CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;22 of 22 results for author: <span class="mathjax">Gan, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&amp;query=Gan%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gan, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gan%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gan, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04534">arXiv:2410.04534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04534">pdf</a>, <a href="https://arxiv.org/format/2410.04534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> UniMuMo: Unified Text, Music and Motion Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yang%2C+H">Han Yang</a>, <a href="/search/eess?searchtype=author&amp;query=Su%2C+K">Kun Su</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Y">Yutong Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+J">Jiaben Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Qian%2C+K">Kaizhi Qian</a>, <a href="/search/eess?searchtype=author&amp;query=Liu%2C+G">Gaowen Liu</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04534v1-abstract-short" style="display: inline;"> We introduce UniMuMo, a unified multimodal model capable of taking arbitrary text, music, and motion data as input conditions to generate outputs across all three modalities. To address the lack of time-synchronized data, we align unpaired music and motion data based on rhythmic patterns to leverage existing large-scale music-only and motion-only datasets. By converting music, motion, and text int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04534v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04534v1-abstract-full" style="display: none;"> We introduce UniMuMo, a unified multimodal model capable of taking arbitrary text, music, and motion data as input conditions to generate outputs across all three modalities. To address the lack of time-synchronized data, we align unpaired music and motion data based on rhythmic patterns to leverage existing large-scale music-only and motion-only datasets. By converting music, motion, and text into token-based representation, our model bridges these modalities through a unified encoder-decoder transformer architecture. To support multiple generation tasks within a single framework, we introduce several architectural improvements. We propose encoding motion with a music codebook, mapping motion into the same feature space as music. We introduce a music-motion parallel generation scheme that unifies all music and motion generation tasks into a single transformer decoder architecture with a single training task of music-motion joint generation. Moreover, the model is designed by fine-tuning existing pre-trained single-modality models, significantly reducing computational demands. Extensive experiments demonstrate that UniMuMo achieves competitive results on all unidirectional generation benchmarks across music, motion, and text modalities. Quantitative results are available in the \href{https://hanyangclarence.github.io/unimumo_demo/}{project page}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04534v1-abstract-full').style.display = 'none'; document.getElementById('2410.04534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11333">arXiv:2407.11333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11333">pdf</a>, <a href="https://arxiv.org/format/2407.11333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Disentangled Acoustic Fields For Multimodal Physical Scene Understanding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yin%2C+J">Jie Yin</a>, <a href="/search/eess?searchtype=author&amp;query=Luo%2C+A">Andrew Luo</a>, <a href="/search/eess?searchtype=author&amp;query=Du%2C+Y">Yilun Du</a>, <a href="/search/eess?searchtype=author&amp;query=Cherian%2C+A">Anoop Cherian</a>, <a href="/search/eess?searchtype=author&amp;query=Marks%2C+T+K">Tim K. Marks</a>, <a href="/search/eess?searchtype=author&amp;query=Roux%2C+J+L">Jonathan Le Roux</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11333v1-abstract-short" style="display: inline;"> We study the problem of multimodal physical scene understanding, where an embodied agent needs to find fallen objects by inferring object properties, direction, and distance of an impact sound source. Previous works adopt feed-forward neural networks to directly regress the variables from sound, leading to poor generalization and domain adaptation issues. In this paper, we illustrate that learning&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11333v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11333v1-abstract-full" style="display: none;"> We study the problem of multimodal physical scene understanding, where an embodied agent needs to find fallen objects by inferring object properties, direction, and distance of an impact sound source. Previous works adopt feed-forward neural networks to directly regress the variables from sound, leading to poor generalization and domain adaptation issues. In this paper, we illustrate that learning a disentangled model of acoustic formation, referred to as disentangled acoustic field (DAF), to capture the sound generation and propagation process, enables the embodied agent to construct a spatial uncertainty map over where the objects may have fallen. We demonstrate that our analysis-by-synthesis framework can jointly infer sound properties by explicitly decomposing and factorizing the latent space of the disentangled model. We further show that the spatial uncertainty map can significantly improve the success rate for the localization of fallen objects by proposing multiple plausible exploration locations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11333v1-abstract-full').style.display = 'none'; document.getElementById('2407.11333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20336">arXiv:2405.20336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20336">pdf</a>, <a href="https://arxiv.org/format/2405.20336">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> RapVerse: Coherent Vocals and Whole-Body Motions Generations from Text </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Chen%2C+J">Jiaben Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Yan%2C+X">Xin Yan</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+Y">Yihang Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Cen%2C+S">Siyuan Cen</a>, <a href="/search/eess?searchtype=author&amp;query=Ma%2C+Q">Qinwei Ma</a>, <a href="/search/eess?searchtype=author&amp;query=Zhen%2C+H">Haoyu Zhen</a>, <a href="/search/eess?searchtype=author&amp;query=Qian%2C+K">Kaizhi Qian</a>, <a href="/search/eess?searchtype=author&amp;query=Lu%2C+L">Lie Lu</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20336v1-abstract-short" style="display: inline;"> In this work, we introduce a challenging task for simultaneously generating 3D holistic body motions and singing vocals directly from textual lyrics inputs, advancing beyond existing works that typically address these two modalities in isolation. To facilitate this, we first collect the RapVerse dataset, a large dataset containing synchronous rapping vocals, lyrics, and high-quality 3D holistic bo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20336v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20336v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20336v1-abstract-full" style="display: none;"> In this work, we introduce a challenging task for simultaneously generating 3D holistic body motions and singing vocals