CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 54 results for author: <span class="mathjax">Du, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Du%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Du, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Du%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Du, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Du%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Du%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Du%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12215">arXiv:2411.12215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12215">pdf</a>, <a href="https://arxiv.org/format/2411.12215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantifying imaginarity in terms of pure-state imaginarity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12215v1-abstract-short" style="display: inline;"> Complex numbers are widely used in quantum physics and are indispensable components for describing quantum systems and their dynamical behavior. The resource theory of imaginarity has been built recently, enabling a systematic research of complex numbers in quantum information theory. In this work, we develop two theoretical methods for quantifying imaginarity, motivated by recent progress within&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12215v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12215v1-abstract-full" style="display: none;"> Complex numbers are widely used in quantum physics and are indispensable components for describing quantum systems and their dynamical behavior. The resource theory of imaginarity has been built recently, enabling a systematic research of complex numbers in quantum information theory. In this work, we develop two theoretical methods for quantifying imaginarity, motivated by recent progress within resource theories of entanglement and coherence. We provide quantifiers of imaginarity by the convex roof construction and quantifiers of the imaginarity by the least imaginarity of the input pure states under real operations. We also apply these tools to study the state conversion problem in resource theory of imaginarity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12215v1-abstract-full').style.display = 'none'; document.getElementById('2411.12215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 1 figure, 49 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02885">arXiv:2408.02885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02885">pdf</a>, <a href="https://arxiv.org/ps/2408.02885">ps</a>, <a href="https://arxiv.org/format/2408.02885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.2478/qic-2024-0007">10.2478/qic-2024-0007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State convertibility under genuinely incoherent operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02885v3-abstract-short" style="display: inline;"> State convertibility is fundamental in the study of resource theory of quantum coherence. It is aimed at identifying when it is possible to convert a given coherent state to another using only incoherent operations. In this paper, we give a complete characterization of state convertibility under genuinely incoherent operations. It is found that convexity of the robustness of coherence plays a cent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02885v3-abstract-full').style.display = 'inline'; document.getElementById('2408.02885v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02885v3-abstract-full" style="display: none;"> State convertibility is fundamental in the study of resource theory of quantum coherence. It is aimed at identifying when it is possible to convert a given coherent state to another using only incoherent operations. In this paper, we give a complete characterization of state convertibility under genuinely incoherent operations. It is found that convexity of the robustness of coherence plays a central role. Based on this, the majorization condition of determining convertibility from pure states to mixed states under strictly incoherent operations is provided. Moreover, maximally coherent states in the set of all states with fixed diagonal elements are determined. It is somewhat surprising that convexity of the robustness of coherence can also decide conversion between off-diagonal parts of coherent states. This might be a big step to answer completely the question of state convertibility for mixed states under incoherent operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02885v3-abstract-full').style.display = 'none'; document.getElementById('2408.02885v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 85 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Information &amp; Computation, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20511">arXiv:2407.20511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20511">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Building spin-1/2 antiferromagnetic Heisenberg chains with diaza-nanographenes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+X">Xiaoshuai Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Henriques%2C+J+C+G">Jo茫o C. G. Henriques</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yixuan Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Palma%2C+C">Carlos-Andres Palma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shixuan Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+J">Ji Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fern%C3%A1ndez-Rossier%2C+J">Joaqu铆n Fern谩ndez-Rossier</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+X">Xinliang Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20511v1-abstract-short" style="display: inline;"> Understanding and engineering the coupling of spins in nanomaterials is of central importance for designing novel devices. Graphene nanostructures with 蟺-magnetism offer a chemically tunable platform to explore quantum magnetic interactions. However, realizing spin chains bearing controlled odd-even effects with suitable nanographene systems is challenging. Here, we demonstrate the successful on-s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20511v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20511v1-abstract-full" style="display: none;"> Understanding and engineering the coupling of spins in nanomaterials is of central importance for designing novel devices. Graphene nanostructures with 蟺-magnetism offer a chemically tunable platform to explore quantum magnetic interactions. However, realizing spin chains bearing controlled odd-even effects with suitable nanographene systems is challenging. Here, we demonstrate the successful on-surface synthesis of spin-1/2 antiferromagnetic Heisenberg chains with parity-dependent magnetization based on antiaromatic diaza-hexa-peri-hexabenzocoronene (diaza-HBC) units. Using distinct synthetic strategies, two types of spin chains with different terminals were synthesized, both exhibiting a robust odd-even effect on the spin coupling along the chain. Combined investigations using scanning tunneling microscopy, non-contact atomic force microscopy, density functional theory calculations, and quantum spin models confirmed the structures of the diaza-HBC chains and revealed their magnetic properties, which has an S = 1/2 spin per unit through electron donation from the diaza-HBC core to the Au(111) substrate. Gapped excitations were observed in even-numbered chains, while enhanced Kondo resonance emerged in odd-numbered units of odd-numbered chains due to the redistribution of the unpaired spin along the chain. Our findings provide an effective strategy to construct nanographene spin chains and unveil the odd-even effect in their magnetic properties, offering potential applications in nanoscale spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20511v1-abstract-full').style.display = 'none'; document.getElementById('2407.20511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13028">arXiv:2406.13028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13028">pdf</a>, <a href="https://arxiv.org/format/2406.13028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Symmetry Protected Two-Photon Coherence Time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lai%2C+X">Xuanying Lai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Christopher Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zanders%2C+A">Alan Zanders</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Y">Yefeng Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13028v1-abstract-short" style="display: inline;"> We report the observation of symmetry protected two-photon coherence time of biphotons generated from backward spontaneous four-wave mixing in laser-cooled $^{87}$Rb atoms. When biphotons are nondegenerate, non-symmetric photonic absorption loss results in exponential decay of the temporal waveform of the two-photon joint probability amplitude, leading to shortened coherence time. In contrast, in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13028v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13028v1-abstract-full" style="display: none;"> We report the observation of symmetry protected two-photon coherence time of biphotons generated from backward spontaneous four-wave mixing in laser-cooled $^{87}$Rb atoms. When biphotons are nondegenerate, non-symmetric photonic absorption loss results in exponential decay of the temporal waveform of the two-photon joint probability amplitude, leading to shortened coherence time. In contrast, in the case of degenerate biphotons, when both paired photons propagate with the same group velocity and absorption coefficient, the two-photon coherence time, protected by space-time symmetry, remains unaffected by medium absorptive losses. Our experimental results validate these theoretical predictions. This outcome highlights the pivotal role of symmetry in manipulating and controlling photonic quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13028v1-abstract-full').style.display = 'none'; document.getElementById('2406.13028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03797">arXiv:2405.03797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03797">pdf</a>, <a href="https://arxiv.org/format/2405.03797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Tensor Network Computations That Capture Strict Variationality, Volume Law Behavior, and the Efficient Representation of Neural Network States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W">Wen-Yuan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Si-Jing Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+R">Ruojing Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gray%2C+J">Johnnie Gray</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chan%2C+G+K">Garnet Kin-Lic Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03797v2-abstract-short" style="display: inline;"> We introduce a change of perspective on tensor network states that is defined by the computational graph of the contraction of an amplitude. The resulting class of states, which we refer to as tensor network functions, inherit the conceptual advantages of tensor network states while removing computational restrictions arising from the need to converge approximate contractions. We use tensor networ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03797v2-abstract-full').style.display = 'inline'; document.getElementById('2405.03797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03797v2-abstract-full" style="display: none;"> We introduce a change of perspective on tensor network states that is defined by the computational graph of the contraction of an amplitude. The resulting class of states, which we refer to as tensor network functions, inherit the conceptual advantages of tensor network states while removing computational restrictions arising from the need to converge approximate contractions. We use tensor network functions to compute strict variational estimates of the energy on loopy graphs, analyze their expressive power for ground-states, show that we can capture aspects of volume law time evolution, and provide a mapping of general feed-forward neural nets onto efficient tensor network functions. Our work expands the realm of computable tensor networks to ones where accurate contraction methods are not available, and opens up new avenues to use tensor networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03797v2-abstract-full').style.display = 'none'; document.getElementById('2405.03797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+9 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03803">arXiv:2404.03803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03803">pdf</a>, <a href="https://arxiv.org/format/2404.03803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Scaling of quantum Fisher information for quantum exceptional point sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Chun-Hui Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+F">Fu Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+J">Jianming Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+L">Lan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03803v1-abstract-short" style="display: inline;"> In recent years, significant progress has been made in utilizing the divergence of spectrum response rate at the exceptional point (EP) for sensing in classical systems, while the use and characterization of quantum EPs for sensing have been largely unexplored. For a quantum EP sensor, an important issue is the relation between the order of the quantum EP and the scaling of quantum Fisher informat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03803v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03803v1-abstract-full" style="display: none;"> In recent years, significant progress has been made in utilizing the divergence of spectrum response rate at the exceptional point (EP) for sensing in classical systems, while the use and characterization of quantum EPs for sensing have been largely unexplored. For a quantum EP sensor, an important issue is the relation between the order of the quantum EP and the scaling of quantum Fisher