CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 304 results for author: <span class="mathjax">Zhou, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhou, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhou%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhou, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10812">arXiv:2411.10812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10812">pdf</a>, <a href="https://arxiv.org/ps/2411.10812">ps</a>, <a href="https://arxiv.org/format/2411.10812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient symmetric and asymmetric Bell-state transfers in a dissipative Jaynes-Cummings model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Q">Qi-Cheng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+Y">Yu-Liang Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yan-Hui Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+J">Jun-Long Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kang%2C+Y">Yi-Hao Kang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Su%2C+Q">Qi-Ping Su</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+C">Chui-Ping Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10812v1-abstract-short" style="display: inline;"> Symmetric or asymmetric state transfer along a path encircling an exceptional point (EP) is one of the extraordinary phenomena in non-Hermitian (NH) systems. However, the application of this property in both symmetric and asymmetric entangled state transfers, within systems experiencing multiple types of dissipation, remains to be fully explored. In this work, we demonstrate efficient symmetric an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10812v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10812v1-abstract-full" style="display: none;"> Symmetric or asymmetric state transfer along a path encircling an exceptional point (EP) is one of the extraordinary phenomena in non-Hermitian (NH) systems. However, the application of this property in both symmetric and asymmetric entangled state transfers, within systems experiencing multiple types of dissipation, remains to be fully explored. In this work, we demonstrate efficient symmetric and asymmetric Bell-state transfers, by modulating system parameters within a Jaynes-Cummings model and considering atomic spontaneous emission and cavity decay. The effective suppression of nonadiabatic transitions facilitates a symmetric exchange of Bell states regardless of the encircling direction. Additionally, we present a counterintuitive finding, suggests that the presence of an EP may not be indispensable for implementation of asymmetric state transfers in NH systems. We further achieve perfect asymmetric Bell-state transfers even in the absence of an EP, while dynamically orbiting around an approximate EP. Our work presents an approach to effectively and reliably manipulate entangled states with both symmetric and asymmetric characteristics, through the dissipation engineering in NH systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10812v1-abstract-full').style.display = 'none'; document.getElementById('2411.10812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00428">arXiv:2411.00428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00428">pdf</a>, <a href="https://arxiv.org/ps/2411.00428">ps</a>, <a href="https://arxiv.org/format/2411.00428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Shortcuts to adiabatic state transfer in time-modulated two-level non-Hermitian systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Q">Qi-Cheng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+J">Jun-Long Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yan-Hui Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+B">Biao-Liang Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+Y">Yu-Liang Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zheng-Wei Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+C">Chui-Ping Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00428v2-abstract-short" style="display: inline;"> Nontrivial spectral properties of non-Hermitian systems can give rise to intriguing effects that lack counterparts in Hermitian systems. For instance, when dynamically varying system parameters along a path enclosing an exceptional point (EP), chiral mode conversion occurs. A recent study [Phys. Rev. Lett. 133, 113802 (2024)] demonstrates the achievability of pure adiabatic state transfer by speci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00428v2-abstract-full').style.display = 'inline'; document.getElementById('2411.00428v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00428v2-abstract-full" style="display: none;"> Nontrivial spectral properties of non-Hermitian systems can give rise to intriguing effects that lack counterparts in Hermitian systems. For instance, when dynamically varying system parameters along a path enclosing an exceptional point (EP), chiral mode conversion occurs. A recent study [Phys. Rev. Lett. 133, 113802 (2024)] demonstrates the achievability of pure adiabatic state transfer by specifically selecting a trajectory in the system parameter space where the corresponding evolution operator exhibits a real spectrum while winding around an EP. However, the intended adiabatic state transfer becomes fragile when taking into account the effect of the nonadiabatic transition. In this work, we propose a scheme for achieving robust and rapid adiabatic state transfer in time-modulated two-level non-Hermitian systems by appropriately modulating system Hamiltonian and time-evolution trajectory. Numerical simulations confirm that complete adiabatic transfer can always be achieved even under nonadiabatic conditions after one period for different initialized adiabatic states, and the scheme remains insensitive to moderate fluctuations in control parameters. Therefore, this scheme offers alternative approaches for quantum-state engineering in non-Hermitian systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00428v2-abstract-full').style.display = 'none'; document.getElementById('2411.00428v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23857">arXiv:2410.23857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23857">pdf</a>, <a href="https://arxiv.org/format/2410.23857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> ECDQC: Efficient Compilation for Distributed Quantum Computing with Linear Layout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kecheng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+H">Haochen Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+L">Lingjun Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Casey%2C+E">Eilis Casey</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23857v2-abstract-short" style="display: inline;"> In this paper, we propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture. By exploiting the LNN topology&#39;s symmetry, we optimize quantum circuit compilation for High Local Connectivity, Sparse Full Connectivity (HLC-SFC) algorithms like Quantum Approximate Optimization Algorithm (QAOA) and Quantum Fourier Transform (QFT)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23857v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23857v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23857v2-abstract-full" style="display: none;"> In this paper, we propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture. By exploiting the LNN topology&#39;s symmetry, we optimize quantum circuit compilation for High Local Connectivity, Sparse Full Connectivity (HLC-SFC) algorithms like Quantum Approximate Optimization Algorithm (QAOA) and Quantum Fourier Transform (QFT). We also utilize dangling qubits to minimize non-local interactions and reduce SWAP gates. Our approach significantly decreases compilation time, gate count, and circuit depth, improving scalability and robustness for large-scale quantum computations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23857v2-abstract-full').style.display = 'none'; document.getElementById('2410.23857v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14538">arXiv:2410.14538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14538">pdf</a>, <a href="https://arxiv.org/format/2410.14538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nearly query-optimal classical shadow estimation of unitary channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zihao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+C">Changhao Yi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+H">Huangjun Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14538v1-abstract-short" style="display: inline;"> Classical shadow estimation (CSE) is a powerful tool for learning properties of quantum states and quantum processes. Here we consider the CSE task for quantum unitary channels. By querying an unknown unitary channel $\mathcal{U}$ multiple times in quantum experiments, the goal is to learn a classical description of $\mathcal{U}$ such that one can later use it to accurately predict many different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14538v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14538v1-abstract-full" style="display: none;"> Classical shadow estimation (CSE) is a powerful tool for learning properties of quantum states and quantum processes. Here we consider the CSE task for quantum unitary channels. By querying an unknown unitary channel $\mathcal{U}$ multiple times in quantum experiments, the goal is to learn a classical description of $\mathcal{U}$ such that one can later use it to accurately predict many different linear properties of the channel, i.e., the expectation values of arbitrary observables measured on the output of $\mathcal{U}$ upon arbitrary input states. Based on collective measurements on multiple systems, we propose a query efficient protocol for this task, whose query complexity achieves a quadratic advantage over previous best approach for this problem, and almost saturates the information-theoretic lower bound. To enhance practicality, we also present a variant protocol using only single-copy measurements, which still offers better query performance than any previous protocols that do not use additional quantum memories. In addition to linear properties, our protocol can also be applied to simultaneously predict many non-linear properties such as out-of-time-ordered correlators. Given the importance of CSE, this work may represent a significant advance in the study of learning unitary channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14538v1-abstract-full').style.display = 'none'; document.getElementById('2410.14538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13+23 pages, 3 figures, and 1+5 tables; comments and suggestions are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12551">arXiv:2410.12551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12551">pdf</a>, <a href="https://arxiv.org/format/2410.12551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum subspace verification for error correction codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Junjie Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+P">Pei Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Q">Qi Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+X">Xiongfeng Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12551v1-abstract-short" style="display: inline;"> Benchmarking the performance of quantum error correction codes in physical systems is crucial for achieving fault-tolerant quantum computing. Current methodologies, such as (shadow) tomography or direct fidelity estimation, fall short in efficiency due to the neglect of possible prior knowledge about quantum states. To address the challenge, we introduce a framework of quantum subspace verificatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12551v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12551v1-abstract-full" style="display: none;"> Benchmarking the performance of quantum error correction codes in physical systems is crucial for achieving fault-tolerant quantum computing. Current methodologies, such as (shadow) tomography or direct fidelity estimation, fall short in efficiency due to the neglect of possible prior knowledge about quantum states. To address the challenge, we introduce a framework of quantum subspace verification, employing the knowledge of quantum error correction code subspaces to reduce the potential measurement budgets. Specifically, we give the sample complexity to estimate the fidelity to the target subspace under some confidence level. Building on the framework, verification operators are developed, which can be implemented with experiment-friendly local measurements for stabilizer codes and quantum low-density parity-check (QLDPC) codes. Our constructions require $O(n-k)$ local measurement settings for both, and the sample complexity of $O(n-k)$ for stabilizer codes and of $O((n-k)^2)$ for generic QLDPC codes, where $n$ and $k$ are the numbers of physical and logical qubits, respectively. Notably, for certain codes like the notable Calderbank-Shor-Steane codes and QLDPC stabilizer codes, the setting number and sample complexity can be significantly reduced and are even independent of $n$. In addition, by combining the proposed subspace verification and direct fidelity estimation, we construct a protocol to verify the fidelity of general magic logical states with exponentially smaller sample complexity than previous methods. Our finding facilitates efficient and feasible verification of quantum error correction codes and also magical states, advancing the realization in practical quantum platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12551v1-abstract-full').style.display = 'none'; document.getElementById('2410.12551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10208">arXiv:2410.10208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10208">pdf</a>, <a href="https://arxiv.org/format/2410.10208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Floquet Engineering of Anisotropic Transverse Interactions in Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Y">Yongqi Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+W">Wenhui Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Libo Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+Z">Ziyu Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+K">Kai Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+J">Jiawei Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xuandong Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiawei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiajian Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+W">Weijie Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yuanzhen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+Y">Youpeng Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+J">Jingjing Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10208v1-abstract-short" style="display: inline;"> Superconducting transmon qubits have established as a leading candidate for quantum computation, as well as a flexible platform for exploring exotic quantum phases and dynamics. However, physical coupling naturally yields isotropic transverse interactions between qubits, restricting their access to diverse quantum phases that require spatially dependent interactions. Here, we demonstrate the simul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10208v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10208v1-abstract-full" style="display: none;"> Superconducting transmon qubits have established as a leading candidate for quantum computation, as well as a flexible platform for exploring exotic quantum phases and dynamics. However, physical coupling naturally yields isotropic transverse interactions between qubits, restricting their access to diverse quantum phases that require spatially dependent interactions. Here, we demonstrate the simultaneous realization of both pairing (XX-YY) and hopping (XX+YY) interactions between transmon qubits by Floquet engineering. The coherent superposition of these interactions enables independent control over the XX and YY terms, yielding anisotropic transverse interactions. By aligning the transverse interactions along a 1D chain of six qubits, as calibrated via Aharonov-Bohm interference in synthetic space, we synthesize a transverse field Ising chain model and explore its dynamical phase transition under varying external field. The scalable synthesis of anisotropic transverse interactions paves the way for the implementation of more complex physical systems requiring spatially dependent interactions, enriching the toolbox for engineering quantum phases with superconducting qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10208v1-abstract-full').style.display = 'none'; document.getElementById('2410.10208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+14 pages; 4+12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09406">arXiv:2410.09406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09406">pdf</a>, <a href="https://arxiv.org/format/2410.09406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Neural Network for Accelerated Magnetic