directly from textual lyrics inputs, advancing beyond existing works that typically address these two modalities in isolation. To facilitate this, we first collect the RapVerse dataset, a large dataset containing synchronous rapping vocals, lyrics, and high-quality 3D holistic body meshes. With the RapVerse dataset, we investigate the extent to which scaling autoregressive multimodal transformers across language, audio, and motion can enhance the coherent and realistic generation of vocals and whole-body human motions. For modality unification, a vector-quantized variational autoencoder is employed to encode whole-body motion sequences into discrete motion tokens, while a vocal-to-unit model is leveraged to obtain quantized audio tokens preserving content, prosodic information, and singer identity. By jointly performing transformer modeling on these three modalities in a unified way, our framework ensures a seamless and realistic blend of vocals and human motions. Extensive experiments demonstrate that our unified generation framework not only produces coherent and realistic singing vocals alongside human motions directly from textual inputs but also rivals the performance of specialized single-modality generation systems, establishing new benchmarks for joint vocal-motion generation. The project page is available for research purposes at https://vis-www.cs.umass.edu/RapVerse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20336v1-abstract-full').style.display = 'none'; document.getElementById('2405.20336v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project website: https://vis-www.cs.umass.edu/RapVerse</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08580">arXiv:2403.08580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08580">pdf</a>, <a href="https://arxiv.org/format/2403.08580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Leveraging Compressed Frame Sizes For Ultra-Fast Video Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Han%2C+Y">Yuxing Han</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+Y">Yunan Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C+Y">Chen Ye Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Wen%2C+J">Jiangtao Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08580v1-abstract-short" style="display: inline;"> Classifying videos into distinct categories, such as Sport and Music Video, is crucial for multimedia understanding and retrieval, especially when an immense volume of video content is being constantly generated. Traditional methods require video decompression to extract pixel-level features like color, texture, and motion, thereby increasing computational and storage demands. Moreover, these meth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08580v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08580v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08580v1-abstract-full" style="display: none;"> Classifying videos into distinct categories, such as Sport and Music Video, is crucial for multimedia understanding and retrieval, especially when an immense volume of video content is being constantly generated. Traditional methods require video decompression to extract pixel-level features like color, texture, and motion, thereby increasing computational and storage demands. Moreover, these methods often suffer from performance degradation in low-quality videos. We present a novel approach that examines only the post-compression bitstream of a video to perform classification, eliminating the need for bitstream decoding. To validate our approach, we built a comprehensive data set comprising over 29,000 YouTube video clips, totaling 6,000 hours and spanning 11 distinct categories. Our evaluations indicate precision, accuracy, and recall rates consistently above 80%, many exceeding 90%, and some reaching 99%. The algorithm operates approximately 15,000 times faster than real-time for 30fps videos, outperforming traditional Dynamic Time Warping (DTW) algorithm by seven orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08580v1-abstract-full').style.display = 'none'; document.getElementById('2403.08580v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, 1 table. arXiv admin note: substantial text overlap with arXiv:2309.07361</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04265">arXiv:2309.04265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04265">pdf</a>, <a href="https://arxiv.org/format/2309.04265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Asymmetric Clean Segments-Guided Self-Supervised Learning for Robust Speaker Verification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chong-Xin Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Mak%2C+M">Man-Wai Mak</a>, <a href="/search/eess?searchtype=author&amp;query=Lin%2C+W">Weiwei Lin</a>, <a href="/search/eess?searchtype=author&amp;query=Chien%2C+J">Jen-Tzung Chien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04265v2-abstract-short" style="display: inline;"> Contrastive self-supervised learning (CSL) for speaker verification (SV) has drawn increasing interest recently due to its ability to exploit unlabeled data. Performing data augmentation on raw waveforms, such as adding noise or reverberation, plays a pivotal role in achieving promising results in SV. Data augmentation, however, demands meticulous calibration to ensure intact speaker-specific info&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04265v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04265v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04265v2-abstract-full" style="display: none;"> Contrastive self-supervised learning (CSL) for speaker verification (SV) has drawn increasing interest recently due to its ability to exploit unlabeled data. Performing data augmentation on raw waveforms, such as adding noise or reverberation, plays a pivotal role in achieving promising results in SV. Data augmentation, however, demands meticulous calibration to ensure intact speaker-specific information, which is difficult to achieve without speaker labels. To address this issue, we introduce a novel framework by incorporating clean and augmented segments into the contrastive training pipeline. The clean segments are repurposed to pair with noisy segments to form additional positive and negative pairs. Moreover, the contrastive loss is weighted to increase the difference between the clean and augmented embeddings of different speakers. Experimental results on Voxceleb1 suggest that the proposed framework can achieve a remarkable 19% improvement over the conventional methods, and it surpasses many existing state-of-the-art techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04265v2-abstract-full').style.display = 'none'; document.getElementById('2309.04265v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, accepted by ICASSP 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00148">arXiv:2306.00148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00148">pdf</a>, <a href="https://arxiv.org/format/2306.00148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> SafeDiffuser: Safe Planning with Diffusion Probabilistic Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Xiao%2C+W">Wei Xiao</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+T">Tsun-Hsuan Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Rus%2C+D">Daniela Rus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00148v1-abstract-short" style="display: inline;"> Diffusion model-based approaches have shown promise in