information (QFI), an essential quantity for characterizing quantum sensors. Here we investigate multi-mode quadratic bosonic systems, which exhibit higher-order EP dynamics, but possess Hermitian Hamiltonians without Langevin noise, thus can be utilized for quantum sensing. We derive an exact analytic formula for the QFI, from which we establish a scaling relation between the QFI and the order of the EP. We apply the formula to study a three-mode EP sensor and a multi-mode bosonic Kitaev chain and show that the EP physics can significantly enhance the sensing sensitivity. Our work establishes the connection between two important fields: non-Hermitian EP dynamics and quantum sensing, and may find important applications in quantum information and quantum non-Hermitian physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03803v1-abstract-full').style.display = 'none'; document.getElementById('2404.03803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07489">arXiv:2402.07489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.07489">pdf</a>, <a href="https://arxiv.org/format/2402.07489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2399-6528/ad22e6">10.1088/2399-6528/ad22e6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Network mechanism for generating genuinely correlative Gaussian states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07489v1-abstract-short" style="display: inline;"> Generating a long-distance quantum state with genuine quantum correlation (GQC) is one of the most essential functions of quantum networks to support quantum communication. Here, we provide a deterministic scheme for generating multimode Gaussian states with certain GQC (including genuine entanglement). Efficient algorithms of generating multimode states are also proposed. Our scheme is useful for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07489v1-abstract-full').style.display = 'inline'; document.getElementById('2402.07489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07489v1-abstract-full" style="display: none;"> Generating a long-distance quantum state with genuine quantum correlation (GQC) is one of the most essential functions of quantum networks to support quantum communication. Here, we provide a deterministic scheme for generating multimode Gaussian states with certain GQC (including genuine entanglement). Efficient algorithms of generating multimode states are also proposed. Our scheme is useful for resolving the bottleneck in generating some multimode Gaussian states and may pave the way towards real world applications of preparing multipartite quantum states in current quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07489v1-abstract-full').style.display = 'none'; document.getElementById('2402.07489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, 54 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics Communications 8 025006 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08736">arXiv:2309.08736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.08736">pdf</a>, <a href="https://arxiv.org/format/2309.08736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> S-QGPU: Shared Quantum Gate Processing Unit for Distributed Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yufei Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiao%2C+C">Chunming Qiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08736v3-abstract-short" style="display: inline;"> We propose a distributed quantum computing (DQC) architecture in which individual small-sized quantum computers are connected to a shared quantum gate processing unit (S-QGPU). The S-QGPU comprises a collection of hybrid two-qubit gate modules for remote gate operations. In contrast to conventional DQC systems, where each quantum computer is equipped with dedicated communication qubits, S-QGPU eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08736v3-abstract-full').style.display = 'inline'; document.getElementById('2309.08736v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08736v3-abstract-full" style="display: none;"> We propose a distributed quantum computing (DQC) architecture in which individual small-sized quantum computers are connected to a shared quantum gate processing unit (S-QGPU). The S-QGPU comprises a collection of hybrid two-qubit gate modules for remote gate operations. In contrast to conventional DQC systems, where each quantum computer is equipped with dedicated communication qubits, S-QGPU effectively pools the resources (e.g., the communication qubits) together for remote gate operations, and thus significantly reduces the cost of not only the local quantum computers but also the overall distributed system. Our preliminary analysis and simulation show that S-QGPU&#39;s shared resources for remote gate operations enable efficient resource utilization. When not all computing qubits (also called data qubits) in the system require simultaneous remote gate operations, S-QGPU-based DQC architecture demands fewer communication qubits, further decreasing the overall cost. Alternatively, with the same number of communication qubits, it can support a larger number of simultaneous remote gate operations more efficiently, especially when these operations occur in a burst mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08736v3-abstract-full').style.display = 'none'; document.getElementById('2309.08736v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10850">arXiv:2308.10850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10850">pdf</a>, <a href="https://arxiv.org/format/2308.10850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Four-wave mixing with anti-parity-time symmetry in hot $^{85}$Rb vapor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+Z">Ziqi Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+Y">Yue Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+J">Jianming Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanwei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Novikova%2C+I">Irina Novikova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10850v1-abstract-short" style="display: inline;"> We report an experimental demonstration of anti-parity-time (anti-PT) symmetric optical four-wave mixing in thermal Rubidium vapor, where the propagation of two conjugate optical fields in a double-$螞$ scheme is governed by a non-Hermitian Hamiltonian. We are particularly interested in studying quantum intensity correlations between the two conjugate fields near the exceptional point, taking into&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10850v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10850v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10850v1-abstract-full" style="display: none;"> We report an experimental demonstration of anti-parity-time (anti-PT) symmetric optical four-wave mixing in thermal Rubidium vapor, where the propagation of two conjugate optical fields in a double-$螞$ scheme is governed by a non-Hermitian Hamiltonian. We are particularly interested in studying quantum intensity correlations between the two conjugate fields near the exceptional point, taking into account loss and accompanied Langevin noise. Our experimental measurements of classical four-wave mixing gain and the associated two-mode relative-intensity squeezing are in reasonable agreement with the theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10850v1-abstract-full').style.display = 'none'; document.getElementById('2308.10850v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11993">arXiv:2301.11993</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11993">pdf</a>, <a href="https://arxiv.org/format/2301.11993">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.053703">10.1103/PhysRevA.107.053703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Langevin theory for two coupled phase-conjugated electromagnetic waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+Y">Yue Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Y">Yefeng Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11993v1-abstract-short" style="display: inline;"> While loss-gain-induced Langevin noises have been intensively studied in quantum optics, the effect of a complex-valued nonlinear coupling coefficient on the noises of two coupled phase-conjugated optical fields has never been questioned before. Here, we provide a general macroscopic phenomenological formula of quantum Langevin equations for two coupled phase-conjugated fields with linear loss (ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11993v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11993v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11993v1-abstract-full" style="display: none;"> While loss-gain-induced Langevin noises have been intensively studied in quantum optics, the effect of a complex-valued nonlinear coupling coefficient on the noises of two coupled phase-conjugated optical fields has never been questioned before. Here, we provide a general macroscopic phenomenological formula of quantum Langevin equations for two coupled phase-conjugated fields with linear loss (gain) and complex nonlinear coupling coefficient. The macroscopic phenomenological formula is obtained from the coupling matrix to preserve the field commutation relations and correlations, which does not require knowing the microscopic details of light-matter interaction and internal atomic structures. To validate this phenomenological formula, we take spontaneous four-wave mixing in a double-$螞$ four-level atomic system as an example to numerically confirm that our macroscopic phenomenological result is consistent with that obtained from the microscopic Heisenberg-Langevin theory. Finally, we apply the quantum Langevin equations to study the effects of linear gain and loss, complex phase mismatching, as well as complex nonlinear coupling coefficient in entangled photon pair (biphoton) generation, particularly to their temporal quantum correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11993v1-abstract-full').style.display = 'none'; document.getElementById('2301.11993v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 107, 053703 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05891">arXiv:2301.05891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05891">pdf</a>, <a href="https://arxiv.org/ps/2301.05891">ps</a>, <a href="https://arxiv.org/format/2301.05891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1402-4896/ad70f8">10.1088/1402-4896/ad70f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frozen condition of quantum coherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05891v3-abstract-short" style="display: inline;"> Quantum coherence as an important physical resource plays the key role in implementing various quantum tasks, whereas quantum coherence is often deteriorated due to the noise. In this paper, we analyse under which dynamical conditions the $l_1$-norm or the relative entropy of coherence can remain unchanged during the whole evolution (freezing coherence). For single qubit systems, a nice formula is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05891v3-abstract-full').style.display = 'inline'; document.getElementById('2301.05891v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05891v3-abstract-full" style="display: none;"> Quantum coherence as an important physical resource plays the key role in implementing various quantum tasks, whereas quantum coherence is often deteriorated due to the noise. In this paper, we analyse under which dynamical conditions the $l_1$-norm or the relative entropy of coherence can remain unchanged during the whole evolution (freezing coherence). For single qubit systems, a nice formula is given to realize freezing coherence. Conversely, for a $d\ (d&gt;2)$ dimensional system, we identify universal geometric conditions of freezing coherence. This offers an affirmative answer to the open question: how can one determine whether a unital quantum operation can be decomposed as a convex combination of unitary operations [M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000)]. Based on this analysis, we also give a complete classification of coherent states from operational coherence theory. This builds the counterpart of entanglement classification under LOCC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05891v3-abstract-full').style.display = 'none'; document.getElementById('2301.05891v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 73 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica Scripta 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02350">arXiv:2207.02350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02350">pdf</a>, <a href="https://arxiv.org/format/2207.02350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202300007">10.1002/qute.202300007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distributed quantum computing with photons and atomic memories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Oh%2C+E">Eun Oh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lai%2C+X">Xuanying Lai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+J">Jianming Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02350v1-abstract-short" style="display: inline;"> The promise of universal quantum computing requires scalable single- and inter-qubit control interactions. Currently, three of the leading candidate platforms for quantum computing are based on superconducting circuits, trapped ions, and neutral atom arrays. However, these systems have strong interaction with environmental and control noises that introduce decoherence of qubit states and gate oper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02350v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02350v1-abstract-full" style="display: none;"> The promise of universal quantum computing requires scalable single- and inter-qubit control interactions. Currently, three of the leading candidate platforms for quantum computing are based on superconducting circuits, trapped ions, and neutral atom arrays. However, these systems have strong interaction with environmental and control noises that introduce decoherence of qubit states and gate operations. Alternatively, photons are well decoupled from the environment, and have advantages of speed and timing for distributed quantum computing. Photonic systems have already demonstrated capability for solving specific intractable problems like Boson sampling, but face challenges for practically scalable universal quantum computing solutions because it is extremely difficult for a single photon to &#34;talk&#34; to another deterministically. Here, we propose a universal distributed quantum computing scheme based on photons and atomic-ensemble-based quantum memories. Taking the established photonic advantages, we mediate two-qubit nonlinear interaction by converting photonic qubits into quantum memory states and employing Rydberg blockade for controlled gate operation. We further demonstrate spatial and temporal scalability of this scheme. Our results show photon-atom network hybrid approach can be an alternative solution to universal quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02350v1-abstract-full').style.display = 'none'; document.getElementById('2207.02350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Quantum Technol. 