Resonance Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+S">Shuo Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yihang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Congcong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yanjie Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+H">Hairong Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+D">Dong Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Haifeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09406v1-abstract-short" style="display: inline;"> Magnetic resonance image reconstruction starting from undersampled k-space data requires the recovery of many potential nonlinear features, which is very difficult for algorithms to recover these features. In recent years, the development of quantum computing has discovered that quantum convolution can improve network accuracy, possibly due to potential quantum advantages. This article proposes a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09406v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09406v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09406v1-abstract-full" style="display: none;"> Magnetic resonance image reconstruction starting from undersampled k-space data requires the recovery of many potential nonlinear features, which is very difficult for algorithms to recover these features. In recent years, the development of quantum computing has discovered that quantum convolution can improve network accuracy, possibly due to potential quantum advantages. This article proposes a hybrid neural network containing quantum and classical networks for fast magnetic resonance imaging, and conducts experiments on a quantum computer simulation system. The experimental results indicate that the hybrid network has achieved excellent reconstruction results, and also confirm the feasibility of applying hybrid quantum-classical neural networks into the image reconstruction of rapid magnetic resonance imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09406v1-abstract-full').style.display = 'none'; document.getElementById('2410.09406v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at 2024 IEEE International Conference on Imaging Systems and Techniques (IST 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08546">arXiv:2410.08546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08546">pdf</a>, <a href="https://arxiv.org/format/2410.08546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Reflected multi-entropy and its holographic dual </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+M">Ma-Ke Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+M">Mingyi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08546v1-abstract-short" style="display: inline;"> We introduce a mixed-state generalization of the multi-entropy through the canonical purification, which we called reflected multi-entropy. We propose the holographic dual of this measure. For the tripartite case, a field-theoretical calculation is performed using a six-point function of twist operators at large $c$ limit. At both zero and finite temperature, the field-theoretical results match th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08546v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08546v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08546v1-abstract-full" style="display: none;"> We introduce a mixed-state generalization of the multi-entropy through the canonical purification, which we called reflected multi-entropy. We propose the holographic dual of this measure. For the tripartite case, a field-theoretical calculation is performed using a six-point function of twist operators at large $c$ limit. At both zero and finite temperature, the field-theoretical results match the holographic results exactly, supporting our holographic conjecture of this new measure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08546v1-abstract-full').style.display = 'none'; document.getElementById('2410.08546v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04030">arXiv:2410.04030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04030">pdf</a>, <a href="https://arxiv.org/format/2410.04030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> A comparison on constrain encoding methods for quantum approximate optimization algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yiwen Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiao%2C+Q">Qingyue Jiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+K">Ke Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+S">Shangjie Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04030v1-abstract-short" style="display: inline;"> The Quantum Approximate Optimization Algorithm (QAOA) represents a significant opportunity for practical quantum computing applications, particularly in the era before error correction is fully realized. This algorithm is especially relevant for addressing constraint satisfaction problems (CSPs), which are critical in various fields such as supply chain management, energy distribution, and financi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04030v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04030v1-abstract-full" style="display: none;"> The Quantum Approximate Optimization Algorithm (QAOA) represents a significant opportunity for practical quantum computing applications, particularly in the era before error correction is fully realized. This algorithm is especially relevant for addressing constraint satisfaction problems (CSPs), which are critical in various fields such as supply chain management, energy distribution, and financial modeling. In our study, we conduct a numerical comparison of three different strategies for incorporating linear constraints into QAOA: transforming them into an unconstrained format, introducing penalty dephasing, and utilizing the quantum Zeno effect. We assess the efficiency and effectiveness of these methods using the knapsack problem as a case study. Our findings provide insights into the potential applicability of different encoding methods for various use cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04030v1-abstract-full').style.display = 'none'; document.getElementById('2410.04030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17620">arXiv:2409.17620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17620">pdf</a>, <a href="https://arxiv.org/format/2409.17620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Digital simulation of zero-temperature spontaneous symmetry breaking in a superconducting lattice processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+C">Chang-Kang Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+G">Guixu Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Poulsen%2C+K">Kasper Poulsen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Chilong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+R">Ruiyang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+H">Haolan Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Y">Yuecheng Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zinner%2C+N+T">Nikolaj T. Zinner</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+D">Dian Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Santos%2C+A+C">Alan C. Santos</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17620v1-abstract-short" style="display: inline;"> Quantum simulators are ideal platforms to investigate quantum phenomena that are inaccessible through conventional means, such as the limited resources of classical computers to address large quantum systems or due to constraints imposed by fundamental laws of nature. Here, through a digitized adiabatic evolution, we report an experimental simulation of antiferromagnetic (AFM) and ferromagnetic (F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17620v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17620v1-abstract-full" style="display: none;"> Quantum simulators are ideal platforms to investigate quantum phenomena that are inaccessible through conventional means, such as the limited resources of classical computers to address large quantum systems or due to constraints imposed by fundamental laws of nature. Here, through a digitized adiabatic evolution, we report an experimental simulation of antiferromagnetic (AFM) and ferromagnetic (FM) phase formation induced by spontaneous symmetry breaking (SSB) in a three-generation Cayley tree-like superconducting lattice. We develop a digital quantum annealing algorithm to mimic the system dynamics, and observe the emergence of signatures of SSB-induced phase transition through a connected correlation function. We demonstrate that the signature of phase transition from classical AFM to quantum FM happens in systems undergoing zero-temperature adiabatic evolution with only nearest-neighbor interacting systems, the shortest range of interaction possible. By harnessing properties of the bipartite Renyi entropy as an entanglement witness, we observe the formation of entangled quantum FM and AFM phases. Our results open perspectives for new advances in condensed matter physics and digitized quantum annealing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17620v1-abstract-full').style.display = 'none'; document.getElementById('2409.17620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12614">arXiv:2409.12614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12614">pdf</a>, <a href="https://arxiv.org/format/2409.12614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.160801">10.1103/PhysRevLett.133.160801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental sample-efficient quantum state tomography via parallel measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+C">Chang-Kang Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wei%2C+C">Chao Wei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Chilong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Che%2C+L">Liangyu Che</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+G">Guixu Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+H">Haiyang Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+G">Guantian Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+H">Haolan Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+R">Ruiyang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+D">Dian Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xin%2C+T">Tao Xin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12614v1-abstract-short" style="display: inline;"> Quantum state tomography (QST) via local measurements on reduced density matrices (LQST) is a promising approach but becomes impractical for large systems. To tackle this challenge, we developed an efficient quantum state tomography method inspired by quantum overlapping tomography [Phys. Rev. Lett. 124, 100401(2020)], which utilizes parallel measurements (PQST). In contrast to LQST, PQST signific&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12614v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12614v1-abstract-full" style="display: none;"> Quantum state tomography (QST) via local measurements on reduced density matrices (LQST) is a promising approach but becomes impractical for large systems. To tackle this challenge, we developed an efficient quantum state tomography method inspired by quantum overlapping tomography [Phys. Rev. Lett. 124, 100401(2020)], which utilizes parallel measurements (PQST). In contrast to LQST, PQST significantly reduces the number of measurements and offers more robustness against shot noise. Experimentally, we demonstrate the feasibility of PQST in a tree-like superconducting qubit chip by designing high-efficiency circuits, preparing W states, ground states of Hamiltonians and random states, and then reconstructing these density matrices using full quantum state tomography (FQST), LQST, and PQST. Our results show that PQST reduces measurement cost, achieving fidelities of 98.68\% and 95.07\% after measuring 75 and 99 observables for 6-qubit and 9-qubit W states, respectively. Furthermore, the reconstruction of the largest density matrix of the 12-qubit W state is achieved with the similarity of 89.23\% after just measuring $243$ parallel observables, while $3^{12}=531441$ complete observables are needed for FQST. Consequently, PQST will be a useful tool for future tasks such as the reconstruction, characterization, benchmarking, and properties learning of states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12614v1-abstract-full').style.display = 'none'; document.getElementById('2409.12614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in PRL(2024)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 160801 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07281">arXiv:2409.07281</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07281">pdf</a>, <a href="https://arxiv.org/format/2409.07281">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Variational LOCC-assisted quantum circuits for long-range entangled states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Y">Yuxuan Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+M">Muzhou Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+X">Xiongfeng Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07281v1-abstract-short" style="display: inline;"> Long-range entanglement is an important quantum resource, especially for topological orders and quantum error correction. In reality, preparing long-range entangled states requires a deep unitary circuit, which poses significant experimental challenges. A promising avenue is offered by replacing some quantum resources with local operations and classical communication (LOCC). With these classical c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07281v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07281v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07281v1-abstract-full" style="display: none;"> Long-range entanglement is an important quantum resource, especially for topological orders and quantum error correction. In reality, preparing long-range entangled states requires a deep unitary circuit, which poses significant experimental challenges. A promising avenue is offered by replacing some quantum resources with local operations and classical communication (LOCC). With these classical components, one can communicate information from mid-circuit measurements in distant parts of the system, which results in a substantial reduction of circuit depth in many important cases. However, to prepare general long-range entangled states, finding LOCC-assisted circuits of a short depth remains an open question. Here, we address such a challenge by proposing a quantum-classical hybrid algorithm to find ground states of given Hamiltonians based on parameterized LOCC protocols. We introduce an efficient protocol for estimating parameter gradients and use such gradients for variational optimization. Theoretically, we establish the conditions for the absence of barren plateaus, ensuring trainability at a large system size. Numerically, the algorithm accurately solves the ground state of long-range entangled models, such as the perturbed GHZ state and surface code. Our results clearly demonstrate the practical advantage of our algorithm in the accuracy of estimated ground state energy over conventional unitary variational circuits, as well as the theoretical advantage in creating long-range entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07281v1-abstract-full').style.display = 'none'; document.getElementById('2409.07281v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05676">arXiv:2409.05676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05676">pdf</a>, <a href="https://arxiv.org/format/2409.05676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Circuit optimization of qubit IC-POVMs for shadow estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+Z">Zhou You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Q">Qing Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05676v1-abstract-short" style="display: inline;"> Extracting information from quantum systems is crucial in quantum physics and information processing. Methods based on randomized measurements, like shadow estimation, show advantages in effectively achieving such tasks. However, randomized measurements require the application of random unitary evolution, which unavoidably necessitates frequent adjustments to the experimental setup or circuit para&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05676v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05676v1-abstract-full" style="display: none;"> Extracting information from quantum systems is crucial in quantum physics and information processing. Methods based on randomized measurements, like shadow estimation, show advantages in effectively achieving such tasks. However, randomized measurements require the application of random unitary evolution, which unavoidably necessitates frequent adjustments to the experimental setup or circuit parameters, posing challenges for practical implementations. To address these limitations, positive operator-valued measurements (POVMs) have been integrated to realize real-time