CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 112 results for author: <span class="mathjax">Lin, C - D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lin, C - D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lin%2C+C+-+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lin, C - D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13896">arXiv:2412.13896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13896">pdf</a>, <a href="https://arxiv.org/format/2412.13896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress in lattice simulations for two Higgs doublet models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Catumba%2C+G">Guilherme Catumba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hiraguchi%2C+A">Atsuki Hiraguchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hou%2C+G+W+-">George W. -S Hou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ramos%2C+A">Alberto Ramos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sarkar%2C+M">Mugdha Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13896v1-abstract-short" style="display: inline;"> The custodial Two-Higgs-Doublet-Model with SU(2) gauge fields is studied on the lattice. This model has the same global symmetry structure as the Standard Model but the additional Higgs field enlarges the scalar spectrum and opens the possibility for the occurrence of spontaneous symmetry breaking of the global symmetries. Both the spectrum and the running of the gauge coupling of the custodial 2H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13896v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13896v1-abstract-full" style="display: none;"> The custodial Two-Higgs-Doublet-Model with SU(2) gauge fields is studied on the lattice. This model has the same global symmetry structure as the Standard Model but the additional Higgs field enlarges the scalar spectrum and opens the possibility for the occurrence of spontaneous symmetry breaking of the global symmetries. Both the spectrum and the running of the gauge coupling of the custodial 2HDM are studied on a line of constant Standard Model physics with cutoff ranging from 300 to 600 GeV. The lower bounds of the realizable masses for the additional BSM scalar states are found to be well bellow the W boson mass. In fact, for the choice of quartic couplings in this work the estimated lower mass for one of the BSM states is found to be about $\sim 0.2m_{W}$ and independent of the cutoff. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13896v1-abstract-full').style.display = 'none'; document.getElementById('2412.13896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures; Proceedings of the 41th International Symposium on Lattice Field Theory (LATTICE2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12645">arXiv:2412.12645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12645">pdf</a>, <a href="https://arxiv.org/format/2412.12645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the TMD soft function on the lattice using the auxiliary field representation of the Wilson line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morris%2C+W">Wayne Morris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12645v1-abstract-short" style="display: inline;"> The transverse momentum dependent (TMD) soft function and Collins-Soper (CS) kernel may be obtained by formulating the Wilson line in terms of auxiliary one-dimensional fermion fields on the lattice. Our computation takes place in the region of the lattice that corresponds to the &#34;spacelike&#34; region in Minkowski space in order to obtain the Collins soft function. The matching of our result to the C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12645v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12645v1-abstract-full" style="display: none;"> The transverse momentum dependent (TMD) soft function and Collins-Soper (CS) kernel may be obtained by formulating the Wilson line in terms of auxiliary one-dimensional fermion fields on the lattice. Our computation takes place in the region of the lattice that corresponds to the &#34;spacelike&#34; region in Minkowski space in order to obtain the Collins soft function. The matching of our result to the Collins soft function is achieved through the mapping of the auxiliary field directional vector that to the Wilson line rapidity. In Euclidean space, this directional vector is complex, having a purely imaginary time component. We present some exploratory numerical results of our lattice calculation, and discuss the methodology employed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12645v1-abstract-full').style.display = 'none'; document.getElementById('2412.12645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Proceedings of Science for The 41st International Symposium on Lattice Field Theory (Lattice 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01170">arXiv:2412.01170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01170">pdf</a>, <a href="https://arxiv.org/format/2412.01170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Meson spectroscopy in the $Sp(4)$ gauge theory with three antisymmetric fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01170v1-abstract-short" style="display: inline;"> We report the results of an extensive numerical study of the $Sp(4)$ lattice gauge theory with three (Dirac) flavors of fermion in the two-index antisymmetric representation. In the presence of (degenerate) fermion masses, the theory has an enhanced global $SU(6)$ symmetry, broken explicitly and spontaneously to its $SO(6)$ subgroup. This symmetry breaking pattern makes the theory interesting for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01170v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01170v1-abstract-full" style="display: none;"> We report the results of an extensive numerical study of the $Sp(4)$ lattice gauge theory with three (Dirac) flavors of fermion in the two-index antisymmetric representation. In the presence of (degenerate) fermion masses, the theory has an enhanced global $SU(6)$ symmetry, broken explicitly and spontaneously to its $SO(6)$ subgroup. This symmetry breaking pattern makes the theory interesting for applications in the context of composite Higgs models, as well as for the implementation of top partial compositeness. It can also provide a dynamical realisation of the strongly interacting massive particle paradigm for the origin of dark matter. We adopt the standard plaquette gauge action with the Wilson-Dirac formulation for the fermions and apply the (rational) hybrid Monte Carlo algorithm in our ensemble generation process. We monitor the autocorrelation and topology of the ensembles. We explore the bare parameter space, and identify the weak and strong coupling regimes separated by a line of first-order bulk phase transitions. We measure two-point correlation functions between meson operators that transform as non-trivial representations of $SO(6)$, and extract the ground-state masses and the decay constants, in all accessible spin and parity channels. In addition, we measure the mass of the first excited state for the vector meson by solving a generalised eigenvalue problem. Spectral quantities show a mass dependence that is compatible with the expectation that, at long distances, the theory undergoes confinement, accompanied by the spontaneous breaking of the approximate global symmetries acting on the matter fields. Finally, we discuss the continuum and massless extrapolations, after setting the physical scale using the gradient flow method, and compare the results to those of existing studies in the quenched approximation, as well as to the literature on closely related theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01170v1-abstract-full').style.display = 'none'; document.getElementById('2412.01170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 20 figures, 11 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-24-32, UTHEP-794, UTCCS-P-160 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18379">arXiv:2411.18379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18379">pdf</a>, <a href="https://arxiv.org/format/2411.18379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress on the spectroscopy of an Sp(4) gauge theory coupled to matter in multiple representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18379v1-abstract-short" style="display: inline;"> We report progress on our lattice calculations for the mass spectra of low-lying composite states in the Sp(4) gauge theory coupled to two and three flavors of Dirac fermions transforming in the fundamental and the two-index antisymmetric representations, respectively. This theory provides an ultraviolet completion to the composite Higgs model with Goldstone modes in the SU(4)/Sp(4) coset and with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18379v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18379v1-abstract-full" style="display: none;"> We report progress on our lattice calculations for the mass spectra of low-lying composite states in the Sp(4) gauge