CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 77 results for author: <span class="mathjax">Zhao, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Zhao%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhao, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhao%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhao, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhao%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09729">arXiv:2409.09729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09729">pdf</a>, <a href="https://arxiv.org/format/2409.09729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum continual learning on a programmable superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Z">Zhide Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weikang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09729v1-abstract-short" style="display: inline;"> Quantum computers may outperform classical computers on machine learning tasks. In recent years, a variety of quantum algorithms promising unparalleled potential to enhance, speed up, or innovate machine learning have been proposed. Yet, quantum learning systems, similar to their classical counterparts, may likewise suffer from the catastrophic forgetting problem, where training a model with new t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09729v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09729v1-abstract-full" style="display: none;"> Quantum computers may outperform classical computers on machine learning tasks. In recent years, a variety of quantum algorithms promising unparalleled potential to enhance, speed up, or innovate machine learning have been proposed. Yet, quantum learning systems, similar to their classical counterparts, may likewise suffer from the catastrophic forgetting problem, where training a model with new tasks would result in a dramatic performance drop for the previously learned ones. This problem is widely believed to be a crucial obstacle to achieving continual learning of multiple sequential tasks. Here, we report an experimental demonstration of quantum continual learning on a fully programmable superconducting processor. In particular, we sequentially train a quantum classifier with three tasks, two about identifying real-life images and the other on classifying quantum states, and demonstrate its catastrophic forgetting through experimentally observed rapid performance drops for prior tasks. To overcome this dilemma, we exploit the elastic weight consolidation strategy and show that the quantum classifier can incrementally learn and retain knowledge across the three distinct tasks, with an average prediction accuracy exceeding 92.3%. In addition, for sequential tasks involving quantum-engineered data, we demonstrate that the quantum classifier can achieve a better continual learning performance than a commonly used classical feedforward network with a comparable number of variational parameters. Our results establish a viable strategy for empowering quantum learning systems with desirable adaptability to multiple sequential tasks, marking an important primary experimental step towards the long-term goal of achieving quantum artificial general intelligence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09729v1-abstract-full').style.display = 'none'; document.getElementById('2409.09729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02144">arXiv:2409.02144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02144">pdf</a>, <a href="https://arxiv.org/format/2409.02144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Note on Dirac monopole theory and Berry geometric phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li-Chen Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02144v1-abstract-short" style="display: inline;"> We discuss the intrinsic relations between Dirac monopole theory and Berry geometric phases. We demonstrate that the existence of Dirac strings with endpoints brings non-integrable phase factors in the parameters space. We choose one of the simplest two-mode Hamilton model to visualize Dirac string and its endpoint of a wave function, based on its eigenstates. The geometric phase variation around&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02144v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02144v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02144v1-abstract-full" style="display: none;"> We discuss the intrinsic relations between Dirac monopole theory and Berry geometric phases. We demonstrate that the existence of Dirac strings with endpoints brings non-integrable phase factors in the parameters space. We choose one of the simplest two-mode Hamilton model to visualize Dirac string and its endpoint of a wave function, based on its eigenstates. The geometric phase variation around an arbitrary circle can be calculated explicitly according to Dirac&#39;s picture, where the well-known Berry connection and curvature can be derived directly by performing Dirac monopole theory in the parameters space. The correspondence between the endpoints of Dirac strings and the accident degenerated points of eigenvalues are clearly shown for the Hermitian systems. These results suggest that Berry phase can be seen as the non-integrable phase factor induced by Dirac strings with endpoints in the parameters space, and would motivate more studies on geometric phase by performing or extending Dirac monopole theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02144v1-abstract-full').style.display = 'none'; document.getElementById('2409.02144v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09517">arXiv:2403.09517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09517">pdf</a>, <a href="https://arxiv.org/format/2403.09517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantum thermalization restricted to Hilbert space fragments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luheng Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Datla%2C+P+R">Prithvi Raj Datla</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+W">Weikun Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aliyu%2C+M+M">Mohammad Mujahid Aliyu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loh%2C+H">Huanqian Loh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09517v2-abstract-short" style="display: inline;"> Quantum thermalization occurs in a broad class of systems from elementary particles to complex materials. Out-of-equilibrium quantum systems have long been understood to either thermalize or retain memory of their initial states, but not both. Here we achieve the first coexistence of thermalization and memory in a quantum system, where we use both Rydberg blockade and facilitation in an atom array&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09517v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09517v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09517v2-abstract-full" style="display: none;"> Quantum thermalization occurs in a broad class of systems from elementary particles to complex materials. Out-of-equilibrium quantum systems have long been understood to either thermalize or retain memory of their initial states, but not both. Here we achieve the first coexistence of thermalization and memory in a quantum system, where we use both Rydberg blockade and facilitation in an atom array to engineer a fragmentation of the Hilbert space into exponentially many disjointed subspaces. We find that the kinetically constrained system yields quantum many-body scars arising from the $\mathbb{Z}_{2k}$ class of initial states, which generalizes beyond the $\mathbb{Z}_{2}$ scars previously reported in other quantum systems. When bringing multiple long-range interactions into resonance, we observe quantum thermalization restricted to Hilbert space fragments, where the thermalized system retains characteristics of the initial configuration. Intriguingly, states belonging to different subspaces do not thermalize with each other even when they have the same energy. Our work challenges established ideas of quantum thermalization while experimentally resolving the longstanding tension between thermalization and memory. These results may be applied to control entanglement dynamics in quantum processors and quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09517v2-abstract-full').style.display = 'none'; document.getElementById('2403.09517v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10411">arXiv:2402.10411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10411">pdf</a>, <a href="https://arxiv.org/format/2402.10411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Continuous-variable quantum key distribution over 28.6 km fiber with an integrated silicon photonic receiver chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bian%2C+Y">Yiming Bian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+Y">Yan Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+X">Xuesong Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+W">Wei Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+S">Song Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+B">Bingjie Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10411v1-abstract-short" style="display: inline;"> Quantum key distribution, which ensures information-theoretically secret key generation, is currently advancing through photonic integration to achieve high performance, cost reduction and compact size, thereby facilitating the large-scale deployment. Continuous-variable quantum key distribution is an attractive approach for photonic integrations due to its compatibility with off-the-shelf optical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10411v1-abstract-full').style.display = 'inline'; document.getElementById('2402.10411v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10411v1-abstract-full" style="display: none;"> Quantum key distribution, which ensures information-theoretically secret key generation, is currently advancing through photonic integration to achieve high performance, cost reduction and compact size, thereby facilitating the large-scale deployment. Continuous-variable quantum key distribution is an attractive approach for photonic integrations due to its compatibility with off-the-shelf optical communication devices. However, its chip-based systems have encountered significant limitations primarily related to the shot-noise-limited receiver design, which demands low noise, wide bandwidth, high clearance and well stability. Here, we report the implementation of a real local oscillator continuous-variable quantum key distribution system with an integrated silicon photonic receiver chip. Thanks to the well-designed chip-based homodyne detectors with a bandwidth up to 1.5 GHz and a clearance up to 7.42 dB, the transmission distance of the system has been extended to 28.6 km, achieving a secret key generation rate of Mbps level. This technological advancement enables the quantum key distribution systems with photonic integrated receivers to achieve the coverage in both access network scenarios and short-distance metropolitan interconnections, paving the way for the development of the next-generation quantum key distribution networks on a large scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10411v1-abstract-full').style.display = 'none'; document.getElementById('2402.10411v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08985">arXiv:2402.08985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08985">pdf</a>, <a href="https://arxiv.org/format/2402.08985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Algorithm Exploration using Application-Oriented Performance Benchmarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lubinski%2C+T">Thomas Lubinski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goings%2C+J+J">Joshua J. Goings</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mayer%2C+K">Karl Mayer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Johri%2C+S">Sonika Johri</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Reddy%2C+N">Nithin Reddy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mehta%2C+A">Aman Mehta</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bhatia%2C+N">Niranjan Bhatia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rappaport%2C+S">Sonny Rappaport</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mills%2C+D">Daniel Mills</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Baldwin%2C+C+H">Charles H. Baldwin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luning Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Barbosa%2C+A">Aaron Barbosa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Maity%2C+S">Smarak Maity</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mundada%2C+P+S">Pranav S. Mundada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08985v1-abstract-short" style="display: inline;"> The QED-C suite of Application-Oriented Benchmarks provides the ability to gauge performance characteristics of quantum computers as applied to real-world applications. Its benchmark programs sweep over a range of problem sizes and inputs, capturing key performance metrics related to the quality of results, total time of execution, and quantum gate resources consumed. In this manuscript, we invest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08985v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08985v1-abstract-full" style="display: none;"> The QED-C suite of Application-Oriented Benchmarks provides the ability to gauge performance characteristics of quantum computers as applied to real-world applications. Its benchmark programs sweep over a range of problem sizes and inputs, capturing key performance metrics related to the quality of results, total time of execution, and quantum gate resources consumed. In this manuscript, we investigate challenges in broadening the relevance of this benchmarking methodology to applications of greater complexity. First, we introduce a method for improving landscape coverage by varying algorithm parameters systematically, exemplifying this functionality in a new scalable HHL linear equation solver benchmark. Second, we add a VQE implementation of a Hydrogen Lattice simulation to the QED-C suite, and introduce a methodology for analyzing the result quality and run-time cost trade-off. We observe a decrease in accuracy with increased number of qubits, but only a mild increase in the execution time. Third, unique characteristics of a supervised machine-learning classification application are explored as a benchmark to gauge the extensibility of the framework to new classes of application. Applying this to a binary classification problem revealed the increase in training time required for larger anzatz circuits, and the significant classical overhead. Fourth, we add methods to include optimization and error mitigation in the benchmarking workflow which allows us to: identify a favourable trade off between approximate gate synthesis and gate noise; observe the benefits of measurement error mitigation and a form of deterministic error mitigation algorithm; and to contrast the improvement with the resulting time overhead. Looking ahead, we discuss how the benchmark framework can be instrumental in facilitating the exploration of algorithmic options and their impact on performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08985v1-abstract-full').style.display = 'none'; document.getElementById('2402.08985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16320">arXiv:2401.16320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16320">pdf</a>, <a href="https://arxiv.org/ps/2401.16320">ps</a>, <a href="https://arxiv.org/format/2401.16320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> A Strategy for Preparing Quantum Squeezed States Using Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+X+L">X. L. Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Y+M">Y. M. Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+M">M. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T+T">T. T. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Q">Q. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+S">S. Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16320v4-abstract-short" style="display: inline;"> We propose a scheme leveraging reinforcement learning to engineer control fields for generating non-classical states. It is exemplified by the application to prepare spin-squeezed states for an open collective spin model where a linear control field is designed to govern the dynamics. The reinforcement learning agent determines the temporal sequence of control pulses, commencing from a coherent sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16320v4-abstract-full').style.display = 'inline'; document.getElementById('2401.16320v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16320v4-abstract-full" style="display: none;"> We propose a scheme leveraging reinforcement learning to engineer control fields for generating non-classical states. It is exemplified by the application to prepare spin-squeezed states for an open collective spin model where a linear control field is designed to govern the dynamics. The reinforcement learning agent determines the temporal sequence of control pulses, commencing from a coherent spin state in an environment characterized by dissipation and dephasing. Compared to the constant control scenario, this approach provides various control sequences maintaining collective spin squeezing and entanglement. It is observed that denser application of the control pulses enhances the performance of the outcomes. However, there is a minor enhancement in the performance by adding control actions. The proposed strategy demonstrates increased effectiveness for larger systems. Thermal excitations of the reservoir are detrimental to the control outcomes. Feasible experiments are suggested to implement this control proposal based on the comparison with the others. The extensions to continuous control problems and another quantum system are discussed. The replaceability of the reinforcement learning module is also emphasized. This research paves the way for its application in manipulating other quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16320v4-abstract-full').style.display = 'none'; document.getElementById('2401.16320v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08284">arXiv:2401.08284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.08284">pdf</a>, <a href="https://arxiv.org/format/2401.08284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53140-5">10.1038/s41467-024-53140-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yang-Ren Liu</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08284v2-abstract-short" style="display: inline;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'inline'; document.getElementById('2401.08284v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08284v2-abstract-full" style="display: none;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages, which unfortunately pose tremendous challenges as GHZ states are vulnerable to noise. Here we propose a general strategy for creating, preserving, and manipulating large-scale GHZ entanglement, and demonstrate a series of experiments underlined by high-fidelity digital quantum circuits. For initialization, we employ a scalable protocol to create genuinely entangled GHZ states with up to 60 qubits, almost doubling the previous size record. For protection, we take a new perspective on discrete time crystals (DTCs), originally for exploring exotic nonequilibrium quantum matters, and embed a GHZ state into the eigenstates of a tailor-made cat scar DTC to extend its lifetime. For manipulation, we switch the DTC eigenstates with in-situ quantum gates to modify the effectiveness of the GHZ protection. Our findings establish a viable path towards coherent operations on large-scale entanglement, and further highlight superconducting processors as a promising platform to explore nonequilibrium quantum matters and emerging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'none'; document.getElementById('2401.08284v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 8823 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05721">arXiv:2401.05721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05721">pdf</a>, <a href="https://arxiv.org/ps/2401.05721">ps</a>, <a href="https://arxiv.org/format/2401.05721">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Operator Algebras">math.OA</span> </div> </div> <p class="title is-5 mathjax"> Almost surely convergence of the quantum entropy of random graph states and the area law </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+Z">Zhi Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05721v1-abstract-short" style="display: inline;"> In [1], Collins et al. showed that the quantum entropy of random graph states satisfies the so-called area law as the local dimension tends to be large. In this paper, we continue to study the fluctuation of the convergence and thus prove the area law holds almost surely. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05721v1-abstract-full" style="display: none;"> In [1], Collins et al. showed that the quantum entropy of random graph states satisfies the so-called area law as the local dimension tends to be large. In this paper, we continue to study the fluctuation of the convergence and thus prove the area law holds almost surely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05721v1-abstract-full').style.display = 'none'; document.getElementById('2401.05721v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05426">arXiv:2312.05426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05426">pdf</a>, <a href="https://arxiv.org/format/2312.05426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing the Electron Pair Approximation with Measurements on Trapped Ion Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luning Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goings%2C+J">Joshua Goings</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Q">Qingfeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shin%2C+K">Kyujin Shin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kyoung%2C+W">Woomin Kyoung</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Noh%2C+S">Seunghyo Noh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rhee%2C+Y+M">Young Min Rhee</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kim%2C+K">Kyungmin Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05426v1-abstract-short" style="display: inline;"> The electron pair approximation offers a resource efficient variational quantum eigensolver (VQE) approach for quantum chemistry simulations on quantum computers. With the number of entangling gates scaling quadratically with system size and a constant energy measurement overhead, the orbital optimized unitary pair coupled cluster double (oo-upCCD) ansatz strikes a balance between accuracy and eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05426v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05426v1-abstract-full" style="display: none;"> The electron pair approximation offers a resource efficient variational quantum eigensolver (VQE) approach for quantum chemistry simulations on quantum computers. With the number of entangling gates scaling quadratically with system size and a constant energy measurement overhead, the orbital optimized unitary pair coupled cluster double (oo-upCCD) ansatz strikes a balance between accuracy and efficiency on today&#39;s quantum computers. However, the electron pair approximation makes the method incapable of producing quantitatively accurate energy predictions. In order to improve the accuracy without increasing the circuit depth, we explore the idea of reduced density matrix (RDM) based second order perturbation theory (PT2) as an energetic correction to electron pair approximation. The new approach takes into account of the broken-pair energy contribution that is missing in pair-correlated electron simulations, while maintaining the computational advantages of oo-upCCD ansatz. In dissociations of N$_2$, Li$_2$O, and chemical reactions such as the unimolecular decomposition of CH$_2$OH$^+$ and the \snTwo reaction of CH$_3$I $+$ Br$^-$, the method significantly improves the accuracy of energy prediction. On two generations of the IonQ&#39;s trapped ion quantum computers, Aria and Forte, we find that unlike the VQE energy, the PT2 energy correction is highly noise-resilient. By applying a simple error mitigation approach based on post-selection solely on the VQE energies, the predicted VQE-PT2 energy differences between reactants, transition state, and products are in excellent agreement with noise-free simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05426v1-abstract-full').style.display = 'none'; document.getElementById('2312.05426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01242">arXiv:2311.01242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01242">pdf</a>, <a href="https://arxiv.org/format/2311.01242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Pushing the Limits of Quantum Computing for Simulating PFAS Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Dimitrov%2C+E">Emil Dimitrov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sanchez-Sanz%2C+G">Goar Sanchez-Sanz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nelson%2C+J">James Nelson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=O%27Riordan%2C+L">Lee O&#39;Riordan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Doyle%2C+M">Myles Doyle</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Courtney%2C+S">Sean Courtney</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kannan%2C+V">Venkatesh Kannan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Naseri%2C+H">Hassan Naseri</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Garcia%2C+A+G">Alberto Garcia Garcia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tricker%2C+J">James Tricker</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Faraggi%2C+M">Marisa Faraggi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goings%2C+J">Joshua Goings</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luning Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01242v1-abstract-short" style="display: inline;"> Accurate and scalable methods for computational quantum chemistry can accelerate research and development in many fields, ranging from drug discovery to advanced material design. Solving the electronic Schrodinger equation is the core problem of computational chemistry. However, the combinatorial complexity of this problem makes it intractable to find exact solutions, except for very small systems&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01242v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01242v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01242v1-abstract-full" style="display: none;"> Accurate and scalable methods for computational quantum chemistry can accelerate research and development in many fields, ranging from drug discovery to advanced material design. Solving the electronic Schrodinger equation is the core problem of computational chemistry. However, the combinatorial complexity of this problem makes it intractable to find exact solutions, except for very small systems. The idea of quantum computing originated from this computational challenge in simulating quantum-mechanics. We propose an end-to-end quantum chemistry pipeline based on the variational quantum eigensolver (VQE) algorithm and integrated with both HPC-based simulators and a trapped-ion quantum computer. Our platform orchestrates hundreds of simulation jobs on compute resources to efficiently complete a set of ab initio chemistry experiments with a wide range of parameterization. Per- and poly-fluoroalkyl substances (PFAS) are a large family of human-made chemicals that pose a major environmental and health issue globally. Our simulations includes breaking a Carbon-Fluorine bond in trifluoroacetic acid (TFA), a common PFAS chemical. This is a common pathway towards destruction and removal of PFAS. Molecules are modeled on both a quantum simulator and a trapped-ion quantum computer, specifically IonQ Aria. Using basic error mitigation techniques, the 11-qubit TFA model (56 entangling gates) on IonQ Aria yields near-quantitative results with milli-Hartree accuracy. Our novel results show the current state and future projections for quantum computing in solving the electronic structure problem, push the boundaries for the VQE algorithm and quantum computers, and facilitates development of quantum chemistry workflows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01242v1-abstract-full').style.display = 'none'; document.getElementById('2311.01242v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14196">arXiv:2309.14196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14196">pdf</a>, <a href="https://arxiv.org/format/2309.14196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning Restricted Boltzmann Machines with greedy quantum search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Agrawal%2C+A">Aman Agrawal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rebentrost%2C+P">Patrick Rebentrost</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14196v1-abstract-short" style="display: inline;"> Restricted Boltzmann Machines (RBMs) are widely used probabilistic undirected graphical models with visible and latent nodes, playing an important role in statistics and machine learning. The task of structure learning for RBMs involves inferring the underlying graph by using samples from the visible nodes. Specifically, learning the two-hop neighbors of each visible node allows for the inference&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14196v1-abstract-full').style.display = 'inline'; document.getElementById('2309.14196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14196v1-abstract-full" style="display: none;"> Restricted Boltzmann Machines (RBMs) are widely used probabilistic undirected graphical models with visible and latent nodes, playing an important role in statistics and machine learning. The task of structure learning for RBMs involves inferring the underlying graph by using samples from the visible nodes. Specifically, learning the two-hop neighbors of each visible node allows for the inference of the graph structure. Prior research has addressed the structure learning problem for specific classes of RBMs, namely ferromagnetic and locally consistent RBMs. In this paper, we extend the scope to the quantum computing domain and propose corresponding quantum algorithms for this problem. Our study demonstrates that the proposed quantum algorithms yield a polynomial speedup compared to the classical algorithms for learning the structure of these two classes of RBMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14196v1-abstract-full').style.display = 'none'; document.getElementById('2309.14196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09235">arXiv:2309.09235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09235">pdf</a>, <a href="https://arxiv.org/format/2309.09235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Provable learning of quantum states with graphical models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+N">Naixu Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+M">Ming-Xing Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rebentrost%2C+P">Patrick Rebentrost</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09235v1-abstract-short" style="display: inline;"> The complete learning of an $n$-qubit quantum state requires samples exponentially in $n$. Several works consider subclasses of quantum states that can be learned in polynomial sample complexity such as stabilizer states or high-temperature Gibbs states. Other works consider a weaker sense of learning, such as PAC learning and shadow tomography. In this work, we consider learning states that are c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09235v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09235v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09235v1-abstract-full" style="display: none;"> The complete learning of an $n$-qubit quantum state requires samples exponentially in $n$. Several works consider subclasses of quantum states that can be learned in polynomial sample complexity such as stabilizer states or high-temperature Gibbs states. Other works consider a weaker sense of learning, such as PAC learning and shadow tomography. In this work, we consider learning states that are close to neural network quantum states, which can efficiently be represented by a graphical model called restricted Boltzmann machines (RBMs). To this end, we exhibit robustness results for efficient provable two-hop neighborhood learning algorithms for ferromagnetic and locally consistent RBMs. We consider the $L_p$-norm as a measure of closeness, including both total variation distance and max-norm distance in the limit. Our results allow certain quantum states to be learned with a sample complexity \textit{exponentially} better than naive tomography. We hence provide new classes of efficiently learnable quantum states and apply new strategies to learn them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09235v1-abstract-full').style.display = 'none'; document.getElementById('2309.09235v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06996">arXiv:2309.06996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.06996">pdf</a>, <a href="https://arxiv.org/ps/2309.06996">ps</a>, <a href="https://arxiv.org/format/2309.06996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamics Reflects Quantum Phase Transition of Rabi Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+M">M. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y+N">Y. N. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z+Y">Z. Y. Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Y+M">Y. M. Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+X+L">X. L. Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+H+Y">H. Y. Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06996v2-abstract-short" style="display: inline;"> As the simplest and most fundamental model describing the interaction between light and matter, a breakdown in the rotating wave approximation of the Rabi model leads to phase transition versus coupling strength when the frequency of the qubit greatly surpasses that of the oscillator. Besides the phase transition revealed in the ground state, we show that the dynamics of physical quantities can re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06996v2-abstract-full').style.display = 'inline'; document.getElementById('2309.06996v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06996v2-abstract-full" style="display: none;"> As the simplest and most fundamental model describing the interaction between light and matter, a breakdown in the rotating wave approximation of the Rabi model leads to phase transition versus coupling strength when the frequency of the qubit greatly surpasses that of the oscillator. Besides the phase transition revealed in the ground state, we show that the dynamics of physical quantities can reflect such a phase transition for this model. In addition to the excitation of the bosonic field in the ground state, we show that the witness of inseparability (entanglement), mutual information, quantum Fisher information, and the variance of cavity quadrature can be employed to detect the phase transition in quench. We also reveal the negative impact of temperature on checking the phase transition by quench. This model can be implemented using trapped ions, superconducting artificial atoms coupled bosonic modes, and quantum simulations. By reflecting the phase transition in a fundamental quantum optics model without imposing the thermodynamic limit, this work offers an idea to explore phase transitions by non-equilibrium process for open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06996v2-abstract-full').style.display = 'none'; document.getElementById('2309.06996v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00667">arXiv:2308.00667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00667">pdf</a>, <a href="https://arxiv.org/format/2308.00667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Molecular Symmetry in VQE: A Dual Approach for Trapped-Ion Simulations of Benzene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Goings%2C+J">Joshua Goings</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luning Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jakowski%2C+J">Jacek Jakowski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Morris%2C+T">Titus Morris</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pooser%2C+R">Raphael Pooser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00667v1-abstract-short" style="display: inline;"> Understanding complex chemical systems -- such as biomolecules, catalysts, and novel materials -- is a central goal of quantum simulations. Near-term strategies hinge on the use of variational quantum eigensolver (VQE) algorithms combined with a suitable ansatz. However, straightforward application of many chemically-inspired ansatze yields prohibitively deep circuits. In this work, we employ seve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00667v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00667v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00667v1-abstract-full" style="display: none;"> Understanding complex chemical systems -- such as biomolecules, catalysts, and novel materials -- is a central goal of quantum simulations. Near-term strategies hinge on the use of variational quantum eigensolver (VQE) algorithms combined with a suitable ansatz. However, straightforward application of many chemically-inspired ansatze yields prohibitively deep circuits. In this work, we employ several circuit optimization methods tailored for trapped-ion quantum devices to enhance the feasibility of intricate chemical simulations. The techniques aim to lessen the depth of the unitary coupled cluster with singles and doubles (uCCSD) ansatz&#39;s circuit compilation, a considerable challenge on current noisy quantum devices. Furthermore, we use symmetry-inspired classical post-selection methods to further refine the outcomes and minimize errors in energy measurements, without adding quantum overhead. Our strategies encompass optimal mapping from orbital to qubit, term reordering to minimize entangling gates, and the exploitation of molecular spin and point group symmetry to eliminate redundant parameters. The inclusion of error mitigation via post-selection based on known molecular symmetries improves the results to near milli-Hartree accuracy. These methods, when applied to a benzene molecule simulation, enabled the construction of an 8-qubit circuit with 69 two-qubit entangling operations, pushing the limits for variational quantum eigensolver (VQE) circuits executed on quantum hardware to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00667v1-abstract-full').style.display = 'none'; document.getElementById('2308.00667v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08596">arXiv:2306.08596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.08596">pdf</a>, <a href="https://arxiv.org/format/2306.08596">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42899-8">10.1038/s41467-023-42899-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet-Tailored Rydberg Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luheng Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lee%2C+M+D+K">Michael Dao Kang Lee</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aliyu%2C+M+M">Mohammad Mujahid Aliyu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loh%2C+H">Huanqian Loh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08596v2-abstract-short" style="display: inline;"> The Rydberg blockade is a key ingredient for entangling atoms in arrays. However, it requires atoms to be spaced well within the blockade radius, which limits the range of local quantum gates. Here we break this constraint using Floquet frequency modulation, with which we demonstrate Rydberg-blockade entanglement beyond the traditional blockade radius and show how the enlarged entanglement range i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08596v2-abstract-full').style.display = 'inline'; document.getElementById('2306.08596v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08596v2-abstract-full" style="display: none;"> The Rydberg blockade is a key ingredient for entangling atoms in arrays. However, it requires atoms to be spaced well within the blockade radius, which limits the range of local quantum gates. Here we break this constraint using Floquet frequency modulation, with which we demonstrate Rydberg-blockade entanglement beyond the traditional blockade radius and show how the enlarged entanglement range improves qubit connectivity in a neutral atom array. Further, we find that the coherence of entangled states can be extended under Floquet frequency modulation. Finally, we realize Rydberg anti-blockade states for two sodium Rydberg atoms within the blockade radius. Such Rydberg anti-blockade states for atoms at close range enables the robust preparation of strongly-interacting, long-lived Rydberg states, yet their steady-state population cannot be achieved with only the conventional static drive. Our work transforms between the paradigmatic regimes of Rydberg blockade versus anti-blockade and paves the way for realizing more connected, coherent, and tunable neutral atom quantum processors with a single approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08596v2-abstract-full').style.display = 'none'; document.getElementById('2306.08596v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 7128 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02179">arXiv:2304.02179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.02179">pdf</a>, <a href="https://arxiv.org/format/2304.02179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Zero field magnetic resonance spectroscopy based on Nitrogen-vacancy centers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Linkai Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02179v1-abstract-short" style="display: inline;"> We propose a scheme to have zero field magnetic resonance spectroscopy based on a nitrogen-vacancy center and investigate the new applications in which magnetic bias field might disturb the system under investigation. Continual driving with circularly polarized microwave fields is used to selectively address one spin state. The proposed method is applied for single molecule spectroscopy, such as n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02179v1-abstract-full').style.display = 'inline'; document.getElementById('2304.02179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02179v1-abstract-full" style="display: none;"> We propose a scheme to have zero field magnetic resonance spectroscopy based on a nitrogen-vacancy center and investigate the new applications in which magnetic bias field might disturb the system under investigation. Continual driving with circularly polarized microwave fields is used to selectively address one spin state. The proposed method is applied for single molecule spectroscopy, such as nuclear quadrupole resonance spectroscopy of a $^{11}$B nuclear spin and the detection of the distance of two hydrogen nuclei in a water molecule. Our work extends applications of NV centers as a nanoscale molecule spectroscopy in the zero field regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02179v1-abstract-full').style.display = 'none'; document.getElementById('2304.02179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10418">arXiv:2303.10418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10418">pdf</a>, <a href="https://arxiv.org/ps/2303.10418">ps</a>, <a href="https://arxiv.org/format/2303.10418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Limit distribution of partial transposition of block random matrices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+Z">Zhi Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10418v1-abstract-short" style="display: inline;"> It is well known that, under some assumptions, the limit distribution of random block matrices and their partial transposition converges to the distributions of random variables in some noncommutative probability space. Using free probability theory, we obtain the relation between the free cumulants of the corresponding random variables. As an application, we are able to derive a new family of co-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10418v1-abstract-full').style.display = 'inline'; document.getElementById('2303.10418v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10418v1-abstract-full" style="display: none;"> It is well known that, under some assumptions, the limit distribution of random block matrices and their partial transposition converges to the distributions of random variables in some noncommutative probability space. Using free probability theory, we obtain the relation between the free cumulants of the corresponding random variables. As an application, we are able to derive a new family of co-completely positive and k-positive maps by using the Wishart ensemble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10418v1-abstract-full').style.display = 'none'; document.getElementById('2303.10418v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09121">arXiv:2303.09121</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A new development status of single-center two-electron integration algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Lian-Peng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09121v2-abstract-short" style="display: inline;"> Single-center two-electron integration is an important core technology in ab initio calculation of atomic and molecular structures. Therefore, this paper reviews and optimizes the method of Zhao et al., and draws a conclusion: Because this method is an accurate calculation without truncation error, it is superior to Slater-Condon integration method. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09121v2-abstract-full" style="display: none;"> Single-center two-electron integration is an important core technology in ab initio calculation of atomic and molecular structures. Therefore, this paper reviews and optimizes the method of Zhao et al., and draws a conclusion: Because this method is an accurate calculation without truncation error, it is superior to Slater-Condon integration method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09121v2-abstract-full').style.display = 'none'; document.getElementById('2303.09121v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Errors in the calculation process in the paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09905">arXiv:2302.09905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09905">pdf</a>, <a href="https://arxiv.org/format/2302.09905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.030402">10.1103/PhysRevLett.131.030402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The battery capacity of energy-storing quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xue Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Y">Yan-Han Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Alimuddin%2C+M">Mir Alimuddin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Salvia%2C+R">Raffaele Salvia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li-Ming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nimmrichter%2C+S">Stefan Nimmrichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+M">Ming-Xing Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09905v3-abstract-short" style="display: inline;"> The quantum battery capacity is introduced in this letter as a figure of merit that expresses the potential of a quantum system to store and supply energy. It is defined as the difference between the highest and the lowest energy that can be reached by means of the unitary evolution of the system. This function is closely connected to the ergotropy, but it does not depend on the temporary level of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09905v3-abstract-full').style.display = 'inline'; document.getElementById('2302.09905v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09905v3-abstract-full" style="display: none;"> The quantum battery capacity is introduced in this letter as a figure of merit that expresses the potential of a quantum system to store and supply energy. It is defined as the difference between the highest and the lowest energy that can be reached by means of the unitary evolution of the system. This function is closely connected to the ergotropy, but it does not depend on the temporary level of energy of the system. The capacity of a quantum battery can be directly linked with the entropy of the battery state, as well as with measures of coherence and entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09905v3-abstract-full').style.display = 'none'; document.getElementById('2302.09905v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+7 pages, 2+3 figure. To be published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 131,030402(2023) (Cover) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07314">arXiv:2301.07314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07314">pdf</a>, <a href="https://arxiv.org/ps/2301.07314">ps</a>, <a href="https://arxiv.org/format/2301.07314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-022-2067-x">10.1007/s11433-022-2067-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extension of Noether&#39;s theorem in PT-symmetric systems and its experimental demonstration in an optical setup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Q+C">Q. C. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+J+L">J. L. Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+Y+L">Y. L. Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+D+X">D. X. Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+C+P">C. P. Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nori%2C+F">F. Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07314v3-abstract-short" style="display: inline;"> Noether&#39;s theorem is one of the fundamental laws in physics, relating the symmetry of a physical system to its constant of motion and conservation law. On the other hand, there exist a variety of non-Hermitian parity-time (PT)-symmetric systems, which exhibit novel quantum properties and have attracted increasing interest. In this work, we extend Noether&#39;s theorem to a class of significant PT -sym&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07314v3-abstract-full').style.display = 'inline'; document.getElementById('2301.07314v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07314v3-abstract-full" style="display: none;"> Noether&#39;s theorem is one of the fundamental laws in physics, relating the symmetry of a physical system to its constant of motion and conservation law. On the other hand, there exist a variety of non-Hermitian parity-time (PT)-symmetric systems, which exhibit novel quantum properties and have attracted increasing interest. In this work, we extend Noether&#39;s theorem to a class of significant PT -symmetric systems for which the eigenvalues of the PT-symmetric Hamiltonian H change from purely real numbers to purely imaginary numbers,and introduce a generalized expectation value of an operator based on biorthogonal quantum mechanics. We find that the generalized expectation value of a time-independent operator is a constant of motion when the operator presents a standard symmetry in the PT -symmetry unbroken regime, or a chiral symmetry in the PT-symmetry broken regime. In addition, we experimentally investigate the extended Noether&#39;s theorem in PT -symmetric single-qubit and two-qubit systems using an optical setup. Our experiment demonstrates the existence of the constant of motion and reveals how this constant of motion can be used to judge whether the PT -symmetry of a system is broken. Furthermore, a novel phenomenon of masking quantum information is first observed in a PT -symmetric two-qubit system. This study not only contributes to full understanding of the relation between symmetry and conservation law in PT -symmetric physics, but also has potential applications in quantum information theory and quantum communication protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07314v3-abstract-full').style.display = 'none'; document.getElementById('2301.07314v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China-Phys. Mech. Astron. 66, 240311 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.13938">arXiv:2212.13938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.13938">pdf</a>, <a href="https://arxiv.org/ps/2212.13938">ps</a>, <a href="https://arxiv.org/format/2212.13938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physa.2023.129048">10.1016/j.physa.2023.129048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherence and entanglement in Grover and Harrow-Hassidim-Lloyd algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+C">Changchun Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Lijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.13938v1-abstract-short" style="display: inline;"> Coherence, discord and geometric measure of entanglement are important tools for measuring physical resources. We compute them at every steps of the Grover&#39;s algorithm. We summarize these resources&#39;s patterns of change. These resources are getting smaller at the step oracle and are getting bigger or invariant at the step diffuser. This result is similar to the entanglement&#39;s pattern of change in G&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13938v1-abstract-full').style.display = 'inline'; document.getElementById('2212.13938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.13938v1-abstract-full" style="display: none;"> Coherence, discord and geometric measure of entanglement are important tools for measuring physical resources. We compute them at every steps of the Grover&#39;s algorithm. We summarize these resources&#39;s patterns of change. These resources are getting smaller at the step oracle and are getting bigger or invariant at the step diffuser. This result is similar to the entanglement&#39;s pattern of change in Grover&#39;s algorithm. Furthermore, we compute GM at every steps of the Harrow-Hassidim-Lloyd algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13938v1-abstract-full').style.display = 'none'; document.getElementById('2212.13938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07734">arXiv:2212.07734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07734">pdf</a>, <a href="https://arxiv.org/format/2212.07734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The optical rogue wave patterns in coupled defocusing systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+Y">Yan-Hong Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ling%2C+L">Liming Ling</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li-Chen Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07734v1-abstract-short" style="display: inline;"> We systematically investigate rogue wave&#39;s spatial-temporal pattern in $N$ $(N\geq2)$-component coupled defocusing nonlinear Schr枚dinger equations. The fundamental rogue wave solutions are given in a unified form for both focusing and defocusing cases. We establish the quantitative correspondence between modulation instability and rogue wave patterns, which develops the previously reported inequal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07734v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07734v1-abstract-full" style="display: none;"> We systematically investigate rogue wave&#39;s spatial-temporal pattern in $N$ $(N\geq2)$-component coupled defocusing nonlinear Schr枚dinger equations. The fundamental rogue wave solutions are given in a unified form for both focusing and defocusing cases. We establish the quantitative correspondence between modulation instability and rogue wave patterns, which develops the previously reported inequality relation into an equation correspondence. As an example, we demonstrate phase diagrams for rogue wave patterns in a two-component coupled system, based on the complete classification of their spatial-temporal structures. The phase diagrams enable us to predict various rogue wave patterns, such as the ones with a four-petaled structure in both components. These results are meaningful for controlling the rogue wave excitations in two orthogonal polarization optical fibers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07734v1-abstract-full').style.display = 'none'; document.getElementById('2212.07734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages,2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02482">arXiv:2212.02482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02482">pdf</a>, <a href="https://arxiv.org/format/2212.02482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-023-00730-8">10.1038/s41534-023-00730-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luning Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goings%2C+J">Joshua Goings</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wright%2C+K">Kenneth Wright</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nguyen%2C+J">Jason Nguyen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kim%2C+J">Jungsang Kim</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Johri%2C+S">Sonika Johri</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shin%2C+K">Kyujin Shin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kyoung%2C+W">Woomin Kyoung</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fuks%2C+J+I">Johanna I. Fuks</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rhee%2C+J+K">June-Koo Kevin Rhee</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rhee%2C+Y+M">Young Min Rhee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02482v1-abstract-short" style="display: inline;"> Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy quantum operations on near-te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02482v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02482v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02482v1-abstract-full" style="display: none;"> Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy quantum operations on near-term quantum computers. In this work, we consider an orbital-optimized pair-correlated approximation to the unitary coupled cluster with singles and doubles (uCCSD) ansatz and report a highly efficient quantum circuit implementation for trapped-ion architectures. We show that orbital optimization can recover significant additional electron correlation energy without sacrificing efficiency through measurements of low-order reduced density matrices (RDMs). In the dissociation of small molecules, the method gives qualitatively accurate predictions in the strongly-correlated regime when running on noise-free quantum simulators. On IonQ&#39;s Harmony and Aria trapped-ion quantum computers, we run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters - the largest full VQE simulation with a correlated wave function on quantum hardware. We find that even without error mitigation techniques, the predicted relative energies across different molecular geometries are in excellent agreement with noise-free simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02482v1-abstract-full').style.display = 'none'; document.getElementById('2212.02482v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.00855">arXiv:2210.00855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.00855">pdf</a>, <a href="https://arxiv.org/ps/2210.00855">ps</a>, <a href="https://arxiv.org/format/2210.00855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Operator Algebras">math.OA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/acb4c8">10.1088/1751-8121/acb4c8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The spectrum of local random Hamiltonians </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Collins%2C+B">Benoit Collins</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+Z">Zhi Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+P">Ping Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.00855v1-abstract-short" style="display: inline;"> The spectrum of a local random Hamiltonian can be represented generically by the so-called $蔚$-free convolution of its local terms&#39; probability distributions. We establish an isomorphism between the set of $蔚$-noncrossing partitions and permutations to study its spectrum. Moreover, we derive some lower and upper bounds for the largest eigenvalue of the Hamiltonian. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.00855v1-abstract-full" style="display: none;"> The spectrum of a local random Hamiltonian can be represented generically by the so-called $蔚$-free convolution of its local terms&#39; probability distributions. We establish an isomorphism between the set of $蔚$-noncrossing partitions and permutations to study its spectrum. Moreover, we derive some lower and upper bounds for the largest eigenvalue of the Hamiltonian. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00855v1-abstract-full').style.display = 'none'; document.getElementById('2210.00855v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics A: Mathematical and Theoretical (2023) 56, no. 3: 035201 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11382">arXiv:2208.11382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11382">pdf</a>, <a href="https://arxiv.org/format/2208.11382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum algorithm for Markov Random Fields structure learning by information theoretic properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+L">Lin-chun Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+M">Ming-Xing Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11382v1-abstract-short" style="display: inline;"> Probabilistic graphical models play a crucial role in machine learning and have wide applications in various fields. One pivotal subset is undirected graphical models, also known as Markov random fields. In this work, we investigate the structure learning methods of Markov random fields on quantum computers. We propose a quantum algorithm for structure learning of an $r$-wise Markov Random Field w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11382v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11382v1-abstract-full" style="display: none;"> Probabilistic graphical models play a crucial role in machine learning and have wide applications in various fields. One pivotal subset is undirected graphical models, also known as Markov random fields. In this work, we investigate the structure learning methods of Markov random fields on quantum computers. We propose a quantum algorithm for structure learning of an $r$-wise Markov Random Field with a bounded degree underlying graph, based on a nearly optimal classical greedy algorithm. The quantum algorithm provides a polynomial speed-up over the classical counterpart in terms of the number of variables. Our work demonstrates the potential merits of quantum computation over classical computation in solving some problems in machine learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11382v1-abstract-full').style.display = 'none'; document.getElementById('2208.11382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05623">arXiv:2206.05623</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05623">pdf</a>, <a href="https://arxiv.org/format/2206.05623">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c03805">10.1021/acs.nanolett.2c03805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Graphene-based quantum Hall interferometer with self-aligned side gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Lingfei Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Arnault%2C+E+G">Ethan G. Arnault</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Larson%2C+T+F+Q">Trevyn F. Q. Larson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Iftikhar%2C+Z">Zubair Iftikhar</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Seredinski%2C+A">Andrew Seredinski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fleming%2C+T">Tate Fleming</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Amet%2C+F">Francois Amet</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Finkelstein%2C+G">Gleb Finkelstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05623v2-abstract-short" style="display: inline;"> The vanishing band gap of graphene has long presented challenges for making high-quality quantum point contacts (QPCs) -- the partially transparent p-n interfaces introduced by conventional split-gates tend to short the QPC. This complication has hindered the fabrication of graphene quantum Hall Fabry-P茅rot interferometers, until recent advances have allowed split-gate QPCs to operate utilizing th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05623v2-abstract-full').style.display = 'inline'; document.getElementById('2206.05623v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05623v2-abstract-full" style="display: none;"> The vanishing band gap of graphene has long presented challenges for making high-quality quantum point contacts (QPCs) -- the partially transparent p-n interfaces introduced by conventional split-gates tend to short the QPC. This complication has hindered the fabrication of graphene quantum Hall Fabry-P茅rot interferometers, until recent advances have allowed split-gate QPCs to operate utilizing the highly resistive $谓=0$ state. Here, we present a simple recipe to fabricate QPCs by etching a narrow trench in the graphene sheet to separate the conducting channel from self-aligned graphene side gates. We demonstrate operation of the individual QPCs in the quantum Hall regime, and further utilize these QPCs to create and study a quantum Hall interferometer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05623v2-abstract-full').style.display = 'none'; document.getElementById('2206.05623v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02970">arXiv:2205.02970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02970">pdf</a>, <a href="https://arxiv.org/format/2205.02970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d2lc00112h">10.1039/d2lc00112h <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glass-patternable notch-shaped microwave architecture for on-chip spin detection in biological samples </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Oshimi%2C+K">Keisuke Oshimi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nishimura%2C+Y">Yushi Nishimura</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Matsubara%2C+T">Tsutomu Matsubara</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tanaka%2C+M">Masuaki Tanaka</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shikoh%2C+E">Eiji Shikoh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yajuan Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Komatsu%2C+N">Naoki Komatsu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ikado%2C+Y">Yuta Ikado</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Takezawa%2C+Y">Yuka Takezawa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kage-Nakadai%2C+E">Eriko Kage-Nakadai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Izutsu%2C+Y">Yumi Izutsu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yoshizato%2C+K">Katsutoshi Yoshizato</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Morita%2C+S">Saho Morita</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tokunaga%2C+M">Masato Tokunaga</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yukawa%2C+H">Hiroshi Yukawa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Baba%2C+Y">Yoshinobu Baba</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Teki%2C+Y">Yoshio Teki</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fujiwara%2C+M">Masazumi Fujiwara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02970v1-abstract-short" style="display: inline;"> We report a notch-shaped coplanar microwave waveguide antenna on a glass plate designed for on-chip detection of optically detected magnetic resonance (ODMR) of fluorescent nanodiamonds (NDs). A lithographically patterned thin wire at the center of the notch area in the coplanar waveguide realizes a millimeter-scale ODMR detection area (1.5 x 2.0 mm^2) and gigahertz-broadband characteristics with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02970v1-abstract-full').style.display = 'inline'; document.getElementById('2205.02970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02970v1-abstract-full" style="display: none;"> We report a notch-shaped coplanar microwave waveguide antenna on a glass plate designed for on-chip detection of optically detected magnetic resonance (ODMR) of fluorescent nanodiamonds (NDs). A lithographically patterned thin wire at the center of the notch area in the coplanar waveguide realizes a millimeter-scale ODMR detection area (1.5 x 2.0 mm^2) and gigahertz-broadband characteristics with low reflection (about 8%). The ODMR signal intensity in the detection area is quantitatively predictable by numerical simulation. Using this chip device, we demonstrate a uniform ODMR signal intensity over the detection area for cells, tissue, and worms. The present demonstration of a chip-based microwave architecture will enable scalable chip integration of ODMR-based quantum sensing technology into various bioassay platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02970v1-abstract-full').style.display = 'none'; document.getElementById('2205.02970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Lab on a Chip, 2022, advanced publication </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10481">arXiv:2204.10481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10481">pdf</a>, <a href="https://arxiv.org/format/2204.10481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nuclear spin self compensation system for moving MEG sensing with optical pumped atomic spin co-magnetometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yao Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+Y">Yintao Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Mingzhi Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yanbin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+N">Ning Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Libo Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+Z">Zhuangde Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10481v1-abstract-short" style="display: inline;"> Recording the moving MEGs of a person in which a person&#39;s head could move freely as we record the brain&#39;s magnetic field is a hot topic in recent years. Traditionally, atomic magnetometers are utilized for moving MEGs recording and a large compensation coil system is utilized for background magnetic field compensation. Here we described a new potential candidate: an optically pumped atomic co-magn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10481v1-abstract-full').style.display = 'inline'; document.getElementById('2204.10481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10481v1-abstract-full" style="display: none;"> Recording the moving MEGs of a person in which a person&#39;s head could move freely as we record the brain&#39;s magnetic field is a hot topic in recent years. Traditionally, atomic magnetometers are utilized for moving MEGs recording and a large compensation coil system is utilized for background magnetic field compensation. Here we described a new potential candidate: an optically pumped atomic co-magnetometer(OPACM) for moving MEGs recording. In the OPACM, hyper-polarized nuclear spins could produce a magnetic field which will shield the background fluctuation low frequency magnetic field noise while the the fast changing MEGs signal could be recorded. The nuclear spins look like an automatic magnetic field shields and dynamically compensate the fluctuated background magnetic field noise. In this article, the magnetic field compensation is studied theoretically and we find that the compensation is closely related to several parameters such as the electron spin magnetic field, the nuclear spin magnetic field and the holding magnetic field. Based on the model, the magnetic field compensation could be optimized. We also experimentally studied the magnetic field compensation and the responses of the OPACM to different frequencies of magnetic field are measured. We show that the OPACM owns a clear suppression of low frequency magnetic field under 1Hz and response to magnetic field&#39;s frequencies around the band of the MEGs. Magnetic field sensitivity of $3fT/Hz^{1/2}$ has been achieved. Finally, we do a simulation for the OPACM as it is utilized for moving MEGs recording. For comparison, the traditional compensation system for moving MEGs recording is based on a coil which is around 2m in dimension while our compensation system is only 2mm in dimension. Moreover, our compensation system could work in situ and will not affect each other. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10481v1-abstract-full').style.display = 'none'; document.getElementById('2204.10481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.07407">arXiv:2204.07407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.07407">pdf</a>, <a href="https://arxiv.org/ps/2204.07407">ps</a>, <a href="https://arxiv.org/format/2204.07407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A new entanglement measure based dual entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xue Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Y">Yan-Han Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li-Ming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+M">Ming-Xing Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.07407v1-abstract-short" style="display: inline;"> Quantum entropy is an important measure for describing the uncertainty of a quantum state, more uncertainty in subsystems implies stronger quantum entanglement between subsystems. Our goal in this work is to quantify bipartite entanglement using both von Neumann entropy and its complementary dual. We first propose a type of dual entropy from Shannon entropy. We define $S^{t}$-entropy entanglement&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07407v1-abstract-full').style.display = 'inline'; document.getElementById('2204.07407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.07407v1-abstract-full" style="display: none;"> Quantum entropy is an important measure for describing the uncertainty of a quantum state, more uncertainty in subsystems implies stronger quantum entanglement between subsystems. Our goal in this work is to quantify bipartite entanglement using both von Neumann entropy and its complementary dual. We first propose a type of dual entropy from Shannon entropy. We define $S^{t}$-entropy entanglement based on von Neumann entropy and its complementary dual. This implies an analytic formula for two-qubit systems. We show that the monogamy properties of the $S^{t}$-entropy entanglement and the entanglement of formation are inequivalent for high-dimensional systems. We finally prove a new type of entanglement polygon inequality in terms of $S^{t}$-entropy entanglement for quantum entangled networks. These results show new features of multipartite entanglement in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07407v1-abstract-full').style.display = 'none'; document.getElementById('2204.07407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages + 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03438">arXiv:2201.03438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03438">pdf</a>, <a href="https://arxiv.org/ps/2201.03438">ps</a>, <a href="https://arxiv.org/format/2201.03438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01784-9">10.1038/s41567-022-01784-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Many-body Hilbert space scarring on a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hao%2C+J">Jie Hao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Q">Qiujiang Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+B">Bobo Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+Y">Yunyan Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+C">Chao Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+F">Fangli Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Papi%C4%87%2C+Z">Zlatko Papi膰</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+L">Lei Ying</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lai%2C+Y">Ying-Cheng Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03438v2-abstract-short" style="display: inline;"> Quantum many-body scarring (QMBS) -- a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems -- presents opportunities for mitigating thermalization-induced decoherence in quantum information processsing. However, the existing experimental realizations of QMBS are based on kinetically-constrained systems where an emergent dynamical symmetry &#34;shields&#34; such sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03438v2-abstract-full').style.display = 'inline'; document.getElementById('2201.03438v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03438v2-abstract-full" style="display: none;"> Quantum many-body scarring (QMBS) -- a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems -- presents opportunities for mitigating thermalization-induced decoherence in quantum information processsing. However, the existing experimental realizations of QMBS are based on kinetically-constrained systems where an emergent dynamical symmetry &#34;shields&#34; such states from the thermalizing bulk of the spectrum. Here, we experimentally realize a distinct kind of QMBS phenomena by approximately decoupling a part of the many-body Hilbert space in the computational basis. Utilizing a programmable superconducting processor with 30 qubits and tunable couplings, we realize Hilbert space scarring in a non-constrained model in different geometries, including a linear chain as well as a quasi-one-dimensional comb geometry. By performing full quantum state tomography on 4-qubit subsystems, we provide strong evidence for QMBS states by measuring qubit population dynamics, quantum fidelity and entanglement entropy following a quench from initial product states. Our experimental findings broaden the realm of QMBS mechanisms and pave the way to exploiting correlations in QMBS states for applications in quantum information technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03438v2-abstract-full').style.display = 'none'; document.getElementById('2201.03438v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> s41567-022-01784-9 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 19, 120 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09110">arXiv:2111.09110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09110">pdf</a>, <a href="https://arxiv.org/format/2111.09110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/ac7757">10.1088/1361-6463/ac7757 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quadrupolar interaction induced frequency shift of 131Xe nuclear spins on the surface of silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yao Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+M">Mingzhi Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+Y">Yintao Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Libo Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yanbin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+J">Ju Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Q">Qijing Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+Z">Zhuangde Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09110v1-abstract-short" style="display: inline;"> The combination of micro-machined technology with the Atomic Spin Gyroscope(ASG) devices could fabricated Chip Scale Atomic Spin Gyroscope(CASG). The core of the gyroscope is a micro-machined vapor cell which contains alkali metal and isotope enriched noble gases such as 129Xe and 131Xe. The quadrupolar frequency shift of 131Xe is key parameters which could affect the drift of the ASG and is relat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09110v1-abstract-full').style.display = 'inline'; document.getElementById('2111.09110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09110v1-abstract-full" style="display: none;"> The combination of micro-machined technology with the Atomic Spin Gyroscope(ASG) devices could fabricated Chip Scale Atomic Spin Gyroscope(CASG). The core of the gyroscope is a micro-machined vapor cell which contains alkali metal and isotope enriched noble gases such as 129Xe and 131Xe. The quadrupolar frequency shift of 131Xe is key parameters which could affect the drift of the ASG and is related to the material of the cell in which they are contained. In micro machined technology, the typical utilized material is silicon. In this article, we studied the electric quadrupolar frequency shift of 131Xe atoms with the silicon wall of the micro-machined vapor cell. A cylinder micro-machined vapor cell is utilized in the experiment and a large part of the inner cell surface is composed of silicon material. We studied the temperature dependence of the 129Xe spin relaxation and 131Xe frequency shifts to evaluate the interaction of the nuclear spin with container wall and the alkali metal atoms. The results show that the average twisted angle of the 131Xe nuclear