single-setting shadow estimation. In this work, we advance the POVM-based shadow estimation by reducing the CNOT gate count for the implementation circuits of informationally complete POVMs (IC-POVMs), in particular, the symmetric IC-POVMs (SIC-POVMs), through the dimension dilation framework. We show that any single-qubit minimal IC-POVM can be implemented using at most 2 CNOT gates, while an SIC-POVM can be implemented with only 1 CNOT gate. In particular, we provide a concise form of the compilation circuit of any SIC-POVM along with an efficient algorithm for the determination of gate parameters. Moreover, we apply the optimized circuit compilation to shadow estimation, showcasing its noise-resilient performance and highlighting the flexibility in compiling various SIC-POVMs. Our work paves the way for the practical applications of qubit IC-POVMs on quantum platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05676v1-abstract-full').style.display = 'none'; document.getElementById('2409.05676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12+9 pages, 7+3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15287">arXiv:2408.15287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15287">pdf</a>, <a href="https://arxiv.org/format/2408.15287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum-Powered Personalized Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yifan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+C+C">Chong Cheng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+M">Mingi Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wong%2C+Y+K">Yew Kee Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15287v1-abstract-short" style="display: inline;"> This paper explores the transformative potential of quantum computing in the realm of personalized learning. Traditional machine learning models and GPU-based approaches have long been utilized to tailor educational experiences to individual student needs. However, these methods face significant challenges in terms of scalability, computational efficiency, and real-time adaptation to the dynamic n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15287v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15287v1-abstract-full" style="display: none;"> This paper explores the transformative potential of quantum computing in the realm of personalized learning. Traditional machine learning models and GPU-based approaches have long been utilized to tailor educational experiences to individual student needs. However, these methods face significant challenges in terms of scalability, computational efficiency, and real-time adaptation to the dynamic nature of educational data. This study proposes leveraging quantum computing to address these limitations. We review existing personalized learning systems, classical machine learning methods, and emerging quantum computing applications in education. We then outline a protocol for data collection, privacy preservation using quantum techniques, and preprocessing, followed by the development and implementation of quantum algorithms specifically designed for personalized learning. Our findings indicate that quantum algorithms offer substantial improvements in efficiency, scalability, and personalization quality compared to classical methods. This paper discusses the implications of integrating quantum computing into educational systems, highlighting the potential for enhanced teaching methodologies, curriculum design, and overall student experiences. We conclude by summarizing the advantages of quantum computing in education and suggesting future research directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15287v1-abstract-full').style.display = 'none'; document.getElementById('2408.15287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13479">arXiv:2408.13479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13479">pdf</a>, <a href="https://arxiv.org/format/2408.13479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Quantum-machine-assisted Drug Discovery: Survey and Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jintai Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Karemore%2C+G">Gopal Karemore</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zitnik%2C+M">Marinka Zitnik</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Junyu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+T">Tianfan Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13479v3-abstract-short" style="display: inline;"> Drug discovery and development is a highly complex and costly endeavor, typically requiring over a decade and substantial financial investment to bring a new drug to market. Traditional computer-aided drug design (CADD) has made significant progress in accelerating this process, but the development of quantum computing offers potential due to its unique capabilities. This paper discusses the integ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13479v3-abstract-full').style.display = 'inline'; document.getElementById('2408.13479v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13479v3-abstract-full" style="display: none;"> Drug discovery and development is a highly complex and costly endeavor, typically requiring over a decade and substantial financial investment to bring a new drug to market. Traditional computer-aided drug design (CADD) has made significant progress in accelerating this process, but the development of quantum computing offers potential due to its unique capabilities. This paper discusses the integration of quantum computing into drug discovery and development, focusing on how quantum technologies might accelerate and enhance various stages of the drug development cycle. Specifically, we explore the application of quantum computing in addressing challenges related to drug discovery, such as molecular simulation and the prediction of drug-target interactions, as well as the optimization of clinical trial outcomes. By leveraging the inherent capabilities of quantum computing, we might be able to reduce the time and cost associated with bringing new drugs to market, ultimately benefiting public health. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13479v3-abstract-full').style.display = 'none'; document.getElementById('2408.13479v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13015">arXiv:2408.13015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13015">pdf</a>, <a href="https://arxiv.org/format/2408.13015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-dimentional Multipartite Entanglement Structure Detection with Low Cost </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Rui Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shikun Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+Z">Zheng Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+C">Chunxiao Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Z">Zhisong Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13015v1-abstract-short" style="display: inline;"> Quantum entanglement detection and characterization are crucial for various quantum information processes. Most existing methods for entanglement detection rely heavily on a complete description of the quantum state, which requires numerous measurements and complex setups. This makes these theoretically sound approaches costly and impractical, as the system size increases. In this work, we propose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13015v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13015v1-abstract-full" style="display: none;"> Quantum entanglement detection and characterization are crucial for various quantum information processes. Most existing methods for entanglement detection rely heavily on a complete description of the quantum state, which requires numerous measurements and complex setups. This makes these theoretically sound approaches costly and impractical, as the system size increases. In this work, we propose a multi-view neural network model to generate representations suitable for entanglement structure detection. The number of required quantum measurements is polynomial rather than exponential increase with the qubit number. This remarkable reduction in resource costs makes it possible to detect specific entanglement structures in large-scale systems. Numerical simulations show that our method achieves over 95% detection accuracy for up to 19 qubits systems. By enabling a universal, flexible and resource-efficient analysis of entanglement structures, our approach enhances the capability of utilizing quantum states across a wide range of applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13015v1-abstract-full').style.display = 'none'; document.getElementById('2408.13015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11671">arXiv:2408.11671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11671">pdf</a>, <a href="https://arxiv.org/format/2408.11671">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> In situ mixer calibration for superconducting quantum circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+N">Nan Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+J">Jing Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+C">Changrong Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Z">Zechen Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+W">Wenhui Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Libo Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xuandong Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiawei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+W">Weijie Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Linpeng%2C+X">Xiayu Linpeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+Z">Ziyu Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Ji Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+J">Jingjing Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+Y">Youpeng Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11671v1-abstract-short" style="display: inline;"> Mixers play a crucial role in superconducting quantum computing, primarily by facilitating frequency conversion of signals to enable precise control and readout of quantum states. However, imperfections, particularly carrier leakage and unwanted sideband signal, can significantly compromise control fidelity. To mitigate these defects, regular and precise mixer calibrations are indispensable, yet t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11671v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11671v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11671v1-abstract-full" style="display: none;"> Mixers play a crucial role in superconducting quantum computing, primarily by facilitating frequency conversion of signals to enable precise control and readout of quantum states. However, imperfections, particularly carrier leakage and unwanted sideband signal, can significantly compromise control fidelity. To mitigate these defects, regular and precise mixer calibrations are indispensable, yet they pose a formidable challenge in large-scale quantum control. Here, we introduce an in situ calibration technique and outcome-focused mixer calibration scheme using superconducting qubits. Our method leverages the qubit&#39;s response to imperfect signals, allowing for calibration without modifying the wiring configuration. We experimentally validate the efficacy of this technique by benchmarking single-qubit gate fidelity and qubit coherence time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11671v1-abstract-full').style.display = 'none'; document.getElementById('2408.11671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11652">arXiv:2408.11652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11652">pdf</a>, <a href="https://arxiv.org/format/2408.11652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/12/127302">10.1088/0256-307X/41/12/127302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum entanglement and non-Hermiticity in free-fermion systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Li-Mei Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+S+A">Shuai A. Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+P">Peng Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11652v3-abstract-short" style="display: inline;"> This topical review article reports rapid progress on the generalization and application of entanglement in non-Hermitian free-fermion quantum systems. We begin by examining the realization of non-Hermitian quantum systems through the Lindblad master equation, alongside a review of typical non-Hermitian free-fermion systems that exhibit unique features. A pedagogical discussion is provided on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11652v3-abstract-full').style.display = 'inline'; document.getElementById('2408.11652v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11652v3-abstract-full" style="display: none;"> This topical review article reports rapid progress on the generalization and application of entanglement in non-Hermitian free-fermion quantum systems. We begin by examining the realization of non-Hermitian quantum systems through the Lindblad master equation, alongside a review of typical non-Hermitian free-fermion systems that exhibit unique features. A pedagogical discussion is provided on the relationship between entanglement quantities and the correlation matrix in Hermitian systems. Building on this foundation, we focus on how entanglement concepts are extended to non-Hermitian systems from their Hermitian free-fermion counterparts, with a review of the general properties that emerge. Finally, we highlight various concrete studies, demonstrating that entanglement entropy remains a powerful diagnostic tool for characterizing non-Hermitian physics. The entanglement spectrum also reflects the topological characteristics of non-Hermitian topological systems, while unique non-Hermitian entanglement behaviors are also discussed. The review is concluded with several future directions. Through this review, we hope to provide a useful guide for researchers who are interested in entanglement in non-Hermitian quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11652v3-abstract-full').style.display = 'none'; document.getElementById('2408.11652v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A Topical Review of the Interplay of Entanglement and Non-Hermitian Physics (to appear in the Special Issue of Non-Hermitian Physics in Chin. Phys. Lett.). version 3; ~15p, 1figure, texts and refs. updated, approximate to final version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters (2024 online) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08452">arXiv:2408.08452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08452">pdf</a>, <a href="https://arxiv.org/format/2408.08452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrated photonic Galton board and its application for photon counting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+H">Hezheng Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+R">Risheng Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yiyu Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+H+X">Hong X. Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08452v1-abstract-short" style="display: inline;"> The Galton board is a desktop probability machine traditionally used to visualize the principles of statistical physics with classical particles. Here, we demonstrate a photonic Galton board that enables on-chip observation of single-photon interference. The photonic Galton board, which can be considered as a simplified Boson sampler, consists of a directional coupler matrix terminated by an array&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08452v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08452v1-abstract-full" style="display: none;"> The Galton board is a desktop probability machine traditionally used to visualize the principles of statistical physics with classical particles. Here, we demonstrate a photonic Galton board that enables on-chip observation of single-photon interference. The photonic Galton board, which can be considered as a simplified Boson sampler, consists of a directional coupler matrix terminated by an array of superconducting nanowire detectors to provide spatiotemporal resolution. This design also allows for photon-number-resolving capability, making it suitable for high-speed photon counting. Our results demonstrate the compatibility between single-photon detector array and photonic integrated circuits, paving the way for implementing on-chip large-scale quantum optics experiments and photonic quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08452v1-abstract-full').style.display = 'none'; document.getElementById('2408.08452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08365">arXiv:2408.08365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08365">pdf</a>, <a href="https://arxiv.org/format/2408.08365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Coqa: Blazing Fast Compiler Optimizations for QAOA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Y">Yuwei Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Boxi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+S">Siyuan Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08365v1-abstract-short" style="display: inline;"> The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage over classical computers. However, existing compilers lack specialized methods for optimizing QAOA circuits. There are circuit patterns inside the QAOA circuits, and current quantum hardware has specific qubit connectivity topologies. Therefore, we propose Coqa to optimize&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08365v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08365v1-abstract-full" style="display: none;"> The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage over classical computers. However, existing compilers lack specialized methods for optimizing QAOA circuits. There are circuit patterns inside the QAOA circuits, and current quantum hardware has specific qubit connectivity topologies. Therefore, we propose Coqa to optimize QAOA circuit compilation tailored to different types of quantum hardware. Our method integrates a linear nearest-neighbor (LNN) topology and efficiently map the patterns of QAOA circuits to the LNN topology by heuristically checking the interaction based on the weight of problem Hamiltonian. This approach allows us to reduce the number of SWAP gates during compilation, which directly impacts the circuit depth and overall fidelity of the quantum computation. By leveraging the inherent patterns in QAOA circuits, our approach achieves more efficient compilation compared to general-purpose compilers. With our proposed method, we are able to achieve an average of 30% reduction in gate count and a 39x acceleration in compilation time across our benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08365v1-abstract-full').style.display = 'none'; document.getElementById('2408.08365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01980">arXiv:2408.01980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01980">pdf</a>, <a href="https://arxiv.org/format/2408.01980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement Induced Magic Resources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Gongchu Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Si-Qi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hong%2C+X">Xu-Song Hong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Huaqing Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yuancheng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+G">Geng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hamma%2C+A">Alioscia Hamma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01980v3-abstract-short" style="display: inline;"> Magic states and magic gates are crucial for achieving universal computation, but some important questions about how magic resources should be implemented to attain quantum advantage have remained unexplored, for instance, in the context of Measurement-based Quantum Computation (MQC) with only single-qubit measurements. This work bridges the gap between MQC and the resource theory of magic by intr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01980v3-abstract-full').style.display = 'inline'; document.getElementById('2408.01980v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01980v3-abstract-full" style="display: none;"> Magic states and magic gates are crucial for achieving universal computation, but some important questions about how magic resources should be implemented to attain quantum advantage have remained unexplored, for instance, in the context of Measurement-based Quantum Computation (MQC) with only single-qubit measurements. This work bridges the gap between MQC and the resource theory of magic by introducing the concept of ``invested&#39;&#39; and ``potential&#34; magic resources. The former quantifies the magic cost associated with the MQC framework, serving both as a witness of magic resources and an upper bound for the realization of a desired unitary transformation. Potential magic resources represent the maximum achievable magic resource in a given graph structure defining the MQC. We utilize these concepts to analyze the magic resource requirements of the Quantum Fourier Transform (QFT) and provide a fresh perspective on the universality of MQC of different resource states, highlighting the crucial role of non-Pauli measurements for injecting magic. We demonstrate experimentally our theoretical predictions in a high-fidelity four-photon setup and demonstrate the efficiency of MQC in generating magic states, surpassing the limitations of conventional magic state injection methods. Our findings pave the way for future research exploring magic resource optimization and novel distillation schemes within the MQC framework, contributing to the advancement of fault-tolerant universal quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01980v3-abstract-full').style.display = 'none'; document.getElementById('2408.01980v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01706">arXiv:2408.01706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01706">pdf</a>, <a href="https://arxiv.org/format/2408.01706">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement scaling behaviors of free fermions on hyperbolic lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+X">Xiang-You Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+P">Peng Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01706v1-abstract-short" style="display: inline;"> Recently, tight-binding models on hyperbolic lattices (discretized AdS space), have gained significant attention, leading to hyperbolic band theory and non-Abelian Bloch states. In this paper, we investigate these quantum systems from the perspective of quantum information, focusing particularly on the scaling of entanglement entropy (EE) that has been regarded as a powerful quantum-information pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01706v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01706v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01706v1-abstract-full" style="display: none;"> Recently, tight-binding models on hyperbolic lattices (discretized AdS space), have gained significant attention, leading to hyperbolic band theory and non-Abelian Bloch states. In this paper, we investigate these quantum systems from the perspective of quantum information, focusing particularly on the scaling of entanglement entropy (EE) that has been regarded as a powerful quantum-information probe into exotic phases of matter. It is known that on $d$-dimensional translation-invariant Euclidean lattice, the EE of band insulators scales as an area law ($\sim L^{d-1}$; $L$ is the linear size of the boundary between two subsystems). Meanwhile, the EE of metals (with finite Density-of-State, i.e., DOS) scales as the renowned Gioev-Klich-Widom scaling law ($\sim L^{d-1}\log L$). The appearance of logarithmic divergence, as well as the analytic form of the coefficient $c$ is mathematically controlled by the Widom conjecture of asymptotic behavior of Toeplitz matrices and can be physically understood via the Swingle&#39;s argument. However, the hyperbolic lattice, which generalizes translational symmetry, results in inapplicability of the Widom conjecture and thus presents significant analytic difficulties. Here we make an initial attempt through numerical simulation. Remarkably, we find that both cases adhere to the area law, indicating that the logarithmic divergence arising from finite DOS is suppressed by the background hyperbolic geometry. To achieve the results, we first apply the vertex inflation method to generate hyperbolic lattice on the Poincar茅 disk, and then apply the Haydock recursion method to compute DOS. Finally, we study the scaling of EE for different bipartitions via exact diagonalization and perform finite-size scaling. We also investigate how the coefficient of the area law is correlated to bulk gap and DOS. Future directions are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01706v1-abstract-full').style.display = 'none'; document.getElementById('2408.01706v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20865">arXiv:2407.20865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20865">pdf</a>, <a href="https://arxiv.org/format/2407.20865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Auxiliary-free replica shadow estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Q">Qing Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zihao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+X">Xiao Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+H">Huangjun Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20865v1-abstract-short" style="display: inline;"> Efficiently measuring nonlinear properties, like the entanglement spectrum, is a significant yet challenging task from quantum information processing to many-body physics. Current methodologies often suffer from an exponential scaling of the sampling cost or require auxiliary qubits and deep quantum circuits. To address these limitations, we propose an efficient auxiliary-free replica shadow (AFRS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20865v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20865v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20865v1-abstract-full" style="display: none;"> Efficiently measuring nonlinear properties, like the entanglement spectrum, is a significant yet challenging task from quantum information processing to many-body physics. Current methodologies often suffer from an exponential scaling of the sampling cost or require auxiliary qubits and deep quantum circuits. To address these limitations, we propose an efficient auxiliary-free replica shadow (AFRS) framework, which leverages the power of the joint entangling operation on a few input replicas while integrating the mindset of shadow estimation. We rigorously prove that AFRS can offer exponential improvements in estimation accuracy compared with the conventional shadow method, and facilitate the simultaneous estimation of various nonlinear properties, unlike the destructive swap test. Additionally, we introduce an advanced local-AFRS variant tailored to estimating local observables with even constant-depth local quantum circuits, which significantly simplifies the experimental realization compared with the general swap test. Our work paves the way for the application of AFRS on near-term quantum hardware, opening new avenues for efficient and practical quantum measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20865v1-abstract-full').style.display = 'none'; document.getElementById('2407.20865v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main(10 pages, 5 figures), appendix(16 pages, 6 figures), and comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18478">arXiv:2407.18478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18478">pdf</a>, <a href="https://arxiv.org/format/2407.18478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum optical coherence theory based on Feynman&#39;s path integral </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Jianbin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yu Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+H">Huaibin Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Y">Yuchen He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+F">Fuli Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Z">Zhuo Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18478v3-abstract-short" style="display: inline;"> Compared to classical optical coherence theory based on Maxwell&#39;s electromagnetic theory and Glauber&#39;s quantum optical coherence theory based on matrix mechanics formulation of quantum mechanics, quantum optical coherence theory based on Feynman&#39;s path integral formulation of quantum mechanics provides a novel tool to study optical coherence. It has the advantage of understanding the connection be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18478v3-abstract-full').style.display = 'inline'; document.getElementById('2407.18478v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18478v3-abstract-full" style="display: none;"> Compared to classical optical coherence theory based on Maxwell&#39;s electromagnetic theory and Glauber&#39;s quantum optical coherence theory based on matrix mechanics formulation of quantum mechanics, quantum optical coherence theory based on Feynman&#39;s path integral formulation of quantum mechanics provides a novel tool to study optical coherence. It has the advantage of understanding the connection between mathematical calculations and physical interpretations better. Quantum optical coherence theory based on Feynman&#39;s path integral is introduced and reviewed in this paper. Based on the results of transient first-order interference of two independent light beams, it is predicted that the classical model for electric field of thermal light introduced by classical optical textbooks may not be accurate. The physics of two-photon bunching of thermal light and Hong-Ou-Mandel dip of entangled photon pairs is the same, which can be interpreted by constructive and destructive two-photon interference, respectively. Quantum optical coherence theory based on Feynman&#39;s path integral is helpful to understand the coherence properties of light, which may eventually lead us to the answer of the question: what is a photon? <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18478v3-abstract-full').style.display = 'none'; document.getElementById('2407.18478v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 35 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17049">arXiv:2407.17049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17049">pdf</a>, <a href="https://arxiv.org/format/2407.17049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Feedback Intensity Equalization Algorithm for Multi-Spots Holographic Tweezer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shaoxiong Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+Y">Yifei Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yaoting Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lan%2C+P">Peng Lan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+H">Heng Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Z">Zhongxiao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17049v2-abstract-short" style="display: inline;"> Thanks to the high degree of adjustability, holographic tweezer array has been proved to be the best choice to create arbitrary geometries atomic array. In holographic tweezer array experiment, optical tweezer generated by spatial light modulator (SLM) usually is used as static tweezer array. Due to the alternating current(AC) stark shifts effect, intensity difference of traps will cause different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17049v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17049v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17049v2-abstract-full" style="display: none;"> Thanks to the high degree of adjustability, holographic tweezer array has been proved to be the best choice to create arbitrary geometries atomic array. In holographic tweezer array experiment, optical tweezer generated by spatial light modulator (SLM) usually is used as static tweezer array. Due to the alternating current(AC) stark shifts effect, intensity difference of traps will cause different light shift. So, the optimization of intensity equalization is very important in many-body system consist of single atoms. Here we report a work on studying of intensity equalization algorithm. Through this algorithm, the uniformity of tweezer can exceed 96% when the number of tweezer size is bigger than 1000. Our analysis shows that further uniformity requires further optimization of optical system. The realization of the intensity equalization algorithm is of great significance to the many-body experiments based on single atom array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17049v2-abstract-full').style.display = 'none'; document.getElementById('2407.17049v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13321">arXiv:2407.13321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13321">pdf</a>, <a href="https://arxiv.org/format/2407.13321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Hardware-Efficient Stabilization of Entanglement via Engineered Dissipation in Superconducting Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Changling Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+K">Kai Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+K">KangYuan Yi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xuan Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+H">Haosheng Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yuanzhen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+T">Tongxing Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13321v1-abstract-short" style="display: inline;"> Generation and preservation of quantum entanglement are among the primary tasks in quantum information processing. State stabilization via quantum bath engineering offers a resource-efficient approach to achieve this