">Janik Karoly</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Whitworth%2C+A">Anthony Whitworth</a>, <a href="/search/?searchtype=author&amp;query=Kirk%2C+J">Jason Kirk</a>, <a href="/search/?searchtype=author&amp;query=Berry%2C+D">David Berry</a>, <a href="/search/?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/?searchtype=author&amp;query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/?searchtype=author&amp;query=Coude%2C+S">Simon Coude</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Jia-Wei Wang</a>, <a href="/search/?searchtype=author&amp;query=Hasegawa%2C+T">Tetsuo Hasegawa</a>, <a href="/search/?searchtype=author&amp;query=Lai%2C+S">Shih-Ping Lai</a>, <a href="/search/?searchtype=author&amp;query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/?searchtype=author&amp;query=Byun%2C+D">Do-Young Byun</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H+V">Huei-Ru Vivien Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+W+P">Wen Ping Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M">Mike Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Z">Zhiwei Chen</a>, <a href="/search/?searchtype=author&amp;query=Cho%2C+J">Jungyeon Cho</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+M">Minho Choi</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12058v1-abstract-short" style="display: inline;"> We present BISTRO Survey 850 渭m dust emission polarisation observations of the L1495A-B10 region of the Taurus molecular cloud, taken at the JCMT. We observe a roughly triangular network of dense filaments. We detect 9 of the dense starless cores embedded within these filaments in polarisation, finding that the plane-of-sky orientation of the core-scale magnetic field lies roughly perpendicular to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12058v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12058v1-abstract-full" style="display: none;"> We present BISTRO Survey 850 渭m dust emission polarisation observations of the L1495A-B10 region of the Taurus molecular cloud, taken at the JCMT. We observe a roughly triangular network of dense filaments. We detect 9 of the dense starless cores embedded within these filaments in polarisation, finding that the plane-of-sky orientation of the core-scale magnetic field lies roughly perpendicular to the filaments in almost all cases. We also find that the large-scale magnetic field orientation measured by Planck is not correlated with any of the core or filament structures, except in the case of the lowest-density core. We propose a scenario for early prestellar evolution that is both an extension to, and consistent with, previous models, introducing an additional evolutionary transitional stage between field-dominated and matter-dominated evolution, observed here for the first time. In this scenario, the cloud collapses first to a sheet-like structure. Uniquely, we appear to be seeing this sheet almost face-on. The sheet fragments into filaments, which in turn form cores. However, the material must reach a certain critical density before the evolution changes from being field-dominated to being matter-dominated. We measure the sheet surface density and the magnetic field strength at that transition for the first time and show consistency with an analytical prediction that had previously gone untested for over 50 years (Mestel 1965). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12058v1-abstract-full').style.display = 'none'; document.getElementById('2302.12058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures. ApJ accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03368">arXiv:2302.03368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.03368">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38551-0">10.1038/s41467-023-38551-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Melting Domain Size and Recrystallization Dynamics of Ice Revealed by Time-Resolved X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yang%2C+C">Cheolhee Yang</a>, <a href="/search/?searchtype=author&amp;query=Ladd-Parada%2C+M">Marjorie Ladd-Parada</a>, <a href="/search/?searchtype=author&amp;query=Nam%2C+K">Kyeongmin Nam</a>, <a href="/search/?searchtype=author&amp;query=Jeong%2C+S">Sangmin Jeong</a>, <a href="/search/?searchtype=author&amp;query=You%2C+S">Seonju You</a>, <a href="/search/?searchtype=author&amp;query=Sp%C3%A4h%2C+A">Alexander Sp盲h</a>, <a href="/search/?searchtype=author&amp;query=Pathak%2C+H">Harshad Pathak</a>, <a href="/search/?searchtype=author&amp;query=Eklund%2C+T">Tobias Eklund</a>, <a href="/search/?searchtype=author&amp;query=Lane%2C+T+J">Thomas J. Lane</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+J+H">Jae Hyuk Lee</a>, <a href="/search/?searchtype=author&amp;query=Eom%2C+I">Intae Eom</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+M">Minseok Kim</a>, <a href="/search/?searchtype=author&amp;query=Winkel%2C+K+A">Katrin Amann- Winkel</a>, <a href="/search/?searchtype=author&amp;query=Perakis%2C+F">Fivos Perakis</a>, <a href="/search/?searchtype=author&amp;query=Nilsson%2C+A">Anders Nilsson</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyung Hwan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03368v1-abstract-short" style="display: inline;"> The phase transition between water and ice is ubiquitous and one of the most important phenomena in nature. Here, we performed time-resolved x-ray scattering experiments capturing the melting and recrystallization dynamics of ice. The ultrafast heating of ice I is induced by an IR laser pulse and probed with an intense x-ray pulse, which provided us with direct structural information on different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03368v1-abstract-full').style.display = 'inline'; document.getElementById('2302.03368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03368v1-abstract-full" style="display: none;"> The phase transition between water and ice is ubiquitous and one of the most important phenomena in nature. Here, we performed time-resolved x-ray scattering experiments capturing the melting and recrystallization dynamics of ice. The ultrafast heating of ice I is induced by an IR laser pulse and probed with an intense x-ray pulse, which provided us with direct structural information on different length scales. From the wide-angle x-ray scattering (WAXS) patterns, the molten fraction, as well as the corresponding temperature at each delay, were determined. The small-angle x-ray scattering (SAXS) patterns, together with the information extracted from the WAXS analysis, provided the time-dependent change of the size and the number of the liquid domains. The results show partial melting (~13 %) and superheating of ice occurring at around 20 ns. After 100 ns, the average size of the liquid domains grows from about 2.5 nm to 4.5 nm by the coalescence of approximately six adjacent domains. Subsequently, we capture the recrystallization of the liquid domains, which occurs on microsecond timescales due to the cooling by heat dissipation and results to a decrease of the average liquid domain size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03368v1-abstract-full').style.display = 'none'; document.getElementById('2302.03368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08587">arXiv:2301.08587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08587">pdf</a>, <a href="https://arxiv.org/format/2301.08587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L051101">10.1103/PhysRevD.107.L051101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for the decay $B^0_s \rightarrow 蟺^0 蟺^0$ at Belle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Belle+Collaboration"> Belle Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Borah%2C+J">J. Borah</a>, <a href="/search/?searchtype=author&amp;query=Bhuyan%2C+B">B. Bhuyan</a>, <a href="/search/?searchtype=author&amp;query=Adachi%2C+I">I. Adachi</a>, <a href="/search/?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/?searchtype=author&amp;query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/?searchtype=author&amp;query=Aulchenko%2C+V">V. Aulchenko</a>, <a href="/search/?searchtype=author&amp;query=Aushev%2C+T">T. Aushev</a>, <a href="/search/?searchtype=author&amp;query=Ayad%2C+R">R. Ayad</a>, <a href="/search/?searchtype=author&amp;query=Babu%2C+V">V. Babu</a>, <a href="/search/?searchtype=author&amp;query=Bahinipati%2C+S">S. Bahinipati</a>, <a href="/search/?searchtype=author&amp;query=Banerjee%2C+S">Sw. Banerjee</a>, <a href="/search/?searchtype=author&amp;query=Behera%2C+P">P. Behera</a>, <a href="/search/?searchtype=author&amp;query=Belous%2C+K">K. Belous</a>, <a href="/search/?searchtype=author&amp;query=Bennett%2C+J">J. Bennett</a>, <a href="/search/?searchtype=author&amp;query=Bessner%2C+M">M. Bessner</a>, <a href="/search/?searchtype=author&amp;query=Bhardwaj%2C+V">V. Bhardwaj</a>, <a href="/search/?searchtype=author&amp;query=Bilka%2C+T">T. Bilka</a>, <a href="/search/?searchtype=author&amp;query=Biswas%2C+D">D. Biswas</a>, <a href="/search/?searchtype=author&amp;query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/?searchtype=author&amp;query=Bozek%2C+A">A. Bozek</a>, <a href="/search/?searchtype=author&amp;query=Bra%C4%8Dko%2C+M">M. Bra膷ko</a>, <a href="/search/?searchtype=author&amp;query=Branchini%2C+P">P. Branchini</a>, <a href="/search/?searchtype=author&amp;query=Browder%2C+T+E">T. E. Browder</a>, <a href="/search/?searchtype=author&amp;query=Budano%2C+A">A. Budano</a> , et al. (189 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08587v1-abstract-short" style="display: inline;"> We report the results of the first search for the decay $B_s^0\rightarrow蟺^0蟺^0$ using $121.4\ \rm fb^{-1}$ of data collected at the $违(5\rm S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. We observe no signal and set a 90\% confidence level upper limit of $7.7\times 10^{-6}$ on the $B_s^0\rightarrow蟺^0蟺^0$ decay branching fraction. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08587v1-abstract-full" style="display: none;"> We report the results of the first search for the decay $B_s^0\rightarrow蟺^0蟺^0$ using $121.4\ \rm fb^{-1}$ of data collected at the $违(5\rm S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. We observe no signal and set a 90\% confidence level upper limit of $7.7\times 10^{-6}$ on the $B_s^0\rightarrow蟺^0蟺^0$ decay branching fraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08587v1-abstract-full').style.display = 'none'; document.getElementById('2301.08587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Belle Preprint 2022-31, KEK Preprint 2022-42 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 107 (2023) 5, L051101 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10884">arXiv:2212.10884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10884">pdf</a>, <a href="https://arxiv.org/format/2212.10884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acac81">10.3847/1538-4357/acac81 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JCMT BISTRO Observations: Magnetic Field Morphology of Bubbles Associated with NGC 6334 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tahani%2C+M">Mehrnoosh Tahani</a>, <a href="/search/?