spins as they collide with the silicon wall is measured to be 29 *10^-6 rad. The desorption energy for the 131Xe nuclear spin to escape from the silicon surface is Esi = 0.009eV . This study could help to improve the bias stability of the CASG which is a key parameter for the gyroscope as well as may developes a method to study the surface property of various material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09110v1-abstract-full').style.display = 'none'; document.getElementById('2111.09110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15699">arXiv:2110.15699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15699">pdf</a>, <a href="https://arxiv.org/format/2110.15699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11128-021-03293-9">10.1007/s11128-021-03293-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Necessary conditions on effective quantum entanglement catalysts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yu-Min Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Y">Yi Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li-Jun Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+M">Mengyao Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wei%2C+Z">Zhiwei Wei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15699v1-abstract-short" style="display: inline;"> Quantum catalytic transformations play important roles in the transformation of quantum entangled states under local operations and classical communications (LOCC). The key problems in catalytic transformations are the existence and the bounds on the catalytic states. We present the necessary conditions of catalytic states based on a set of points given by the Schmidt coefficients of the entangled&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15699v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15699v1-abstract-full" style="display: none;"> Quantum catalytic transformations play important roles in the transformation of quantum entangled states under local operations and classical communications (LOCC). The key problems in catalytic transformations are the existence and the bounds on the catalytic states. We present the necessary conditions of catalytic states based on a set of points given by the Schmidt coefficients of the entangled source and target states. The lower bounds on the dimensions of the catalytic states are also investigated. Moreover, we give a detailed protocol of quantum mixed state transformation under entanglement-assisted LOCC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15699v1-abstract-full').style.display = 'none'; document.getElementById('2110.15699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Information Processing (2021) 20:356 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03137">arXiv:2110.03137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03137">pdf</a>, <a href="https://arxiv.org/format/2110.03137">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Application-Oriented Performance Benchmarks for Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lubinski%2C+T">Thomas Lubinski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Johri%2C+S">Sonika Johri</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Varosy%2C+P">Paul Varosy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Coleman%2C+J">Jeremiah Coleman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luning Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Necaise%2C+J">Jason Necaise</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Baldwin%2C+C+H">Charles H. Baldwin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mayer%2C+K">Karl Mayer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Proctor%2C+T">Timothy Proctor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03137v3-abstract-short" style="display: inline;"> In this work we introduce an open source suite of quantum application-oriented performance benchmarks that is designed to measure the effectiveness of quantum computing hardware at executing quantum applications. These benchmarks probe a quantum computer&#39;s performance on various algorithms and small applications as the problem size is varied, by mapping out the fidelity of the results as a functio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03137v3-abstract-full').style.display = 'inline'; document.getElementById('2110.03137v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03137v3-abstract-full" style="display: none;"> In this work we introduce an open source suite of quantum application-oriented performance benchmarks that is designed to measure the effectiveness of quantum computing hardware at executing quantum applications. These benchmarks probe a quantum computer&#39;s performance on various algorithms and small applications as the problem size is varied, by mapping out the fidelity of the results as a function of circuit width and depth using the framework of volumetric benchmarking. In addition to estimating the fidelity of results generated by quantum execution, the suite is designed to benchmark certain aspects of the execution pipeline in order to provide end-users with a practical measure of both the quality of and the time to solution. Our methodology is constructed to anticipate advances in quantum computing hardware that are likely to emerge in the next five years. This benchmarking suite is designed to be readily accessible to a broad audience of users and provides benchmarks that correspond to many well-known quantum computing algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03137v3-abstract-full').style.display = 'none'; document.getElementById('2110.03137v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 36 figures; Added to Section VI about Impact of Compiler Optimization Techniques; Updated 20230105 for clarity after review feedback</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01014">arXiv:2109.01014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01014">pdf</a>, <a href="https://arxiv.org/ps/2109.01014">ps</a>, <a href="https://arxiv.org/format/2109.01014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Quantum algorithm for structure learning of Markov Random Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+S">Siyi Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rebentrost%2C+P">Patrick Rebentrost</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01014v1-abstract-short" style="display: inline;"> Markov random fields (MRFs) appear in many problems in machine learning and statistics. From a computational learning theory point of view, a natural problem of learning MRFs arises: given samples from an MRF from a restricted class, learn the structure of the MRF, that is the neighbors of each node of the underlying graph. In this work, we start at a known near-optimal classical algorithm for thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01014v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01014v1-abstract-full" style="display: none;"> Markov random fields (MRFs) appear in many problems in machine learning and statistics. From a computational learning theory point of view, a natural problem of learning MRFs arises: given samples from an MRF from a restricted class, learn the structure of the MRF, that is the neighbors of each node of the underlying graph. In this work, we start at a known near-optimal classical algorithm for this learning problem and develop a modified classical algorithm. This classical algorithm retains the run time and guarantee of the previous algorithm and enables the use of quantum subroutines. Adapting a previous quantum algorithm, the Quantum Sparsitron, we provide a polynomial quantum speedup in terms of the number of variables for learning the structure of an MRF, if the MRF has bounded degree. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01014v1-abstract-full').style.display = 'none'; document.getElementById('2109.01014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.15047">arXiv:2105.15047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.15047">pdf</a>, <a href="https://arxiv.org/ps/2105.15047">ps</a>, <a href="https://arxiv.org/format/2105.15047">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.043059">10.1103/PhysRevResearch.3.043059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> D1 magic wavelength tweezers for scaling atom arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Aliyu%2C+M+M">Mohammad Mujahid Aliyu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Luheng Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Quek%2C+X+Q">Xiu Quan Quek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yellapragada%2C+K+C">Krishna Chaitanya Yellapragada</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loh%2C+H">Huanqian Loh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.15047v2-abstract-short" style="display: inline;"> D1 magic wavelengths have been predicted for the alkali atoms but are not yet observed to date. We experimentally confirm a D1 magic wavelength that is predicted to lie at 615.87 nm for $^{23}$Na, which we then use to trap and image individual atoms with 80.0(6)% efficiency and without having to modulate the trapping and imaging light intensities. We further demonstrate that the mean loading effic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.15047v2-abstract-full').style.display = 'inline'; document.getElementById('2105.15047v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.15047v2-abstract-full" style="display: none;"> D1 magic wavelengths have been predicted for the alkali atoms but are not yet observed to date. We experimentally confirm a D1 magic wavelength that is predicted to lie at 615.87 nm for $^{23}$Na, which we then use to trap and image individual atoms with 80.0(6)% efficiency and without having to modulate the trapping and imaging light intensities. We further demonstrate that the mean loading efficiency remains as high as 74.2(7)% for a 1D array of eight atoms. Leveraging on the absence of trap intensity modulation and lower trap depths afforded by the D1 light, we achieve an order-of-magnitude reduction on the tweezer laser power requirements and a corresponding increase in the scalability of atom arrays. The methods reported here are applicable to all the alkalis, including those that are attractive candidates for dipolar molecule assembly, Rydberg dressing, or are fermionic in nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.15047v2-abstract-full').style.display = 'none'; document.getElementById('2105.15047v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 043059 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03222">arXiv:2102.03222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03222">pdf</a>, <a href="https://arxiv.org/format/2102.03222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum engineering with hybrid magnonics systems and materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Awschalom%2C+D+D">D. D. Awschalom</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+C+H+R">C. H. R. Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+R">R. He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Heremans%2C+F+J">F. J. Heremans</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hoffmann%2C+A">A. Hoffmann</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+J+T">J. T. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kurebayashi%2C+H">H. Kurebayashi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+L">L. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Novosad%2C+V">V. Novosad</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sklenar%2C+J">J. Sklenar</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sullivan%2C+S+E">S. E. Sullivan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+D">D. Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+H">H. Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tiberkevich%2C+V">V. Tiberkevich</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Trevillian%2C+C">C. Trevillian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tsen%2C+A+W">A. W. Tsen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Weiss%2C+L+R">L. R. Weiss</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">W. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">X. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">L. Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zollitsch%2C+C+W">C. W. Zollitsch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03222v1-abstract-short" style="display: inline;"> Quantum technology has made tremendous strides over the past two decades with remarkable advances in materials engineering, circuit design and dynamic operation. In particular, the integration of different quantum modules has benefited from hybrid quantum systems, which provide an important pathway for harnessing the different natural advantages of complementary quantum systems and for engineering&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03222v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03222v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03222v1-abstract-full" style="display: none;"> Quantum technology has made tremendous strides over the past two decades with remarkable advances in materials engineering, circuit design and dynamic operation. In particular, the integration of different quantum modules has benefited from hybrid quantum systems, which provide an important pathway for harnessing the different natural advantages of complementary quantum systems and for engineering new functionalities. This review focuses on the current frontiers with respect to utilizing magnetic excitatons or magnons for novel quantum functionality. Magnons are the fundamental excitations of magnetically ordered solid-state materials and provide great tunability and flexibility for interacting with various quantum modules for integration in diverse quantum systems. The concomitant rich variety of physics and material selections enable exploration of novel quantum phenomena in materials science and engineering. In addition, the relative ease of generating strong coupling and forming hybrid dynamic systems with other excitations makes hybrid magnonics a unique platform for quantum engineering. We start our discussion with circuit-based hybrid magnonic systems, which are coupled with microwave photons and acoustic phonons. Subsequently, we are focusing on the recent progress of magnon-magnon coupling within confined magnetic systems. Next we highlight new opportunities for understanding the interactions between magnons and nitrogen-vacancy centers for quantum sensing and implementing quantum interconnects. Lastly, we focus on the spin excitations and magnon spectra of novel quantum materials investigated with advanced optical characterization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03222v1-abstract-full').style.display = 'none'; document.getElementById('2102.03222v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Quantum Engineering (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.11794">arXiv:2011.11794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.11794">pdf</a>, <a href="https://arxiv.org/format/2011.11794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.022807">10.1103/PhysRevA.103.022807 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Positive-energy spectra of atomic hydrogen in a magnetic field with an adiabatic-basis-expansion method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L+B">L. B. Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K+D">K. D. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bartschat%2C+K">K. Bartschat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.11794v1-abstract-short" style="display: inline;"> The problem of photoionization of atomic hydrogen in a white-dwarf-strength magnetic field is revisited to understand the existing discrepancies in the positive-energy spectra obtained by a variety of theoretical approaches reported in the literature. Oscillator strengths for photoionization are calculated with the adiabatic-basis-expansion method developed by Mota-Furtado and O&#39;Mahony [Phys. Rev.