objective. However, current methods for engineering dissipative channels to stabilize target entangled states often require specialized hardware designs, complicating experimental rea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13321v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13321v1-abstract-full" style="display: none;"> Generation and preservation of quantum entanglement are among the primary tasks in quantum information processing. State stabilization via quantum bath engineering offers a resource-efficient approach to achieve this objective. However, current methods for engineering dissipative channels to stabilize target entangled states often require specialized hardware designs, complicating experimental realization and hindering their compatibility with scalable quantum computation architectures. In this work, we propose and experimentally demonstrate a stabilization protocol readily implementable in the mainstream integrated superconducting quantum circuits. The approach utilizes a Raman process involving a resonant (or nearly resonant) superconducting qubit array and their dedicated readout resonators to effectively emerge nonlocal dissipative channels. Leveraging individual controllability of the qubits and resonators, the protocol stabilizes two-qubit Bell states with a fidelity of $90.7\%$, marking the highest reported value in solid-state platforms to date. Furthermore, by extending this strategy to include three qubits, an entangled $W$ state is achieved with a fidelity of $86.2\%$, which has not been experimentally investigated before. Notably, the protocol is of practical interest since it only utilizes existing hardware common to standard operations in the underlying superconducting circuits, thereby facilitating the exploration of many-body quantum entanglement with dissipative resources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13321v1-abstract-full').style.display = 'none'; document.getElementById('2407.13321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10675">arXiv:2407.10675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10675">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Imaging Coulomb interactions and migrating Dirac cones in twisted graphene by local quantum oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bocarsly%2C+M">Matan Bocarsly</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Roy%2C+I">Indranil Roy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bhardwaj%2C+V">Vishal Bhardwaj</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Uzan%2C+M">Matan Uzan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ledwith%2C+P">Patrick Ledwith</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shavit%2C+G">Gal Shavit</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Banu%2C+N">Nasrin Banu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yaozhang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Myasoedov%2C+Y">Yuri Myasoedov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Oreg%2C+Y">Yuval Oreg</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Parker%2C+D">Dan Parker</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ronen%2C+Y">Yuval Ronen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeldov%2C+E">Eli Zeldov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10675v1-abstract-short" style="display: inline;"> Flat band moir茅 graphene systems have emerged as a quintessential platform to investigate correlated phases of matter. A plethora of interaction-driven ground states have been proposed, and yet despite extensive experimental effort, there has been little direct evidence that distinguishes between the various phases, in particular near charge neutrality point. Here, we use a nanoscale scanning supe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10675v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10675v1-abstract-full" style="display: none;"> Flat band moir茅 graphene systems have emerged as a quintessential platform to investigate correlated phases of matter. A plethora of interaction-driven ground states have been proposed, and yet despite extensive experimental effort, there has been little direct evidence that distinguishes between the various phases, in particular near charge neutrality point. Here, we use a nanoscale scanning superconducting quantum interference device to image the local thermodynamic quantum oscillations in alternating-twist trilayer graphene at magnetic fields as low as 56 mT, which reveal ultrafine details of the density of states and of the renormalization of the single-particle band structure by Coulomb interactions. We find that the charging self-energy due to occupied electronic states, is critical in explaining the high carrier density physics. At half-filling of the conduction flat band, we observe a Stoner-like symmetry breaking, suggesting that it is the most robust mechanism in the hierarchy of phase transitions. On approaching charge neutrality, where the charging energy is negligible and exchange energy is dominant, we find the ground state to be a nematic semimetal which is favored over gapped states in the presence of heterostrain. In the revealed semimetallic phase, the flat-band Dirac cones migrate towards the mini-Brillouin zone center, spontaneously breaking the C_3 rotational symmetry. Our low-field local quantum oscillations technique presents an alluring avenue to explore the ground states of diverse strongly interacting van der Waals systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10675v1-abstract-full').style.display = 'none'; document.getElementById('2407.10675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 4 main text figures, 6 Extended Data figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10457">arXiv:2406.10457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10457">pdf</a>, <a href="https://arxiv.org/format/2406.10457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Noise-induced quantum synchronization and maximally entangled mixed states in superconducting circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+Z">Ziyu Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Schmolke%2C+F">Finn Schmolke</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+C">Chang-Kang Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+W">Wenhui Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiawei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Libo Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xuandong Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Z">Zecheng Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+J">Jingjing Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Weng%2C+W">Wenle Weng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+Y">Youpeng Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+D">Dian Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lutz%2C+E">Eric Lutz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10457v1-abstract-short" style="display: inline;"> Random fluctuations can lead to cooperative effects in complex systems. We here report the experimental observation of noise-induced quantum synchronization in a chain of superconducting transmon qubits with nearest-neighbor interactions. The application of Gaussian white noise to a single site leads to synchronous oscillations in the entire chain. We show that the two synchronized end qubits are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10457v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10457v1-abstract-full" style="display: none;"> Random fluctuations can lead to cooperative effects in complex systems. We here report the experimental observation of noise-induced quantum synchronization in a chain of superconducting transmon qubits with nearest-neighbor interactions. The application of Gaussian white noise to a single site leads to synchronous oscillations in the entire chain. We show that the two synchronized end qubits are entangled, with nonzero concurrence, and that they belong to a class of generalized Bell states known as maximally entangled mixed states, whose entanglement cannot be increased by any global unitary. We further demonstrate the stability against frequency detuning of both synchronization and entanglement by determining the corresponding generalized Arnold tongue diagrams. Our results highlight the constructive influence of noise in a quantum many-body system and uncover the potential role of synchronization for mixed-state quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10457v1-abstract-full').style.display = 'none'; document.getElementById('2406.10457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08982">arXiv:2406.08982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08982">pdf</a>, <a href="https://arxiv.org/format/2406.08982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Implementation Guidelines and Innovations in Quantum LSTM Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yifan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+C+C">Chong Cheng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+M">Mingi Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wong%2C+Y+K">Yew Kee Wong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+K">Kangsong Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08982v2-abstract-short" style="display: inline;"> The rapid evolution of artificial intelligence has driven interest in Long Short-Term Memory (LSTM) networks for their effectiveness in processing sequential data. However, traditional LSTMs are limited by issues such as the vanishing gradient problem and high computational demands. Quantum computing offers a potential solution to these challenges, promising advancements in computational efficienc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08982v2-abstract-full').style.display = 'inline'; document.getElementById('2406.08982v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08982v2-abstract-full" style="display: none;"> The rapid evolution of artificial intelligence has driven interest in Long Short-Term Memory (LSTM) networks for their effectiveness in processing sequential data. However, traditional LSTMs are limited by issues such as the vanishing gradient problem and high computational demands. Quantum computing offers a potential solution to these challenges, promising advancements in computational efficiency through the unique properties of qubits, such as superposition and entanglement. This paper presents a theoretical analysis and an implementation plan for a Quantum LSTM (qLSTM) model, which seeks to integrate quantum computing principles with traditional LSTM networks. While the proposed model aims to address the limitations of classical LSTMs, this study focuses primarily on the theoretical aspects and the implementation framework. The actual architecture and its practical effectiveness in enhancing sequential data processing remain to be developed and demonstrated in future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08982v2-abstract-full').style.display = 'none'; document.getElementById('2406.08982v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08948">arXiv:2406.08948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08948">pdf</a>, <a href="https://arxiv.org/format/2406.08948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Validity of the Lieb-Schultz-Mattis Theorem in Long-Range Interacting Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yi-Neng Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xingyu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08948v2-abstract-short" style="display: inline;"> The Lieb-Schultz-Mattis (LSM) theorem asserts that microscopic details of the system can impose non-trivial constraints on the system&#39;s low-energy properties. While traditionally applied to short-range interaction systems, where locality ensures a vanishing spectral gap in large system size limit, the impact of long-range interactions on the LSM theorem remains an open question. Long-range interac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08948v2-abstract-full').style.display = 'inline'; document.getElementById('2406.08948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08948v2-abstract-full" style="display: none;"> The Lieb-Schultz-Mattis (LSM) theorem asserts that microscopic details of the system can impose non-trivial constraints on the system&#39;s low-energy properties. While traditionally applied to short-range interaction systems, where locality ensures a vanishing spectral gap in large system size limit, the impact of long-range interactions on the LSM theorem remains an open question. Long-range interactions are prevalent in experimental platforms such as Rydberg atoms, dipolar quantum gases, polar molecules, optical cavities, and trapped ions, where the interaction decay exponent can be experimentally tuned. We extend the LSM theorem in one dimension to long-range interacting systems and find that the LSM theorem holds for exponentially or power-law two-body interactions with a decay exponent $伪&gt; 2$. However, for power-law interactions with $伪&lt; 2$, the constraints of the LSM theorem on the ground state do not apply. Numerical simulations of long-range versions of the Heisenberg and Majumdar-Ghosh models, both satisfying the LSM symmetry requirements, are also provided. Our results suggest promising directions for experimental validation of the LSM theorem in systems with tunable long-range interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08948v2-abstract-full').style.display = 'none'; document.getElementById('2406.08948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06335">arXiv:2406.06335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.06335">pdf</a>, <a href="https://arxiv.org/format/2406.06335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Feasibility of accelerating homogeneous catalyst discovery with fault-tolerant quantum computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bellonzi%2C+N">Nicole Bellonzi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kunitsa%2C+A">Alexander Kunitsa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cantin%2C+J+T">Joshua T. Cantin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Campos-Gonzalez-Angulo%2C+J+A">Jorge A. Campos-Gonzalez-Angulo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Radin%2C+M+D">Maxwell D. Radin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yanbing Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Johnson%2C+P+D">Peter D. Johnson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mart%C3%ADnez-Mart%C3%ADnez%2C+L+A">Luis A. Mart铆nez-Mart铆nez</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jangrouei%2C+M+R">Mohammad Reza Jangrouei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brahmachari%2C+A+S">Aritra Sankar Brahmachari</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+L">Linjun Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Patel%2C+S">Smik Patel</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kodrycka%2C+M">Monika Kodrycka</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Loaiza%2C+I">Ignacio Loaiza</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lang%2C+R+A">Robert A. Lang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aspuru-Guzik%2C+A">Al谩n Aspuru-Guzik</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Izmaylov%2C+A+F">Artur F. Izmaylov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fontalvo%2C+J+R">Jhonathan Romero Fontalvo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Y">Yudong Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06335v1-abstract-short" style="display: inline;"> The industrial manufacturing of chemicals consumes a significant amount of energy and raw materials. In principle, the development of new catalysts could greatly improve the efficiency of chemical production. However, the discovery of viable catalysts can be exceedingly challenging because it is difficult to know the efficacy of a candidate without experimentally synthesizing and characterizing it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06335v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06335v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06335v1-abstract-full" style="display: none;"> The industrial manufacturing of chemicals consumes a significant amount of energy and raw materials. In principle, the development of new catalysts could greatly improve the efficiency of chemical production. However, the discovery of viable catalysts can be exceedingly challenging because it is difficult to know the efficacy of a candidate without experimentally synthesizing and characterizing it. This study explores the feasibility of using fault-tolerant quantum computers to accelerate the discovery of homogeneous catalysts for nitrogen fixation, an industrially important chemical process. It introduces a set of ground-state energy estimation problems representative of calculations needed for the discovery of homogeneous catalysts and analyzes them on three dimensions: economic utility, classical hardness, and quantum resource requirements. For the highest utility problem considered, two steps of a