data-driven planning, but there are no safety guarantees, thus making it hard to be applied for safety-critical applications. To address these challenges, we propose a new method, called SafeDiffuser, to ensure diffusion probabilistic models satisfy specifications by using a class of control barrier functions. The key idea of our approach is t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00148v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00148v1-abstract-full" style="display: none;"> Diffusion model-based approaches have shown promise in data-driven planning, but there are no safety guarantees, thus making it hard to be applied for safety-critical applications. To address these challenges, we propose a new method, called SafeDiffuser, to ensure diffusion probabilistic models satisfy specifications by using a class of control barrier functions. The key idea of our approach is to embed the proposed finite-time diffusion invariance into the denoising diffusion procedure, which enables trustworthy diffusion data generation. Moreover, we demonstrate that our finite-time diffusion invariance method through generative models not only maintains generalization performance but also creates robustness in safe data generation. We test our method on a series of safe planning tasks, including maze path generation, legged robot locomotion, and 3D space manipulation, with results showing the advantages of robustness and guarantees over vanilla diffusion models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00148v1-abstract-full').style.display = 'none'; document.getElementById('2306.00148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, website: https://safediffuser.github.io/safediffuser/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16897">arXiv:2303.16897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.16897">pdf</a>, <a href="https://arxiv.org/format/2303.16897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Physics-Driven Diffusion Models for Impact Sound Synthesis from Videos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Su%2C+K">Kun Su</a>, <a href="/search/eess?searchtype=author&amp;query=Qian%2C+K">Kaizhi Qian</a>, <a href="/search/eess?searchtype=author&amp;query=Shlizerman%2C+E">Eli Shlizerman</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16897v3-abstract-short" style="display: inline;"> Modeling sounds emitted from physical object interactions is critical for immersive perceptual experiences in real and virtual worlds. Traditional methods of impact sound synthesis use physics simulation to obtain a set of physics parameters that could represent and synthesize the sound. However, they require fine details of both the object geometries and impact locations, which are rarely availab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16897v3-abstract-full').style.display = 'inline'; document.getElementById('2303.16897v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16897v3-abstract-full" style="display: none;"> Modeling sounds emitted from physical object interactions is critical for immersive perceptual experiences in real and virtual worlds. Traditional methods of impact sound synthesis use physics simulation to obtain a set of physics parameters that could represent and synthesize the sound. However, they require fine details of both the object geometries and impact locations, which are rarely available in the real world and can not be applied to synthesize impact sounds from common videos. On the other hand, existing video-driven deep learning-based approaches could only capture the weak correspondence between visual content and impact sounds since they lack of physics knowledge. In this work, we propose a physics-driven diffusion model that can synthesize high-fidelity impact sound for a silent video clip. In addition to the video content, we propose to use additional physics priors to guide the impact sound synthesis procedure. The physics priors include both physics parameters that are directly estimated from noisy real-world impact sound examples without sophisticated setup and learned residual parameters that interpret the sound environment via neural networks. We further implement a novel diffusion model with specific training and inference strategies to combine physics priors and visual information for impact sound synthesis. Experimental results show that our model outperforms several existing systems in generating realistic impact sounds. More importantly, the physics-based representations are fully interpretable and transparent, thus enabling us to perform sound editing flexibly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16897v3-abstract-full').style.display = 'none'; document.getElementById('2303.16897v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2023. Project page: https://sukun1045.github.io/video-physics-sound-diffusion/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04763">arXiv:2210.04763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.04763">pdf</a>, <a href="https://arxiv.org/format/2210.04763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> On the Forward Invariance of Neural ODEs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Xiao%2C+W">Wei Xiao</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+T">Tsun-Hsuan Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Hasani%2C+R">Ramin Hasani</a>, <a href="/search/eess?searchtype=author&amp;query=Lechner%2C+M">Mathias Lechner</a>, <a href="/search/eess?searchtype=author&amp;query=Ban%2C+Y">Yutong Ban</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Rus%2C+D">Daniela Rus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04763v2-abstract-short" style="display: inline;"> We propose a new method to ensure neural ordinary differential equations (ODEs) satisfy output specifications by using invariance set propagation. Our approach uses a class of control barrier functions to transform output specifications into constraints on the parameters and inputs of the learning system. This setup allows us to achieve output specification guarantees simply by changing the constr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04763v2-abstract-full').style.display = 'inline'; document.getElementById('2210.04763v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04763v2-abstract-full" style="display: none;"> We propose a new method to ensure neural ordinary differential equations (ODEs) satisfy output specifications by using invariance set propagation. Our approach uses a class of control barrier functions to transform output specifications into constraints on the parameters and inputs of the learning system. This setup allows us to achieve output specification guarantees simply by changing the constrained parameters/inputs both during training and inference. Moreover, we demonstrate that our invariance set propagation through data-controlled neural ODEs not only maintains generalization performance but also creates an additional degree of robustness by enabling causal manipulation of the system&#39;s parameters/inputs. We test our method on a series of representation learning tasks, including modeling physical dynamics and convexity portraits, as well as safe collision avoidance for autonomous vehicles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04763v2-abstract-full').style.display = 'none'; document.getElementById('2210.04763v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, accepted in ICML2023, website: https://weixy21.github.io/invariance/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03483">arXiv:2207.03483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.03483">pdf</a>, <a href="https://arxiv.org/format/2207.03483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Finding Fallen Objects Via Asynchronous Audio-Visual Integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Gu%2C+Y">Yi Gu</a>, <a href="/search/eess?searchtype=author&amp;query=Zhou%2C+S">Siyuan Zhou</a>, <a href="/search/eess?searchtype=author&amp;query=Schwartz%2C+J">Jeremy Schwartz</a>, <a href="/search/eess?searchtype=author&amp;query=Alter%2C+S">Seth Alter</a>, <a href="/search/eess?searchtype=author&amp;query=Traer%2C+J">James Traer</a>, <a href="/search/eess?searchtype=author&amp;query=Gutfreund%2C+D">Dan Gutfreund</a>, <a href="/search/eess?searchtype=author&amp;query=Tenenbaum%2C+J+B">Joshua B. Tenenbaum</a>, <a href="/search/eess?searchtype=author&amp;query=McDermott%2C+J">Josh McDermott</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03483v1-abstract-short" style="display: inline;"> The way an object looks and sounds provide complementary reflections of its physical properties. In many settings cues from vision and audition arrive asynchronously but must be integrated, as when we hear an object dropped on the floor and then must find it. In this paper, we introduce a setting in which to study multi-modal object localization in 3D virtual environments. An object is dropped som&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03483v1-abstract-full').style.display = 'inline'; document.getElementById('2207.03483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03483v1-abstract-full" style="display: none;"> The way an object looks and sounds provide complementary reflections of its physical properties. In many settings cues from vision and audition arrive asynchronously but must be integrated, as when we hear an object dropped on the floor and then must find it. In this paper, we introduce a setting in which to study multi-modal object localization in 3D virtual environments. An object is dropped somewhere in a room. An embodied robot agent, equipped with a camera and microphone, must determine what object has been dropped -- and where -- by combining audio and visual signals with knowledge of the underlying physics. To study this problem, we have generated a large-scale dataset -- the Fallen Objects dataset -- that includes 8000 instances of 30 physical object categories in 64 rooms. The dataset uses the ThreeDWorld platform which can simulate physics-based impact sounds and complex physical interactions between objects in a photorealistic setting. As a first step toward addressing this challenge, we develop a set of embodied agent baselines, based on imitation learning, reinforcement learning, and modular planning, and perform an in-depth analysis of the challenge of this new task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03483v1-abstract-full').style.display = 'none'; document.getElementById('2207.03483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2022. Project page: http://fallen-object.csail.mit.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00628">arXiv:2204.00628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00628">pdf</a>, <a href="https://arxiv.org/format/2204.00628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Learning Neural Acoustic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Luo%2C+A">Andrew Luo</a>, <a href="/search/eess?searchtype=author&amp;query=Du%2C+Y">Yilun Du</a>, <a href="/search/eess?searchtype=author&amp;query=Tarr%2C+M+J">Michael J. Tarr</a>, <a href="/search/eess?searchtype=author&amp;query=Tenenbaum%2C+J+B">Joshua B. Tenenbaum</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00628v2-abstract-short" style="display: inline;"> Our environment is filled with rich and dynamic acoustic information. When we walk into a cathedral, the reverberations as much as appearance inform us of the sanctuary&#39;s wide open space. Similarly, as an object moves around us, we expect the sound emitted to also exhibit this movement. While recent advances in learned implicit functions have led to increasingly higher quality representations of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00628v2-abstract-full').style.display = 'inline'; document.getElementById('2204.00628v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00628v2-abstract-full" style="display: none;"> Our environment is filled with rich and dynamic acoustic information. When we walk into a cathedral, the reverberations as much as appearance inform us of the sanctuary&#39;s wide open space. Similarly, as an object moves around us, we expect the sound emitted to also exhibit this movement. While recent advances in learned implicit functions have led to increasingly higher quality representations of the visual world, there have not been commensurate advances in learning spatial auditory representations. To address this gap, we introduce Neural Acoustic Fields (NAFs), an implicit representation that captures how sounds propagate in a physical scene. By modeling acoustic propagation in a scene as a linear time-invariant system, NAFs learn to continuously map all emitter and listener location pairs to a neural impulse response function that can then be applied to arbitrary sounds. We demonstrate that the continuous nature of NAFs enables us to render spatial acoustics for a listener at an arbitrary location, and can predict sound propagation at novel locations. We further show that the representation learned by NAFs can help improve visual learning with sparse views. Finally, we show that a representation informative of scene structure emerges during the learning of NAFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00628v2-abstract-full').style.display = 'none'; document.getElementById('2204.00628v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2022. Project page: https://www.andrew.cmu.edu/user/afluo/Neural_Acoustic_Fields/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08519">arXiv:2106.08519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.08519">pdf</a>, <a href="https://arxiv.org/format/2106.08519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Global Rhythm Style Transfer Without Text Transcriptions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Qian%2C+K">Kaizhi Qian</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Chang%2C+S">Shiyu Chang</a>, <a href="/search/eess?searchtype=author&amp;query=Xiong%2C+J">Jinjun Xiong</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Cox%2C+D">David Cox</a>, <a href="/search/eess?searchtype=author&amp;query=Hasegawa-Johnson%2C+M">Mark Hasegawa-Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08519v1-abstract-short" style="display: inline;"> Prosody plays an important role in characterizing the style of a speaker or an emotion, but most non-parallel voice or emotion style transfer algorithms do not convert any prosody information. Two major components of prosody are pitch and rhythm. Disentangling the prosody information, particularly the rhythm component, from the speech is challenging because it involves breaking the synchrony betwe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08519v1-abstract-full').style.display = 'inline'; document.getElementById('2106.08519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08519v1-abstract-full" style="display: none;"> Prosody plays an important role in characterizing the style of a speaker or an emotion, but most non-parallel