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11794v1-abstract-full').style.display = 'inline'; document.getElementById('2011.11794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.11794v1-abstract-full" style="display: none;"> The problem of photoionization of atomic hydrogen in a white-dwarf-strength magnetic field is revisited to understand the existing discrepancies in the positive-energy spectra obtained by a variety of theoretical approaches reported in the literature. Oscillator strengths for photoionization are calculated with the adiabatic-basis-expansion method developed by Mota-Furtado and O&#39;Mahony [Phys. Rev. A {\bf 76}, 053405 (2007)]. A comparative study is performed between the adiabatic-basis-expansion method and our previously developed coupled-channel theory [Phys. Rev. A {\bf 94}, 033422 (2016)]. A detailed analysis of the positive-energy spectra obtained here and those from other theoretical approaches shows that the adiabatic-basis-expansion method can produce more accurate positive-energy spectra than other reported approaches for low field strengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11794v1-abstract-full').style.display = 'none'; document.getElementById('2011.11794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 022807 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13288">arXiv:2009.13288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13288">pdf</a>, <a href="https://arxiv.org/format/2009.13288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.042422">10.1103/PhysRevA.103.042422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-classical algorithms for skewed linear systems with optimized Hadamard test </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+B">Bujiao Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ray%2C+M">Maharshi Ray</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xiaoming Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rebentrost%2C+P">Patrick Rebentrost</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13288v1-abstract-short" style="display: inline;"> The solving of linear systems provides a rich area to investigate the use of nearer-term, noisy, intermediate-scale quantum computers. In this work, we discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and under-determined cases. Our input model is such that the columns or rows of the matrix defining the linear system are given via quantum circuits of poly-l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13288v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13288v1-abstract-full" style="display: none;"> The solving of linear systems provides a rich area to investigate the use of nearer-term, noisy, intermediate-scale quantum computers. In this work, we discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and under-determined cases. Our input model is such that the columns or rows of the matrix defining the linear system are given via quantum circuits of poly-logarithmic depth and the number of circuits is much smaller than their Hilbert space dimension. Our algorithms have poly-logarithmic dependence on the dimension and polynomial dependence in other natural quantities. In addition, we present an algorithm for the special case of a factorized linear system with run time poly-logarithmic in the respective dimensions. At the core of these algorithms is the Hadamard test and in the second part of this paper we consider the optimization of the circuit depth of this test. Given an $n$-qubit and $d$-depth quantum circuit $\mathcal{C}$, we can approximate $\langle 0|\mathcal{C}|0\rangle$ using $(n + s)$ qubits and $O\left(\log s + d\log (n/s) + d\right)$-depth quantum circuits, where $s\leq n$. In comparison, the standard implementation requires $n+1$ qubits and $O(dn)$ depth. Lattice geometries underlie recent quantum supremacy experiments with superconducting devices. We also optimize the Hadamard test for an $(l_1\times l_2)$ lattice with $l_1 \times l_2 = n$, and can approximate $\langle 0|\mathcal{C} |0\rangle$ with $(n + 1)$ qubits and $O\left(d \left(l_1 + l_2\right)\right)$-depth circuits. In comparison, the standard depth is $O\left(d n^2\right)$ in this setting. Both of our optimization methods are asymptotically tight in the case of one-depth quantum circuits $\mathcal{C}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13288v1-abstract-full').style.display = 'none'; document.getElementById('2009.13288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28+16 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 042422 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13041">arXiv:2007.13041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.13041">pdf</a>, <a href="https://arxiv.org/format/2007.13041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/abbec1">10.1088/1751-8121/abbec1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inertias of entanglement witnesses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Y">Yi Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13041v2-abstract-short" style="display: inline;"> Entanglement witnesses (EWs) are a fundamental tool for the detection of entanglement. We study the inertias of EWs, i.e., the triplet of the numbers of negative, zero, and positive eigenvalues respectively. We focus on the EWs constructed by the partial transposition of states with non-positive partial transposes. We provide a method to generate more inertias from a given inertia by the relevance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13041v2-abstract-full').style.display = 'inline'; document.getElementById('2007.13041v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13041v2-abstract-full" style="display: none;"> Entanglement witnesses (EWs) are a fundamental tool for the detection of entanglement. We study the inertias of EWs, i.e., the triplet of the numbers of negative, zero, and positive eigenvalues respectively. We focus on the EWs constructed by the partial transposition of states with non-positive partial transposes. We provide a method to generate more inertias from a given inertia by the relevance between inertias. Based on that we exhaust all the inertias for EWs in each qubit-qudit system. We apply our results to propose a separability criterion in terms of the rank of the partial transpose of state. We also connect our results to tripartite genuinely entangled states and the classification of states with non-positive partial transposes. Additionally, the inertias of EWs constructed by X-states are clarified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13041v2-abstract-full').style.display = 'none'; document.getElementById('2007.13041v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">similar to the accepted version, to appear in the journal of physics a</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.02844">arXiv:2001.02844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.02844">pdf</a>, <a href="https://arxiv.org/format/2001.02844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aba9636">10.1126/sciadv.aba9636 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-time nanodiamond thermometry probing in-vivo thermogenic responses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Fujiwara%2C+M">Masazumi Fujiwara</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+S">Simo Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dohms%2C+A">Alexander Dohms</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nishimura%2C+Y">Yushi Nishimura</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Suto%2C+K">Ken Suto</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Takezawa%2C+Y">Yuka Takezawa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Oshimi%2C+K">Keisuke Oshimi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sadzak%2C+N">Nikola Sadzak</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Umehara%2C+Y">Yumi Umehara</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Teki%2C+Y">Yoshio Teki</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Komatsu%2C+N">Naoki Komatsu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Benson%2C+O">Oliver Benson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shikano%2C+Y">Yutaka Shikano</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kage-Nakadai%2C+E">Eriko Kage-Nakadai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.02844v2-abstract-short" style="display: inline;"> Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities, such as homeostatic thermoregulation and energy metabolism. However, it is challenging to reduce the size of bio-compatible thermometers down to submicrometers despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Light-emitt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02844v2-abstract-full').style.display = 'inline'; document.getElementById('2001.02844v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.02844v2-abstract-full" style="display: none;"> Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities, such as homeostatic thermoregulation and energy metabolism. However, it is challenging to reduce the size of bio-compatible thermometers down to submicrometers despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Light-emitting nanothermometers that remotely sense temperature via optical signals exhibit considerable potential in such \textit{in-vivo} high-spatial-resolution thermometry. Here, using quantum nanothermometers based on optically accessible electron spins in nanodiamonds (NDs), we demonstrate \textit{in-vivo} real-time temperature monitoring inside \textit{Caenorhabditis elegans} (\textit{C. elegans}) worms. We developed a thermometry system that can measure the temperatures of movable NDs inside live adult worms with a precision of $\pm 0.22^{\circ}{\rm C}$. Using this system, we determined the increase in temperature based on the thermogenic responses of the worms during the chemical stimuli of mitochondrial uncouplers. Our technique demonstrates sub-micrometer localization of real-time temperature information in living animals and direct identification of their pharmacological thermogenesis. The results obtained facilitate the development of a method to probe subcellular temperature variation inside living organisms and may allow for quantification of their biological activities based on their energy expenditures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02844v2-abstract-full').style.display = 'none'; document.getElementById('2001.02844v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 + 10 pages, 4 + 11 figures, our submission is jointly with the paper arXiv:2001.02664</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 6, eaba9636 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.07699">arXiv:1911.07699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.07699">pdf</a>, <a href="https://arxiv.org/format/1911.07699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.100.052107">10.1103/PhysRevA.100.052107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trade-off relation among genuine three-qubit nonlocalities in four-qubit systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li-Jun Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yu-Min Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Y">Yi Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.07699v1-abstract-short" style="display: inline;"> We study the trade-off relations satisfied by the genuine tripartite nonlocality in multipartite quantum systems. From the reduced three-qubit density matrices of the four-qubit generalized Greenberger-Horne-Zeilinger (GHZ) states and W states (4-qubit entangled state), we find that there exists a trade-off relation among the mean values of the Svetlichny operators associated with these reduced st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07699v1-abstract-full').style.display = 'inline'; document.getElementById('1911.07699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.07699v1-abstract-full" style="display: none;"> We study the trade-off relations satisfied by the genuine tripartite nonlocality in multipartite quantum systems. From the reduced three-qubit density matrices of the four-qubit generalized Greenberger-Horne-Zeilinger (GHZ) states and W states (4-qubit entangled state), we find that there exists a trade-off relation among the mean values of the Svetlichny operators associated with these reduced states. Namely, the genuine three-qubit nonlocalities are not independent. For four-qubit generalized GHZ states and W states, the summation of all their three-qubit maximal (squared) mean values of the Svetlichny operator has an upper bound. This bound is better than the one derived from the upper bounds of individual three-qubit mean values of the Svetlichny operator. Detailed examples are presented to illustrate the trade-off relation among the three-qubit nonlocalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07699v1-abstract-full').style.display = 'none'; document.getElementById('1911.07699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.03021">arXiv:1911.03021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.03021">pdf</a>, <a href="https://arxiv.org/format/1911.03021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043095">10.1103/PhysRevResearch.2.043095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wormholes and the Thermodynamic Arrow of Time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xian%2C+Z">Zhuo-Yu Xian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Long Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.03021v3-abstract-short" style="display: inline;"> In classical thermodynamics, heat cannot spontaneously pass from a colder system to a hotter system, which is called the thermodynamic arrow of time. However, if the initial states are entangled, the direction of the thermodynamic arrow of time may not be guaranteed. Here we take the thermofield double state at $0+1$ dimension as the initial state and assume its gravity duality to be the eternal b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03021v3-abstract-full').style.display = 'inline'; document.getElementById('1911.03021v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.03021v3-abstract-full" style="display: none;"> In classical thermodynamics, heat cannot spontaneously pass from a colder system to a hotter system, which is called the thermodynamic arrow of time. However, if the initial states are entangled, the direction of the thermodynamic arrow of time may not be guaranteed. Here we take the thermofield double state at $0+1$ dimension as the initial state and assume its gravity duality to be the eternal black hole in AdS$_2$ space. We make the temperature difference between the two sides by changing the Hamiltonian. We turn on proper interaction between the two sides and calculate the changes in energy and entropy. The energy transfer, as well as the thermodynamic arrow of time, are mainly determined by the competition between two channels: thermal diffusion and anomalous heat flow. The former is not related to the wormhole and obeys the thermodynamic arrow of time; the latter is related to the wormhole and reverses the thermodynamic arrow of time, i.e. transferring energy from the colder side to the hotter side at the cost of entanglement consumption. Finally, we find that the thermal diffusion wins the competition, and the whole thermodynamic arrow of time has not been reversed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03021v3-abstract-full').style.display = 'none'; document.getElementById('1911.03021v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 23 figures; calculated the von Neumann entropy; added Appendix E; added Figs. 17 and 23; changed the style of figures; corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 043095 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09878">arXiv:1909.09878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09878">pdf</a>, <a href="https://arxiv.org/format/1909.09878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Analysis of PDEs">math.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Spectral Theory">math.