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R+S">Ray S. Furuya</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Doi%2C+Y">Yasuo Doi</a>, <a href="/search/?searchtype=author&amp;query=Hasegawa%2C+T">Tetsuo Hasegawa</a>, <a href="/search/?searchtype=author&amp;query=Inutsuka%2C+S">Shu-ichiro Inutsuka</a>, <a href="/search/?searchtype=author&amp;query=Coud%C3%A9%2C+S">Simon Coud茅</a>, <a href="/search/?searchtype=author&amp;query=Fissel%2C+L">Laura Fissel</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M+C">Michael Chun-Yuan Chen</a>, <a href="/search/?searchtype=author&amp;query=Poidevin%2C+F">Fr茅d茅rick Poidevin</a>, <a href="/search/?searchtype=author&amp;query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/?searchtype=author&amp;query=Friesen%2C+R">Rachel Friesen</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Di+Francesco%2C+J">James Di Francesco</a>, <a href="/search/?searchtype=author&amp;query=Moriarty-Schieven%2C+G+H">Gerald H. Moriarty-Schieven</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Z">Zhiwei Chen</a>, <a href="/search/?searchtype=author&amp;query=Chung%2C+E+J">Eun Jung Chung</a>, <a href="/search/?searchtype=author&amp;query=Eswaraiah%2C+C">Chakali Eswaraiah</a>, <a href="/search/?searchtype=author&amp;query=Fanciullo%2C+L">Lapo Fanciullo</a>, <a href="/search/?searchtype=author&amp;query=Gledhill%2C+T">Tim Gledhill</a>, <a href="/search/?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10884v1-abstract-short" style="display: inline;"> We study the HII regions associated with the NGC 6334 molecular cloud observed in the sub-millimeter and taken as part of the B-fields In STar-forming Region Observations (BISTRO) Survey. In particular, we investigate the polarization patterns and magnetic field morphologies associated with these HII regions. Through polarization pattern and pressure calculation analyses, several of these bubbles&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10884v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10884v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10884v1-abstract-full" style="display: none;"> We study the HII regions associated with the NGC 6334 molecular cloud observed in the sub-millimeter and taken as part of the B-fields In STar-forming Region Observations (BISTRO) Survey. In particular, we investigate the polarization patterns and magnetic field morphologies associated with these HII regions. Through polarization pattern and pressure calculation analyses, several of these bubbles indicate that the gas and magnetic field lines have been pushed away from the bubble, toward an almost tangential (to the bubble) magnetic field morphology. In the densest part of NGC 6334, where the magnetic field morphology is similar to an hourglass, the polarization observations do not exhibit observable impact from HII regions. We detect two nested radial polarization patterns in a bubble to the south of NGC 6334 that correspond to the previously observed bipolar structure in this bubble. Finally, using the results of this study, we present steps (incorporating computer vision; circular Hough Transform) that can be used in future studies to identify bubbles that have physically impacted magnetic field lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10884v1-abstract-full').style.display = 'none'; document.getElementById('2212.10884v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astrophysical Journal (ApJ)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10359">arXiv:2212.10359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10359">pdf</a>, <a href="https://arxiv.org/format/2212.10359">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Econometrics">econ.EM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous Inference of a Partially Linear Model in Time Series </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jiaqi Li</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+L">Likai Chen</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kun Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+T">Tianwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10359v2-abstract-short" style="display: inline;"> We introduce a new methodology to conduct simultaneous inference of the nonparametric component in partially linear time series regression models where the nonparametric part is a multivariate unknown function. In particular, we construct a simultaneous confidence region (SCR) for the multivariate function by extending the high-dimensional Gaussian approximation to dependent processes with continu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10359v2-abstract-full').style.display = 'inline'; document.getElementById('2212.10359v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10359v2-abstract-full" style="display: none;"> We introduce a new methodology to conduct simultaneous inference of the nonparametric component in partially linear time series regression models where the nonparametric part is a multivariate unknown function. In particular, we construct a simultaneous confidence region (SCR) for the multivariate function by extending the high-dimensional Gaussian approximation to dependent processes with continuous index sets. Our results allow for a more general dependence structure compared to previous works and are widely applicable to a variety of linear and nonlinear autoregressive processes. We demonstrate the validity of our proposed methodology by examining the finite-sample performance in the simulation study. Finally, an application in time series, the forward premium regression, is presented, where we construct the SCR for the foreign exchange risk premium from the exchange rate and macroeconomic data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10359v2-abstract-full').style.display = 'none'; document.getElementById('2212.10359v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01981">arXiv:2212.01981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01981">pdf</a>, <a href="https://arxiv.org/format/2212.01981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac9dfb">10.3847/1538-4357/ac9dfb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO-2 Survey: Magnetic Fields of the Massive DR21 Filament </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/?searchtype=author&amp;query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">Di Li</a>, <a href="/search/?searchtype=author&amp;query=Ren%2C+Z">Zhiyuan Ren</a>, <a href="/search/?searchtype=author&amp;query=Lai%2C+S">Shih-Ping Lai</a>, <a href="/search/?searchtype=author&amp;query=Berry%2C+D">David Berry</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R">Ray Furuya</a>, <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/?searchtype=author&amp;query=Hasegawa%2C+T">Tetsuo Hasegawa</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/?searchtype=author&amp;query=Eswaraiah%2C+C">Chakali Eswaraiah</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Jia-Wei Wang</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyoung Hee Kim</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/?searchtype=author&amp;query=Lyo%2C+A">A-Ran Lyo</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+J">Junhao Liu</a>, <a href="/search/?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a> , et al. (132 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01981v1-abstract-short" style="display: inline;"> We present 850 $渭$m dust polarization observations of the massive DR21 filament from the B-fields In STar-forming Region Observations (BISTRO) survey, using the POL-2 polarimeter and the SCUBA-2 camera on the James Clerk Maxwell Telescope. We detect ordered magnetic fields perpendicular to the parsec-scale ridge of the DR21 main filament. In the sub-filaments, the magnetic fields are mainly parall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01981v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01981v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01981v1-abstract-full" style="display: none;"> We present 850 $渭$m dust polarization observations of the massive DR21 filament from the B-fields In STar-forming Region Observations (BISTRO) survey, using the POL-2 polarimeter and the SCUBA-2 camera on the James Clerk Maxwell Telescope. We detect ordered magnetic fields perpendicular to the parsec-scale ridge of the DR21 main filament. In the sub-filaments, the magnetic fields are mainly parallel to the filamentary structures and smoothly connect to the magnetic fields of the main filament. We compare the POL-2 and Planck dust polarization observations to study the magnetic field structures of the DR21 filament on 0.1--10 pc scales. The magnetic fields revealed in the Planck data are well aligned with those of the POL-2 data, indicating a smooth variation of magnetic fields from large to small scales. The plane-of-sky magnetic field strengths derived from angular dispersion functions of dust polarization are 0.6--1.0 mG in the DR21 filament and $\sim$ 0.1 mG in the surrounding ambient gas. The mass-to-flux ratios are found to be magnetically supercritical in the filament and slightly subcritical to nearly critical in the ambient gas. The alignment between column density structures and magnetic fields changes from random alignment in the low-density ambient gas probed by Planck to mostly perpendicular in the high-density main filament probed by JCMT. The magnetic field structures of the DR21 filament are in agreement with MHD simulations of a strongly magnetized medium, suggesting that magnetic fields play an important role in shaping the DR21 main filament and sub-filaments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01981v1-abstract-full').style.display = 'none'; document.getElementById('2212.01981v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures, ApJ accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01344">arXiv:2211.01344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01344">pdf</a>, <a href="https://arxiv.org/format/2211.01344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Econometrics">econ.EM</span> </div> </div> <p class="title is-5 mathjax"> A New Test for Market Efficiency and Uncovered Interest Parity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Baillie%2C+R+T">Richard T. Baillie</a>, <a href="/search/?searchtype=author&amp;query=Diebold%2C+F+X">Francis X. Diebold</a>, <a href="/search/?searchtype=author&amp;query=Kapetanios%2C+G">George Kapetanios</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kun Ho Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01344v1-abstract-short" style="display: inline;"> We suggest a new single-equation test for Uncovered Interest Parity (UIP) based on a dynamic regression approach. The method provides consistent and asymptotically efficient parameter estimates, and is not dependent on assumptions of strict exogeneity. This new approach is asymptotically more efficient than the common approach of using OLS with HAC robust standard errors in the static forward prem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01344v1-abstract-full').style.display = 'inline'; document.getElementById('2211.01344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01344v1-abstract-full" style="display: none;"> We suggest a new single-equation test for Uncovered Interest Parity (UIP) based on a dynamic regression approach. The method provides consistent and asymptotically efficient parameter estimates, and is not