voice or emotion style transfer algorithms do not convert any prosody information. Two major components of prosody are pitch and rhythm. Disentangling the prosody information, particularly the rhythm component, from the speech is challenging because it involves breaking the synchrony between the input speech and the disentangled speech representation. As a result, most existing prosody style transfer algorithms would need to rely on some form of text transcriptions to identify the content information, which confines their application to high-resource languages only. Recently, SpeechSplit has made sizeable progress towards unsupervised prosody style transfer, but it is unable to extract high-level global prosody style in an unsupervised manner. In this paper, we propose AutoPST, which can disentangle global prosody style from speech without relying on any text transcriptions. AutoPST is an Autoencoder-based Prosody Style Transfer framework with a thorough rhythm removal module guided by the self-expressive representation learning. Experiments on different style transfer tasks show that AutoPST can effectively convert prosody that correctly reflects the styles of the target domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08519v1-abstract-full').style.display = 'none'; document.getElementById('2106.08519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00820">arXiv:2008.00820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.00820">pdf</a>, <a href="https://arxiv.org/format/2008.00820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TIP.2020.3009820">10.1109/TIP.2020.3009820 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generating Visually Aligned Sound from Videos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Chen%2C+P">Peihao Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Tan%2C+M">Mingkui Tan</a>, <a href="/search/eess?searchtype=author&amp;query=Xiao%2C+H">Hongdong Xiao</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+D">Deng Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00820v1-abstract-short" style="display: inline;"> We focus on the task of generating sound from natural videos, and the sound should be both temporally and content-wise aligned with visual signals. This task is extremely challenging because some sounds generated \emph{outside} a camera can not be inferred from video content. The model may be forced to learn an incorrect mapping between visual content and these irrelevant sounds. To address this c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00820v1-abstract-full').style.display = 'inline'; document.getElementById('2008.00820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00820v1-abstract-full" style="display: none;"> We focus on the task of generating sound from natural videos, and the sound should be both temporally and content-wise aligned with visual signals. This task is extremely challenging because some sounds generated \emph{outside} a camera can not be inferred from video content. The model may be forced to learn an incorrect mapping between visual content and these irrelevant sounds. To address this challenge, we propose a framework named REGNET. In this framework, we first extract appearance and motion features from video frames to better distinguish the object that emits sound from complex background information. We then introduce an innovative audio forwarding regularizer that directly considers the real sound as input and outputs bottlenecked sound features. Using both visual and bottlenecked sound features for sound prediction during training provides stronger supervision for the sound prediction. The audio forwarding regularizer can control the irrelevant sound component and thus prevent the model from learning an incorrect mapping between video frames and sound emitted by the object that is out of the screen. During testing, the audio forwarding regularizer is removed to ensure that REGNET can produce purely aligned sound only from visual features. Extensive evaluations based on Amazon Mechanical Turk demonstrate that our method significantly improves both temporal and content-wise alignment. Remarkably, our generated sound can fool the human with a 68.12% success rate. Code and pre-trained models are publicly available at https://github.com/PeihaoChen/regnet <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00820v1-abstract-full').style.display = 'none'; document.getElementById('2008.00820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in IEEE Transactions on Image Processing, 2020. Code, pre-trained models and demo video: https://github.com/PeihaoChen/regnet</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13729">arXiv:2007.13729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.13729">pdf</a>, <a href="https://arxiv.org/format/2007.13729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Noisy Agents: Self-supervised Exploration by Predicting Auditory Events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+X">Xiaoyu Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Isola%2C+P">Phillip Isola</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a>, <a href="/search/eess?searchtype=author&amp;query=Tenenbaum%2C+J+B">Joshua B. Tenenbaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13729v1-abstract-short" style="display: inline;"> Humans integrate multiple sensory modalities (e.g. visual and audio) to build a causal understanding of the physical world. In this work, we propose a novel type of intrinsic motivation for Reinforcement Learning (RL) that encourages the agent to understand the causal effect of its actions through auditory event prediction. First, we allow the agent to collect a small amount of acoustic data and u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13729v1-abstract-full').style.display = 'inline'; document.getElementById('2007.13729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13729v1-abstract-full" style="display: none;"> Humans integrate multiple sensory modalities (e.g. visual and audio) to build a causal understanding of the physical world. In this work, we propose a novel type of intrinsic motivation for Reinforcement Learning (RL) that encourages the agent to understand the causal effect of its actions through auditory event prediction. First, we allow the agent to collect a small amount of acoustic data and use K-means to discover underlying auditory event clusters. We then train a neural network to predict the auditory events and use the prediction errors as intrinsic rewards to guide RL exploration. Experimental results on Atari games show that our new intrinsic motivation significantly outperforms several state-of-the-art baselines. We further visualize our noisy agents&#39; behavior in a physics environment and demonstrate that our newly designed intrinsic reward leads to the emergence of physical interaction behaviors (e.g. contact with objects). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13729v1-abstract-full').style.display = 'none'; document.getElementById('2007.13729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project page: http://noisy-agent.csail.mit.