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0023250">10.1063/5.0023250 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-parameter localization and related phase transition for a Schr枚dinger operator in balls and spherical shells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jia%2C+C">Chen Jia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhimin Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Lewei Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09878v1-abstract-short" style="display: inline;"> Here we investigate the two-parameter high-frequency localization for the eigenfunctions of a Schr枚dinger operator with a singular inverse square potential in high-dimensional balls and spherical shells as the azimuthal quantum number $l$ and the principal quantum number $k$ tend to infinity simultaneously, while keeping their ratio as a constant, generalizing the classical one-parameter localizat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09878v1-abstract-full').style.display = 'inline'; document.getElementById('1909.09878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09878v1-abstract-full" style="display: none;"> Here we investigate the two-parameter high-frequency localization for the eigenfunctions of a Schr枚dinger operator with a singular inverse square potential in high-dimensional balls and spherical shells as the azimuthal quantum number $l$ and the principal quantum number $k$ tend to infinity simultaneously, while keeping their ratio as a constant, generalizing the classical one-parameter localization for Laplacian eigenfunctions [SIAM J. Appl. Math. 73:780-803, 2013]. We prove that the eigenfunctions in balls are localized around an intermediate sphere whose radius is increasing with respect to the $l$-$k$ ratio. The eigenfunctions decay exponentially inside the localized sphere and decay polynomially outside. Furthermore, we discover a novel second-order phase transition for the eigenfunctions in spherical shells as the $l$-$k$ ratio crosses a critical value. In the supercritical case, the eigenfunctions are localized around a sphere between the inner and outer boundaries of the spherical shell. In the critical case, the eigenfunctions are localized around the inner boundary. In the subcritical case, no localization could be observed, giving rise to localization breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09878v1-abstract-full').style.display = 'none'; document.getElementById('1909.09878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35J05; 35J10; 35P99; 33C10; 35Q40 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.06286">arXiv:1909.06286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.06286">pdf</a>, <a href="https://arxiv.org/format/1909.06286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5129140">10.1063/1.5129140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Precision Determination of the Planck Constant by Modern Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+D">Dingsong Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Y">Yongqing Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y">Yu Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Cong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.06286v1-abstract-short" style="display: inline;"> The Planck constant, with its mathematical symbol $h$, is a fundamental constant in quantum mechanics that is associated with the quantization of light and matter. It is also of fundamental importance to metrology, such as the definition of ohm and volt, and the latest definition of kilogram. One of the first measurements to determine the Planck constant is based on the photoelectric effect, howev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06286v1-abstract-full').style.display = 'inline'; document.getElementById('1909.06286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.06286v1-abstract-full" style="display: none;"> The Planck constant, with its mathematical symbol $h$, is a fundamental constant in quantum mechanics that is associated with the quantization of light and matter. It is also of fundamental importance to metrology, such as the definition of ohm and volt, and the latest definition of kilogram. One of the first measurements to determine the Planck constant is based on the photoelectric effect, however, the values thus obtained so far have exhibited a large uncertainty. The accepted value of the Planck constant, 6.62607015$\times$10$^{-34}$ J$\cdot$s, is obtained from one of the most precise methods, the Kibble balance, which involves quantum Hall effect, Josephson effect and the use of the International Prototype of the Kilogram (IPK) or its copies. Here we present a precise determination of the Planck constant by modern photoemission spectroscopy technique. Through the direct use of the Einstein&#39;s photoelectric equation, the Planck constant is determined by measuring accurately the energy position of the gold Fermi level using light sources with various photon wavelengths. The precision of the measured Planck constant, 6.62610(13)$\times$10$^{-34}$ J$\cdot$s, is four to five orders of magnitude improved from the previous photoelectric effect measurements. It has rendered photoemission method to become one of the most accurate methods in determining the Planck constant. We propose that this direct method of photoemission spectroscopy has advantages and a potential to further increase its measurement precision of the Planck constant to be comparable to the most accurate methods that are available at present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06286v1-abstract-full').style.display = 'none'; document.getElementById('1909.06286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 91, 045116 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.01722">arXiv:1907.01722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.01722">pdf</a>, <a href="https://arxiv.org/format/1907.01722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0898-5">10.1038/s41567-020-0898-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interference of chiral Andreev edge states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Lingfei Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Arnault%2C+E+G">Ethan G. Arnault</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bondarev%2C+A">Alexey Bondarev</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Seredinski%2C+A">Andrew Seredinski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Larson%2C+T">Trevyn Larson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Draelos%2C+A+W">Anne W. Draelos</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hengming Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Amet%2C+F">Fran莽ois Amet</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Baranger%2C+H+U">Harold U. Baranger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Finkelstein%2C+G">Gleb Finkelstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.01722v3-abstract-short" style="display: inline;"> The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01722v3-abstract-full').style.display = 'inline'; document.getElementById('1907.01722v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.01722v3-abstract-full" style="display: none;"> The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, to which we refer as chiral Andreev edge states (CAES). They propagate along the interface in the direction determined by magnetic field and their interference can turn an incoming electron into an outgoing electron or a hole, depending on the phase accumulated by the CAES along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01722v3-abstract-full').style.display = 'none'; document.getElementById('1907.01722v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 3 figures; Supplementary: 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00556">arXiv:1903.00556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.00556">pdf</a>, <a href="https://arxiv.org/format/1903.00556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Variational Quantum Circuit Model for Knowledge Graphs Embedding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+Y">Yunpu Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tresp%2C+V">Volker Tresp</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yuyi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00556v1-abstract-short" style="display: inline;"> In this work, we propose the first quantum Ans盲tze for the statistical relational learning on knowledge graphs using parametric quantum circuits. We introduce two types of variational quantum circuits for knowledge graph embedding. Inspired by the classical representation learning, we first consider latent features for entities as coefficients of quantum states, while predicates are characterized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00556v1-abstract-full').style.display = 'inline'; document.getElementById('1903.00556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00556v1-abstract-full" style="display: none;"> In this work, we propose the first quantum Ans盲tze for the statistical relational learning on knowledge graphs using parametric quantum circuits. We introduce two types of variational quantum circuits for knowledge graph embedding. Inspired by the classical representation learning, we first consider latent features for entities as coefficients of quantum states, while predicates are characterized by parametric gates acting on the quantum states. For the first model, the quantum advantages disappear when it comes to the optimization of this model. Therefore, we introduce a second quantum circuit model where embeddings of entities are generated from parameterized quantum gates acting on the pure quantum state. The benefit of the second method is that the quantum embeddings can be trained efficiently meanwhile preserving the quantum advantages. We show the proposed methods can achieve comparable results to the state-of-the-art classical models, e.g., RESCAL, DistMult. Furthermore, after optimizing the models, the complexity of inductive inference on the knowledge graphs might be reduced with respect to the number of entities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00556v1-abstract-full').style.display = 'none'; document.getElementById('1903.00556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Quantum Technologies, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.10394">arXiv:1902.10394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.10394">pdf</a>, <a href="https://arxiv.org/format/1902.10394">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Compiling basic linear algebra subroutines for quantum computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liming Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Z">Zhikuan Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rebentrost%2C+P">Patrick Rebentrost</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fitzsimons%2C+J">Joseph Fitzsimons</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.10394v1-abstract-short" style="display: inline;"> Efficiently processing basic linear algebra subroutines is of great importance for a wide range of computational problems. In this paper, we consider techniques to implement matrix functions on a quantum computer, which are composed of basic matrix operations on a set of matrices. These matrix operations include addition, multiplication, Kronecker sum, tensor product, Hadamard product, and single-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10394v1-abstract-full').style.display = 'inline'; document.getElementById('1902.10394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.10394v1-abstract-full" style="display: none;"> Efficiently processing basic linear algebra subroutines is of great importance for a wide range of computational problems. In this paper, we consider techniques to implement matrix functions on a quantum computer, which are composed of basic matrix operations on a set of matrices. These matrix operations include addition, multiplication, Kronecker sum, tensor product, Hadamard product, and single-matrix functions. We discuss the composed matrix functions in terms of the estimation of scalar quantities such as inner products, trace, determinant and Schatten p-norms. We thus provide a framework for compiling instructions for linear algebraic computations into gate sequences on actual quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10394v1-abstract-full').style.display = 'none'; document.getElementById('1902.10394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06093">arXiv:1901.06093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06093">pdf</a>, <a href="https://arxiv.org/format/1901.06093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> $4\times4$ unextendible product basis and genuinely entangled space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Lijun Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yumin Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06093v1-abstract-short" style="display: inline;"> We show that there are six inequivalent $4\times4$ unextendible product bases (UPBs) of size eight, when we consider only 4-qubit product vectors. We apply our results to construct Positive-Partial-Transpose entangled states of rank nine. They are at the same 4-qubit, $2\times2\times4$ and $4\times4$ states, and their ranges have product vectors. One of the six UPBs turns out to be orthogonal to a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06093v1-abstract-full').style.display = 'inline'; document.getElementById('1901.06093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06093v1-abstract-full" style="display: none;"> We show that there are six inequivalent $4\times4$ unextendible product bases (UPBs) of size eight, when we consider only 4-qubit product vectors. We apply our results to construct Positive-Partial-Transpose entangled states of rank nine. They are at the same 4-qubit, $2\times2\times4$ and $4\times4$ states, and their ranges have product vectors. One of the six UPBs turns out to be orthogonal to an almost genuinely entangled space, in the sense that the latter does not contain $4\times4$ product vector in any bipartition of 4-qubit systems. We also show that the multipartite UPB orthogonal to a genuinely entangled space exists if and only if the $n\times n\times n$ UPB orthogonal to a genuinely entangled space exists for some $n$. These results help understand an open problem in [Phys. Rev. A 98, 012313, 2018]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06093v1-abstract-full').style.display = 'none'; document.getElementById('1901.06093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.04389">arXiv:1901.04389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.04389">pdf</a>, <a href="https://arxiv.org/format/1901.04389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.032310">10.1103/PhysRevA.99.032310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Additivity of entanglement of formation via entanglement-breaking space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Li-Jun Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.04389v1-abstract-short" style="display: inline;"> We study the entanglement-breaking (EB) space, such that the entanglement of formation (EOF) of a bipartite quantum state is additive when its range is an EB subspace. We systematically construct the EB spaces in the Hilbert space $\bbC^m\otimes\bbC^3$, and the $2$-dimensional EB space in $\bbC^2\otimes\bbC^n$. We characterize the expression of two-qubit states of rank two with nonadditive EOF, if&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04389v1-abstract-full').style.display = 'inline'; document.getElementById('1901.04389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.04389v1-abstract-full" style="display: none;"> We study the entanglement-breaking (EB) space, such that the entanglement of formation (EOF) of a bipartite quantum state is additive when its range is an EB subspace. We systematically construct the EB spaces in the Hilbert space $\bbC^m\otimes\bbC^3$, and the $2$-dimensional EB space in $\bbC^2\otimes\bbC^n$. We characterize the expression of two-qubit states of rank two with nonadditive EOF, if they exist. We further apply our results to construct EB spaces of an arbitrarily given dimensions. We show that the example in [PRL 89,027901(2002)] is a special case of our results. We further work out the entanglement cost of a qubit-qutrit state in terms of the two-atom system of the . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04389v1-abstract-full').style.display = 'none'; document.getElementById('1901.04389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 032310 (2019) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhao%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10