catalytic cycle for the generation of cyanate anion from dinitrogen, the economic utility of running these computations is estimated to be $200,000, and the required runtime for double-factorized phase estimation on a fault-tolerant superconducting device is estimated under conservative assumptions to be 139,000 QPU-hours. The computational cost of an equivalent DMRG calculation is estimated to be about 400,000 CPU-hours. These results suggest that, with continued development, it will be feasible for fault-tolerant quantum computers to accelerate the discovery of homogeneous catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06335v1-abstract-full').style.display = 'none'; document.getElementById('2406.06335v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 11 tables, 8 figures plus appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02482">arXiv:2406.02482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02482">pdf</a>, <a href="https://arxiv.org/format/2406.02482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.205108">10.1103/PhysRevB.110.205108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional fracton topological orders with boundary Toeplitz braiding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo-Xi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+P">Peng Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02482v4-abstract-short" style="display: inline;"> In this paper, we theoretically study a class of 3D non-liquid states that show exotic boundary phenomena in the thermodynamical limit. More concretely, we focus on a class of 3D fracton topological orders formed via stacking 2D twisted \(\mathbb{Z}_N\) topologically ordered layers along \(z\)-direction. Nearby layers are coupled while maintaining translation symmetry along \(z\) direction. The ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02482v4-abstract-full').style.display = 'inline'; document.getElementById('2406.02482v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02482v4-abstract-full" style="display: none;"> In this paper, we theoretically study a class of 3D non-liquid states that show exotic boundary phenomena in the thermodynamical limit. More concretely, we focus on a class of 3D fracton topological orders formed via stacking 2D twisted \(\mathbb{Z}_N\) topologically ordered layers along \(z\)-direction. Nearby layers are coupled while maintaining translation symmetry along \(z\) direction. The effective field theory is given by the infinite-component Chern-Simons (iCS) field theory, with an integer-valued symmetric block-tridiagonal Toeplitz \(K\)-matrix whose size is thermodynamically large. With open boundary conditions (OBC) along \(z\), certain choice of \(K\)-matrices exhibits exotic boundary ``Toeplitz braiding&#39;&#39;, where the mutual braiding phase angle between two anyons at opposite boundaries oscillates and remains non-zero in the thermodynamic limit. In contrast, in trivial case, the mutual braiding phase angle decays exponentially to zero in the thermodynamical limit. As a necessary condition, this phenomenon requires the existence of boundary zero modes in the \(K\)-matrix spectrum under OBC. We categorize nontrivial \(K\)-matrices into two distinct types. Each type-I possesses two boundary zero modes, whereas each type-II possesses only one boundary zero mode. Interestingly, the integer-valued Hamiltonian matrix of the familiar 1D SSH can be used as a non-trivial $K$-matrix. Importantly, since large-gauge-invariance ensures integer quantized \(K\)-matrix entries, global symmetries are not needed to protect these zero modes. We also present numerical simulation as well as finite size scaling, further confirming the above analytical results. Symmetry fractionalization is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02482v4-abstract-full').style.display = 'none'; document.getElementById('2406.02482v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 205108 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02379">arXiv:2406.02379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02379">pdf</a>, <a href="https://arxiv.org/format/2406.02379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement accelerates quantum simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Q">Qi Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Childs%2C+A+M">Andrew M. Childs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02379v1-abstract-short" style="display: inline;"> Quantum entanglement is an essential feature of many-body systems that impacts both quantum information processing and fundamental physics. The growth of entanglement is a major challenge for classical simulation methods. In this work, we investigate the relationship between quantum entanglement and quantum simulation, showing that product-formula approximations can perform better for entangled sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02379v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02379v1-abstract-full" style="display: none;"> Quantum entanglement is an essential feature of many-body systems that impacts both quantum information processing and fundamental physics. The growth of entanglement is a major challenge for classical simulation methods. In this work, we investigate the relationship between quantum entanglement and quantum simulation, showing that product-formula approximations can perform better for entangled systems. We establish a tighter upper bound for algorithmic error in terms of entanglement entropy and develop an adaptive simulation algorithm incorporating measurement gadgets to estimate the algorithmic error. This shows that entanglement is not only an obstacle to classical simulation, but also a feature that can accelerate quantum algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02379v1-abstract-full').style.display = 'none'; document.getElementById('2406.02379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01997">arXiv:2406.01997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01997">pdf</a>, <a href="https://arxiv.org/format/2406.01997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Machine-Learning Insights on Entanglement-trainability Correlation of Parameterized Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shikun Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+Z">Zheng Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Rui Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+C">Chunxiao Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Z">Zhisong Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yongyou Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01997v2-abstract-short" style="display: inline;"> Variational quantum algorithms (VQAs) have emerged as the leading strategy to obtain quantum advantage on the current noisy intermediate-scale devices. However, their entanglement-trainability correlation, as the major reason for the barren plateau (BP) phenomenon, poses a challenge to their applications. In this Letter, we suggest a gate-to-tensor (GTT) encoding method for parameterized quantum c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01997v2-abstract-full').style.display = 'inline'; document.getElementById('2406.01997v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01997v2-abstract-full" style="display: none;"> Variational quantum algorithms (VQAs) have emerged as the leading strategy to obtain quantum advantage on the current noisy intermediate-scale devices. However, their entanglement-trainability correlation, as the major reason for the barren plateau (BP) phenomenon, poses a challenge to their applications. In this Letter, we suggest a gate-to-tensor (GTT) encoding method for parameterized quantum circuits (PQCs), with which two long short-term memory networks (L-G networks) are trained to predict both entanglement and trainability. The remarkable capabilities of the L-G networks afford a statistical way to delve into the entanglement-trainability correlation of PQCs within a dataset encompassing millions of instances. This machine-learning-driven method first confirms that the more entanglement, the more possible the BP problem. Then, we observe that there still exist PQCs with both high entanglement and high trainability. Furthermore, the trained L-G networks result in an impressive increase in time efficiency by about one million times when constructing a PQC with specific entanglement and trainability, demonstrating their practical applications in VQAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01997v2-abstract-full').style.display = 'none'; document.getElementById('2406.01997v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20696">arXiv:2405.20696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20696">pdf</a>, <a href="https://arxiv.org/format/2405.20696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Directly Estimating Mixed-State Entanglement with Bell Measurement Assistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Gong-Chu Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Si-Qi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hong%2C+X">Xu-Song Hong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+G">Geng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20696v2-abstract-short" style="display: inline;"> Entanglement plays a fundamental role in quantum physics and information processing. Here, we develop an unbiased estimator for mixed-state entanglement in the few-shot scenario and directly estimate it using random unitary evolution in a photonic system. As a supplement to traditional projective measurements, we incorporate Bell measurements on qubit-pairs, enriching the previous randomized measu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20696v2-abstract-full').style.display = 'inline'; document.getElementById('2405.20696v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20696v2-abstract-full" style="display: none;"> Entanglement plays a fundamental role in quantum physics and information processing. Here, we develop an unbiased estimator for mixed-state entanglement in the few-shot scenario and directly estimate it using random unitary evolution in a photonic system. As a supplement to traditional projective measurements, we incorporate Bell measurements on qubit-pairs, enriching the previous randomized measurement scheme, which is no-go in this task with only local unitary evolution. The scheme is scalable to n-qubits via Bell measurements on qubit-pairs. The estimator can be derived directly from a few consecutive outcomes while exhibiting greater robustness to system errors and noise compared to schemes based on shadow estimation. We find that, under a fixed measurement resource, the way with more versatile measurement settings with fewer repeats per setting is more efficient. Our protocol and demonstration advance the direct characterization of quantum states in practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20696v2-abstract-full').style.display = 'none'; document.getElementById('2405.20696v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20659">arXiv:2405.20659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20659">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of cold atom gyroscope in space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jinting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+D">Danfang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+W">Wenzhang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+M">Meng He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+J">Jie Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+C">Chuan He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Junjie Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+H">Huanyao Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Q">Qunfeng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+L">Lei Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xiaowei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiaqi Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Runbing Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=An%2C+M">Meizhen An</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Long Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shuquan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zongfeng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20659v2-abstract-short" style="display: inline;"> High-precision gyroscopes in space are essential for fundamental physics research and navigation. Due to its potential high precision, the cold atom gyroscope is expected to be the next generation of gyroscopes in space. Here, we report the first realization of a cold atom gyroscope, which was demonstrated by the atom interferometer installed in the China Space Station (CSS) as a payload. By compe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20659v2-abstract-full').style.display = 'inline'; document.getElementById('2405.20659v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20659v2-abstract-full" style="display: none;"> High-precision gyroscopes in space are essential for fundamental physics research and navigation. Due to its potential high precision, the cold atom gyroscope is expected to be the next generation of gyroscopes in space. Here, we report the first realization of a cold atom gyroscope, which was demonstrated by the atom interferometer installed in the China Space Station (CSS) as a payload. By compensating for CSS&#39;s high dynamic rotation rate using a built-in piezoelectric mirror, spatial interference fringes in the interferometer are successfully obtained. Then, the optimized ratio of the Raman laser&#39;s angles is derived, the coefficients of the piezoelectric mirror are self-calibrated in orbit, and various systemic effects are corrected. We achieve a rotation measurement resolution of 50*10^-6 rad/s for a single shot and 17*10^-6 rad/s for an average number of 32. The measured rotation is (-1142+/-29)*10^-6 rad/s and is compatible with that recorded by the classical gyroscope of the CSS. This study paves the way for developing high-precision cold atom gyroscopes in space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20659v2-abstract-full').style.display = 'none'; document.getElementById('2405.20659v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11632">arXiv:2405.11632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11632">pdf</a>, <a href="https://arxiv.org/format/2405.11632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Attention to Quantum Complexity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Kim%2C+H">Hyejin Kim</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yiqing Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y">Yichen Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Varma%2C+K">Kaarthik Varma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rosen%2C+I+T">Ilan T. Rosen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hoke%2C+J+C">Jesse C. Hoke</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+C">Chao Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+J+P">Jin Peng Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Oliver%2C+W+D">William D. Oliver</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Weinberger%2C+K+Q">Kilian Q. Weinberger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kim%2C+E">Eun-Ah Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11632v2-abstract-short" style="display: inline;"> The imminent era of error-corrected quantum computing urgently demands robust methods to characterize complex quantum states, even from limited and noisy measurements. We introduce the Quantum Attention Network (QuAN), a versatile classical AI framework leveraging the power of attention mechanisms specifically tailored to address the unique challenges of learning quantum complexity. Inspired by la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11632v2-abstract-full').style.display = 'inline'; document.getElementById('2405.11632v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11632v2-abstract-full" style="display: none;"> The imminent era of error-corrected quantum computing urgently demands robust methods to characterize complex quantum states, even from limited and noisy measurements. We introduce the Quantum Attention Network (QuAN), a versatile classical AI framework leveraging the power of attention mechanisms specifically tailored to address the unique challenges of learning quantum complexity. Inspired by large language models, QuAN treats measurement snapshots as tokens while respecting their permutation invariance. Combined with a novel parameter-efficient mini-set self-attention block (MSSAB), such data structure enables QuAN to access high-order moments of the bit-string distribution and preferentially attend to less noisy snapshots. We rigorously test QuAN across three distinct quantum simulation settings: driven hard-core Bose-Hubbard model, random quantum circuits, and the toric code under coherent and incoherent noise. QuAN directly learns the growth in entanglement and state complexity from experimentally obtained computational basis measurements. In particular, it learns the growth in complexity of random