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.10984">arXiv:2007.10984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.10984">pdf</a>, <a href="https://arxiv.org/format/2007.10984">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Foley Music: Learning to Generate Music from Videos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+D">Deng Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+P">Peihao Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Tenenbaum%2C+J+B">Joshua B. Tenenbaum</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.10984v1-abstract-short" style="display: inline;"> In this paper, we introduce Foley Music, a system that can synthesize plausible music for a silent video clip about people playing musical instruments. We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings. We then formulate music generation from videos as a motion-to-MIDI translation probl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10984v1-abstract-full').style.display = 'inline'; document.getElementById('2007.10984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.10984v1-abstract-full" style="display: none;"> In this paper, we introduce Foley Music, a system that can synthesize plausible music for a silent video clip about people playing musical instruments. We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings. We then formulate music generation from videos as a motion-to-MIDI translation problem. We present a Graph$-$Transformer framework that can accurately predict MIDI event sequences in accordance with the body movements. The MIDI event can then be converted to realistic music using an off-the-shelf music synthesizer tool. We demonstrate the effectiveness of our models on videos containing a variety of music performances. Experimental results show that our model outperforms several existing systems in generating music that is pleasant to listen to. More importantly, the MIDI representations are fully interpretable and transparent, thus enabling us to perform music editing flexibly. We encourage the readers to watch the demo video with audio turned on to experience the results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10984v1-abstract-full').style.display = 'none'; document.getElementById('2007.10984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ECCV 2020. Project page: http://foley-music.csail.mit.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09476">arXiv:2004.09476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.09476">pdf</a>, <a href="https://arxiv.org/format/2004.09476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Music Gesture for Visual Sound Separation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+D">Deng Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+H">Hang Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Tenenbaum%2C+J+B">Joshua B. Tenenbaum</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09476v1-abstract-short" style="display: inline;"> Recent deep learning approaches have achieved impressive performance on visual sound separation tasks. However, these approaches are mostly built on appearance and optical flow like motion feature representations, which exhibit limited abilities to find the correlations between audio signals and visual points, especially when separating multiple instruments of the same types, such as multiple viol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09476v1-abstract-full').style.display = 'inline'; document.getElementById('2004.09476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09476v1-abstract-full" style="display: none;"> Recent deep learning approaches have achieved impressive performance on visual sound separation tasks. However, these approaches are mostly built on appearance and optical flow like motion feature representations, which exhibit limited abilities to find the correlations between audio signals and visual points, especially when separating multiple instruments of the same types, such as multiple violins in a scene. To address this, we propose &#34;Music Gesture,&#34; a keypoint-based structured representation to explicitly model the body and finger movements of musicians when they perform music. We first adopt a context-aware graph network to integrate visual semantic context with body dynamics, and then apply an audio-visual fusion model to associate body movements with the corresponding audio signals. Experimental results on three music performance datasets show: 1) strong improvements upon benchmark metrics for hetero-musical separation tasks (i.e. different instruments); 2) new ability for effective homo-musical separation for piano, flute, and trumpet duets, which to our best knowledge has never been achieved with alternative methods. Project page: http://music-gesture.csail.mit.edu. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09476v1-abstract-full').style.display = 'none'; document.getElementById('2004.09476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2020. Project page: http://music-gesture.csail.mit.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11684">arXiv:1912.11684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11684">pdf</a>, <a href="https://arxiv.org/format/1912.11684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Look, Listen, and Act: Towards Audio-Visual Embodied Navigation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Y">Yiwei Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Wu%2C+J">Jiajun Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Gong%2C+B">Boqing Gong</a>, <a href="/search/eess?searchtype=author&amp;query=Tenenbaum%2C+J+B">Joshua B. Tenenbaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11684v2-abstract-short" style="display: inline;"> A crucial ability of mobile intelligent agents is to integrate the evidence from multiple sensory inputs in an environment and to make a sequence of actions to reach their goals. In this paper, we attempt to approach the problem of Audio-Visual Embodied Navigation, the task of planning the shortest path from a random starting location in a scene to the sound source in an indoor environment, given&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11684v2-abstract-full').style.display = 'inline'; document.getElementById('1912.11684v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11684v2-abstract-full" style="display: none;"> A crucial ability of mobile intelligent agents is to integrate the evidence from multiple sensory inputs in an environment and to make a sequence of actions to reach their goals. In this paper, we attempt to approach the problem of Audio-Visual Embodied Navigation, the task of planning the shortest path from a random starting location in a scene to the sound source in an indoor environment, given only raw egocentric visual and audio sensory data. To accomplish this task, the agent is required to learn from various modalities, i.e. relating the audio signal to the visual environment. Here we describe an approach to audio-visual embodied navigation that takes advantage of both visual and audio pieces of evidence. Our solution is based on three key ideas: a visual perception mapper module that constructs its spatial memory of the environment, a sound perception module that infers the relative location of the sound source from the agent, and a dynamic path planner that plans a sequence of actions based on the audio-visual observations and the spatial memory of the environment to navigate toward the goal. Experimental results on a newly collected Visual-Audio-Room dataset using the simulated multi-modal environment demonstrate the effectiveness of our approach over several competitive baselines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11684v2-abstract-full').style.display = 'none'; document.getElementById('1912.11684v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ICRA 2020. Project page: http://avn.csail.mit.