dependent on assumptions of strict exogeneity. This new approach is asymptotically more efficient than the common approach of using OLS with HAC robust standard errors in the static forward premium regression. The coefficient estimates when spot return changes are regressed on the forward premium are all positive and remarkably stable across currencies. These estimates are considerably larger than those of previous studies, which frequently find negative coefficients. The method also has the advantage of showing dynamic effects of risk premia, or other events that may lead to rejection of UIP or the efficient markets hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01344v1-abstract-full').style.display = 'none'; document.getElementById('2211.01344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00736">arXiv:2211.00736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00736">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> X-ray Free Electron Laser Studies of Electron and Phonon Dynamics of Graphene Adsorbed on Copper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ogasawara%2C+H">Hirohito Ogasawara</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+H">Han Wang</a>, <a href="/search/?searchtype=author&amp;query=Gladh%2C+J">J枚rgen Gladh</a>, <a href="/search/?searchtype=author&amp;query=Gallo%2C+A">Alessandro Gallo</a>, <a href="/search/?searchtype=author&amp;query=Page%2C+R">Ralph Page</a>, <a href="/search/?searchtype=author&amp;query=Voss%2C+J">Johannes Voss</a>, <a href="/search/?searchtype=author&amp;query=Luntz%2C+A">Alan Luntz</a>, <a href="/search/?searchtype=author&amp;query=Diesen%2C+E">Elias Diesen</a>, <a href="/search/?searchtype=author&amp;query=Abild-Pedersen%2C+F">Frank Abild-Pedersen</a>, <a href="/search/?searchtype=author&amp;query=Nilsson%2C+A">Anders Nilsson</a>, <a href="/search/?searchtype=author&amp;query=Soldemo%2C+M">Markus Soldemo</a>, <a href="/search/?searchtype=author&amp;query=Zajac%2C+M">Marc Zajac</a>, <a href="/search/?searchtype=author&amp;query=Attar%2C+A">Andrew Attar</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M+E">Michelle E. Chen</a>, <a href="/search/?searchtype=author&amp;query=Cho%2C+S+W">Sang Wan Cho</a>, <a href="/search/?searchtype=author&amp;query=Katoch%2C+A">Abhishek Katoch</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K">Ki-Jeong Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyung Hwan Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+M">Minseok Kim</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+S">Soonnam Kwon</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+S+H">Sang Han Park</a>, <a href="/search/?searchtype=author&amp;query=Ribeiro%2C+H">Henrique Ribeiro</a>, <a href="/search/?searchtype=author&amp;query=Sainio%2C+S">Sami Sainio</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+H">Hsin-Yi Wang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+C">Cheolhee Yang</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00736v1-abstract-short" style="display: inline;"> We report optical pumping and X-ray absorption spectroscopy experiments at the PAL free electron laser that directly probe the electron dynamics of a graphene monolayer adsorbed on copper in the femtosecond regime. By analyzing the results with ab-initio theory we infer that the excitation of graphene is dominated by indirect excitation from hot electron-hole pairs created in the copper by the opt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00736v1-abstract-full').style.display = 'inline'; document.getElementById('2211.00736v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00736v1-abstract-full" style="display: none;"> We report optical pumping and X-ray absorption spectroscopy experiments at the PAL free electron laser that directly probe the electron dynamics of a graphene monolayer adsorbed on copper in the femtosecond regime. By analyzing the results with ab-initio theory we infer that the excitation of graphene is dominated by indirect excitation from hot electron-hole pairs created in the copper by the optical laser pulse. However, once the excitation is created in graphene, its decay follows a similar path as in many previous studies of graphene adsorbed on semiconductors, i e. rapid excitation of SCOPS (Strongly Coupled Optical Phonons) and eventual thermalization. It is likely that the lifetime of the hot electron-hole pairs in copper governs the lifetime of the electronic excitation of the graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00736v1-abstract-full').style.display = 'none'; document.getElementById('2211.00736v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 Figures including Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07457">arXiv:2210.07457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07457">pdf</a>, <a href="https://arxiv.org/format/2210.07457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> Bayesian estimation of the autocovariance of a model error in time series </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jun%2C+Y+B">Yoon Bae Jun</a>, <a href="/search/?searchtype=author&amp;query=Lim%2C+C+Y">Chae Young Lim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kun Ho Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07457v1-abstract-short" style="display: inline;"> Autocovariance of the error term in a time series model plays a key role in the estimation and inference for the model that it belongs to. Typically, some arbitrary parametric structure is assumed upon the error to simplify the estimation, which inevitably introduces potential model-misspecification. We thus conduct nonparametric estimation of it. To avoid the difficult bandwidth selection issue u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07457v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07457v1-abstract-full" style="display: none;"> Autocovariance of the error term in a time series model plays a key role in the estimation and inference for the model that it belongs to. Typically, some arbitrary parametric structure is assumed upon the error to simplify the estimation, which inevitably introduces potential model-misspecification. We thus conduct nonparametric estimation of it. To avoid the difficult bandwidth selection issue under the traditional nonparametric truncation approach, this paper conducts the Bayesian estimation of its spectral density in a frequency domain. To this end, we consider two cases: fixed error variance and time-varying one. Each approach is taken to estimate the spectral density of the autocovariance and the model parameters. The methodology is applied to exchange rate forecasting and proves to compete favorably against some benchmark models, including the random walk without drift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07457v1-abstract-full').style.display = 'none'; document.getElementById('2210.07457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">See https://github.com/junpeea/NSBTR</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05937">arXiv:2210.05937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05937">pdf</a>, <a href="https://arxiv.org/format/2210.05937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac99e0">10.3847/1538-4357/ac99e0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+J">Jongsoo Kim</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&amp;query=Tomisaka%2C+K">Kohji Tomisaka</a>, <a href="/search/?searchtype=author&amp;query=Whitworth%2C+A">Anthony Whitworth</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R+S">Ray S. Furuya</a>, <a href="/search/?searchtype=author&amp;query=Kang%2C+J">Ji-hyun Kang</a>, <a href="/search/?searchtype=author&amp;query=Lyo%2C+A">A-Ran Lyo</a>, <a href="/search/?searchtype=author&amp;query=Chung%2C+E+J">Eun Jung Chung</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+G">Geumsook Park</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+S">Shinyoung Kim</a>, <a href="/search/?searchtype=author&amp;query=Tamura%2C+M">Motohide Tamura</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+J">Jungmi Kwon</a>, <a href="/search/?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+I">Ilseung Han</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyoung Hee Kim</a>, <a href="/search/?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/?searchtype=author&amp;query=Chakali%2C+E">Eswaraiah Chakali</a>, <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a> , et al. (135 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05937v4-abstract-short" style="display: inline;"> We present and analyze observations of polarized dust emission at 850 $渭$m towards the central 1 pc $\times$ 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the BISTRO (B-fields in Star-forming Region Observations) survey. The orientations of the magnetic field follow the spiral structure of Mon R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05937v4-abstract-full').style.display = 'inline'; document.getElementById('2210.05937v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05937v4-abstract-full" style="display: none;"> We present and analyze observations of polarized dust emission at 850 $渭$m towards the central 1 pc $\times$ 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the BISTRO (B-fields in Star-forming Region Observations) survey. The orientations of the magnetic field follow the spiral structure of Mon R2, which are well-described by an axisymmetric magnetic field model. We estimate the turbulent component of the magnetic field using the angle difference between our observations and the best-fit model of the underlying large-scale mean magnetic field. This estimate is used to calculate the magnetic field strength using the Davis-Chandrasekhar-Fermi method, for which we also obtain the distribution of volume density and velocity dispersion using a column density map derived from $Herschel$ data and the C$^{18}$O ($J$ = 3-2) data taken with HARP on the JCMT, respectively. We make maps of magnetic field strengths and mass-to-flux ratios, finding that magnetic field strengths vary from 0.02 to 3.64 mG with a mean value of 1.0 $\pm$ 0.06 mG, and the mean critical mass-to-flux ratio is 0.47 $\pm$ 0.02. Additionally, the mean Alfv茅n Mach number is 0.35 $\pm$ 0.01. This suggests that in Mon R2, magnetic fields provide resistance against large-scale gravitational collapse, and magnetic pressure exceeds turbulent pressure. We also investigate the properties of each filament in Mon R2. Most of the filaments are aligned along the magnetic field direction and are magnetically sub-critical. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05937v4-abstract-full').style.display = 'none'; document.getElementById('2210.05937v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is accepted to the ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09604">arXiv:2209.09604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09604">pdf</a>, <a href="https://arxiv.org/format/2209.09604">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac528">10.1093/mnras/stac528 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: Multi-wavelength polarimetry of bright regions in NGC 2071 in the far-infrared/submillimetre range, with POL-2 and HAWC+ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fanciullo%2C+L">L. Fanciullo</a>, <a href="/search/?searchtype=author&amp;query=Kemper%2C+F">F. Kemper</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">K. Pattle</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">P. M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Sadavoy%2C+S">S. Sadavoy</a>, <a href="/search/?searchtype=author&amp;query=Coud%C3%A9%2C+S">S. Coud茅</a>, <a href="/search/?searchtype=author&amp;query=Soam%2C+A">A. Soam</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+T">T. Hoang</a>, <a href="/search/?searchtype=author&amp;query=Onaka%2C+T">T. Onaka</a>, <a href="/search/?