theory coupled to two and three flavors of Dirac fermions transforming in the fundamental and the two-index antisymmetric representations, respectively. This theory provides an ultraviolet completion to the composite Higgs model with Goldstone modes in the SU(4)/Sp(4) coset and with partial compositeness for generating the top-quark mass. We measure the meson and chimera baryon masses. These masses are crucial for constructing the composite Higgs model. In particular, the chimera baryon masses are important inputs for implementing top partial compositeness. We employ Wilson fermions and the Wilson plaquette action in our simulations. Techniques such as APE and Wuppertal smearing, as well as the procedure of generalised eigenvalue problem, are implemented in our analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18379v1-abstract-full').style.display = 'none'; document.getElementById('2411.18379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, 1 tables, Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-24-35 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11412">arXiv:2410.11412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11412">pdf</a>, <a href="https://arxiv.org/format/2410.11412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress on pseudoscalar flavour-singlets in Sp(4) with mixed fermion representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11412v1-abstract-short" style="display: inline;"> We measure the masses of the pseudoscalar flavour-singlet meson states in the $Sp(4)$ gauge theory coupled to two Dirac fermions transforming in the fundamental representation and three Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet completion for the minimal composite Higgs model implementing also partial compositeness for the top quark. The spec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11412v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11412v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11412v1-abstract-full" style="display: none;"> We measure the masses of the pseudoscalar flavour-singlet meson states in the $Sp(4)$ gauge theory coupled to two Dirac fermions transforming in the fundamental representation and three Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet completion for the minimal composite Higgs model implementing also partial compositeness for the top quark. The spectrum contains two, comparatively light, pseudoscalar flavour-singlet states, which mix with one another. One of them is a Nambu-Goldstone boson (in the massless limit), whereas the other receives a mass from the $U(1)_A$ axial anomaly. We demonstrate how to measure the mixing between these two states. For moderately heavy fermion masses, we find that the two wave functions are dominated by one of the fermion representations, mixing effects being small. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11412v1-abstract-full').style.display = 'none'; document.getElementById('2410.11412v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures, 2 tables, Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11386">arXiv:2410.11386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11386">pdf</a>, <a href="https://arxiv.org/format/2410.11386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress on the spectroscopy of lattice gauge theories using spectral densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+C">Ryan C. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11386v2-abstract-short" style="display: inline;"> Spectral densities encode non-perturbative information crucial in computing physical observables in strongly coupled field theories. Using lattice gauge theory data, we perform a systematic study to demonstrate the potential of recent technological advances in the reconstruction of spectral densities. We develop, maintain and make publicly available dedicated analysis code that can be used for bro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11386v2-abstract-full').style.display = 'inline'; document.getElementById('2410.11386v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11386v2-abstract-full" style="display: none;"> Spectral densities encode non-perturbative information crucial in computing physical observables in strongly coupled field theories. Using lattice gauge theory data, we perform a systematic study to demonstrate the potential of recent technological advances in the reconstruction of spectral densities. We develop, maintain and make publicly available dedicated analysis code that can be used for broad classes of lattice theories. As a test case, we analyse the Sp(4) gauge theory coupled to an admixture of fermions transforming in the fundamental and two-index antisymmetric representations. We measure the masses of mesons in energy-smeared spectral densities, after optimising the smearing parameters for available lattice ensembles. We present a summary of the mesons mass spectrum in all the twelve (flavored) channels available, including also several excited states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11386v2-abstract-full').style.display = 'none'; document.getElementById('2410.11386v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, contribution for the 41th International Symposium on Lattice Field Theory (Lattice 2024), 28 July - 3 August 2024, Liverpool, UK, presenting the results of the paper: arXiv:2405.01388</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-24-11, PNUTP-24/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16996">arXiv:2409.16996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16996">pdf</a>, <a href="https://arxiv.org/format/2409.16996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.466.0024">10.22323/1.466.0024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton Distribution Functions in the Schwinger Model with Tensor Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ba%C3%B1uls%2C+M+C">Mari Carmen Ba帽uls</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schneider%2C+M">Manuel Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16996v2-abstract-short" style="display: inline;"> Parton distribution functions (PDFs) describe universal properties of bound states and allow us to calculate scattering amplitudes in processes with large momentum transfer. Calculating PDFs involves the evaluation of matrix elements with a Wilson line in a light-cone direction. In contrast to Monte Carlo methods in Euclidean spacetime, these matrix elements can be directly calculated in Minkowski&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16996v2-abstract-full').style.display = 'inline'; document.getElementById('2409.16996v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16996v2-abstract-full" style="display: none;"> Parton distribution functions (PDFs) describe universal properties of bound states and allow us to calculate scattering amplitudes in processes with large momentum transfer. Calculating PDFs involves the evaluation of matrix elements with a Wilson line in a light-cone direction. In contrast to Monte Carlo methods in Euclidean spacetime, these matrix elements can be directly calculated in Minkowski-space using the Hamiltonian formalism. The necessary spatial- and time-evolution can be efficiently applied using established tensor network methods. We present PDFs in the Schwinger model calculated with matrix product states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16996v2-abstract-full').style.display = 'none'; document.getElementById('2409.16996v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 41st International Symposium on Lattice Field Theory, LATTICE2024, 28th July - 3rd August 2024, University of Liverpool, United Kingdom, Speaker: Manuel Schneider</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of The 41st International Symposium on Lattice Field Theory -- PoS(LATTICE2024), volume 466, 024 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15422">arXiv:2407.15422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15422">pdf</a>, <a href="https://arxiv.org/format/2407.15422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Lattice study of SU(2) gauge theory coupled to four adjoint Higgs fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Catumba%2C+G">Guilherme Catumba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hiraguchi%2C+A">Atsuki Hiraguchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hou%2C+W">Wei-Shu Hou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ramos%2C+A">Alberto Ramos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sarkar%2C+M">Mugdha Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15422v2-abstract-short" style="display: inline;"> Gauge theories with matter fields in various representations play an important role in different branches of physics. Recently, it was proposed that several aspects of the interesting pseudogap phase of cuprate superconductors near optimal doping may be explained by an emergent $SU(2)$ gauge symmetry. Around the transition with positive hole-doping, one can construct a $(2+1)-$dimensional $SU(2)$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15422v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15422v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15422v2-abstract-full" style="display: none;"> Gauge theories with matter fields in various representations play an important role in different branches of physics. Recently, it was proposed that several aspects of the interesting pseudogap phase of cuprate superconductors near optimal doping may be explained by an emergent $SU(2)$ gauge symmetry. Around the transition with positive hole-doping, one can construct a $(2+1)-$dimensional $SU(2)$ gauge theory coupled to four adjoint scalar fields which gives rise to a rich phase diagram with a myriad of phases having different broken symmetries. We study the phase diagram of this model on the Euclidean lattice using the Hybrid Monte Carlo algorithm. We find the existence of multiple broken phases as predicted by previous mean field studies. Depending on the quartic couplings, the $SU(2)$ gauge symmetry is broken down either to $U(1)$ or $\mathbb{Z}_2$ in the perturbative description of the model. We further study the confinement-deconfinement transition in this theory, and find that both the broken phases are deconfining in the range of volumes that we studied. However, there exists a marked difference in the behavior of the Polyakov loop between the two phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15422v2-abstract-full').style.display = 'none'; document.getElementById('2407.15422v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures, minor changes to results and conclusions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11295">arXiv:2407.11295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11295">pdf</a>, <a href="https://arxiv.org/format/2407.11295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamical Quantum Phase Transition and Thermal Equilibrium in the Lattice Thirring Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ba%C3%B1uls%2C+M+C">Mari Carmen Ba帽uls</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hung%2C+H">Hao-Ti Hung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Singh%2C+A">Amit Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11295v1-abstract-short" style="display: inline;"> Using tensor network methods, we simulate the real-time evolution of the lattice Thirring model quenched out of equilibrium in both the critical and massive phases, and study the appearance of dynamical quantum phase transitions, as non-analyticities in the Loschmidt rate. Whereas the presence of a dynamical quantum phase transition in the model does not correspond to quenches across the critical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11295v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11295v1-abstract-full" style="display: none;"> Using tensor network methods, we simulate the real-time evolution of the lattice Thirring model quenched out of equilibrium in both the critical and massive phases, and study the appearance of dynamical quantum phase transitions, as non-analyticities in the Loschmidt rate. Whereas the presence of a dynamical quantum phase transition in the model does not correspond to quenches across the critical line of the equilibrium phase diagram at zero temperature, we identify a threshold in the energy density of the initial state, necessary for a dynamical quantum phase transition to be present. Moreover, in the case of the gapped quench Hamiltonian, we unveil a connection of this threshold to a transition between different regions in the finite temperature phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11295v1-abstract-full').style.display = 'none'; document.getElementById('2407.11295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05765">arXiv:2405.05765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05765">pdf</a>, <a href="https://arxiv.org/format/2405.05765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Mixing between flavor singlets in lattice gauge theories coupled to matter fields in multiple representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05765v2-abstract-short" style="display: inline;"> We provide the first extensive, numerical study of the non-trivial problem of mixing between flavor-singlet composite states emerging in strongly coupled lattice field theories with matter field content consisting of fermions transforming in different representations of the gauge group. The theory of interest is the minimal candidate for a composite Higgs model that also accommodates a mechanism f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05765v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05765v2-abstract-full" style="display: none;"> We provide the first extensive, numerical study of the non-trivial problem of mixing between flavor-singlet composite states emerging in strongly coupled lattice field theories with matter field content consisting of fermions transforming in different representations of the gauge group. The theory of interest is the minimal candidate for a composite Higgs model that also accommodates a mechanism for top partial compositeness: the $Sp(4)$ gauge theory coupled to two (Dirac) fermions transforming as the fundamental and three as the two-index antisymmetric representation of the gauge group, respectively. We apply an admixture of APE and Wuppertal smearings, as well as the generalized eigenvalue problem approach, to two-point functions involving flavor-singlet mesons, for ensembles having time extent longer than the space extent. We demonstrate that, in the region of lattice parameter space accessible to this study, both masses and mixing angles can be measured effectively, despite the presence of (numerically noisy) contributions from disconnected diagrams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05765v2-abstract-full').style.display = 'none'; document.getElementById('2405.05765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures, 5 tables; v2: minor changes, added appendix A, version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-24-12, PNUTP-24/A03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01388">arXiv:2405.01388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01388">pdf</a>, <a href="https://arxiv.org/format/2405.01388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Meson spectroscopy from spectral densities in lattice gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+C">Ryan C. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01388v2-abstract-short" style="display: inline;"> Spectral densities encode non-perturbative information that enters the calculation of a plethora of physical observables in strongly coupled field theories. Phenomenological applications encompass aspects of standard-model hadronic physics, observable at current colliders, as well as correlation functions characterizing new physics proposals, testable in future experiments. By making use of numeri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01388v2-abstract-full').style.display = 'inline'; document.getElementById('2405.01388v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01388v2-abstract-full" style="display: none;"> Spectral densities encode non-perturbative information that enters the calculation of a plethora of physical observables in strongly coupled field theories. Phenomenological applications encompass aspects of standard-model hadronic physics, observable at current colliders, as well as correlation functions characterizing new physics proposals, testable in future experiments. By making use of numerical data produced in a Sp(4) lattice gauge theory with matter transforming in an admixture of fundamental and 2-index antisymmetric representations of the gauge group, we perform a systematic study to demonstrate the effectiveness of recent technological progress in the reconstruction of spectral densities. To this purpose, we write and test new software packages that use energy-smeared spectral densities to analyze the mass spectrum of mesons. We assess the effectiveness of different smearing kernels and optimize the smearing parameters to the characteristics of available lattice ensembles. We generate new ensembles for the theory in consideration, with lattices that have a longer extent in the time direction with respect to the spatial ones. We run our tests on these ensembles, obtaining new results about the spectrum of light mesons and their excitations. We make available our algorithm and software for the extraction of spectral densities, that can be applied to theories with other gauge groups, including the theory of strong interactions (QCD) governing hadronic physics in the standard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01388v2-abstract-full').style.display = 'none'; document.getElementById('2405.01388v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version approved for publication. 