2300007 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.12831">arXiv:2206.12831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.12831">pdf</a>, <a href="https://arxiv.org/ps/2206.12831">ps</a>, <a href="https://arxiv.org/format/2206.12831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.012407">10.1103/PhysRevA.107.012407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Incoherent Gaussian equivalence of $m-$mode Gaussian states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.12831v3-abstract-short" style="display: inline;"> Necessary and sufficient conditions for arbitrary multimode (pure or mixed) Gaussian states to be equivalent under incoherent Gaussian operations are derived. We show that two Gaussian states are incoherent equivalence if and only if they are related by incoherent unitaries. This builds the counterpart of the celebrated result that two pure entangled states are equivalent under LOCC if and only if&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.12831v3-abstract-full').style.display = 'inline'; document.getElementById('2206.12831v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.12831v3-abstract-full" style="display: none;"> Necessary and sufficient conditions for arbitrary multimode (pure or mixed) Gaussian states to be equivalent under incoherent Gaussian operations are derived. We show that two Gaussian states are incoherent equivalence if and only if they are related by incoherent unitaries. This builds the counterpart of the celebrated result that two pure entangled states are equivalent under LOCC if and only if they are related by local unitaries. Furthermore, incoherent equivalence of Gaussian states is equivalent to frozen coherence [Phys. Rev. Lett. \textbf{114}, 210401 (2015)]. Basing this as foundation, we find all measures of coherence are frozen for an initial Gaussian state under strongly incoherent Gaussian operations if and only if the relative entropy measure of coherence is frozen for the state. This gives an entropy-based dynamical condition in which the coherence of an open quantum system is totally unaffected by noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.12831v3-abstract-full').style.display = 'none'; document.getElementById('2206.12831v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 59 references, accepted for publication in PRA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08075">arXiv:2110.08075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.08075">pdf</a>, <a href="https://arxiv.org/ps/2110.08075">ps</a>, <a href="https://arxiv.org/format/2110.08075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.022412">10.1103/PhysRevA.105.022412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conversion of Gaussian states under incoherent Gaussian operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08075v2-abstract-short" style="display: inline;"> The coherence resource theory needs to study the operational value and efficiency which can be broadly formulated as the question: when can one coherent state be converted into another under incoherent operations. We answer this question completely for one-mode continuous-variable systems by characterizing conversion of coherent Gaussian states under incoherent Gaussian operations in terms of thei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08075v2-abstract-full').style.display = 'inline'; document.getElementById('2110.08075v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08075v2-abstract-full" style="display: none;"> The coherence resource theory needs to study the operational value and efficiency which can be broadly formulated as the question: when can one coherent state be converted into another under incoherent operations. We answer this question completely for one-mode continuous-variable systems by characterizing conversion of coherent Gaussian states under incoherent Gaussian operations in terms of their first and second moments. The no-go theorem of purification of coherent Gaussian states is also built. The structure of incoherent Gaussian operations of two-mode continuous-variable systems is discussed further and is applied to coherent conversion for pure Gaussian states with standard second moments. The standard second moments are images of all second moments under local linear unitary Bogoliubov operations. As concrete applications, we obtain some peculiarities of a Gaussian system: (1) There does not exist a maximally coherent Gaussian state which can generate all coherent Gaussian states; (2) The conversion between pure Gaussian states is reversible; (3) The coherence of input pure state and the coherence of output pure state are equal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08075v2-abstract-full').style.display = 'none'; document.getElementById('2110.08075v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,48 references,To appear in Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.12873">arXiv:2108.12873</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.12873">pdf</a>, <a href="https://arxiv.org/format/2108.12873">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.173602">10.1103/PhysRevLett.128.173602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum squeezing and sensing with pseudo anti-parity-time symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+X">Xi-Wang Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanwei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.12873v2-abstract-short" style="display: inline;"> The emergence of parity-time ($\mathcal{PT}$) symmetry has greatly enriched our study of symmetry-enabled non-Hermitian physics, but the realization of quantum $\mathcal{PT}$-symmetry faces an intrinsic issue of unavoidable symmetry-breaking Langevin noises. Here we construct a quantum pseudo-anti-$\mathcal{PT}$ (pseudo-$\mathcal{APT}$) symmetry in a two-mode bosonic system without involving Lange&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.12873v2-abstract-full').style.display = 'inline'; document.getElementById('2108.12873v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.12873v2-abstract-full" style="display: none;"> The emergence of parity-time ($\mathcal{PT}$) symmetry has greatly enriched our study of symmetry-enabled non-Hermitian physics, but the realization of quantum $\mathcal{PT}$-symmetry faces an intrinsic issue of unavoidable symmetry-breaking Langevin noises. Here we construct a quantum pseudo-anti-$\mathcal{PT}$ (pseudo-$\mathcal{APT}$) symmetry in a two-mode bosonic system without involving Langevin noises. We show that the spontaneous pseudo-$\mathcal{APT}$ symmetry breaking leads to an exceptional point, across which there is a transition between different types of quantum squeezing dynamics, i.e., the squeezing factor increases exponentially (oscillates periodically) with time in the pseudo-$\mathcal{APT}$ symmetric (broken) region. Such dramatic changes of squeezing factors and quantum dynamics near the exceptional point are utilized for ultra-precision quantum sensing. These exotic quantum phenomena and sensing applications can be experimentally observed in two physical systems: spontaneous wave mixing nonlinear optics and atomic Bose-Einstein condensates. Our work offers a physical platform for investigating exciting $\mathcal{APT}$ symmetry physics in the quantum realm, paving the way for exploring fundamental quantum non-Hermitian effects and their quantum technological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.12873v2-abstract-full').style.display = 'none'; document.getElementById('2108.12873v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 + 8 pages, 3 + 3 figures. To appear in PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14862">arXiv:2106.14862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14862">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.063710">10.1103/PhysRevA.104.063710 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-sided destructive quantum interference from an exceptional point-enabled metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+H">Hong Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lau%2C+K+M">Kai Ming Lau</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wong%2C+W+C">Wai Chun Wong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tam%2C+W+Y">Wing Yim Tam</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jensen Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14862v1-abstract-short" style="display: inline;"> We propose the concept of one-sided quantum interference based on non-Hermitian metasurfaces.By designing bianisotropic metasurfaces with a non-Hermitian exceptional point, we show that quantum interference can exist only on only one side but not another. This is the quantum inheritance of unidirectional zero reflection in classical optics.The one-side interference can be further manipulated with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14862v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14862v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14862v1-abstract-full" style="display: none;"> We propose the concept of one-sided quantum interference based on non-Hermitian metasurfaces.By designing bianisotropic metasurfaces with a non-Hermitian exceptional point, we show that quantum interference can exist only on only one side but not another. This is the quantum inheritance of unidirectional zero reflection in classical optics.The one-side interference can be further manipulated with tailor-made metasurface. With two photons simultaneously entering the metasurface from different sides, the probability for only outputting one photon on the side with reflection can be modified to zero as a one-sided destructive quantum interference while the output on another side is free of interference. We design the required bianisotropic metasurface and numerically demonstrate the proposed effect. The non-Hermitian bianisotropic metasurfaces provide more degrees of freedom in tuning two-photon quantum interference, in parallel to the celebrated Hong-Ou-Mandel effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14862v1-abstract-full').style.display = 'none'; document.getElementById('2106.14862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04737">arXiv:2105.04737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.04737">pdf</a>, <a href="https://arxiv.org/format/2105.04737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.052444">10.1103/PhysRevA.105.052444 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wavelength conversion for single-photon polarization qubits through continuous variable quantum teleportation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+X">Xi-Wang Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanwei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Novikova%2C+I">Irina Novikova</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+C">Chen Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04737v1-abstract-short" style="display: inline;"> A quantum internet connects remote quantum processors that need interact and exchange quantum signals over a long distance through photonic channels. However, these quantum nodes are usually composed of quantum systems with emitted photons unsuitable for long-distance transmission. Therefore, quantum wavelength conversion to telecom is crucial for long-distance quantum networks based on optical fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04737v1-abstract-full').style.display = 'inline'; document.getElementById('2105.04737v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04737v1-abstract-full" style="display: none;"> A quantum internet connects remote quantum processors that need interact and exchange quantum signals over a long distance through photonic channels. However, these quantum nodes are usually composed of quantum systems with emitted photons unsuitable for long-distance transmission. Therefore, quantum wavelength conversion to telecom is crucial for long-distance quantum networks based on optical fiber. Here we propose wavelength conversion devices for single-photon polarization qubits using continuous variable quantum teleportation, which can efficiently convert qubits between near-infrared (780/795 nm suitable for interacting with atomic quantum nodes) and telecom wavelength (1300-1500 nm suitable for long-distance transmission). The teleportation uses entangled photon sources (i.e., non-degenerate two-mode squeezed state) that can be generated by four-wave mixing in rubidium atomic vapor cells, with a diamond configuration of atomic transitions. The entangled fields can be emitted in two orthogonal polarizations with locked relative phase, making them especially suitable for interfacing with single-photon polarization qubits. Our work paves the way for the realization of long-distance quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04737v1-abstract-full').style.display = 