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">V. J. M. Le Gouellec</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">D. Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Berry%2C+D">D. Berry</a>, <a href="/search/?searchtype=author&amp;query=Eswaraiah%2C+C">C. Eswaraiah</a>, <a href="/search/?searchtype=author&amp;query=Chung%2C+E+J">E. J. Chung</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R">R. Furuya</a>, <a href="/search/?searchtype=author&amp;query=Hull%2C+C+L+H">C. L. H. Hull</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">J. Hwang</a>, <a href="/search/?searchtype=author&amp;query=Johnstone%2C+D">D. Johnstone</a>, <a href="/search/?searchtype=author&amp;query=Kang%2C+J+-">J. -h. Kang</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">K. H. Kim</a>, <a href="/search/?searchtype=author&amp;query=Kirchschlager%2C+F">F. Kirchschlager</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6nyves%2C+V">V. K枚nyves</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+J">J. Kwon</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">W. Kwon</a>, <a href="/search/?searchtype=author&amp;query=Lai%2C+S+-">S. -P. Lai</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09604v1-abstract-short" style="display: inline;"> Polarized dust emission is a key tracer in the study of interstellar medium and of star formation. The observed polarization, however, is a product of magnetic field structure, dust grain properties and grain alignment efficiency, as well as their variations in the line of sight, making it difficult to interpret polarization unambiguously. The comparison of polarimetry at multiple wavelengths is a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09604v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09604v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09604v1-abstract-full" style="display: none;"> Polarized dust emission is a key tracer in the study of interstellar medium and of star formation. The observed polarization, however, is a product of magnetic field structure, dust grain properties and grain alignment efficiency, as well as their variations in the line of sight, making it difficult to interpret polarization unambiguously. The comparison of polarimetry at multiple wavelengths is a possible way of mitigating this problem. We use data from HAWC+/SOFIA and from SCUBA-2/POL-2 (from the BISTRO survey) to analyse the NGC 2071 molecular cloud at 154, 214 and 850 $渭$m. The polarization angle changes significantly with wavelength over part of NGC 2071, suggesting a change in magnetic field morphology on the line of sight as each wavelength best traces different dust populations. Other possible explanations are the existence of more than one polarization mechanism in the cloud or scattering from very large grains. The observed change of polarization fraction with wavelength, and the 214-to-154 $渭$m polarization ratio in particular, are difficult to reproduce with current dust models under the assumption of uniform alignment efficiency. We also show that the standard procedure of using monochromatic intensity as a proxy for column density may produce spurious results at HAWC+ wavelengths. Using both long-wavelength (POL-2, 850 $渭$m) and short-wavelength (HAWC+, $\lesssim 200\, 渭$m) polarimetry is key in obtaining these results. This study clearly shows the importance of multi-wavelength polarimetry at submillimeter bands to understand the dust properties of molecular clouds and the relationship between magnetic field and star formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09604v1-abstract-full').style.display = 'none'; document.getElementById('2209.09604v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main article: 18 pages, 11 figures. Online supplemental material: 2 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society vol. 512 (2022) pp. 1985-2002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05811">arXiv:2208.05811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05811">pdf</a>, <a href="https://arxiv.org/format/2208.05811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04947-z">10.1038/s41586-022-04947-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantized current steps due to the a.c. coherent quantum phase-slip effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shaikhaidarov%2C+R+S">R. S. Shaikhaidarov</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">K. H. Kim</a>, <a href="/search/?searchtype=author&amp;query=Dunstan%2C+J+W">J. W. Dunstan</a>, <a href="/search/?searchtype=author&amp;query=Antonov%2C+I+V">I. V. Antonov</a>, <a href="/search/?searchtype=author&amp;query=Linzen%2C+S">S. Linzen</a>, <a href="/search/?searchtype=author&amp;query=Ziegler%2C+M">M. Ziegler</a>, <a href="/search/?searchtype=author&amp;query=Golubev%2C+D+S">D. S. Golubev</a>, <a href="/search/?searchtype=author&amp;query=Antonov%2C+V+N">V. N. Antonov</a>, <a href="/search/?searchtype=author&amp;query=Il%27ichev%2C+E">E. Il&#39;ichev</a>, <a href="/search/?searchtype=author&amp;query=Astafiev%2C+O+V">O. V. Astafiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05811v2-abstract-short" style="display: inline;"> The AC Josephson effect predicted in 1962 and observed experimentally in 1963 as quantised voltage steps (the Shapiro steps) from photon assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the AC coherent quantum phase slip (CQPS), photon assisted tunnelling of magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05811v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05811v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05811v2-abstract-full" style="display: none;"> The AC Josephson effect predicted in 1962 and observed experimentally in 1963 as quantised voltage steps (the Shapiro steps) from photon assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the AC coherent quantum phase slip (CQPS), photon assisted tunnelling of magnetic fluxes through a superconducting nanowire, is envisaged to reveal itself as quantised current steps. The basic physical significance of the AC CQPS is also complemented by practical importance in future current standards; a missing element for closing the Quantum Metrology Triangle. In 2012, the CQPS was demonstrated as superposition of magnetic flux quanta in superconducting nanowires. However the direct sharp current steps in superconductors; the only unavailable basic effect of superconductivity to date, was unattainable due to lack of appropriate materials and challenges in circuit engineering. Here we report the direct observation of the dual Shapiro steps in a superconducting nanowire. The sharp steps are clear up to 26 GHz frequency with current values 8.3 nA and limited by the present setup bandwidth. The current steps have been theoretically predicted in small Josephson junctions (JJs) 30 years ago. However, broadening unavoidable in JJs prevents their direct experimental observation. We solve this problem by placing a thin NbN nanowire in an inductive environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05811v2-abstract-full').style.display = 'none'; document.getElementById('2208.05811v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 608, 45-49 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14232">arXiv:2207.14232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14232">pdf</a>, <a href="https://arxiv.org/format/2207.14232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2023.112466">10.1016/j.jcp.2023.112466 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Keon Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Bhalla%2C+A+P+S">Amneet P. S. Bhalla</a>, <a href="/search/?searchtype=author&amp;query=Griffith%2C+B+E">Boyce E. Griffith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14232v3-abstract-short" style="display: inline;"> This paper develops and benchmarks an immersed peridynamics method to simulate the deformation, damage, and failure of hyperelastic materials within a fluid-structure interaction framework. The immersed peridynamics method describes an incompressible structure immersed in a viscous incompressible fluid. It expresses the momentum equation and incompressibility constraint in Eulerian form, and it de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14232v3-abstract-full').style.display = 'inline'; document.getElementById('2207.14232v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14232v3-abstract-full" style="display: none;"> This paper develops and benchmarks an immersed peridynamics method to simulate the deformation, damage, and failure of hyperelastic materials within a fluid-structure interaction framework. The immersed peridynamics method describes an incompressible structure immersed in a viscous incompressible fluid. It expresses the momentum equation and incompressibility constraint in Eulerian form, and it describes the structural motion and resultant forces in Lagrangian form. Coupling between Eulerian and Lagrangian variables is achieved by integral transforms with Dirac delta function kernels, as in standard immersed boundary methods. The major difference between our approach and conventional immersed boundary methods is that we use peridynamics, instead of classical continuum mechanics, to determine the structural forces. We focus on non-ordinary state-based peridynamic material descriptions that allow us to use a constitutive correspondence framework that can leverage well characterized nonlinear constitutive models of soft materials. The convergence and accuracy of our approach are compared to both conventional and immersed finite element methods using widely used benchmark problems of nonlinear incompressible elasticity. We demonstrate that the immersed peridynamics method yields comparable accuracy with similar numbers of structural degrees of freedom for several choices of the size of the peridynamic horizon. We also demonstrate that the method can generate grid-converged simulations of fluid-driven material damage growth, crack formation and propagation, and rupture under large deformations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14232v3-abstract-full').style.display = 'none'; document.getElementById('2207.14232v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09343">arXiv:2207.09343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.09343">pdf</a>, <a href="https://arxiv.org/format/2207.09343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Accommodating false positives within acoustic spatial capture-recapture, with variable source levels, noisy bearings and an inhomogeneous spatial density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Petersma%2C+F+T">Felix T Petersma</a>, <a href="/search/?searchtype=author&amp;query=Thomas%2C+L">Len