45 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05637">arXiv:2401.05637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05637">pdf</a>, <a href="https://arxiv.org/format/2401.05637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chimera baryon spectrum in the Sp(4) completion of composite Higgs models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05637v1-abstract-short" style="display: inline;"> In strongly coupled gauge theories that serve as completions of composite Higgs models, the fermionic bound states formed by fermions (hyperquarks) transforming in different representations, called chimera baryons, could serve as top partners, by embedding of the Standard Model appropriately. We report our results on the spectrum of chimera baryons in the Sp(4) gauge theory with hyperquarks transf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05637v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05637v1-abstract-full" style="display: none;"> In strongly coupled gauge theories that serve as completions of composite Higgs models, the fermionic bound states formed by fermions (hyperquarks) transforming in different representations, called chimera baryons, could serve as top partners, by embedding of the Standard Model appropriately. We report our results on the spectrum of chimera baryons in the Sp(4) gauge theory with hyperquarks transforming in fundamental and two-index antisymmetric representations. For this study, we adopt the quenched approximation. We investigate the mass hierarchy between the lightest chimera baryons with different quantum numbers, as a function of the lattice parameters. Inspired by baryon chiral effective field theory, and the Akaike Information Criterion, we perform a first extrapolation to the continuum and massless-hyperquark limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05637v1-abstract-full').style.display = 'none'; document.getElementById('2401.05637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, contribution to the proceedings of the 40th International Symposium on Lattice Field Theory (LATTICE2023), July 31st - August 4th, 2023, Fermi National Accelerator Laboratory, Batavia, Illinois, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08465">arXiv:2312.08465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08465">pdf</a>, <a href="https://arxiv.org/format/2312.08465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> On the spectrum of mesons in quenched $Sp(2N)$ gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08465v3-abstract-short" style="display: inline;"> We report the findings of our extensive study of the spectra of flavoured mesons in lattice gauge theories with symplectic gauge group and fermion matter content treated in the quenched approximation. For the $Sp(4)$, $Sp(6)$, and $Sp(8)$ gauge groups, the (Dirac) fermions transform in either the fundamental, or the 2-index, antisymmetric or symmetric, representations. This study sets the stage fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08465v3-abstract-full').style.display = 'inline'; document.getElementById('2312.08465v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08465v3-abstract-full" style="display: none;"> We report the findings of our extensive study of the spectra of flavoured mesons in lattice gauge theories with symplectic gauge group and fermion matter content treated in the quenched approximation. For the $Sp(4)$, $Sp(6)$, and $Sp(8)$ gauge groups, the (Dirac) fermions transform in either the fundamental, or the 2-index, antisymmetric or symmetric, representations. This study sets the stage for future precision calculations with dynamical fermions in the low mass region of lattice parameter space. Our results have potential phenomenological applications ranging from composite Higgs models, to top (partial) compositeness, to dark matter models with composite, strong-coupling dynamical origin. Having adopted the Wilson flow as a scale-setting procedure, we apply Wilson chiral perturbation theory to extract the continuum and massless limits for the observables of interest. The resulting measurements are used to perform a simplified extrapolation to the large-$N$ limit, hence drawing a preliminary connection with gauge theories with unitary groups. We conclude with a brief discussion of the Weinberg sum rules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08465v3-abstract-full').style.display = 'none'; document.getElementById('2312.08465v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 28 figures, 7 tables. Version accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05537">arXiv:2312.05537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05537">pdf</a>, <a href="https://arxiv.org/format/2312.05537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Study of 3-dimensional SU(2) gauge theory with adjoint Higgs as a model for cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Catumba%2C+G">Guilherme Catumba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hiraguchi%2C+A">Atsuki Hiraguchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hou%2C+G+W+-">George W. -S. Hou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ramos%2C+A">Alberto Ramos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sarkar%2C+M">Mugdha Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05537v1-abstract-short" style="display: inline;"> We study a 3-dimensional SU(2) gauge theory with 4 Higgs fields which transform under the adjoint representation of the gauge group, that has been recently proposed by Sachdev et al. to explain the physics of cuprate superconductors near optimal doping. The symmetric confining phase of the theory corresponds to the usual Fermi-liquid phase while the broken (Higgs) phase is associated with the inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05537v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05537v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05537v1-abstract-full" style="display: none;"> We study a 3-dimensional SU(2) gauge theory with 4 Higgs fields which transform under the adjoint representation of the gauge group, that has been recently proposed by Sachdev et al. to explain the physics of cuprate superconductors near optimal doping. The symmetric confining phase of the theory corresponds to the usual Fermi-liquid phase while the broken (Higgs) phase is associated with the interesting pseudogap phase of cuprates. We employ the Hybrid Monte-Carlo algorithm to study the phase diagram of the theory. We find the existence of a variety of broken phases in qualitative accordance with earlier mean-field predictions and discuss their role in cuprates. In addition, we investigate the behavior of Polyakov loop to probe the confinement/deconfinement phase transition, and find that the Higgs phase hosts a stable deconfining phase consistent with previous studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05537v1-abstract-full').style.display = 'none'; document.getElementById('2312.05537v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Proceedings of the 40th International Symposium on Lattice Field Theory (LATTICE2023), July 31st - August 4th, 2023, Fermi National Accelerator Laboratory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04315">arXiv:2312.04315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04315">pdf</a>, <a href="https://arxiv.org/format/2312.04315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The lattice extraction of the TMD soft function using the auxiliary field representation of the Wilson line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morris%2C+W">Wayne Morris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04315v3-abstract-short" style="display: inline;"> The TMD soft function can be obtained by formulating the Wilson line in terms of auxiliary 1-dimensional fermion fields on the lattice. In this formulation, the directional vector of the auxiliary field in Euclidean space has the form $\tilde n = (in^0, \vec 0_\perp, n^3)$, where the time component is purely imaginary. The components of these complex directional vectors in the Euclidean space can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04315v3-abstract-full').style.display = 'inline'; document.getElementById('2312.04315v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04315v3-abstract-full" style="display: none;"> The TMD soft function can be obtained by formulating the Wilson line in terms of auxiliary 1-dimensional fermion fields on the lattice. In this formulation, the directional vector of the auxiliary field in Euclidean space has the form $\tilde n = (in^0, \vec 0_\perp, n^3)$, where the time component is purely imaginary. The components of these complex directional vectors in the Euclidean space can be mapped directly to the rapidities of the Minkowski space soft function. We present the results of the one-loop calculation of the Euclidean space analog to the soft function using these complex directional vectors. As a result, we show that the calculation is valid only when the directional vectors obey the relation: $|r| = |n^3/n^0| &gt; 1$, and that this result corresponds to a computation in Minkowski space with space-like directed Wilson lines. Finally, we show that a lattice calculable