'none'; document.getElementById('2105.04737v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04602">arXiv:2105.04602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.04602">pdf</a>, <a href="https://arxiv.org/format/2105.04602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/photonics8120552">10.3390/photonics8120552 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid entanglement between optical discrete polarizations and continuous quadrature variables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+J">Jianming Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Novikova%2C+I">Irina Novikova</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+C">Chen Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanwei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04602v1-abstract-short" style="display: inline;"> By coherently combining advantages while largely avoiding limitations of two mainstream platforms, optical hybrid entanglement involving both discrete and continuous variables has recently garnered widespread attention and emerged as a promising idea for building heterogenous quantum networks. Different from previous results, here we propose a new scheme to remotely generate hybrid entanglement be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04602v1-abstract-full').style.display = 'inline'; document.getElementById('2105.04602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04602v1-abstract-full" style="display: none;"> By coherently combining advantages while largely avoiding limitations of two mainstream platforms, optical hybrid entanglement involving both discrete and continuous variables has recently garnered widespread attention and emerged as a promising idea for building heterogenous quantum networks. Different from previous results, here we propose a new scheme to remotely generate hybrid entanglement between discrete-polarization and continuous-quadrature optical qubits heralded by two-photon Bell state measurement. As a novel nonclassical light resource, we further utilize it to discuss two examples of ways -- entanglement swapping and quantum teloportation -- in which quantum information processing and communications could make use of this hybrid technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04602v1-abstract-full').style.display = 'none'; document.getElementById('2105.04602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics 8(12), 552 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06457">arXiv:2103.06457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.06457">pdf</a>, <a href="https://arxiv.org/format/2103.06457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> All-optical neural network quantum state tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zuo%2C+Y">Ying Zuo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+C">Chenfeng Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+N">Ningping Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lai%2C+X">Xuanying Lai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06457v2-abstract-short" style="display: inline;"> Quantum state tomography (QST) is a crucial ingredient for almost all aspects of experimental quantum information processing. As an analog of the &#34;imaging&#34; technique in the quantum settings, QST is born to be a data science problem, where machine learning techniques, noticeably neural networks, have been applied extensively. In this work, we build an integrated all-optical setup for neural network&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06457v2-abstract-full').style.display = 'inline'; document.getElementById('2103.06457v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06457v2-abstract-full" style="display: none;"> Quantum state tomography (QST) is a crucial ingredient for almost all aspects of experimental quantum information processing. As an analog of the &#34;imaging&#34; technique in the quantum settings, QST is born to be a data science problem, where machine learning techniques, noticeably neural networks, have been applied extensively. In this work, we build an integrated all-optical setup for neural network QST, based on an all-optical neural network (AONN). Our AONN is equipped with built-in nonlinear activation function, which is based on electromagnetically induced transparency. Experiment results demonstrate the validity and efficiency of the all-optical setup, indicating that AONN can mitigate the state-preparation-and-measurement error and predict the phase parameter in the quantum state accurately. Given that optical setups are highly desired for future quantum networks, our all-optical setup of integrated AONN-QST may shed light on replenishing the all-optical quantum network with the last brick. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06457v2-abstract-full').style.display = 'none'; document.getElementById('2103.06457v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.14602">arXiv:2011.14602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.14602">pdf</a>, <a href="https://arxiv.org/ps/2011.14602">ps</a>, <a href="https://arxiv.org/format/2011.14602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2021.127203">10.1016/j.physleta.2021.127203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strictly incoherent operations for one-qubit systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.14602v1-abstract-short" style="display: inline;"> Strictly incoherent operations (SIO) proposed in [Phys. Rev. Lett. 116, 120404 (2016)] are promising to be a good candidate of free operations in the resource theory of quantum coherence, setting against the central role of local operations and classical communication in the resource theory of quantum entanglement. An important open problem is an efficient description for strictly incoherent opera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14602v1-abstract-full').style.display = 'inline'; document.getElementById('2011.14602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.14602v1-abstract-full" style="display: none;"> Strictly incoherent operations (SIO) proposed in [Phys. Rev. Lett. 116, 120404 (2016)] are promising to be a good candidate of free operations in the resource theory of quantum coherence, setting against the central role of local operations and classical communication in the resource theory of quantum entanglement. An important open problem is an efficient description for strictly incoherent operations in physical region. Such a description plays key role for axiomatic study of resource theory of quantum coherence. We are aimed to give a structural characterization of bistochastic SIOs in terms of Pauli operators and the Phase operator for one-qubit systems. Some applications of our results are also sketched in reconstructing quantum thermal averages via a quantum computer and in coherence manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14602v1-abstract-full').style.display = 'none'; document.getElementById('2011.14602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages,46 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters A, 394 (2021) 127203 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.15321">arXiv:2010.15321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.15321">pdf</a>, <a href="https://arxiv.org/ps/2010.15321">ps</a>, <a href="https://arxiv.org/format/2010.15321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Coherent preorder of quantum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.15321v2-abstract-short" style="display: inline;"> As an important quantum resource, quantum coherence play key role in quantum information processing. It is often concerned with manipulation of families of quantum states rather than individual states in isolation. Given two pairs of coherent states $(蟻_1,蟻_2)$ and $(蟽_1,蟽_2)$, we are aimed to study how can we determine if there exists a strictly incoherent operation $桅$ such that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15321v2-abstract-full').style.display = 'inline'; document.getElementById('2010.15321v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.15321v2-abstract-full" style="display: none;"> As an important quantum resource, quantum coherence play key role in quantum information processing. It is often concerned with manipulation of families of quantum states rather than individual states in isolation. Given two pairs of coherent states $(蟻_1,蟻_2)$ and $(蟽_1,蟽_2)$, we are aimed to study how can we determine if there exists a strictly incoherent operation $桅$ such that $桅(蟻_i) =蟽_i,i = 1,2$. This is also a classic question in quantum hypothesis testing. In this note, structural characterization of coherent preorder under strongly incoherent operations is provided. Basing on the characterization, we propose an approach to realize coherence distillation from rank-two mixed coherent states to $q$-level maximally coherent states. In addition, one scheme of coherence manipulation between rank-two mixed states is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15321v2-abstract-full').style.display = 'none'; document.getElementById('2010.15321v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages,73 references, to appear in Quantum Information &amp; Computation 2020</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Information &amp; Computation 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15852">arXiv:2006.15852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15852">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The impacts of optimization algorithm and basis size on the accuracy and efficiency of variational quantum eigensolver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zha%2C+X">Xian-Hu Zha</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+D">Dengdong Fan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Pengxiang Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shiyu Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+R">Rui-Qin Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+C">Chen Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15852v2-abstract-short" style="display: inline;"> Variational quantum eigensolver (VQE) is demonstrated to be the promising methodology for quantum chemistry based on near-term quantum devices. However, many problems are yet to be investigated for this methodology, such as the influences of optimization algorithm and basis size on the accuracy and efficiency for quantum computing. To address these issues, five molecules (H2, LiH, HF, N2 and F2) a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15852v2-abstract-full').style.display = 'inline'; document.getElementById('2006.15852v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15852v2-abstract-full" style="display: none;"> Variational quantum eigensolver (VQE) is demonstrated to be the promising methodology for quantum chemistry based on near-term quantum devices. However, many problems are yet to be investigated for this methodology, such as the influences of optimization algorithm and basis size on the accuracy and efficiency for quantum computing. To address these issues, five molecules (H2, LiH, HF, N2 and F2) are studied in this work based on the VQE method using unitary coupled cluster (UCC) ansatz. The performance of the gradient optimization L-BFGS-B is compared with that of the direct search method COBYLA. The former converges more quickly, but the accuracy of energy surface is a little lower. The basis set shows a vital influence on the accuracy and efficiency. A large basis set generally provides an accurate energy surface, but induces a significant increase in computing time. The 631g basis is generally required from the energy surface of the simplest H2 molecule. For practical applications of VQE, complete active space (CAS) is suggested based on limited quantum resources. With the same number of qubits, more occupied orbitals included in CAS gives a better accuracy for the energy surface and a smaller evaluation number in the VQE optimization. Additionally, the electronic structure, such as filling fraction of orbitals, the bond strength of a molecule and the maximum nuclear charge also influences the performance of optimization, where half occupation of orbitals generally requires a large computation cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15852v2-abstract-full').style.display = 'none'; document.getElementById('2006.15852v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.03123">arXiv:2004.03123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.03123">pdf</a>, <a href="https://arxiv.org/format/2004.03123">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-019-0368-8">10.1038/s41566-019-0368-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient quantum memory for single photon polarization qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">S. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Su%2C+K">K. Su</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Y. Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liao%2C+K">K. Liao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">S. Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+H">H. Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+S+L">S. L. Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.03123v1-abstract-short" style="display: inline;"> A quantum memory, for storing and retrieving flying photonic quantum states, is a key interface for realizing long-distance quantum communication and large-scale quantum computation. While many experimental schemes of high storage-retrieval efficiency have been performed with weak coherent light pulses, all quantum memories for true single photons achieved so far have efficiencies far below 50%, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03123v1-abstract-full').style.display = 'inline'; document.getElementById('2004.03123v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.03123v1-abstract-full" style="display: none;"> A quantum memory, for storing and retrieving flying photonic quantum states, is a key interface for realizing long-distance quantum communication and large-scale quantum computation. While many experimental schemes of high storage-retrieval efficiency have been performed with weak coherent light pulses, all quantum memories for true single photons achieved so far have efficiencies far below 50%, a threshold value for practical applications. Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of &gt;85% and a fidelity of &gt;99 %, basing on balanced two-channel electromagnetically induced transparency in laser-cooled rubidium atoms. For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6 %. Our result pushes the photonic quantum memory closer to its practical applications in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03123v1-abstract-full').style.display = 'none'; document.getElementById('2004.03123v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics, 13,346 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12649">arXiv:1912.12649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.12649">pdf</a>, <a href="https://arxiv.org/format/1912.12649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.013319">10.1103/PhysRevA.102.013319 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient production of a narrow-line erbium magneto-optical trap with two-stage slowing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Seo%2C+B">Bojeong Seo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Ziting Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+W">Weijun Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+M">Mingchen Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jo%2C+G">Gyu-Boong Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12649v3-abstract-short" style="display: inline;"> We describe an experimental setup for producing a large cold erbium (Er) sample in a narrow-line magneto-optical trap (MOT) in a simple and efficient way. We implement a pair of angled slowing beams with respect to the Zeeman slower axis, and further slow down atoms exiting from the Zeeman slower. The second-stage slowing beams enable the narrow-line MOT to trap atoms exiting from the Zeeman slowe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12649v3-abstract-full').style.display = 'inline'; document.getElementById('1912.12649v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12649v3-abstract-full" style="display: none;"> We describe an experimental setup for producing a large cold erbium (Er) sample in a narrow-line magneto-optical trap (MOT) in a simple and efficient way. We implement a pair of angled slowing beams with respect to the Zeeman slower axis, and further slow down atoms exiting from the Zeeman slower. The second-stage slowing beams enable the narrow-line MOT to trap atoms exiting from the Zeeman slower with higher velocity. This scheme is particularly useful when the Zeeman slower is at low optical power without the conventional transverse cooling between an oven and a Zeeman slower, in which case we significantly improve the loading efficiency into the MOT and are able to trap more than $10^8$ atoms in the narrow-line MOT of $^{166}$Er. This work highlights our implementation, which greatly simplifies laser cooling and trapping of Er atoms and also should benefit other similar elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12649v3-abstract-full').style.display = 'none'; document.getElementById('1912.12649v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 013319 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.00723">arXiv:1911.00723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.00723">pdf</a>, <a href="https://arxiv.org/ps/1911.00723">ps</a>, <a href="https://arxiv.org/format/1911.00723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.010509">10.1103/PhysRevLett.124.010509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Einstein-Podolsky-Rosen Energy-Time Entanglement of Narrowband Biphotons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Y">Yefeng Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yiru Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shanchao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jianfeng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liao%2C+K">Kaiyu Liao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+H">Hui Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+S">Shi-Liang Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.00723v1-abstract-short" style="display: inline;"> We report the direct characterization of energy-time entanglement of narrowband biphotons produced from spontaneous four-wave mixing in cold atoms. The Stokes and anti-Stokes two-photon temporal correlation is measured by single-photon counters with nano second temporal resolution, and their joint spectrum is determined by using a narrow linewidth optical cavity. The energy-time entanglement is ve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00723v1-abstract-full').style.display = 'inline'; document.getElementById('1911.00723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.00723v1-abstract-full" style="display: none;"> We report the direct characterization of energy-time entanglement of narrowband biphotons produced from spontaneous four-wave mixing in cold atoms. The Stokes and anti-Stokes two-photon temporal correlation is measured by single-photon counters with nano second temporal resolution, and their joint spectrum is determined by using a narrow linewidth optical cavity. The energy-time entanglement is verified by the joint frequency-time uncertainty product of 0.063 +/- 0.0044, which does not only violate the separability criterion but also satisfies the continuous variable Einstein-Podolsky-Rosen steering inequality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00723v1-abstract-full').style.display = 'none'; document.getElementById('1911.00723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 010509 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05170">arXiv:1811.05170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.05170">pdf</a>, <a href="https://arxiv.org/ps/1811.05170">ps</a>, <a href="https://arxiv.org/format/1811.05170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Synthesis of Quantum Images Using Phase Rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shiping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+D">Daowen Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gruska%2C+J">Jozef Gruska</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mateus%2C+P">Paulo Mateus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05170v1-abstract-short" style="display: inline;"> A topic about synthesis of quantum images is proposed, and a specific phase rotation transform constructed is adopted to theoretically realise the synthesis of two quantum images. The synthesis strategy of quantum images comprises three steps, which include: (1) In the stage of phase extraction, we obtain the phases of the state of the quantum image by transforming the state of the quantum image&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05170v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05170v1-abstract-full" style="display: none;"> A topic about synthesis of quantum images is proposed, and a specific phase rotation transform constructed is adopted to theoretically realise the synthesis of two quantum images. The synthesis strategy of quantum images comprises three steps, which include: (1) In the stage of phase extraction, we obtain the phases of the state of the quantum image by transforming the state of the quantum image to prepare the conditions for multiple phases extraction. (2) In the stage of rotation operator construction, the phases obtained in the first stage are used to construct the rotation operator where a mechanism is introduced into it to reduce the phase overflow. (3) In the stage of application of the rotation operator, we apply the operator constructed in the second stage on the state of quantum image to get a goal state. Additionally, numerical analysis gives the joint uncertainty relation of the pixel of the synthesized quantum image. The analysis result about the compression ratio indicates that the phase rotation transform and the overflow control mechanism are effective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05170v1-abstract-full').style.display = 'none'; document.getElementById('1811.05170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25pages, comments and criticisms are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02282">arXiv:1609.02282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02282">pdf</a>, <a href="https://arxiv.org/ps/1609.02282">ps</a>, <a href="https://arxiv.org/format/1609.02282">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.4.000388">10.1364/OPTICA.4.000388 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bell inequality of frequency-bin entangled photon pairs with time-resolved detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+X">Xianxin Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Y">Yefeng Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02282v2-abstract-short" style="display: inline;"> Entanglement, describing the inseparability of a quantum multiparty system, is one of the most intriguing features of quantum mechanics. Violation of Bell inequality, for ruling out the possibility of local hidden variable theories, is commonly used as a strong witness for quantum entanglement. In previous Bell test experiments with photonic entanglement based on two-photon coincidence measurement&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02282v2-abstract-full').style.display = 'inline'; document.getElementById('1609.02282v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02282v2-abstract-full" style="display: none;"> Entanglement, describing the inseparability of a quantum multiparty system, is one of the most intriguing features of quantum mechanics. Violation of Bell inequality, for ruling out the possibility of local hidden variable theories, is commonly used as a strong witness for quantum entanglement. In previous Bell test experiments with photonic entanglement based on two-photon coincidence measurement, the photon temporal wave packets are absorbed completely by the detectors. That is, the photon coherence time is much shorter than the detection time window. Here we demonstrate generation of frequency-bin entangled narrowband biphotons, and for the first time, test the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality |S|&lt;= 2 for their nonlocal temporal correlations with time-resolved detection. We obtain a maximum |S| value of 2.52+/-0.48 that violates the CHSH inequality. Our result will have applications in quantum information processing involving time-frequency entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02282v2-abstract-full').style.display = 'none'; document.getElementById('1609.02282v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 4, 388 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.08561">arXiv:1602.08561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.08561">pdf</a>, <a href="https://arxiv.org/ps/1602.08561">ps</a>, <a href="https://arxiv.org/format/1602.08561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms12783">10.1038/ncomms12783 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shu%2C+C">Chi Shu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chow%2C+T+K+A">Tsz Kiu Aaron Chow</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+L">Lingbang Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Y">Yanhong Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loy%2C+M+M+T">M. M. T. Loy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.08561v1-abstract-short" style="display: inline;"> We report the efficient generation of subnatural-linewidth (&lt; 6 MHz, for Rb D1/D2 lines) biphotons from a Doppler-broadened (530 MHz) hot atomic vapor cell. We use on-resonance spontaneous four-wave mixing in a hot paraffin-coated 87Rb vapor cell at 63 C to produce time-frequency entangled photon pairs with controllable bandwidth (1.9 - 3.2 MHz) and coherence time (47 - 94 ns). Our backward phase-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.08561v1-abstract-full').style.display = 'inline'; document.getElementById('1602.08561v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.08561v1-abstract-full" style="display: none;"> We report the efficient generation of subnatural-linewidth (&lt; 6 MHz, for Rb D1/D2 lines) biphotons from a Doppler-broadened (530 MHz) hot atomic vapor cell. We use on-resonance spontaneous four-wave mixing in a hot paraffin-coated 87Rb vapor cell at 63 C to produce time-frequency entangled photon pairs with controllable bandwidth (1.9 - 3.2 MHz) and coherence time (47 - 94 ns). Our backward phase-matching scheme with optical pumping is the key to minimize the generation of uncorrelated photons from resonance fluorescence. The result paves the way toward miniature narrowband biphoton source based on atomic cells <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.08561v1-abstract-full').style.display = 'none'; document.getElementById('1602.08561v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 7, 12783 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.03483">arXiv:1507.03483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.03483">pdf</a>, <a href="https://arxiv.org/ps/1507.03483">ps</a>, <a href="https://arxiv.org/format/1507.03483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.92.043836">10.1103/PhysRevA.92.043836 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-State Purity of Heralded Single Photons Produced from Frequency-Anti-Correlated Biphotons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.03483v2-abstract-short" style="display: inline;"> We analyze the quantum-state purity of heralded single photons produced from frequency-anti-correlated biphotons. We find that the quantum-state purity in time-frequency domain depends strongly on the response time uncertainty of the trigger-photon detector that heralds the generation of its paired photon. If the trigger response time is much shorter than the two-photon coherence time, the time-fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03483v2-abstract-full').style.display = 'inline'; document.getElementById('1507.03483v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.03483v2-abstract-full" style="display: none;"> We analyze the quantum-state purity of heralded single photons produced from frequency-anti-correlated biphotons. We find that the quantum-state purity in time-frequency domain depends strongly on the response time uncertainty of the trigger-photon detector that heralds the generation of its paired photon. If the trigger response time is much shorter than the two-photon coherence time, the time-frequency quantum-state purity of heralded single photons approaches unity and the heralded single photon is in a nearly pure state. If the trigger response time is much longer than the two-photon coherence time, the heralded photon is then projected onto a mixed state. Making use of the time-frequency entanglement, heralded single photons with a well-defined temporal wave function or a frequency superposition state can be produced and engineered. This time-frequency entanglement allows for shaping heralded single photons through nonlocal spectral modulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03483v2-abstract-full').style.display = 'none'; document.getElementById('1507.03483v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 92, 043836 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.07387">arXiv:1505.07387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.07387">pdf</a>, <a href="https://arxiv.org/ps/1505.07387">ps</a>, <a href="https://arxiv.org/format/1505.07387">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Coherence convertibility for mixed states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+X">Xiaofei Qi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.07387v1-abstract-short" style="display: inline;"> In this paper, by providing a class of coherence measures in finite dimensional systems, a sufficient and necessary condition for the existence of coherence transformations that convert one probability distribution of any pure states into another one is obtained. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.07387v1-abstract-full" style="display: none;"> In this paper, by providing a class of coherence measures in finite dimensional systems, a sufficient and necessary condition for the existence of coherence transformations that convert one probability distribution of any pure states into another one is obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07387v1-abstract-full').style.display = 'none'; document.getElementById('1505.07387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.00151">arXiv:1505.00151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.00151">pdf</a>, <a href="https://arxiv.org/ps/1505.00151">ps</a>, <a href="https://arxiv.org/format/1505.00151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.aop.2015.04.023">10.1016/j.aop.2015.04.023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Wigner-Yanase information can increase under phase sensitive incoherent operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.00151v1-abstract-short" style="display: inline;"> We found that the Wigner-Yanase skew information, which has been recently proposed as a measure of coherence in [Phys. Rev. Lett. \textbf{113}, 170401(2014)], can increase under a class of operations which may be interpreted as incoherent following the framework of Baumgratz et al., while being phase sensitive. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.00151v1-abstract-full" style="display: none;"> We found that the Wigner-Yanase skew information, which has been recently proposed as a measure of coherence in [Phys. Rev. Lett. \textbf{113}, 170401(2014)], can increase under a class of operations which may be interpreted as incoherent following the framework of Baumgratz et al., while being phase sensitive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00151v1-abstract-full').style.display = 'none'; document.getElementById('1505.00151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.03774">arXiv:1504.03774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.03774">pdf</a>, <a href="https://arxiv.org/ps/1504.03774">ps</a>, <a href="https://arxiv.org/format/1504.03774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2040-8978/17/10/105201">10.1088/2040-8978/17/10/105201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frequency-Bin Entanglement with Tunable Phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+X">Xianxin Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shu%2C+C">Chi Shu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loy%2C+M+M+T">M. M. T. Loy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.03774v1-abstract-short" style="display: inline;"> We describe a technique to produce narrow-band photon pairs with frequency-bin entanglement, whose relative phase can be tuned using linear polarization optics. We show that, making use of the polarization-frequency coupling effect, the phase of a complex polarizer can be transferred into the frequency entanglement. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.03774v1-abstract-full" style="display: none;"> We describe a technique to produce narrow-band photon pairs with frequency-bin entanglement, whose relative phase can be tuned using linear polarization optics. We show that, making use of the polarization-frequency coupling effect, the phase of a complex polarizer can be transferred into the frequency entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03774v1-abstract-full').style.display = 'none'; document.getElementById('1504.03774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.02862">arXiv:1504.02862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.02862">pdf</a>, <a href="https://arxiv.org/ps/1504.02862">ps</a>, <a href="https://arxiv.org/format/1504.02862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Coherence measures and optimal conversion for coherent states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+X">Xiaofei Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.02862v2-abstract-short" style="display: inline;"> We discuss a general strategy to construct coherence measures. One can build an important class of coherence measures which cover the relative entropy measure for pure states, the $l_1$-norm measure for pure states and the $伪$-entropy measure. The optimal conversion of coherent states under incoherent operations is presented which sheds some light on the coherence of a single copy of a pure state. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.02862v2-abstract-full" style="display: none;"> We discuss a general strategy to construct coherence measures. One can build an important class of coherence measures which cover the relative entropy measure for pure states, the $l_1$-norm measure for pure states and the $伪$-entropy measure. The optimal conversion of coherent states under incoherent operations is presented which sheds some light on the coherence of a single copy of a pure state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02862v2-abstract-full').style.display = 'none'; document.getElementById('1504.02862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in Quantum Information &amp; Computation 2015</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.09176">arXiv:1503.09176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.09176">pdf</a>, <a href="https://arxiv.org/ps/1503.09176">ps</a>, <a href="https://arxiv.org/format/1503.09176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.91.052120">10.1103/PhysRevA.91.052120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conditions for coherence transformations under incoherent operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yu Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.09176v3-abstract-short" style="display: inline;"> We build the counterpart of the celebrated Nielsen&#39;s theorem for coherence manipulation in this paper. This offers an affirmative answer to the open question: whether, given two states $蟻$ and $蟽$, either $蟻$ can be transformed into $蟽$ or vice versa under incoherent operations [Phys. Rev. Lett. \textbf{113}, 140401(2014)]. As a consequence, we find that there exist essentially different types of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.09176v3-abstract-full').style.display = 'inline'; document.getElementById('1503.09176v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.09176v3-abstract-full" style="display: none;"> We build the counterpart of the celebrated Nielsen&#39;s theorem for coherence manipulation in this paper. This offers an affirmative answer to the open question: whether, given two states $蟻$ and $蟽$, either $蟻$ can be transformed into $蟽$ or vice versa under incoherent operations [Phys. Rev. Lett. \textbf{113}, 140401(2014)]. As a consequence, we find that there exist essentially different types of coherence. Moreover, incoherent operations can be enhanced in the presence of certain coherent states. These extra states are coherent catalysts: they allow uncertain incoherent operations to be realized, without being consumed in any way. Our main result also sheds a new light on the construction of coherence measures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.09176v3-abstract-full').style.display = 'none'; document.getElementById('1503.09176v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:1311.0275 by other authors. 03.65.Ud, 03.67.Ta. in Physical Review A 2015</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07103">arXiv:1503.07103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.07103">pdf</a>, <a href="https://arxiv.org/ps/1503.07103">ps</a>, <a href="https://arxiv.org/format/1503.07103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Maximally coherent states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07103v2-abstract-short" style="display: inline;"> Relative entropy measure quantifying coherence, a key property of quantum system, is proposed recently. In this note, we investigate the maximally coherent state (MCS) with respect to relative entropy measure. %(denoted by $\mathcal C_{RE}$)%. We show that there are not mixed maximally coherent states and give a complete characterization of pure maximally coherent states. Based on this characteriz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07103v2-abstract-full').style.display = 'inline'; document.getElementById('1503.07103v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07103v2-abstract-full" style="display: none;"> Relative entropy measure quantifying coherence, a key property of quantum system, is proposed recently. In this note, we investigate the maximally coherent state (MCS) with respect to relative entropy measure. %(denoted by $\mathcal C_{RE}$)%. We show that there are not mixed maximally coherent states and give a complete characterization of pure maximally coherent states. Based on this characterization, for a bipartite MCS with $d_A=d_B$, we obtain that the super-additivity equality of relative entropy measure holds if and only if the state is a product state of its reduced states. From the viewpoint of resource in quantum information, we find there exists a MCS with maximal entanglement. Originated from the behaviour of quantum correlation under the influence of noisy operations, we further classify the incoherent operations which send maximally coherent states to themselves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07103v2-abstract-full').style.display = 'none'; document.getElementById('1503.07103v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in Quantum Information &amp; Computation 2015</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04339">arXiv:1503.04339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04339">pdf</a>, <a href="https://arxiv.org/format/1503.04339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Narrowband Biphotons: Generation, Manipulation, and Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chuu%2C+C">Chih-Sung Chuu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04339v1-abstract-short" style="display: inline;"> In this chapter, we review recent advances in generating narrowband biphotons with long coherence time using spontaneous parametric interaction in monolithic cavity with cluster effect as well as in cold atoms with electromagnetically induced transparency. Engineering and manipulating the temporal waveforms of these long biphotons provide efficient means for controlling light-matter quantum intera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04339v1-abstract-full').style.display = 'inline'; document.getElementById('1503.04339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04339v1-abstract-full" style="display: none;"> In this chapter, we review recent advances in generating narrowband biphotons with long coherence time using spontaneous parametric interaction in monolithic cavity with cluster effect as well as in cold atoms with electromagnetically induced transparency. Engineering and manipulating the temporal waveforms of these long biphotons provide efficient means for controlling light-matter quantum interaction at the single-photon level. We also review recent experiments using temporally long biphotons and single photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04339v1-abstract-full').style.display = 'none'; document.getElementById('1503.04339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear as a book chapter in a compilation &#34;Engineering the Atom-Photon Interaction&#34; published by Springer in 2015, edited by A. Predojevic and M. W. Mitchell</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.06400">arXiv:1501.06400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.06400">pdf</a>, <a href="https://arxiv.org/ps/1501.06400">ps</a>, <a href="https://arxiv.org/format/1501.06400">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8113/48/24/245301">10.1088/1751-8113/48/24/245301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entangled bases with fixed Schmidt number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yu Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiulan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+S">Shengjun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.06400v2-abstract-short" style="display: inline;"> An entangled basis with fixed Schmidt number $k$ (EBk) is a set of orthonormal basis states with the same Schmidt number $k$ in a product Hilbert space $\mathbb{C}^d\otimes\mathbb{C}^{d&#39;}$. It is a generalization of both the product basis and the maximally entangled basis. We show here that, for any $k\leq\min\{d,d&#39;\}$, EBk exists in $\mathbb{C}^d\otimes\mathbb{C}^{d&#39;}$ for any $d$ and $d&#39;$. Conse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06400v2-abstract-full').style.display = 'inline'; document.getElementById('1501.06400v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.06400v2-abstract-full" style="display: none;"> An entangled basis with fixed Schmidt number $k$ (EBk) is a set of orthonormal basis states with the same Schmidt number $k$ in a product Hilbert space $\mathbb{C}^d\otimes\mathbb{C}^{d&#39;}$. It is a generalization of both the product basis and the maximally entangled basis. We show here that, for any $k\leq\min\{d,d&#39;\}$, EBk exists in $\mathbb{C}^d\otimes\mathbb{C}^{d&#39;}$ for any $d$ and $d&#39;$. Consequently, general methods of constructing SEBk (EBk with the same Schmidt coefficients) and EBk (but not SEBk) are proposed. Moreover, we extend the concept of EBk to multipartite case and find out that the multipartite EBk can be constructed similarly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06400v2-abstract-full').style.display = 'none'; document.getElementById('1501.06400v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages. Minors are corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. A: Math. Theor. 