Thomas</a>, <a href="/search/?searchtype=author&amp;query=Thode%2C+A+M">Aaron M Thode</a>, <a href="/search/?searchtype=author&amp;query=Harris%2C+D">Danielle Harris</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+T+A">Tiago A Marques</a>, <a href="/search/?searchtype=author&amp;query=Cheoo%2C+G+V">Gisela V Cheoo</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Katherine H Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09343v2-abstract-short" style="display: inline;"> Passive acoustic monitoring is a promising method for surveying wildlife populations that are easier to detect acoustically than visually. When animal vocalisations can be uniquely identified on an array of sensors, the potential exists to estimate population density through acoustic spatial capture-recapture (ASCR). However, sound classification is imperfect, and in some situations a high proport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09343v2-abstract-full').style.display = 'inline'; document.getElementById('2207.09343v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09343v2-abstract-full" style="display: none;"> Passive acoustic monitoring is a promising method for surveying wildlife populations that are easier to detect acoustically than visually. When animal vocalisations can be uniquely identified on an array of sensors, the potential exists to estimate population density through acoustic spatial capture-recapture (ASCR). However, sound classification is imperfect, and in some situations a high proportion of sounds detected on just a single sensor (&#39;singletons&#39;) are not from the target species. We present a case study of bowhead whale calls (Baleana mysticetus) collected in the Beaufort Sea in 2010 containing such false positives. We propose a novel extension of ASCR that is robust to false positives by truncating singletons and conditioning on calls being detected by at least two sensors. We allow for individual-level detection heterogeneity through modelling a variable sound source level, model inhomogeneous call spatial density, and include bearings with varying measurement error. We show via simulation that the method produces near-unbiased estimates when correctly specified. Ignoring source level variation resulted in a strong negative bias, while ignoring inhomogeneous density resulted in severe positive bias. The case study analysis indicated a band of higher call density approximately 30km from shore; 59.8% of singletons were estimated to have been false positives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09343v2-abstract-full').style.display = 'none'; document.getElementById('2207.09343v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Latest revised version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14042">arXiv:2206.14042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14042">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/ma15124286">10.3390/ma15124286 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-dependent structure of BaZrO$_3$ crystals as determined by Raman Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gim%2C+D">Dong-Hyeon Gim</a>, <a href="/search/?searchtype=author&amp;query=Sur%2C+Y">Yeahan Sur</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+Y+H">Yoon Han Lee</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+J+H">Jeong Hyuk Lee</a>, <a href="/search/?searchtype=author&amp;query=Moon%2C+S">Soonjae Moon</a>, <a href="/search/?searchtype=author&amp;query=Oh%2C+Y+S">Yoon Seok Oh</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14042v1-abstract-short" style="display: inline;"> The structure of dielectric perovskite BaZrO$_3$, long known to be cubic at room temperature without any structural phase transition with variation of temperature, has been recently disputed to have different ground state structures with lower symmetries involving octahedra rotation. The pressure-dependent Raman scattering measurements can identify the hierarchy of energetically-adjacent polymorph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14042v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14042v1-abstract-full" style="display: none;"> The structure of dielectric perovskite BaZrO$_3$, long known to be cubic at room temperature without any structural phase transition with variation of temperature, has been recently disputed to have different ground state structures with lower symmetries involving octahedra rotation. The pressure-dependent Raman scattering measurements can identify the hierarchy of energetically-adjacent polymorphs, helping in turn understand its ground state structure at atmospheric pressure. Here, Raman scattering spectra of high-quality BaZrO$_3$ single crystals grown by the optical floating zone method are investigated in a pressure range from 1 atm to 42 GPa. First, based on the analyses of the infrared and Raman spectra measured at the atmosphere, it is found that all observed vibrational modes can be assigned according to the cubic $Pm\bar{3}m$ structure. In addition, by applying pressure, two structural phase transitions are found at 8.4 and 19.2 GPa, one from the cubic to the rhombohedral $R\bar{3}c$ phase and the other from the rhombohedral to the tetragonal $I4/mcm$ phase. Based on the two pressure-induced structural phase transitions, the true ground state structure of BaZrO$_3$ at room temperature and ambient pressure is corroborated to be cubic while the rhombohedral phase is the closest second. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14042v1-abstract-full').style.display = 'none'; document.getElementById('2206.14042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials 2022, 15, 4286 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.00413">arXiv:2205.00413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.00413">pdf</a>, <a href="https://arxiv.org/format/2205.00413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> </div> </div> <p class="title is-5 mathjax"> Smoothed quantile regression for censored residual life </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyu Hyun Kim</a>, <a href="/search/?searchtype=author&amp;query=Caplan%2C+D+J">Daniel J. Caplan</a>, <a href="/search/?searchtype=author&amp;query=Kang%2C+S">Sangwook Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.00413v1-abstract-short" style="display: inline;"> We consider a regression modeling of the quantiles of residual life, remaining lifetime at a specific time. We propose a smoothed induced version of the existing non-smooth estimating equations approaches for estimating regression parameters. The proposed estimating equations are smooth in regression parameters, so solutions can be readily obtained via standard numerical algorithms. Moreover, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00413v1-abstract-full').style.display = 'inline'; document.getElementById('2205.00413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.00413v1-abstract-full" style="display: none;"> We consider a regression modeling of the quantiles of residual life, remaining lifetime at a specific time. We propose a smoothed induced version of the existing non-smooth estimating equations approaches for estimating regression parameters. The proposed estimating equations are smooth in regression parameters, so solutions can be readily obtained via standard numerical algorithms. Moreover, the smoothness in the proposed estimating equations enables one to obtain a robust sandwich-type covariance estimator of regression estimators aided by an efficient resampling method. To handle data subject to right censoring, the inverse probability of censoring weight are used as weights. The consistency and asymptotic normality of the proposed estimator are established. Extensive simulation studies are conducted to validate the proposed estimator&#39;s performance in various finite samples settings. We apply the proposed method to dental study data evaluating the longevity of dental restorations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00413v1-abstract-full').style.display = 'none'; document.getElementById('2205.00413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04296">arXiv:2204.04296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04296">pdf</a>, <a href="https://arxiv.org/ps/2204.04296">ps</a>, <a href="https://arxiv.org/format/2204.04296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Solving $X^{2^{3n}+2^{2n}+2^{n}-1}+(X+1)^{2^{3n}+2^{2n}+2^{n}-1}=b$ in $GF{2^{4n}}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kwang Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Mesnager%2C+S">Sihem Mesnager</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04296v1-abstract-short" style="display: inline;"> This article determines all the solutions in the finite field $GF{2^{4n}}$ of the equation $x^{2^{3n}+2^{2n}+2^{n}-1}+(x+1)^{2^{3n}+2^{2n}+2^{n}-1}=b$. Specifically, we explicitly determine the set of $b$&#39;s for which the equation has $i$ solutions for any positive integer $i$. Such sets, which depend on the number of solutions $i$, are given explicitly and expressed nicely, employing the absolute&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04296v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04296v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04296v1-abstract-full" style="display: none;"> This article determines all the solutions in the finite field $GF{2^{4n}}$ of the equation $x^{2^{3n}+2^{2n}+2^{n}-1}+(x+1)^{2^{3n}+2^{2n}+2^{n}-1}=b$. Specifically, we explicitly determine the set of $b$&#39;s for which the equation has $i$ solutions for any positive integer $i$. Such sets, which depend on the number of solutions $i$, are given explicitly and expressed nicely, employing the absolute trace function over $GF{2^{n}}$, the norm function over $GF{2^{4n}}$ relatively to $GF{2^{n}}$ and the set of $2^n+1$st roots of unity in $GF{2^{4n}}$. The equation considered in this paper comes from an article by Budaghyan et al. \cite{BCCDK20}. As an immediate consequence of our results, we prove that the above equation has $2^{2n}$ solutions for one value of $b$, $2^{2n}-2^n$ solutions for $2^n$ values of $b$ in $GF{2^{4n}}$ and has at most two solutions for all remaining points $b$, leading to complete proof of the conjecture raised by Budaghyan et al. We highlight that the recent work of Li et al., in \cite{Li-et-al-2020} gives the complete differential spectrum of $F$ and also gives an affirmative answer to the conjecture of Budaghyan et al. However, we emphasize that our approach is interesting and promising by being different from Li et al. Indeed, on the opposite to their article, our technique allows determine ultimately the set of $b$&#39;s for which the considered equation has solutions as well as the solutions of the equation for any $b$ in $GF{2^{4n}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04296v1-abstract-full').style.display = 'none'; document.getElementById('2204.04296v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09662">arXiv:2203.09662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09662">pdf</a>, <a href="https://arxiv.org/ps/2203.09662">ps</a>, <a href="https://arxiv.org/format/2203.09662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac5eec">10.1088/1367-2630/ac5eec <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay of charge density waves, disorder, and superconductivity in 2$H$-TaSe$_2$ elucidated by NMR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Baek%2C+S">Seung-Ho Baek</a>, <a href="/search/?searchtype=author&amp;query=Sur%2C+Y">Yeahan Sur</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a>, <a href="/search/?searchtype=author&amp;query=Vojta%2C+M">Matthias Vojta</a>, <a href="/search/?searchtype=author&amp;query=Buechner%2C+B">Bernd Buechner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09662v1-abstract-short" style="display: inline;"> Single crystals of pristine and 6% Pd-intercalated 2H-TaSe$_2$ have been studied by means of $^{77}$Se nuclear magnetic resonance (NMR). The temperature dependence of the $^{77}$Se spectrum, with an unexpected line narrowing upon Pd intercalation, unravels the presence of correlated local lattice distortions far above the transition temperature of the charge density wave (CDW) order, thereby suppo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09662v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09662v1-abstract-full" style="display: none;"> Single crystals of pristine and 6% Pd-intercalated 2H-TaSe$_2$ have been studied by means of $^{77}$Se nuclear magnetic resonance (NMR). The temperature dependence of the $^{77}$Se spectrum, with an unexpected line narrowing upon Pd intercalation, unravels the presence of correlated local lattice distortions far above the transition temperature of the charge density wave (CDW) order, thereby supporting a strong-coupling CDW mechanism in 2H-TaSe$_2$. While, the Knight shift data suggest that the incommensurate CDW transition involves a partial Fermi surface gap opening. As for spin dynamics, the $^{77}$Se spin-lattice relaxation rate $T_1^{-1}$ as a function of temperature shows that a pseudogap behavior dominates the low-energy spin excitations even within the CDW phase, and gets stronger along with superconductivity in the Pd-6% sample. We discuss that CDW fluctuations may be responsible for the pseudogap as well as superconductivity, although the two phenomena are unlikely to be directly linked each other. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09662v1-abstract-full').style.display = 'none'; document.getElementById('2203.09662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in New Journal of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04080">arXiv:2203.04080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.04080">pdf</a>, <a href="https://arxiv.org/format/2203.04080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Econometrics">econ.EM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> On Robust Inference in Time Series Regression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Baillie%2C+R+T">Richard T. Baillie</a>, <a href="/search/?searchtype=author&amp;query=Diebold%2C+F+X">Francis X. Diebold</a>, <a href="/search/?searchtype=author&amp;query=Kapetanios%2C+G">George Kapetanios</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kun Ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Mora%2C+A">Aaron Mora</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04080v3-abstract-short" style="display: inline;"> Least squares regression with heteroskedasticity consistent standard errors (&#34;OLS-HC regression&#34;) has proved very useful in cross section environments. However, several major difficulties, which are generally overlooked, must be confronted when transferring the HC technology to time series environments via heteroskedasticity and autocorrelation consistent standard errors (&#34;OLS-HAC regression&#34;). Fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04080v3-abstract-full').style.display = 'inline'; document.getElementById('2203.04080v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04080v3-abstract-full" style="display: none;"> Least squares regression with heteroskedasticity consistent standard errors (&#34;OLS-HC regression&#34;) has proved very useful in cross section environments. However, several major difficulties, which are generally overlooked, must be confronted when transferring the HC technology to time series environments via heteroskedasticity and autocorrelation consistent standard errors (&#34;OLS-HAC regression&#34;). First, in plausible time-series environments, OLS parameter estimates can be inconsistent, so that OLS-HAC inference fails even asymptotically. Second, most economic time series have autocorrelation, which renders OLS parameter estimates inefficient. Third, autocorrelation similarly renders conditional predictions based on OLS parameter estimates inefficient. Finally, the structure of popular HAC covariance matrix estimators is ill-suited for capturing the autoregressive autocorrelation typically present in economic time series, which produces large size distortions and reduced power in HAC-based hypothesis testing, in all but the largest samples. We show that all four problems are largely avoided by the use of a simple and easily-implemented dynamic regression procedure, which we call DURBIN. We demonstrate the advantages of DURBIN with detailed simulations covering a range of practical issues. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04080v3-abstract-full').style.display = 'none'; document.getElementById('2203.04080v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05059">arXiv:2201.05059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05059">pdf</a>, <a href="https://arxiv.org/format/2201.05059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4bbe">10.3847/1538-4357/ac4bbe <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> B-fields in Star-Forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/?searchtype=author&amp;query=Hull%2C+C+L+H">Charles L. H. Hull</a>, <a href="/search/?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Di+Francesco%2C+J">James Di Francesco</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R">Ray Furuya</a>, <a href="/search/?searchtype=author&amp;query=Doi%2C+Y">Yasuo Doi</a>, <a href="/search/?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/?searchtype=author&amp;query=Lyo%2C+A">A-Ran Lyo</a>, <a href="/search/?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/?searchtype=author&amp;query=Tang%2C+X">Xindi Tang</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/?searchtype=author&amp;query=Kirchschlager%2C+F">Florian Kirchschlager</a>, <a href="/search/?searchtype=author&amp;query=Eswaraiah%2C+C">Chakali Eswaraiah</a>, <a href="/search/?searchtype=author&amp;query=Fanciullo%2C+L">Lapo Fanciullo</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyoung Hee Kim</a>, <a href="/search/?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6nyves%2C+V">Vera K枚nyves</a>, <a href="/search/?searchtype=author&amp;query=Kang%2C+J">Ji-hyun Kang</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/?searchtype=author&amp;query=Tamura%2C+M">Motohide Tamura</a> , et al. (127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05059v1-abstract-short" style="display: inline;"> We present 850 $渭$m polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields In STar-forming Region Observations (BISTRO) survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filament&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05059v1-abstract-full').style.display = 'inline'; document.getElementById('2201.05059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05059v1-abstract-full" style="display: none;"> We present 850 $渭$m polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields In STar-forming Region Observations (BISTRO) survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less dense filamentary structures where $N_{H_2} &lt; 0.93\times 10^{22}$ cm$^{-2}$ (magnetic fields perpendicular to density gradients), while being perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at $N_{H_2} \approx 4.6 \times 10^{22}$ cm$^{-2}$. This can be interpreted as a signature of core formation. At $N_{H_2} \approx 16 \times 10^{22}$ cm$^{-2}$ magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments ($B_{POS} = 60-300~渭$G)) using the Davis-Chandrasekhar-Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05059v1-abstract-full').style.display = 'none'; document.getElementById('2201.05059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08981">arXiv:2111.08981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08981">pdf</a>, <a href="https://arxiv.org/ps/2111.08981">ps</a>, <a href="https://arxiv.org/format/2111.08981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L011102">10.1103/PhysRevD.105.L011102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of the branching fractions of $螢_c^0 \to 螞K_S^0$, $螢_c^0 \to 危^0 K_S^0$, and $螢_c^0 \to 危^+ K^-$ decays at Belle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Belle+collaboration"> Belle collaboration</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/?searchtype=author&amp;query=Cui%2C+J+X">J. X. Cui</a>, <a href="/search/?searchtype=author&amp;query=Jia%2C+S">S. Jia</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+C+P">C. P. Shen</a>, <a href="/search/?searchtype=author&amp;query=Adachi%2C+I">I. Adachi</a>, <a href="/search/?searchtype=author&amp;query=Ahn%2C+J+K">J. K. Ahn</a>, <a href="/search/?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/?searchtype=author&amp;query=Said%2C+S+A">S. Al Said</a>, <a href="/search/?searchtype=author&amp;query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/?searchtype=author&amp;query=Atmacan%2C+H">H. Atmacan</a>, <a href="/search/?searchtype=author&amp;query=Aushev%2C+T">T. Aushev</a>, <a href="/search/?searchtype=author&amp;query=Ayad%2C+R">R. Ayad</a>, <a href="/search/?searchtype=author&amp;query=Babu%2C+V">V. Babu</a>, <a href="/search/?searchtype=author&amp;query=Bahinipati%2C+S">S. Bahinipati</a>, <a href="/search/?searchtype=author&amp;query=Behera%2C+P">P. Behera</a>, <a href="/search/?searchtype=author&amp;query=Belous%2C+K">K. Belous</a>, <a href="/search/?searchtype=author&amp;query=Bennett%2C+J">J. Bennett</a>, <a href="/search/?searchtype=author&amp;query=Bessner%2C+M">M. Bessner</a>, <a href="/search/?searchtype=author&amp;query=Bhardwaj%2C+V">V. Bhardwaj</a>, <a href="/search/?searchtype=author&amp;query=Bhuyan%2C+B">B. Bhuyan</a>, <a href="/search/?searchtype=author&amp;query=Bilka%2C+T">T. Bilka</a>, <a href="/search/?searchtype=author&amp;query=Bobrov%2C+A">A. Bobrov</a>, <a href="/search/?searchtype=author&amp;query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/?searchtype=author&amp;query=Bonvicini%2C+G">G. Bonvicini</a> , et al. (191 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08981v2-abstract-short" style="display: inline;"> Using the entire data sample of $980\mathrm{~fb}^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we present measurements of the branching fractions of the Cabibbo-favored decays $螢_c^0 \to 螞K_S^0$, $螢_c^0 \to 危^0 K_S^0$, and $螢_c^0 \to 危^+ K^-$. Taking the decay $螢_c^0 \to 螢^- \pip$ as the normalization mode, we measure the branching fraction ratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08981v2-abstract-full').style.display = 'inline'; document.getElementById('2111.08981v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08981v2-abstract-full" style="display: none;"> Using the entire data sample of $980\mathrm{~fb}^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we present measurements of the branching fractions of the Cabibbo-favored decays $螢_c^0 \to 螞K_S^0$, $螢_c^0 \to 危^0 K_S^0$, and $螢_c^0 \to 危^+ K^-$. Taking the decay $螢_c^0 \to 螢^- \pip$ as the normalization mode, we measure the branching fraction ratio ${\cal B}(螢_c^0 \to 螞K_S^0)/{\cal B}(螢_c^0 \to 螢^- 蟺^+) = 0.229\pm0.008\pm0.012$ with improved precision, and measure the branching fraction ratios ${\cal B}(螢_c^0 \to 危^0 K_S^0)/{\cal B}(螢_c^0 \to 螢^- 蟺^+) = 0.038\pm0.006\pm0.004$ and ${\cal B}(螢_c^0 \to 危^+ K^-)/{\cal B}(螢_c^0 \to 螢^- 蟺^+) = 0.123\pm0.007\pm0.010$ for the first time. Taking into account the branching fraction of the normalization mode, the absolute branching fractions are determined to be ${\cal B}(螢_c^0 \to 螞K_S^0) = (3.27\pm0.11\pm0.17\pm0.73) \times 10^{-3}$, ${\cal B}(螢_c^0 \to 危^0 K_S^0) = (0.54\pm 0.09\pm 0.06\pm 0.12) \times 10^{-3}$, and ${\cal B}(螢_c^0 \to 危^+ K^-) = (1.76\pm 0.10\pm0.14\pm 0.39) \times 10^{-3}$. The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty of the branching fraction of $螢_c^0 \to 螢^- 蟺^+$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08981v2-abstract-full').style.display = 'none'; document.getElementById('2111.08981v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 3 tables; accepted for publication as a Letter in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Belle Preprint 2021-27; KEK Preprint 2021-32 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, L011102 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15626">arXiv:2110.15626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15626">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202303032">10.1002/adma.202303032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 4D visualization of the photoexcited coherent magnon by an X-ray free electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jang%2C+H">Hoyoung Jang</a>, <a href="/search/?searchtype=author&amp;query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+H">Hyeong-Do Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+M">Minseok Kim</a>, <a href="/search/?searchtype=author&amp;query=Shin%2C+K+W">Kwang Woo Shin</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+S">Sang-Youn Park</a>, <a href="/search/?searchtype=author&amp;query=Shin%2C+H+J">Hee Jun Shin</a>, <a href="/search/?searchtype=author&amp;query=Borisov%2C+P">Pavel Borisov</a>, <a href="/search/?searchtype=author&amp;query=Rosseinsky%2C+M+J">Matthew J. Rosseinsky</a>, <a href="/search/?searchtype=author&amp;query=Jang%2C+D">Dogeun Jang</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+H">Hyeongi Choi</a>, <a href="/search/?searchtype=author&amp;query=Eom%2C+I">Intae Eom</a>, <a href="/search/?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a>, <a href="/search/?searchtype=author&amp;query=Chun%2C+S+H">Sae Hwan Chun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15626v1-abstract-short" style="display: inline;"> X-ray free electron lasers (XFEL) create femtosecond X-ray pulses with high brightness and high longitudinal coherence allowing to extend X-ray spectroscopy and scattering techniques into the ultrafast time-domain. These X-rays are a powerful probe for studying coherent quasiparticle excitations in condensed matter triggered by an impulsive optical laser pump. However, unlike coherent phonons, oth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15626v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15626v1-abstract-full" style="display: none;"> X-ray free electron lasers (XFEL) create femtosecond X-ray pulses with high brightness and high longitudinal coherence allowing to extend X-ray spectroscopy and scattering techniques into the ultrafast time-domain. These X-rays are a powerful probe for studying coherent quasiparticle excitations in condensed matter triggered by an impulsive optical laser pump. However, unlike coherent phonons, other quasiparticles have been rarely observed due to small signal changes and lack of standards for the identification. Here, we exploit resonant magnetic X-ray diffraction using an XFEL to visualize a photoexcited coherent magnon in space and time. Large intensity oscillations in antiferromagnetic and ferromagnetic Bragg reflections from precessing moment are observed in a multiferroic Y-type hexaferrite. The precession trajectory reveals that a large, long-lived, photoinduced magnetic-field changes the net magnetization substantially through the large-amplitude of the magnon. This work demonstrates an efficient XFEL probe for the coherent magnon in the spotlight for opto-spintronics application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15626v1-abstract-full').style.display = 'none'; document.getElementById('2110.15626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12153">arXiv:2110.12153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12153">pdf</a>, <a href="https://arxiv.org/ps/2110.12153">ps</a>, <a href="https://arxiv.org/format/2110.12153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.184402">10.1103/PhysRevB.104.184402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of S = 5/2 anisotropic triangular chain Bi3FeMo2O12 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Boya%2C+K">K. Boya</a>, <a href="/search/?searchtype=author&amp;query=Nam%2C+K">K. Nam</a>, <a href="/search/?searchtype=author&amp;query=Manna%2C+A+K">A. K. Manna</a>, <a href="/search/?searchtype=author&amp;query=Kang%2C+J">J. Kang</a>, <a href="/search/?searchtype=author&amp;query=Lyi%2C+C">C. Lyi</a>, <a href="/search/?searchtype=author&amp;query=Jain%2C+A">A. Jain</a>, <a href="/search/?searchtype=author&amp;query=Yusuf%2C+S+M">S. M. Yusuf</a>, <a href="/search/?searchtype=author&amp;query=Khuntia%2C+P">P. Khuntia</a>, <a href="/search/?searchtype=author&amp;query=Sana%2C+B">B. Sana</a>, <a href="/search/?searchtype=author&amp;query=Kumar%2C+V">V. Kumar</a>, <a href="/search/?searchtype=author&amp;query=Mahajan%2C+A+V">A. V. Mahajan</a>, <a href="/search/?searchtype=author&amp;query=Patil%2C+D+R">Deepak. R. Patil</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a>, <a href="/search/?searchtype=author&amp;query=Panda%2C+S+K">S. K. Panda</a>, <a href="/search/?searchtype=author&amp;query=Koteswararao%2C+B">B. Koteswararao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12153v1-abstract-short" style="display: inline;"> Competing magnetic interactions in low-dimensional quantum magnets can lead to the exotic ground state with fractionalized excitations. Herein, we present our results on an S = 5/2 quasi-one-dimensional spin system Bi3FeMo2O12. The structure of Bi3FeMo2O12 consists of very well separated, infinite zig-zag S = 5/2 spin chains. The observation of a broad maximum around 10 K in the magnetic susceptib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12153v1-abstract-full').style.display = 'inline'; document.getElementById('2110.12153v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12153v1-abstract-full" style="display: none;"> Competing magnetic interactions in low-dimensional quantum magnets can lead to the exotic ground state with fractionalized excitations. Herein, we present our results on an S = 5/2 quasi-one-dimensional spin system Bi3FeMo2O12. The structure of Bi3FeMo2O12 consists of very well separated, infinite zig-zag S = 5/2 spin chains. The observation of a broad maximum around 10 K in the magnetic susceptibility suggests the presence of short-range spin correlations. Magnetic susceptibility data do not fit to S=5/2 uniform spin chain model due to the presence of 2nd nearest-neighbor coupling (J2) along with the 1st nearest-neighbor coupling J1 of the zig-zag chain. The electronic structure calculations infer that the value of J1 is comparable with J2 (J2/J1~1.1) with a negligible inter-chain interaction (J&#39;/J ~ 0.01), implying that Bi3FeMo2O12 is a highly frustrated triangular chain system. The absence of magnetic long-range ordering down to 0.2 K is seen in the heat capacity data, despite a relatively large antiferromagnetic Curie-Weiss temperature of -40 K. The magnetic heat capacity follows nearly a linear behavior at low temperatures indicating that the S = 5/2 anisotropic triangular chain exhibits the gapless excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12153v1-abstract-full').style.display = 'none'; document.getElementById('2110.12153v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13543">arXiv:2109.13543</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.13543">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0ce9">10.3847/1538-4357/ac0ce9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: An 850/450$渭$m Polarization Study of NGC 2071IR in OrionB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lyo%2C+A">A-Ran Lyo</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+J">Jongsoo Kim</a>, <a href="/search/?searchtype=author&amp;query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&amp;query=Berry%2C+D">David Berry</a>, <a href="/search/?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/?searchtype=author&amp;query=Di+Francesco%2C+J">James Di Francesco</a>, <a href="/search/?searchtype=author&amp;query=Kang%2C+J">Ji-Hyun Kang</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+R">Ray Furuya</a>, <a href="/search/?searchtype=author&amp;query=Hull%2C+C+L+H">Charles L. H. Hull</a>, <a href="/search/?searchtype=author&amp;query=Tamura%2C+M">Motohide Tamura</a>, <a href="/search/?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Hasegawa%2C+T">Tetsuo Hasegawa</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C">Chin-Fei Lee</a>, <a href="/search/?searchtype=author&amp;query=Byun%2C+D">Do-Young Byun</a>, <a href="/search/?searchtype=author&amp;query=Kirchschlager%2C+F">Florian Kirchschlager</a>, <a href="/search/?searchtype=author&amp;query=Doi%2C+Y">Yasuo Doi</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K">Kee-Tae Kim</a> , et al. (121 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13543v1-abstract-short" style="display: inline;"> We present the results of simultaneous 450 $渭$m and 850 $渭$m polarization observations toward the massive star forming region NGC 2071IR, a target of the BISTRO (B-fields in Star-Forming Region Observations) Survey, using the POL-2 polarimeter and SCUBA-2 camera mounted on the James Clerk Maxwell Telescope. We find a pinched magnetic field morphology in the central dense core region, which could b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13543v1-abstract-full').style.display = 'inline'; document.getElementById('2109.13543v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13543v1-abstract-full" style="display: none;"> We present the results of simultaneous 450 $渭$m and 850 $渭$m polarization observations toward the massive star forming region NGC 2071IR, a target of the BISTRO (B-fields in Star-Forming Region Observations) Survey, using the POL-2 polarimeter and SCUBA-2 camera mounted on the James Clerk Maxwell Telescope. We find a pinched magnetic field morphology in the central dense core region, which could be due to a rotating toroidal disk-like structure and a bipolar outflow originating from the central young stellar object, IRS 3. Using the modified Davis-Chandrasekhar-Fermi method, we obtain a plane-of-sky magnetic field