object can be constructed that has the desired properties of the soft function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04315v3-abstract-full').style.display = 'none'; document.getElementById('2312.04315v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04178">arXiv:2312.04178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04178">pdf</a>, <a href="https://arxiv.org/format/2312.04178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice investigation of the general Two Higgs Doublet Model with $SU(2)$ gauge fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Catumba%2C+G">Guilherme Catumba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hiraguchi%2C+A">Atsuki Hiraguchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hou%2C+G+W+-">George W. -S Hou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ramos%2C+A">Alberto Ramos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sarkar%2C+M">Mugdha Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04178v1-abstract-short" style="display: inline;"> We study the most general Two Higgs Doublet Model with $SU(2)$ gauge fields on the lattice. The phase space is probed through the computation of gauge-invariant global observables serving as proxies for order parameters. In each phase, the spectrum of the theory is analysed for different combinations of bare couplings and different symmetry breaking patterns. The scale setting and determination of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04178v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04178v1-abstract-full" style="display: none;"> We study the most general Two Higgs Doublet Model with $SU(2)$ gauge fields on the lattice. The phase space is probed through the computation of gauge-invariant global observables serving as proxies for order parameters. In each phase, the spectrum of the theory is analysed for different combinations of bare couplings and different symmetry breaking patterns. The scale setting and determination of the running gauge coupling are performed through the Wilson flow computation of the action density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04178v1-abstract-full').style.display = 'none'; document.getElementById('2312.04178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14663">arXiv:2311.14663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14663">pdf</a>, <a href="https://arxiv.org/format/2311.14663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice investigations of the chimera baryon spectrum in the Sp(4) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14663v2-abstract-short" style="display: inline;"> We report the results of lattice numerical studies of the Sp(4) gauge theory coupled to fermions (hyperquarks) transforming in the fundamental and two-index antisymmetric representations of the gauge group. This strongly-coupled theory is the minimal candidate for the ultraviolet completion of composite Higgs models that facilitate the mechanism of partial compositeness for generating the top-quar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14663v2-abstract-full').style.display = 'inline'; document.getElementById('2311.14663v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14663v2-abstract-full" style="display: none;"> We report the results of lattice numerical studies of the Sp(4) gauge theory coupled to fermions (hyperquarks) transforming in the fundamental and two-index antisymmetric representations of the gauge group. This strongly-coupled theory is the minimal candidate for the ultraviolet completion of composite Higgs models that facilitate the mechanism of partial compositeness for generating the top-quark mass. We measure the spectrum of the low-lying, half-integer spin, bound states composed of two fundamental and one antisymmetric hyperquarks, dubbed chimera baryons, in the quenched approximation. In this first systematic, non-perturbative study, we focus on the three lightest parity-even chimera-baryon states, in analogy with QCD, denoted as $螞_{\rm CB}$, $危_{\rm CB}$ (both with spin 1/2), and $危_{\rm CB}^\ast$(with spin 3/2). The spin-1/2 such states are candidates of the top partners. The extrapolation of our results to the continuum and massless-hyperquark limit is performed using formulae inspired by QCD heavy-baryon Wilson chiral perturbation theory. Within the range of hyperquark masses in our simulations, we find that $危_{\mathrm{CB}}$ is not heavier than $螞_{\mathrm{CB}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14663v2-abstract-full').style.display = 'none'; document.getElementById('2311.14663v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 12 figures, 19 tables; minor improvements and corrections; aligning numbers in Data release; version accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01322">arXiv:2311.01322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01322">pdf</a>, <a href="https://arxiv.org/format/2311.01322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Constraints on the Fourth Mellin Moment of the Pion Light Cone Distribution Amplitude using the HOPE method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01322v1-abstract-short" style="display: inline;"> The light-cone distribution amplitude (LCDA) of the pion contains information about the parton momentum carried by the quarks and is an important theoretical input for various predictions of exclusive processes at high energy, including the pion electromagnetic form factor. Progress towards constraining the fourth Mellin moment of the LCDA using the heavy-quark operator product expansion (HOPE) me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01322v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01322v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01322v1-abstract-full" style="display: none;"> The light-cone distribution amplitude (LCDA) of the pion contains information about the parton momentum carried by the quarks and is an important theoretical input for various predictions of exclusive processes at high energy, including the pion electromagnetic form factor. Progress towards constraining the fourth Mellin moment of the LCDA using the heavy-quark operator product expansion (HOPE) method is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01322v1-abstract-full').style.display = 'none'; document.getElementById('2311.01322v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, proceedings to talk presented at the 40th International Symposium on Lattice Field Theory, July 31st - August 4th 2023, Fermi National Accelerator Laboratory, Batavia, Illinois, USA. arXiv admin note: text overlap with arXiv:2211.17009</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5645, FERMILAB-CONF-23-659-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02111">arXiv:2310.02111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02111">pdf</a>, <a href="https://arxiv.org/format/2310.02111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice studies of Sp(2N) gauge theories using GRID </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lenz%2C+J">Julian Lenz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02111v1-abstract-short" style="display: inline;"> Four-dimensional gauge theories based on symplectic Lie groups provide elegant realisations of the microscopic origin of several new physics models. Numerical studies pursued on the lattice provide quantitative information necessary for phenomenological applications. To this purpose, we implemented Sp(2N) gauge theories using Monte Carlo techniques within Grid, a performant framework designed for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02111v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02111v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02111v1-abstract-full" style="display: none;"> Four-dimensional gauge theories based on symplectic Lie groups provide elegant realisations of the microscopic origin of several new physics models. Numerical studies pursued on the lattice provide quantitative information necessary for phenomenological applications. To this purpose, we implemented Sp(2N) gauge theories using Monte Carlo techniques within Grid, a performant framework designed for the numerical study of quantum field theories on the lattice. We show the first results obtained using this library, focusing on the case-study provided by the Sp(4) theory coupled to Nas = 4 Wilson-Dirac fermions transforming in the 2-index antisymmetric representation. In particular, we discuss preliminary tests of the algorithm and we test some of its main functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02111v1-abstract-full').style.display = 'none'; document.getElementById('2310.02111v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, contribution for the 40th International Symposium on Lattice Field Theory (Lattice 2023), July 31st - August 4th, 2023, Fermi National Accelerator Laboratory, presenting the results of the paper: arXiv:2306.11649</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-23/A03, CTPU-PTC-23-26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11649">arXiv:2306.11649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11649">pdf</a>, <a