48 (2015) 245301 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.6119">arXiv:1411.6119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.6119">pdf</a>, <a href="https://arxiv.org/ps/1411.6119">ps</a>, <a href="https://arxiv.org/format/1411.6119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.91.043820">10.1103/PhysRevA.91.043820 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrowband Biphotons with Polarization-Frequency Coupled Hyperentanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shu%2C+C">Chi Shu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+X">Xianxin Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loy%2C+M+M+T">M. M. T. Loy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.6119v2-abstract-short" style="display: inline;"> We demonstrate the generation of narrowband biphotons with polarization-frequency coupled hy- perentanglement from spontaneous four-wave mixing in cold atoms. The coupling between polariza- tion and frequency is realized through a frequency shifter and linear optics. When the polarization- frequency degrees of freedom are decoupled, it is robust to create polarization and frequency Bell states, co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6119v2-abstract-full').style.display = 'inline'; document.getElementById('1411.6119v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.6119v2-abstract-full" style="display: none;"> We demonstrate the generation of narrowband biphotons with polarization-frequency coupled hy- perentanglement from spontaneous four-wave mixing in cold atoms. The coupling between polariza- tion and frequency is realized through a frequency shifter and linear optics. When the polarization- frequency degrees of freedom are decoupled, it is robust to create polarization and frequency Bell states, confirmed by the polarization quantum-state tomography and the two-photon temporal quan- tum beating. Making use of the polarization-frequency coupling to transfer polarization phase retard to the entangled frequency modes, we produce a frequency Bell state with tunable phase difference between its two bases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6119v2-abstract-full').style.display = 'none'; document.getElementById('1411.6119v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 91, 043820 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.5994">arXiv:1409.5994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.5994">pdf</a>, <a href="https://arxiv.org/ps/1409.5994">ps</a>, <a href="https://arxiv.org/format/1409.5994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0034-4877(14)00025-1">10.1016/S0034-4877(14)00025-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> When quantum channel preserves product states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yu Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiulan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.5994v1-abstract-short" style="display: inline;"> Product states are always considered as the states that don&#39;t contain quantum correlation. We discuss here when a quantum channel sends the product states to themselves. The exact forms of such channels are proposed. It is shown that such a quantum channel is a local quantum channel, a composition of a local quantum channel and a flip operation, or such that one of the local states is fixed. Both&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5994v1-abstract-full').style.display = 'inline'; document.getElementById('1409.5994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.5994v1-abstract-full" style="display: none;"> Product states are always considered as the states that don&#39;t contain quantum correlation. We discuss here when a quantum channel sends the product states to themselves. The exact forms of such channels are proposed. It is shown that such a quantum channel is a local quantum channel, a composition of a local quantum channel and a flip operation, or such that one of the local states is fixed. Both finite- and infinite-dimensional systems are considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5994v1-abstract-full').style.display = 'none'; document.getElementById('1409.5994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Reports on Mathematical Physics, 74, 277-282 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.5747">arXiv:1409.5747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.5747">pdf</a>, <a href="https://arxiv.org/ps/1409.5747">ps</a>, <a href="https://arxiv.org/format/1409.5747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.010401">10.1103/PhysRevLett.114.010401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporal Quantum-State Tomography of Narrowband Biphotons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shu%2C+C">Chi Shu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+X">Xianxin Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loy%2C+M+M+T">M. M. T. Loy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.5747v1-abstract-short" style="display: inline;"> We describe and demonstrate a quantum state tomography for measuring the complex temporal waveform of narrowband biphotons. Through six sets of two-photon interference measurements projected in different polarization subspaces, we can construct the time-frequency entangled two-photon joint amplitude and phase functions in continuous-variable time domain. For the first time, we apply this technique&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5747v1-abstract-full').style.display = 'inline'; document.getElementById('1409.5747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.5747v1-abstract-full" style="display: none;"> We describe and demonstrate a quantum state tomography for measuring the complex temporal waveform of narrowband biphotons. Through six sets of two-photon interference measurements projected in different polarization subspaces, we can construct the time-frequency entangled two-photon joint amplitude and phase functions in continuous-variable time domain. For the first time, we apply this technique to experimentally determine the temporal quantum states of narrowband biphotons generated from spontaneous four-wave mixing in cold atoms, and fully confirm the theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5747v1-abstract-full').style.display = 'none'; document.getElementById('1409.5747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 010401 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.3341">arXiv:1409.3341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.3341">pdf</a>, <a href="https://arxiv.org/ps/1409.3341">ps</a>, <a href="https://arxiv.org/format/1409.3341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.93.033815">10.1103/PhysRevA.93.033815 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrowband biphoton generation in the group delay regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luwei Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Su%2C+Y">Yumian Su</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.3341v4-abstract-short" style="display: inline;"> We study narrow-band biphoton generation from spontaneous four-wave mixing with electromagnetically induced transparency in a laser cooled atomic ensemble. We compare two formalisms in the interaction and Heisenberg pictures, and find that they agree in the low gain regime but disagree in the high gain regime. We extend both formalisms accounting the non-uniformity in atomic density and the drivin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3341v4-abstract-full').style.display = 'inline'; document.getElementById('1409.3341v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.3341v4-abstract-full" style="display: none;"> We study narrow-band biphoton generation from spontaneous four-wave mixing with electromagnetically induced transparency in a laser cooled atomic ensemble. We compare two formalisms in the interaction and Heisenberg pictures, and find that they agree in the low gain regime but disagree in the high gain regime. We extend both formalisms accounting the non-uniformity in atomic density and the driving laser fields. We find that for a fixed optical depth and a weak and far-detuned pump laser beam, the two-photon waveform is independent of the atomic density distribution. However, the spatial profiles of the two driving laser beams have significant effects on the biphoton temporal waveform. We predict that waveform shaping in time domain can be achieved by controlling the spatial profiles of the driving laser fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3341v4-abstract-full').style.display = 'none'; document.getElementById('1409.3341v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 93, 033815 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.2530">arXiv:1402.2530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.2530">pdf</a>, <a href="https://arxiv.org/ps/1402.2530">ps</a>, <a href="https://arxiv.org/format/1402.2530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.243602">10.1103/PhysRevLett.112.243602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Subnatural-Linewidth Polarization-Entangled Photon Pairs with Controllable Temporal Length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liao%2C+K">Kaiyu Liao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+H">Hui Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+J">Junyu He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhi-Ming Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+S">Shi-Liang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.2530v2-abstract-short" style="display: inline;"> We demonstrate an efficient experimental scheme for producing polarization-entangled photon pairs from spontaneous four-wave mixing (SFWM) in a laser-cooled $^{85}$Rb atomic ensemble, with a bandwidth (as low as 0.8 MHz) much narrower than the rubidium atomic natural linewidth. By stabilizing the relative phase between the two SFWM paths in a Mach-Zehnder interferometer configuration, we are able&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2530v2-abstract-full').style.display = 'inline'; document.getElementById('1402.2530v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.2530v2-abstract-full" style="display: none;"> We demonstrate an efficient experimental scheme for producing polarization-entangled photon pairs from spontaneous four-wave mixing (SFWM) in a laser-cooled $^{85}$Rb atomic ensemble, with a bandwidth (as low as 0.8 MHz) much narrower than the rubidium atomic natural linewidth. By stabilizing the relative phase between the two SFWM paths in a Mach-Zehnder interferometer configuration, we are able to produce all four Bell states. These subnatural-linewidth photon pairs with polarization entanglement are ideal quantum information carriers for connecting remote atomic quantum nodes via efficient light-matter interaction in a photon-atom quantum network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2530v2-abstract-full').style.display = 'none'; document.getElementById('1402.2530v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Title changed, published version, 5 pages + 3 pages Supplemental Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 243602 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.3927">arXiv:1302.3927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.3927">pdf</a>, <a href="https://arxiv.org/ps/1302.3927">ps</a>, <a href="https://arxiv.org/format/1302.3927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Functional Analysis">math.FA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The automatic additivity of $尉-$Lie derivations on von Neumann algebras </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yu Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.3927v1-abstract-short" style="display: inline;"> Let ${\mathcal M}$ be a von Neumann algebra with no central summands of type I$_1$. It is shown that every nonlinear $尉-$Lie derivation ($尉\neq 1$) on $\mathcal M$ is an additive derivation. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.3927v1-abstract-full" style="display: none;"> Let ${\mathcal M}$ be a von Neumann algebra with no central summands of type I$_1$. It is shown that every nonlinear $尉-$Lie derivation ($尉\neq 1$) on $\mathcal M$ is an additive derivation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.3927v1-abstract-full').style.display = 'none'; document.getElementById('1302.3927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 47B47; 47B49 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.3356">arXiv:1302.3356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.3356">pdf</a>, <a href="https://arxiv.org/ps/1302.3356">ps</a>, <a href="https://arxiv.org/format/1302.3356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Characterization of affine automorphisms and ortho-order automorphisms of quantum probabilistic maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.3356v1-abstract-short" style="display: inline;"> In quantum mechanics, often it is important for the representation of quantum system to study the structure-preserving bijective maps of the quantum system. Such maps are also called isomorphisms or automorphisms. In this note, using the Uhlhorn-type of Wigner&#39;s theorem, we characterize all affine automorphisms and ortho-order automorphisms of quantum probabilistic maps. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.3356v1-abstract-full" style="display: none;"> In quantum mechanics, often it is important for the representation of quantum system to study the structure-preserving bijective maps of the quantum system. Such maps are also called isomorphisms or automorphisms. In this note, using the Uhlhorn-type of Wigner&#39;s theorem, we characterize all affine automorphisms and ortho-order automorphisms of quantum probabilistic maps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.3356v1-abstract-full').style.display = 'none'; document.getElementById('1302.3356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.0970">arXiv:1210.0970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.0970">pdf</a>, <a href="https://arxiv.org/ps/1210.0970">ps</a>, <a href="https://arxiv.org/format/1210.0970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Revisiting 1-Dimensional Double-Barrier Tunneling in Quantum Mechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Z">Zhi Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shi-sen Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chun-Xi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.0970v2-abstract-short" style="display: inline;"> This paper revisited quantum tunneling dynamics through a square double-barrier potential. We emphasized the similarity of tunneling dynamics through double-barrier and that of optical Fabry--P$\acute{e}$rot (FP) interferometer. Based on this similarity, we showed that the well-known resonant tunneling can also be interpreted as a result of matter multi-wave interference, analogous to that of FP i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.0970v2-abstract-full').style.display = 'inline'; document.getElementById('1210.0970v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.0970v2-abstract-full" style="display: none;"> This paper revisited quantum tunneling dynamics through a square double-barrier potential. We emphasized the similarity of tunneling dynamics through double-barrier and that of optical Fabry--P$\acute{e}$rot (FP) interferometer. Based on this similarity, we showed that the well-known resonant tunneling can also be interpreted as a result of matter multi-wave interference, analogous to that of FP interferometer. From this analogy, we also got an analytical finesse formula of double-barrier. Compared with that obtained numerically for a specific barrier configuration, we found that this formula works well for resonances at &#34;deep tunneling region&#34;. Besides that, we also calculated standing wave spectrum inside the well of double barriers and phase time of double-barrier tunneling. The wave number spectrums of standing wave and phase time show another points of view on resonance. From semi-numerical calculations, we interpreted the peak of phase time at resonance as resonance life time, which coincides at least in order of magnitude with that obtained from uncertainty principle. Not to our surprise, phase time of double-barrier tunneling also saturates at long barrier length limit $l\rightarrow\infty$ as that of tunneling through a single barrier, and the limits are the same. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.0970v2-abstract-full').style.display = 'none'; document.getElementById('1210.0970v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.2670">arXiv:1207.2670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.2670">pdf</a>, <a href="https://arxiv.org/ps/1207.2670">ps</a>, <a href="https://arxiv.org/format/1207.2670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.20.024124">10.1364/OE.20.024124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal Storage and Retrieval of Single-Photon Waveforms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+S">Shuyu Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shanchao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J+F">J. F. Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+J">Jianming Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loy%2C+M+M+T">M. M. T. Loy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wong%2C+G+K+L">G. K. L. Wong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.2670v1-abstract-short" style="display: inline;"> We report an experimental demonstration of optimal storage and retrieval of heralded single-photon wave packets using electromagnetically induced transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal storage efficiency of (49+/-3)% for single-photon waveforms with a temporal likeness of 96%. Our result brings the EIT quantum light-matter interface close to practical quantu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.2670v1-abstract-full').style.display = 'inline'; document.getElementById('1207.2670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.2670v1-abstract-full" style="display: none;"> We report an experimental demonstration of optimal storage and retrieval of heralded single-photon wave packets using electromagnetically induced transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal storage efficiency of (49+/-3)% for single-photon waveforms with a temporal likeness of 96%. Our result brings the EIT quantum light-matter interface close to practical quantum information applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.2670v1-abstract-full').style.display = 'none'; document.getElementById('1207.2670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 20, 24124 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.3119">arXiv:1206.3119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.3119">pdf</a>, <a href="https://arxiv.org/ps/1206.3119">ps</a>, <a href="https://arxiv.org/format/1206.3119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Functional Analysis">math.FA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10773-013-1688-y">10.1007/s10773-013-1688-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local channels preserving maximal entanglement or Schmidt number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yu Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Z">Zhaofang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shuanping Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.3119v2-abstract-short" style="display: inline;"> Maximal entanglement and Schmidt number play an important role in various quantum information tasks. In this paper, it is shown that a local channel preserves maximal entanglement state(MES) or preserves pure states with Schmidt number $r$($r$ is a fixed integer) if and only if it is a local unitary operation. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.3119v2-abstract-full" style="display: none;"> Maximal entanglement and Schmidt number play an important role in various quantum information tasks. In this paper, it is shown that a local channel preserves maximal entanglement state(MES) or preserves pure states with Schmidt number $r$($r$ is a fixed integer) if and only if it is a local unitary operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.3119v2-abstract-full').style.display = 'none'; document.getElementById('1206.3119v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Int J Theor Phys (2013) 52:3820-3829 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.4880">arXiv:1101.4880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.4880">pdf</a>, <a href="https://arxiv.org/format/1101.4880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3559610">10.1063/1.3559610 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetically induced Talbot effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+J">Jianming Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+H">Huanyang Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+M">Min Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.4880v1-abstract-short" style="display: inline;"> By modulating transmission function of a weak probe field via a strong control standing wave, an electromagnetically induced grating can be created in the probe channel. Such a nonmaterial grating may lead to self-imaging of ultra-cold atoms or molecules in the Fresnel near-field regime. This work may offer a nondestructive and lensless way to image ultra-cold atoms or molecules. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.4880v1-abstract-full" style="display: none;"> By modulating transmission function of a weak probe field via a strong control standing wave, an electromagnetically induced grating can be created in the probe channel. Such a nonmaterial grating may lead to self-imaging of ultra-cold atoms or molecules in the Fresnel near-field regime. This work may offer a nondestructive and lensless way to image ultra-cold atoms or molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.4880v1-abstract-full').style.display = 'none'; document.getElementById('1101.4880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 98, 081108 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.2110">arXiv:1011.2110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.2110">pdf</a>, <a href="https://arxiv.org/ps/1011.2110">ps</a>, <a href="https://arxiv.org/format/1011.2110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/28/7/070307">10.1088/0256-307X/28/7/070307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+H">Hui Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+S">Shi-Liang Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.2110v2-abstract-short" style="display: inline;"> We propose an efficient phase-encoding quantum secret key generation scheme with heralded narrow-band single photons. The key information is carried by the phase modulation directly on the single-photon temporal waveform without using any passive beam splitters or optical switches. We show that, when the technique is applied to the conventional fiber-based phase-encoding BB84 and differential phas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2110v2-abstract-full').style.display = 'inline'; document.getElementById('1011.2110v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.2110v2-abstract-full" style="display: none;"> We propose an efficient phase-encoding quantum secret key generation scheme with heralded narrow-band single photons. The key information is carried by the phase modulation directly on the single-photon temporal waveform without using any passive beam splitters or optical switches. We show that, when the technique is applied to the conventional fiber-based phase-encoding BB84 and differential phase shift (DPS) quantum key distribution schemes, the key generation efficiencies can be improved by a factor of 2 and 3, respectively. For N(&gt;3)-period DPS systems, the key generation efficiency can be improved by a factor of N. The technique is suitable for quantum memory-based long-distance fiber communication system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2110v2-abstract-full').style.display = 'none'; document.getElementById('1011.2110v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 28, 070307(2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.2813">arXiv:1010.2813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.2813">pdf</a>, <a href="https://arxiv.org/format/1010.2813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.82.043814">10.1103/PhysRevA.82.043814 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Engineering Biphoton Wave Packets with an Electromagnetically Induced Grating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+J">Jianming Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhai%2C+Y">Yanhua Zhai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+S">Shengwang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+M">Min Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.2813v1-abstract-short" style="display: inline;"> We propose to shape biphoton wave packets with an electromagnetically induced grating in a four-level double-$螞$ cold atomic system. We show that the induced hybrid grating plays an essential role in directing the new fields into different angular positions, especially to the zeroth-order diffraction. A number of interesting features appear in the shaped two-photon waveforms. For example, broadeni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2813v1-abstract-full').style.display = 'inline'; document.getElementById('1010.2813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.2813v1-abstract-full" style="display: none;"> We propose to shape biphoton wave packets with an electromagnetically induced grating in a four-level double-$螞$ cold atomic system. We show that the induced hybrid grating plays an essential role in directing the new fields into different angular positions, especially to the zeroth-order diffraction. A number of interesting features appear in the shaped two-photon waveforms. For example, broadening or narrowing the spectrum would be possible in the proposed scheme even without the use of a cavity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2813v1-abstract-full').style.display = 'none'; document.getElementById('1010.2813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Physical Review A 82, 043814 (2010)</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Du%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Du%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Du%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10