strength of 563$\pm$421 $渭$G in the central $\sim$0.12 pc region from 850 $渭$m polarization data. The corresponding magnetic energy density of 2.04$\times$10$^{-8}$ erg cm$^{-3}$ is comparable to the turbulent and gravitational energy densities in the region. We find that the magnetic field direction is very well aligned with the whole of the IRS 3 bipolar outflow structure. We find that the median value of polarization fractions, 3.0 \%, at 450 $渭$m in the central 3 arcminute region, which is larger than the median value of 1.2 \% at 850 $渭$m. The trend could be due to the better alignment of warmer dust in the strong radiation environment. We also find that polarization fractions decrease with intensity at both wavelengths, with slopes, determined by fitting a Rician noise model, of $0.59 \pm 0.03$ at 450 $渭$m and $0.36 \pm 0.04$ at 850 $渭$m, respectively. We think that the shallow slope at 850 $渭$m is due to grain alignment at the center being assisted by strong radiation from the central young stellar objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13543v1-abstract-full').style.display = 'none'; document.getElementById('2109.13543v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 2021, 918, 85 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13039">arXiv:2108.13039</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> An Interpretable Web-based Glioblastoma Multiforme Prognosis Prediction Tool using Random Forest Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+Y">Yeseul Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kyung Hwan Kim</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+J">Junyoung Park</a>, <a href="/search/?searchtype=author&amp;query=Yoon%2C+H+I">Hong In Yoon</a>, <a href="/search/?searchtype=author&amp;query=Sung%2C+W">Wonmo Sung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13039v2-abstract-short" style="display: inline;"> We propose predictive models that estimate GBM patients&#39; health status of one-year after treatments (Classification task), predict the long-term prognosis of GBM patients at an individual level (Survival task). We used total of 467 GBM patients&#39; clinical profile consists of 13 features and two follow-up dates. For baseline models of random forest classifier(RFC) and random survival forest model (R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13039v2-abstract-full').style.display = 'inline'; document.getElementById('2108.13039v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13039v2-abstract-full" style="display: none;"> We propose predictive models that estimate GBM patients&#39; health status of one-year after treatments (Classification task), predict the long-term prognosis of GBM patients at an individual level (Survival task). We used total of 467 GBM patients&#39; clinical profile consists of 13 features and two follow-up dates. For baseline models of random forest classifier(RFC) and random survival forest model (RSF), we introduced generalized linear model (GLM), support vector machine (SVM) and Cox proportional hazardous model (COX), accelerated failure time model (AFT) respectively. After preprocessing and prefixing stratified 5-fold data set, we generated best performing models for model types using recursive feature elimination process. Total 10, 4, and 13 features were extracted for best performing one-year survival/progression status RFC models and RSF model via the recursive feature elimination process. In classification task, AUROC of best performing RFC recorded 0.6990 (for one-year survival status classification) and 0.7076 (for one-year progression classification) while that of second best baseline models (GLM in both cases) recorded 0.6691 and 0.6997 respectively. About survival task, the highest C-index of 0.7157 and the lowest IBS of 0.1038 came from the best performing RSF model while that of second best baseline models were 0.6556 and 0.1139 respectively. A simplified linear correlation (extracted from LIME and virtual patient group analysis) between each feature and prognosis of GBM patient were consistent with proven medical knowledge. Our machine learning models suggest that the top three prognostic factors for GBM patient survival were MGMT gene promoter, the extent of resection, and age. To the best of our knowledge, this study is the very first study introducing a interpretable and medical knowledge consistent GBM prognosis predictive models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13039v2-abstract-full').style.display = 'none'; document.getElementById('2108.13039v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version of preprint has some issues regarding methods and results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10573">arXiv:2107.10573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10573">pdf</a>, <a href="https://arxiv.org/format/2107.10573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.217203">10.1103/PhysRevLett.127.217203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nearly room temperature ferromagnetism in pressure-induced correlated metallic state of van der Waals insulator CrGeTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bhoi%2C+D">Dilip Bhoi</a>, <a href="/search/?searchtype=author&amp;query=Gouchi%2C+J">Jun Gouchi</a>, <a href="/search/?searchtype=author&amp;query=Hiraoka%2C+N">Naoka Hiraoka</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yufeng Zhang</a>, <a href="/search/?searchtype=author&amp;query=Ogita%2C+N">Norio Ogita</a>, <a href="/search/?searchtype=author&amp;query=Hasegawa%2C+T">Takumi Hasegawa</a>, <a href="/search/?searchtype=author&amp;query=Kitagawa%2C+K">Kentaro Kitagawa</a>, <a href="/search/?searchtype=author&amp;query=Takagi%2C+H">Hidenori Takagi</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H">Kee Hoon Kim</a>, <a href="/search/?searchtype=author&amp;query=Uwatoko%2C+Y">Yoshiya Uwatoko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10573v1-abstract-short" style="display: inline;"> A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling and Hund&#39;s coupling energy in two-dimensional (2D) van der Waals (vdW) material produces novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe$_3$, that provides a promising platform to simultaneously manipulate the magnetic and electrical properties for pot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10573v1-abstract-full').style.display = 'inline'; document.getElementById('2107.10573v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10573v1-abstract-full" style="display: none;"> A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling and Hund&#39;s coupling energy in two-dimensional (2D) van der Waals (vdW) material produces novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe$_3$, that provides a promising platform to simultaneously manipulate the magnetic and electrical properties for potential device implementation using few layers thick materials. Here, we show a continuous tuning of magnetic and electrical properties of CrGeTe$_3$ single crystal using pressure. With application of pressure, CrGeTe$_3$ transforms from a FM insulator with Curie temperature, $T_{\rm{C}} \sim $ 66 K at ambient condition to a correlated 2D Fermi metal with $T_{\rm{C}}$ exceeding $\sim$ 250 K. Notably, absence of an accompanying structural distortion across the insulator-metal transition (IMT) suggests that the pressure induced modification of electronic ground states are driven by electronic correlation furnishing a rare example of bandwidth-controlled IMT in a vdW material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10573v1-abstract-full').style.display = 'none'; document.getElementById('2107.10573v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13547">arXiv:2106.13547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13547">pdf</a>, <a href="https://arxiv.org/format/2106.13547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Rediscovery of $B^0\to J\mskip 1mu / 蠄\mskip 2mu K^0_{\scriptscriptstyle L}$ at Belle II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Belle+II+Collaboration"> Belle II Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Adachi%2C+I">I. Adachi</a>, <a href="/search/?searchtype=author&amp;query=Adak%2C+R">R. Adak</a>, <a href="/search/?searchtype=author&amp;query=Adamczyk%2C+K">K. Adamczyk</a>, <a href="/search/?searchtype=author&amp;query=Ahlburg%2C+P">P. Ahlburg</a>, <a href="/search/?searchtype=author&amp;query=Ahn%2C+J+K">J. K. Ahn</a>, <a href="/search/?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/?searchtype=author&amp;query=Akopov%2C+N">N. Akopov</a>, <a href="/search/?searchtype=author&amp;query=Aloisio%2C+A">A. Aloisio</a>, <a href="/search/?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/?searchtype=author&amp;query=Andricek%2C+L">L. Andricek</a>, <a href="/search/?searchtype=author&amp;query=Ky%2C+N+A">N. Anh Ky</a>, <a href="/search/?searchtype=author&amp;query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/?searchtype=author&amp;query=Atmacan%2C+H">H. Atmacan</a>, <a href="/search/?searchtype=author&amp;query=Aulchenko%2C+V">V. Aulchenko</a>, <a href="/search/?searchtype=author&amp;query=Aushev%2C+T">T. Aushev</a>, <a href="/search/?searchtype=author&amp;query=Aushev%2C+V">V. Aushev</a>, <a href="/search/?searchtype=author&amp;query=Aziz%2C+T">T. Aziz</a>, <a href="/search/?searchtype=author&amp;query=Babu%2C+V">V. Babu</a>, <a href="/search/?searchtype=author&amp;query=Bacher%2C+S">S. Bacher</a>, <a href="/search/?searchtype=author&amp;query=Baehr%2C+S">S. Baehr</a>, <a href="/search/?searchtype=author&amp;query=Bahinipati%2C+S">S. Bahinipati</a>, <a href="/search/?searchtype=author&amp;query=Bakich%2C+A+M">A. M. Bakich</a>, <a href="/search/?searchtype=author&amp;query=Bambade%2C+P">P. Bambade</a> , et al. (523 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13547v1-abstract-short" style="display: inline;"> We present preliminary results on the reconstruction of the $B^0\to J\mskip 1mu / 蠄\mskip 2mu K^0_{\scriptscriptstyle L}$ decay, where $J\mskip 1mu / 蠄\mskip 2mu\to渭^+渭^-$ or $e^+e^-$. Using a dataset corresponding to a luminosity of $62.8\pm0.6\mbox{fb}^{-1}$ collected by the Belle II experiment at the SuperKEKB asymmetric energy $e^+e^-$ collider, we measure a total of $267\pm21$ candidates with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13547v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13547v1-abstract-full" style="display: none;"> We present preliminary results on the reconstruction of the $B^0\to J\mskip 1mu / 蠄\mskip 2mu K^0_{\scriptscriptstyle L}$ decay, where $J\mskip 1mu / 蠄\mskip 2mu\to渭^+渭^-$ or $e^+e^-$. Using a dataset corresponding to a luminosity of $62.8\pm0.6\mbox{fb}^{-1}$ collected by the Belle II experiment at the SuperKEKB asymmetric energy $e^+e^-$ collider, we measure a total of $267\pm21$ candidates with $J\mskip 1mu / 蠄\mskip 2mu\to渭^+渭^-$ and $226\pm20$ with with $J\mskip 1mu / 蠄\mskip 2mu\to e^+e^-$. The quoted errors are statistical only. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13547v1-abstract-full').style.display = 'none'; document.getElementById('2106.13547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BELLE2-CONF-PH-2021-009 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+K+H&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10