href="https://arxiv.org/format/2306.11649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Symplectic lattice gauge theories on Grid: approaching the conformal window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lenz%2C+J">Julian Lenz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11649v3-abstract-short" style="display: inline;"> Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compell&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11649v3-abstract-full').style.display = 'inline'; document.getElementById('2306.11649v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11649v3-abstract-full" style="display: none;"> Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compelling research aim is the determination of the extent of the conformal window in gauge theories with symplectic groups coupled to matter, for different groups and for field content consisting of fermions transforming in different representations. Such determination would have far-reaching implications, but requires overcoming huge technical challenges. Numerical studies based on lattice field theory can provide the quantitative information necessary to this endeavour. We developed new software to implement symplectic groups in the Monte Carlo algorithms within the Grid framework. In this paper, we focus most of our attention on the Sp(4) lattice gauge theory coupled to four (Wilson-Dirac) fermions transforming in the 2-index antisymmetric representation, as a case study. We discuss an extensive catalogue of technical tests of the algorithms and present preliminary measurements to set the stage for future large-scale numerical investigations. We also include the scan of parameter space of all asymptotically free Sp(4) lattice gauge theories coupled to varying number of fermions transforming in the antisymmetric representation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11649v3-abstract-full').style.display = 'none'; document.getElementById('2306.11649v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 16 figures. Version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-23/A03, CTPU-PTC-23-26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01070">arXiv:2304.01070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01070">pdf</a>, <a href="https://arxiv.org/format/2304.01070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> $Sp(2N)$ Lattice Gauge Theories and Extensions of the Standard Model of Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01070v2-abstract-short" style="display: inline;"> We review the current status of the long-term programme of numerical investigation of $Sp(2N)$ gauge theories with and without fermionic matter content. We start by introducing the phenomenological as well as theoretical motivations for this research programme, which are related to composite Higgs models, models of partial top compositeness, dark matter models, and in general to the physics of str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01070v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01070v2-abstract-full" style="display: none;"> We review the current status of the long-term programme of numerical investigation of $Sp(2N)$ gauge theories with and without fermionic matter content. We start by introducing the phenomenological as well as theoretical motivations for this research programme, which are related to composite Higgs models, models of partial top compositeness, dark matter models, and in general to the physics of strongly coupled theories and their approach to the large-N limit. We summarise the results of lattice studies conducted so far in the $Sp(2N)$ Yang-Mills theories, measuring the string tension, the mass spectrum of glueballs and the topological susceptibility, and discuss their large-N extrapolation. We then focus our discussion on $Sp(4)$, and summarise numerical measurements of mass and decay constant of mesons in the theories with fermion matter in either the fundamental or the antisymmetric representation, first in the quenched approximation, and then with dynamical fermions. We finally discuss the case of dynamical fermions in mixed representations, and exotic composite fermion states such as the chimera baryons. We conclude by sketching the future stages of the programme. And we describe our approach to open access. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01070v2-abstract-full').style.display = 'none'; document.getElementById('2304.01070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">75 pages, 22 figures, 3 tables; contribution to the special issue of Universe &#34;Numerical Studies of Strongly Coupled Gauge Theories (SCGTs) in the Search of New Physics&#34;; version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-23-09, PNUTP-23/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17009">arXiv:2211.17009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.17009">pdf</a>, <a href="https://arxiv.org/format/2211.17009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Progress in calculation of the fourth Mellin moment of the pion light-cone distribution amplitude using the HOPE method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17009v1-abstract-short" style="display: inline;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for the calculation of high-energy exclusive processes in quantum chromodynamics. This article describes the progress in the lattice QCD calculation of the fourth Mellin moment of the pion LCDA using a heavy-quark operator product expansion (HOPE). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17009v1-abstract-full" style="display: none;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for the calculation of high-energy exclusive processes in quantum chromodynamics. This article describes the progress in the lattice QCD calculation of the fourth Mellin moment of the pion LCDA using a heavy-quark operator product expansion (HOPE). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17009v1-abstract-full').style.display = 'none'; document.getElementById('2211.17009v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, contribution to the proceedings of the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5501 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09262">arXiv:2211.09262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09262">pdf</a>, <a href="https://arxiv.org/format/2211.09262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202227408005">10.1051/epjconf/202227408005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite dynamics in Sp($2N$) gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09262v1-abstract-short" style="display: inline;"> Sp($2N$) gauge theories with fermonic matter provide an ideal laboratory to build extensions of the standard model based on novel composite dynamics. Examples include composite Higgs along with top partial compositeness and composite dark matter. Without fermions, their study also complements those based on SU($N_c$) gauge theories with which they share a common sector in the large $N_c=2N$ limit.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09262v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09262v1-abstract-full" style="display: none;"> Sp($2N$) gauge theories with fermonic matter provide an ideal laboratory to build extensions of the standard model based on novel composite dynamics. Examples include composite Higgs along with top partial compositeness and composite dark matter. Without fermions, their study also complements those based on SU($N_c$) gauge theories with which they share a common sector in the large $N_c=2N$ limit. We report on our recent progress in the numerical studies of Sp($2N$) gauge theories discretised on a four-dimensional Euclidean lattice. In particular, we present preliminary results for the low-lying mass spectra of mesons and chimera baryons in the theories with $N=2$. We also compute the topological susceptibility for various values of $N$, extrapolate the results to the large $N$ limit, and discuss certain universal properties in Yang-Mills theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09262v1-abstract-full').style.display = 'none'; document.getElementById('2211.09262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, Contribution to the proceedings of the 15th Quark Confinement and the Hadron Spectrum conference (ConfXV), 1st-6th August 2022, Stavanger, Norway</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A07 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.03955">arXiv:2211.03955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.03955">pdf</a>, <a href="https://arxiv.org/format/2211.03955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of chimera baryons in a $Sp(4)$ lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.03955v2-abstract-short" style="display: inline;"> Chimera baryons are an important element of strongly coupled theories that provide a microscopic origin for UV complete composite Higgs models (CHMs), since they play the role of top partners in top partial compositeness. In a particular interesting realisation of CHMs based upon an underlying $Sp(4)$ gauge theory, such exotic objects are composed of two fermion constituents transforming on the fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03955v2-abstract-full').style.display = 'inline'; document.getElementById('2211.03955v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.03955v2-abstract-full" style="display: none;"> Chimera baryons are an important element of strongly coupled theories that provide a microscopic origin for UV complete composite Higgs models (CHMs), since they play the role of top partners in top partial compositeness. In a particular interesting realisation of CHMs based upon an underlying $Sp(4)$ gauge theory, such exotic objects are composed of two fermion constituents transforming on the fundamental, and one on the 2-index antisymmetric representations. We perform lattice computations of the chimera baryon spectrum in the quenched approximation. We present preliminary results for the masses of various chimera baryons with different quantum numbers, including the one interpreted as the top partner. We test the technology needed for future calculations with dynamical fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03955v2-abstract-full').style.display = 'none'; document.getElementById('2211.03955v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, contribution to the proceedings of the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8th-13th August 2022, Bonn, Germany. Minor changes: two references included, clarification of the choice of the top partner</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02370">arXiv:2211.02370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.02370">pdf</a>, <a href="https://arxiv.org/format/2211.02370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Topological susceptibility, scale setting and universality from $Sp(N_c)$ gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02370v1-abstract-short" style="display: inline;"> In this contribution, we report on our study of the properties of the Wilson flow and on the calculation of the topological susceptibility of $Sp(N_c)$ gauge theories for $N_c=2,\,4,\,6,\,8$. The Wilson flow is shown to scale according to the quadratic Casimir operator of the gauge group, as was already observed for $SU(N_c)$, and the commonly used scales $t_0$ and $w_0$ are obtained for a large i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02370v1-abstract-full').style.display = 'inline'; document.getElementById('2211.02370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02370v1-abstract-full" style="display: none;"> In this contribution, we report on our study of the properties of the Wilson flow and on the calculation of the topological susceptibility of $Sp(N_c)$ gauge theories for $N_c=2,\,4,\,6,\,8$. The Wilson flow is shown to scale according to the quadratic Casimir operator of the gauge group, as was already observed for $SU(N_c)$, and the commonly used scales $t_0$ and $w_0$ are obtained for a large interval of the inverse coupling for each probed value of $N_c$. The continuum limit of the topological susceptibility is computed and we conjecture that it scales with the dimension of the group. The lattice measurements performed in the $SU(N_c)$ Yang-Mills theories by several independent collaborations allow us to test this conjecture and to obtain a universal large-$N_c$ limit of the rescaled topological susceptibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02370v1-abstract-full').style.display = 'none'; document.getElementById('2211.02370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Proceeding for the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09855">arXiv:2210.09855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09855">pdf</a>, <a href="https://arxiv.org/format/2210.09855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of SU(2) gauge theories with multiple Higgs fields in different representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Catumba%2C+G">Guilherme Catumba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hiraguchi%2C+A">Atsuki Hiraguchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hou%2C+G+W+-">George W. -S. Hou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ramos%2C+A">Alberto Ramos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sarkar%2C+M">Mugdha Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09855v1-abstract-short" style="display: inline;"> We study two different SU(2) gauge-scalar theories in 3 and 4 spacetime dimensions. Firstly, we focus on the 3 dimensional SU(2) theory with multiple Higgs fields in the adjoint representation, that can be mapped to cuprate systems in condensed matter physics which host a rich phase diagram including high-Tc superconductivity. It has been proposed that the theory with 4 adjoint Higgs fields can be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09855v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09855v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09855v1-abstract-full" style="display: none;"> We study two different SU(2) gauge-scalar theories in 3 and 4 spacetime dimensions. Firstly, we focus on the 3 dimensional SU(2) theory with multiple Higgs fields in the adjoint representation, that can be mapped to cuprate systems in condensed matter physics which host a rich phase diagram including high-Tc superconductivity. It has been proposed that the theory with 4 adjoint Higgs fields can be used to explain the physics of hole-doped cuprates for a wide range of parameters. We show exploratory results on the phase diagram of the theory. On the other hand, we are interested in the 4 dimensional theory with 2 sets of fundamental scalar (Higgs) fields, which is relevant to the 2 Higgs Doublet Model (2HDM), a proposed extension to the Standard Model of particle physics. The goal is to understand the particle spectrum of the theory at zero temperature and the electroweak phase transition at finite temperature. We present exploratory results on scale setting and the multi-parameter phase diagram of this theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09855v1-abstract-full').style.display = 'none'; document.getElementById('2210.09855v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, Proceedings of the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08154">arXiv:2210.08154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08154">pdf</a>, <a href="https://arxiv.org/format/2210.08154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of $Sp(4)$ lattice gauge theory with $n_f=3$ antisymmetric fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08154v1-abstract-short" style="display: inline;"> We perform numerical calculations of masses and decay constants of the lightest (flavoured) pseudoscalar, vector and axial vector mesons in the $Sp(4)$ lattice gauge theory with three Dirac fermions in the antisymmetric representation. The corresponding continuum theory plays an important role in certain ultra-violet complete realisations of composite Higgs, partial top compositeness, and composit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08154v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08154v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08154v1-abstract-full" style="display: none;"> We perform numerical calculations of masses and decay constants of the lightest (flavoured) pseudoscalar, vector and axial vector mesons in the $Sp(4)$ lattice gauge theory with three Dirac fermions in the antisymmetric representation. The corresponding continuum theory plays an important role in certain ultra-violet complete realisations of composite Higgs, partial top compositeness, and composite dark matter models. In addition, we measure the masses of other flavoured mesons in spin-$0$ and $1$ channels, as well as the first excited state of the vector mesons. Using the gradient flow to set the scale, we carry out the continuum extrapolation and show preliminary results for the meson spectrum of the theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08154v1-abstract-full').style.display = 'none'; document.getElementById('2210.08154v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 Table, Proceedings of the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A06 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09364">arXiv:2205.09364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09364">pdf</a>, <a href="https://arxiv.org/format/2205.09364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.094503">10.1103/PhysRevD.106.094503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $Sp(2N)$ Yang-Mills theories on the lattice: scale setting and topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09364v4-abstract-short" style="display: inline;"> We study Yang-Mills lattice theories with $Sp(N_c)$ gauge group, with $N_c=2N$, for $N=1,\,\cdots,\,4$. We show that if we divide the renormalised couplings appearing in the