circuit data upon increasing depth from noisy experimental data. Taken to a regime inaccessible by existing theory, QuAN unveils the complete phase diagram for noisy toric code data as a function of both noise types. This breakthrough highlights the transformative potential of using purposefully designed AI-driven solutions to assist quantum hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11632v2-abstract-full').style.display = 'none'; document.getElementById('2405.11632v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03804">arXiv:2405.03804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03804">pdf</a>, <a href="https://arxiv.org/format/2405.03804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> EPOC: A Novel Pulse Generation Framework Incorporating Advanced Synthesis Techniques for Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03804v1-abstract-short" style="display: inline;"> In this paper we propose EPOC, an efficient pulse generation framework for quantum circuits that combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation. Unlike previous works that focus on generating pulses from unitary matrices without exploring equivalent representations, EPOC employs a finer granularity approach by grouping quantum gates and decomposing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03804v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03804v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03804v1-abstract-full" style="display: none;"> In this paper we propose EPOC, an efficient pulse generation framework for quantum circuits that combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation. Unlike previous works that focus on generating pulses from unitary matrices without exploring equivalent representations, EPOC employs a finer granularity approach by grouping quantum gates and decomposing the resulting unitary matrices into smaller ones using synthesis techniques. This enables increased parallelism and decreased latency in quantum pulses. EPOC also continuously optimizes the circuit by identifying equivalent representations, leading to further reductions in circuit latency while minimizing the computational overhead associated with quantum optimal control. We introduce circuit synthesis into the workflow of quantum optimal control for the first time and achieve a 31.74% reduction in latency compared to previous work and a 76.80% reduction compared to the gate-based method for creating pulses. The approach demonstrates the potential for significant performance improvements in quantum circuits while minimizing computational overhead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03804v1-abstract-full').style.display = 'none'; document.getElementById('2405.03804v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17560">arXiv:2404.17560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17560">pdf</a>, <a href="https://arxiv.org/format/2404.17560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploiting many-body localization for scalable variational quantum simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+C">Chenfeng Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yeqing Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tannu%2C+S">Swamit Tannu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shannon%2C+N">Nic Shannon</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Joynt%2C+R">Robert Joynt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17560v2-abstract-short" style="display: inline;"> Variational quantum algorithms have emerged as a promising approach to achieving practical quantum advantages using near-term quantum devices. Despite their potential, the scalability of these algorithms poses a significant challenge. This is largely attributed to the &#34;barren plateau&#34; phenomenon, which persists even in the absence of noise. In this work, we explore the many-body localization (MBL)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17560v2-abstract-full').style.display = 'inline'; document.getElementById('2404.17560v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17560v2-abstract-full" style="display: none;"> Variational quantum algorithms have emerged as a promising approach to achieving practical quantum advantages using near-term quantum devices. Despite their potential, the scalability of these algorithms poses a significant challenge. This is largely attributed to the &#34;barren plateau&#34; phenomenon, which persists even in the absence of noise. In this work, we explore the many-body localization (MBL)-thermalization phase transitions within a framework of Floquet-initialized variational quantum circuits and investigate how MBL could be used to avoid barren plateaus. The phase transitions are observed through calculations of the inverse participation ratio, the entanglement entropy, and a metric termed low-weight stabilizer R茅nyi entropy. By initializing the circuit in the MBL phase and employing an easily preparable initial state, we find it is possible to prevent the formation of a unitary 2-design, resulting in an output state with entanglement that follows an area- rather than a volume-law, and which circumvents barren plateaus throughout the optimization. Utilizing this methodology, we successfully determine the ground states of various model Hamiltonians across different phases and show that the resources required for the optimization are significantly reduced. We have further validated the MBL approach through experiments carried out on the 127-qubit $ibm\_brisbane$ quantum processor. These experiments confirm that the gradients needed to carry out variational calculations are restored in the MBL phase of a Heisenberg model subject to random unitary &#34;kicks&#34;. These results provide new insights into the interplay between MBL and quantum computing, and suggest that the role of MBL states should be considered in the design of quantum algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17560v2-abstract-full').style.display = 'none'; document.getElementById('2404.17560v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11850">arXiv:2404.11850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11850">pdf</a>, <a href="https://arxiv.org/format/2404.11850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Hybrid Shadow Tomography and Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+X">Xu-Jie Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Q">Qing Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+L">Lu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+T">Ting Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+H">He Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11850v1-abstract-short" style="display: inline;"> Characterization of quantum states is a fundamental requirement in quantum science and technology. As a promising framework, shadow tomography shows significant efficiency in estimating linear functions, however, for the challenging nonlinear ones, it requires measurements at an exponential cost. Here, we implement an advanced shadow protocol, so-called hybrid shadow~(HS) tomography, to reduce the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11850v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11850v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11850v1-abstract-full" style="display: none;"> Characterization of quantum states is a fundamental requirement in quantum science and technology. As a promising framework, shadow tomography shows significant efficiency in estimating linear functions, however, for the challenging nonlinear ones, it requires measurements at an exponential cost. Here, we implement an advanced shadow protocol, so-called hybrid shadow~(HS) tomography, to reduce the measurement cost in the estimation of nonlinear functions in an optical system. We design and realize a deterministic quantum Fredkin gate with single photon, achieving high process fidelity of $0.935\pm0.001$. Utilizing this novel Fredkin gate, we demonstrate HS in the estimations, like the higher-order moments up to 4, and reveal that the sample complexity of HS is significantly reduced compared with the original shadow protocol. Furthermore, we utilize these higher-degree functions to implement virtual distillation, which effectively extracts a high-purity quantum state from two noisy copies. The virtual distillation is also verified in a proof-of-principle demonstration of quantum metrology, further enhancing the accuracy of parameter estimation. Our results suggest that HS is efficient in state characterization and promising for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11850v1-abstract-full').style.display = 'none'; document.getElementById('2404.11850v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16155">arXiv:2403.16155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16155">pdf</a>, <a href="https://arxiv.org/format/2403.16155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.170601">10.1103/PhysRevLett.133.170601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiaohan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Z">Zechen Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+W">Wenhui Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Y">Yongqi Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Jiawei Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+J">Jiawei Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xuandong Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+Z">Ziyu Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiawei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiajian Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Libo Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+W">Weijie Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+L">Ling Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Ji Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Linpeng%2C+X">Xiayu Linpeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+T">Tingyong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yuanzhen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+J">Jingjing Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+Y">Youpeng Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16155v2-abstract-short" style="display: inline;"> Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into non-computational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine QEC scalability. Here, we propose and dem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16155v2-abstract-full').style.display = 'inline'; document.getElementById('2403.16155v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16155v2-abstract-full" style="display: none;"> Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into non-computational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine QEC scalability. Here, we propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16155v2-abstract-full').style.display = 'none'; document.getElementById('2403.16155v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.19394">arXiv:2402.19394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.19394">pdf</a>, <a href="https://arxiv.org/format/2402.19394">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.024059">10.1103/PhysRevApplied.21.024059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable compact on-chip superconducting switch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zotova%2C+J">Julia Zotova</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Semenov%2C+A">Alexander Semenov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yu Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Astafiev%2C+O">Oleg Astafiev</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tsai%2C+J">Jaw-Shen Tsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.19394v1-abstract-short" style="display: inline;"> We develop a compact four-port superconducting switch with a tunable operating frequency in the range of 4.8 GHz -- 7.3 GHz. Isolation between channel exceeds 20~dB over a bandwidth of several hundred megahertz, exceeding 40 dB at some frequencies. The footprint of the device is $80\times420~渭$m. The tunability requires only a global flux bias without either permanent magnets or micro-electromecha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19394v1-abstract-full').style.display = 'inline'; document.getElementById('2402.19394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.19394v1-abstract-full" style="display: none;"> We develop a compact four-port superconducting switch with a tunable operating frequency in the range of 4.8 GHz -- 7.3 GHz. Isolation between channel exceeds 20~dB over a bandwidth of several hundred megahertz, exceeding 40 dB at some frequencies. The footprint of the device is $80\times420~渭$m. The tunability requires only a global flux bias without either permanent magnets or micro-electromechanical structures. As the switch is superconducting, the heat dissipation during operation is negligible. The device can operate at up to -80~dBm, which is equal to $2.5\times 10^6$ photons at 6 GHz per microsecond. The device show a possibility to be operated as a beamsplitter with tunable splitting ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19394v1-abstract-full').style.display = 'none'; document.getElementById('2402.19394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevApplied 21, 024059 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11645">arXiv:2402.11645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11645">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Image Denoising with Machine Learning: A Novel Approach to Improve Quantum Image Processing Quality and Reliability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yifan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Y+S">Yan Shing Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11645v2-abstract-short" style="display: inline;"> Quantum Image Processing (QIP) is a field that aims to utilize the benefits of quantum computing for manipulating and analyzing images. However, QIP faces two challenges: the limitation of qubits and the presence of noise in a quantum machine. In this research, we propose a novel approach to address the issue of noise in QIP. By training and employing a machine learning model that identifies and c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11645v2-abstract-full').style.display = 'inline'; document.getElementById('2402.11645v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11645v2-abstract-full" style="display: none;"> Quantum Image Processing (QIP) is a field that aims to utilize the benefits of quantum computing for manipulating and analyzing images. However, QIP faces two challenges: the limitation of qubits and the presence of noise in a quantum machine. In this research, we propose a novel approach to address the issue of noise in QIP. By training and employing a machine learning model that identifies and corrects the noise in quantum-processed images, we can compensate for the noisiness caused by the machine and retrieve a processing result similar to that performed by a classical computer with higher efficiency. The model is trained by learning a dataset consisting of both existing processed images and quantum-processed images from open-access datasets. This model will be capable of providing us with the confidence level for each pixel and its potential original value. To assess the model&#39;s accuracy in compensating for loss and decoherence in QIP, we evaluate it using three metrics: Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Mean Opinion Score (MOS). Additionally, we discuss the applicability of our model across domains well as its cost effectiveness compared to alternative methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11645v2-abstract-full').style.display = 'none'; document.getElementById('2402.11645v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09108">arXiv:2402.09108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09108">pdf</a>, <a href="https://arxiv.org/format/2402.09108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Novel Long Distance Free Space Quantum Secure Direct Communication for Web 3.0 Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yifan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X">Xinlin Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z+Y">Zi Yan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wong%2C+Y+K">Yew Kee Wong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Y+S">Yan Shing Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09108v5-abstract-short" style="display: inline;"> With the advent of Web 3.0, the swift advancement of technology confronts an imminent threat from quantum computing. Security protocols safeguarding the integrity of Web 2.0 and Web 3.0 are growing more susceptible to both quantum attacks and sophisticated classical threats. The article introduces our novel long-distance free-space quantum secure direct communication (LF QSDC) as a method to safeg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09108v5-abstract-full').style.display = 