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11760">arXiv:1910.11760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.11760">pdf</a>, <a href="https://arxiv.org/format/1910.11760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Self-supervised Moving Vehicle Tracking with Stereo Sound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+H">Hang Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+P">Peihao Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Cox%2C+D">David Cox</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11760v1-abstract-short" style="display: inline;"> Humans are able to localize objects in the environment using both visual and auditory cues, integrating information from multiple modalities into a common reference frame. We introduce a system that can leverage unlabeled audio-visual data to learn to localize objects (moving vehicles) in a visual reference frame, purely using stereo sound at inference time. Since it is labor-intensive to manually&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11760v1-abstract-full').style.display = 'inline'; document.getElementById('1910.11760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11760v1-abstract-full" style="display: none;"> Humans are able to localize objects in the environment using both visual and auditory cues, integrating information from multiple modalities into a common reference frame. We introduce a system that can leverage unlabeled audio-visual data to learn to localize objects (moving vehicles) in a visual reference frame, purely using stereo sound at inference time. Since it is labor-intensive to manually annotate the correspondences between audio and object bounding boxes, we achieve this goal by using the co-occurrence of visual and audio streams in unlabeled videos as a form of self-supervision, without resorting to the collection of ground-truth annotations. In particular, we propose a framework that consists of a vision &#34;teacher&#34; network and a stereo-sound &#34;student&#34; network. During training, knowledge embodied in a well-established visual vehicle detection model is transferred to the audio domain using unlabeled videos as a bridge. At test time, the stereo-sound student network can work independently to perform object localization us-ing just stereo audio and camera meta-data, without any visual input. Experimental results on a newly collected Au-ditory Vehicle Tracking dataset verify that our proposed approach outperforms several baseline approaches. We also demonstrate that our cross-modal auditory localization approach can assist in the visual localization of moving vehicles under poor lighting conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11760v1-abstract-full').style.display = 'none'; document.getElementById('1910.11760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear at ICCV 2019. Project page: http://sound-track.csail.mit.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.00932">arXiv:1910.00932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.00932">pdf</a>, <a href="https://arxiv.org/format/1910.00932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Training Kinetics in 15 Minutes: Large-scale Distributed Training on Videos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Lin%2C+J">Ji Lin</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.00932v2-abstract-short" style="display: inline;"> Deep video recognition is more computationally expensive than image recognition, especially on large-scale datasets like Kinetics [1]. Therefore, training scalability is essential to handle a large amount of videos. In this paper, we study the factors that impact the training scalability of video networks. We recognize three bottlenecks, including data loading (data movement from disk to GPU), com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00932v2-abstract-full').style.display = 'inline'; document.getElementById('1910.00932v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.00932v2-abstract-full" style="display: none;"> Deep video recognition is more computationally expensive than image recognition, especially on large-scale datasets like Kinetics [1]. Therefore, training scalability is essential to handle a large amount of videos. In this paper, we study the factors that impact the training scalability of video networks. We recognize three bottlenecks, including data loading (data movement from disk to GPU), communication (data movement over networking), and computation FLOPs. We propose three design guidelines to improve the scalability: (1) fewer FLOPs and hardware-friendly operator to increase the computation efficiency; (2) fewer input frames to reduce the data movement and increase the data loading efficiency; (3) smaller model size to reduce the networking traffic and increase the networking efficiency. With these guidelines, we designed a new operator Temporal Shift Module (TSM) that is efficient and scalable for distributed training. TSM model can achieve 1.8x higher throughput compared to previous I3D models. We scale up the training of the TSM model to 1,536 GPUs, with a mini-batch of 12,288 video clips/98,304 images, without losing the accuracy. With such hardware-aware model design, we are able to scale up the training on Summit supercomputer and reduce the training time on Kinetics dataset from 49 hours 55 minutes to 14 minutes 13 seconds, achieving a top-1 accuracy of 74.0%, which is 1.6x and 2.9x faster than previous 3D video models with higher accuracy. The code and more details can be found here: http://tsm-hanlab.mit.edu. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00932v2-abstract-full').style.display = 'none'; document.getElementById('1910.00932v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09013">arXiv:1904.09013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09013">pdf</a>, <a href="https://arxiv.org/format/1904.09013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Self-Supervised Audio-Visual Co-Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Rouditchenko%2C+A">Andrew Rouditchenko</a>, <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+H">Hang Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=McDermott%2C+J">Josh McDermott</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09013v1-abstract-short" style="display: inline;"> Segmenting objects in images and separating sound sources in audio are challenging tasks, in part because traditional approaches require large amounts of labeled data. In this paper we develop a neural network model for visual object segmentation and sound source separation that learns from natural videos through self-supervision. The model is an extension of recently proposed work that maps image&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09013v1-abstract-full').style.display = 'inline'; document.getElementById('1904.09013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09013v1-abstract-full" style="display: none;"> Segmenting objects in images and separating sound sources in audio are challenging tasks, in part because traditional approaches require large amounts of labeled data. In this paper we develop a neural network model for visual object segmentation and sound source separation that learns from natural videos through self-supervision. The model is an extension of recently proposed work that maps image pixels to sounds. Here, we introduce a learning approach to disentangle concepts in the neural networks, and assign semantic categories to network