'inline'; document.getElementById('2402.09108v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09108v5-abstract-full" style="display: none;"> With the advent of Web 3.0, the swift advancement of technology confronts an imminent threat from quantum computing. Security protocols safeguarding the integrity of Web 2.0 and Web 3.0 are growing more susceptible to both quantum attacks and sophisticated classical threats. The article introduces our novel long-distance free-space quantum secure direct communication (LF QSDC) as a method to safeguard against security breaches in both quantum and classical contexts. Differing from techniques like quantum key distribution (QKD), LF QSDC surpasses constraints by facilitating encrypted data transmission sans key exchanges, thus diminishing the inherent weaknesses of key-based systems. The distinctiveness of this attribute, coupled with its quantum mechanics base, protects against quantum computer assaults and advanced non-quantum dangers, harmonizing seamlessly with the untrustworthy tenets of the Web 3.0 age. The focus of our study is the technical design and incorporation of LF QSDC into web 3.0 network infrastructures, highlighting its efficacy for extended-range communication. LF QSDC is based on the memory DL04 protocol and enhanced with our novel Quantum-Aware Low-Density Parity Check (LDPC), Pointing, Acquisition, and Tracking (PAT) technologies, and Atmospheric Quantum Correction Algorithm (AQCA). Utilizing this method not only bolsters the security of worldwide Web 3.0 networks but also guarantees their endurance in a time when quantum and sophisticated classical threats exist simultaneously. Consequently, LF QSDC stands out as a robust security solution, well-suited for Web 3.0 systems amidst the constantly evolving digital environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09108v5-abstract-full').style.display = 'none'; document.getElementById('2402.09108v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15951">arXiv:2401.15951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15951">pdf</a>, <a href="https://arxiv.org/format/2401.15951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantum strong Mpemba effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xia%2C+G">Gang Xia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+C">Chun-Wang Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+T">Ting Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Q">Qian Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+Y">Yi Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Su%2C+W">Wen-Bo Su</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+P">Ping-xing Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weibin Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yan-Li Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15951v2-abstract-short" style="display: inline;"> An ancient and counterintuitive phenomenon know as the Mpemba effect (water can cool faster when initially heated up) showcases the critical role of initial conditions in relaxation processes. How to realize and utilize this effect for speeding up relaxation is an important but challenging task in purely quantum system till now. Here, we report the first experiment, as far as we know,about the str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15951v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15951v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15951v2-abstract-full" style="display: none;"> An ancient and counterintuitive phenomenon know as the Mpemba effect (water can cool faster when initially heated up) showcases the critical role of initial conditions in relaxation processes. How to realize and utilize this effect for speeding up relaxation is an important but challenging task in purely quantum system till now. Here, we report the first experiment, as far as we know,about the strong Mpemba effect in a single trapped ion system in which an exponentially expedited relaxation in time is observed by preparing an optimal initial state with no excitation of the slowest decaying mode. Also, we find that the condition of realizing such effect coincides with the Liouvillian exceptional point, featuring the coalescence of both the eigenvalues and the eigenmodes of the system. Our work provides an efficient strategy to exponentially accelerate relaxations of quantum system to their stationary state, and suggests a link unexplored yet between the Mpemba effect and the non-Hermitian physics. It could open up the door to engineer a wide range of dissipative quantum systems by utilizing the anomalous Mpemba effect, for applications in quantum simulation and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15951v2-abstract-full').style.display = 'none'; document.getElementById('2401.15951v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Nature Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15593">arXiv:2401.15593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15593">pdf</a>, <a href="https://arxiv.org/ps/2401.15593">ps</a>, <a href="https://arxiv.org/format/2401.15593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Multipartite entanglement serves as a faithful detector for quantum phase transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y+C">Y. C. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y+H">Y. H. Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Y+K">Y. K. Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+H+Q">H. Q. Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15593v1-abstract-short" style="display: inline;"> We investigate quantum phase transitions in various spin chain systems using the multipartite entanglement measure $蟿_{SEF}$ based on the monogamy inequality of squared entanglement of formation. Our results demonstrate that $蟿_{SEF}$ is more effective and reliable than bipartite entanglement or bipartite correlation measures such as entanglement of formation, von Neumann entropy, and quantum disc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15593v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15593v1-abstract-full" style="display: none;"> We investigate quantum phase transitions in various spin chain systems using the multipartite entanglement measure $蟿_{SEF}$ based on the monogamy inequality of squared entanglement of formation. Our results demonstrate that $蟿_{SEF}$ is more effective and reliable than bipartite entanglement or bipartite correlation measures such as entanglement of formation, von Neumann entropy, and quantum discord in characterizing quantum phase transitions. $蟿_{SEF}$ not only detects critical points that may go unnoticed by other detectors but also avoids the issue of singularity at non-critical points encountered by other measures. Furthermore, by applying $蟿_{SEF}$, we have obtained the phase diagram for the XY spin chain with three and four interactions and discovered a new quantum phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15593v1-abstract-full').style.display = 'none'; document.getElementById('2401.15593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09933">arXiv:2401.09933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09933">pdf</a>, <a href="https://arxiv.org/format/2401.09933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-integer Floquet Sidebands Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ou-Yang%2C+D">Du-Yi Ou-Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yan-Hua Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Ya Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+X">Xiao-Tong Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chang%2C+H">Hong Chang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xue-Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09933v1-abstract-short" style="display: inline;"> In the quantum system under periodical modulation, the particle can be excited by absorbing the laser photon with the assistance of integer Floquet photons, so that the Floquet sidebands appear. Here, we experimentally observe non-integer Floquet sidebands (NIFBs) emerging between the integer ones while increasing the strength of the probe laser in the optical lattice clock system. Then, we propos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09933v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09933v1-abstract-full" style="display: none;"> In the quantum system under periodical modulation, the particle can be excited by absorbing the laser photon with the assistance of integer Floquet photons, so that the Floquet sidebands appear. Here, we experimentally observe non-integer Floquet sidebands (NIFBs) emerging between the integer ones while increasing the strength of the probe laser in the optical lattice clock system. Then, we propose the Floquet channel interference hypothesis (FCIH) which surprisingly matches quantitatively well with both experimental and numerical results. With its help, we found both Rabi and Ramsey spectra are very sensitive to the initial phase and exhibit additional two symmetries. More importantly, the height of Ramsey NIFBs is comparable to the integer one at larger $g/蠅_s$ which indicates an exotic phenomenon beyond the perturbative description. Our work provides new insight into the spectroscopy of the Floquet system and has potential application in quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09933v1-abstract-full').style.display = 'none'; document.getElementById('2401.09933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, comments are welcome, and more information at http://cqutp.org/users/xfzhang/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03400">arXiv:2401.03400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.03400">pdf</a>, <a href="https://arxiv.org/format/2401.03400">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.012448">10.1103/PhysRevA.110.012448 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement Structure Detection via Computer Vision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Rui Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+J">Junling Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+Z">Zheng Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shikun Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+C">Chunxiao Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Z">Zhisong Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03400v1-abstract-short" style="display: inline;"> Quantum entanglement plays a pivotal role in various quantum information processing tasks. However, there still lacks a universal and effective way to detecting entanglement structures, especially for high-dimensional and multipartite quantum systems. Noticing the mathematical similarities between the common representations of many-body quantum states and the data structures of images, we are insp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03400v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03400v1-abstract-full" style="display: none;"> Quantum entanglement plays a pivotal role in various quantum information processing tasks. However, there still lacks a universal and effective way to detecting entanglement structures, especially for high-dimensional and multipartite quantum systems. Noticing the mathematical similarities between the common representations of many-body quantum states and the data structures of images, we are inspired to employ advanced computer vision technologies for data analysis. In this work, we propose a hybrid CNN-Transformer model for both the classification of GHZ and W states and the detection of various entanglement structures. By leveraging the feature extraction capabilities of CNNs and the powerful modeling abilities of Transformers, we can not only effectively reduce the time and computational resources required for the training process but also obtain high detection accuracies. Through numerical simulation and physical verification, it is confirmed that our hybrid model is more effective than traditional techniques and thus offers a powerful tool for independent detection of multipartite entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03400v1-abstract-full').style.display = 'none'; document.getElementById('2401.03400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02304">arXiv:2401.02304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02304">pdf</a>, <a href="https://arxiv.org/ps/2401.02304">ps</a>, <a href="https://arxiv.org/format/2401.02304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Sending-or-not-sending quantum key distribution with phase postselection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shan%2C+Y">Yang-Guang Shan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+Z">Zhen-Qiang Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shuang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+D">De-Yong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+Z">Zheng-Fu Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02304v2-abstract-short" style="display: inline;"> Quantum key distribution (QKD) could help to share secure key between two distant peers. In recent years, twin-field (TF) QKD has been widely investigated because of its long transmission distance. One of the popular variants of TF QKD is sending-or-not-sending (SNS) QKD, which has been experimentally verified to realize 1000-km level fibre key distribution. In this article, the authors introduce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02304v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02304v2-abstract-full" style="display: none;"> Quantum key distribution (QKD) could help to share secure key between two distant peers. In recent years, twin-field (TF) QKD has been widely investigated because of its long transmission distance. One of the popular variants of TF QKD is sending-or-not-sending (SNS) QKD, which has been experimentally verified to realize 1000-km level fibre key distribution. In this article, the authors introduce phase postselection into the SNS protocol. With this modification, the probability of selecting &#34;sending&#34; can be substantially improved. The numerical simulation shows that the transmission distance can be improved both with and without the actively odd-parity pairing method. With discrete phase randomization, the variant can have both a larger key rate and a longer distance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02304v2-abstract-full').style.display = 'none'; document.getElementById('2401.02304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01810">arXiv:2401.01810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01810">pdf</a>, <a href="https://arxiv.org/format/2401.01810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.250604">10.1103/PhysRevLett.132.250604 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+K">Kangyuan Yi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hai%2C+Y">Yong-Ju Hai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+K">Kai Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Libo Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Y">Yao Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+T">Tongxing Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+X">Xiu-Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yuanzhen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01810v3-abstract-short" style="display: inline;"> As quantum circuits become more integrated and complex, additional error sources that were previously insignificant start to emerge. Consequently, the fidelity of quantum gates benchmarked under pristine conditions falls short of predicting their performance in realistic circuits. To overcome this problem, we must improve their robustness against pertinent error models besides isolated fidelity. H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01810v3-abstract-full').style.display = 'inline'; document.getElementById('2401.01810v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01810v3-abstract-full" style="display: none;"> As quantum circuits become more integrated and complex, additional error sources that were previously insignificant start to emerge. Consequently, the fidelity of quantum gates benchmarked under pristine conditions falls short of predicting their performance in realistic circuits. To overcome this problem, we must improve their robustness against pertinent error models besides isolated fidelity. Here we report the experimental realization of robust quantum gates in superconducting quantum circuits based on a geometric framework for diagnosing and correcting various gate errors. Using quantum process tomography and randomized benchmarking, we demonstrate robust single-qubit gates against quasi-static noise and spatially-correlated noise in a broad range of strengths, which are common sources of coherent errors in large-scale quantum circuit. We also apply our method to non-static noises and to realize robust two-qubit gates. Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01810v3-abstract-full').style.display = 'none'; document.getElementById('2401.01810v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures plus Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 250604 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10