feature channels to enable independent image segmentation and sound source separation after audio-visual training on videos. Our evaluations show that the disentangled model outperforms several baselines in semantic segmentation and sound source separation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09013v1-abstract-full').style.display = 'none'; document.getElementById('1904.09013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ICASSP 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.05979">arXiv:1904.05979</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.05979">pdf</a>, <a href="https://arxiv.org/format/1904.05979">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> The Sound of Motions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+H">Hang Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Ma%2C+W">Wei-Chiu Ma</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.05979v1-abstract-short" style="display: inline;"> Sounds originate from object motions and vibrations of surrounding air. Inspired by the fact that humans is capable of interpreting sound sources from how objects move visually, we propose a novel system that explicitly captures such motion cues for the task of sound localization and separation. Our system is composed of an end-to-end learnable model called Deep Dense Trajectory (DDT), and a curri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05979v1-abstract-full').style.display = 'inline'; document.getElementById('1904.05979v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.05979v1-abstract-full" style="display: none;"> Sounds originate from object motions and vibrations of surrounding air. Inspired by the fact that humans is capable of interpreting sound sources from how objects move visually, we propose a novel system that explicitly captures such motion cues for the task of sound localization and separation. Our system is composed of an end-to-end learnable model called Deep Dense Trajectory (DDT), and a curriculum learning scheme. It exploits the inherent coherence of audio-visual signals from a large quantities of unlabeled videos. Quantitative and qualitative evaluations show that comparing to previous models that rely on visual appearance cues, our motion based system improves performance in separating musical instrument sounds. Furthermore, it separates sound components from duets of the same category of instruments, a challenging problem that has not been addressed before. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05979v1-abstract-full').style.display = 'none'; document.getElementById('1904.05979v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.03160">arXiv:1804.03160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.03160">pdf</a>, <a href="https://arxiv.org/format/1804.03160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> The Sound of Pixels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+H">Hang Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chuang Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Rouditchenko%2C+A">Andrew Rouditchenko</a>, <a href="/search/eess?searchtype=author&amp;query=Vondrick%2C+C">Carl Vondrick</a>, <a href="/search/eess?searchtype=author&amp;query=McDermott%2C+J">Josh McDermott</a>, <a href="/search/eess?searchtype=author&amp;query=Torralba%2C+A">Antonio Torralba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.03160v4-abstract-short" style="display: inline;"> We introduce PixelPlayer, a system that, by leveraging large amounts of unlabeled videos, learns to locate image regions which produce sounds and separate the input sounds into a set of components that represents the sound from each pixel. Our approach capitalizes on the natural synchronization of the visual and audio modalities to learn models that jointly parse sounds and images, without requiri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03160v4-abstract-full').style.display = 'inline'; document.getElementById('1804.03160v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.03160v4-abstract-full" style="display: none;"> We introduce PixelPlayer, a system that, by leveraging large amounts of unlabeled videos, learns to locate image regions which produce sounds and separate the input sounds into a set of components that represents the sound from each pixel. Our approach capitalizes on the natural synchronization of the visual and audio modalities to learn models that jointly parse sounds and images, without requiring additional manual supervision. Experimental results on a newly collected MUSIC dataset show that our proposed Mix-and-Separate framework outperforms several baselines on source separation. Qualitative results suggest our model learns to ground sounds in vision, enabling applications such as independently adjusting the volume of sound sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03160v4-abstract-full').style.display = 'none'; document.getElementById('1804.03160v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05448">arXiv:1607.05448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.05448">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Exponentially Stabilizing Continuous-Time Controllers for multi-domain hybrid systems with application to 3D bipdeal walking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gan%2C+C">Chunbiao Gan</a>, <a href="/search/eess?searchtype=author&amp;query=Yuan%2C+H">Haihui Yuan</a>, <a href="/search/eess?searchtype=author&amp;query=Yang%2C+S">Shixi Yang</a>, <a href="/search/eess?searchtype=author&amp;query=Ge%2C+Y">Yimin Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05448v1-abstract-short" style="display: inline;"> This paper presents a systematic approach to exponentially stabilize the periodic orbits of multi-domain hybrid systems arising from 3D bipedal walking. Firstly, the method of Poincare sections is extended to the hybrid systems with multiple domains. Then, based on the properties of the Poincare maps, a continuous piecewise feedback control strategy is presented, and three methods are furthermore&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05448v1-abstract-full').style.display = 'inline'; document.getElementById('1607.05448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05448v1-abstract-full" style="display: none;"> This paper presents a systematic approach to exponentially stabilize the periodic orbits of multi-domain hybrid systems arising from 3D bipedal walking. Firstly, the method of Poincare sections is extended to the hybrid systems with multiple domains. Then, based on the properties of the Poincare maps, a continuous piecewise feedback control strategy is presented, and three methods are furthermore given to design the controller parameters based on the developed theorems. By those design methods, the controller parameters in each continuous phase can be designed independently, which allows the strategy to be applied to hybrid systems with multiple domains. Finally, the proposed strategy is illustrated by a simulation example. To show that the proposed strategy is not limited to bipedal robots with left-right symmetry property which is assumed in some previous works, an underactuated 3D bipedal robot with asymmetric walking gait is considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05448v1-abstract-full').style.display = 'none'; document.getElementById('1607.05448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to IEEE Transactions on Automatic Control</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10