Wilson flow by the quadratic Casimir $C_2(F)$ of the $Sp(N_c)$ group, then the resulting quantities display a good agreement among all values of $N_c$ considered, over a finite interval in flow time. We use this scaled version&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09364v4-abstract-full').style.display = 'inline'; document.getElementById('2205.09364v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09364v4-abstract-full" style="display: none;"> We study Yang-Mills lattice theories with $Sp(N_c)$ gauge group, with $N_c=2N$, for $N=1,\,\cdots,\,4$. We show that if we divide the renormalised couplings appearing in the Wilson flow by the quadratic Casimir $C_2(F)$ of the $Sp(N_c)$ group, then the resulting quantities display a good agreement among all values of $N_c$ considered, over a finite interval in flow time. We use this scaled version of the Wilson flow as a scale-setting procedure, compute the topological susceptibility of the $Sp(N_c)$ theories, and extrapolate the results to the continuum limit for each $N_c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09364v4-abstract-full').style.display = 'none'; document.getElementById('2205.09364v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures. v4: Typos corrected in eq. 35, Figures 3 and 4. Results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09254">arXiv:2205.09254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09254">pdf</a>, <a href="https://arxiv.org/format/2205.09254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137504">10.1016/j.physletb.2022.137504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Color dependence of the topological susceptibility in Yang-Mills theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09254v3-abstract-short" style="display: inline;"> For Yang-Mills theories in four dimensions, we propose to rescale the ratio between topological susceptibility and string tension squared in a universal way, dependent only on group factors. We apply this suggestion to $SU(N_c)$ and $Sp(N_c)$ groups, and compare lattice measurements performed by several independent collaborations. We show that the two sequences of (rescaled) numerical results in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09254v3-abstract-full').style.display = 'inline'; document.getElementById('2205.09254v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09254v3-abstract-full" style="display: none;"> For Yang-Mills theories in four dimensions, we propose to rescale the ratio between topological susceptibility and string tension squared in a universal way, dependent only on group factors. We apply this suggestion to $SU(N_c)$ and $Sp(N_c)$ groups, and compare lattice measurements performed by several independent collaborations. We show that the two sequences of (rescaled) numerical results in these two families of groups are compatible with each other. We hence perform a combined fit, and extrapolate to the common large-$N_c$ limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09254v3-abstract-full').style.display = 'none'; document.getElementById('2205.09254v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures; v2 minor change, a reference added; v3. minor changes to match the version accepted in PLB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05516">arXiv:2202.05516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05516">pdf</a>, <a href="https://arxiv.org/format/2202.05516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.014501">10.1103/PhysRevD.106.014501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice studies of the $Sp(4)$ gauge theory with two fundamental and three antisymmetric Dirac fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05516v3-abstract-short" style="display: inline;"> We consider the $Sp(4)$ gauge theory coupled to $N_f=2$ fundamental and $n_f=3$ antisymmetric flavours of Dirac fermions in four dimensions. This theory serves as the microscopic origin for composite Higgs models with $SU(4)/Sp(4)$ coset, supplemented by partial top compositeness. We study numerically its lattice realisation, and couple the fundamental plaquette action to Wilson-Dirac fermions in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05516v3-abstract-full').style.display = 'inline'; document.getElementById('2202.05516v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05516v3-abstract-full" style="display: none;"> We consider the $Sp(4)$ gauge theory coupled to $N_f=2$ fundamental and $n_f=3$ antisymmetric flavours of Dirac fermions in four dimensions. This theory serves as the microscopic origin for composite Higgs models with $SU(4)/Sp(4)$ coset, supplemented by partial top compositeness. We study numerically its lattice realisation, and couple the fundamental plaquette action to Wilson-Dirac fermions in mixed representations, by adopting a (rational) hybrid Monte Carlo method, to perform non-trivial tests of the properties of the resulting lattice theory. We find evidence of a surface (with boundaries) of first-order bulk phase transitions in the three-dimensional space of bare parameters (one coupling and two masses). Explicit evaluation of the Dirac eigenvalues confirms the expected patterns of global symmetry breaking. After investigating finite volume effects in the weak-coupling phase of the theory, for the largest available lattice we study the mass spectra of the lightest spin-0 and spin-1 flavoured mesons composed of fermions in each representation, and of the lightest half-integer spin composite particle made of fermions in different representations -- the chimera baryon. This work sets the stage for future systematical studies of the non-perturbative dynamics in phenomenologically relevant regions of parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05516v3-abstract-full').style.display = 'none'; document.getElementById('2202.05516v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 20 figures, 6 tables; minor improvements and references added; version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14563">arXiv:2111.14563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14563">pdf</a>, <a href="https://arxiv.org/format/2111.14563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Progress in the determination of Mellin moments of the pion LCDA using the HOPE method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14563v1-abstract-short" style="display: inline;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for the calculation of high-energy exclusive processes in quantum chromodynamics. In this article, we discuss the calculation of the second and fourth Mellin moment of the pion LCDA using a heavy-quark operator product expansion. The resulting value for the second Mellin moment is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14563v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14563v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14563v1-abstract-full" style="display: none;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for the calculation of high-energy exclusive processes in quantum chromodynamics. In this article, we discuss the calculation of the second and fourth Mellin moment of the pion LCDA using a heavy-quark operator product expansion. The resulting value for the second Mellin moment is $ \langle{ 尉^2 }\rangle(渭= 2~\text{GeV})= 0.210 \pm 0.013\text{ (stat.)} \pm 0.034\text{ (sys.)}$. This result is compatible with those from previous determinations of this quantity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14563v1-abstract-full').style.display = 'none'; document.getElementById('2111.14563v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 Figures, 3 Tables; Talk presented at The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5369 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14544">arXiv:2111.14544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14544">pdf</a>, <a href="https://arxiv.org/format/2111.14544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Progress in $Sp(2N)$ lattice gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14544v1-abstract-short" style="display: inline;"> Lattice studies of gauge theories with symplectic gauge groups provide valuable information about gauge dynamics, and complement the results of lattice investigations focused on unitary gauge groups. These theories play a central role in phenomenological contexts such as composite Higgs and strongly interacting dark matter models. We report on recent progress of our lattice research programme, sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14544v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14544v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14544v1-abstract-full" style="display: none;"> Lattice studies of gauge theories with symplectic gauge groups provide valuable information about gauge dynamics, and complement the results of lattice investigations focused on unitary gauge groups. These theories play a central role in phenomenological contexts such as composite Higgs and strongly interacting dark matter models. We report on recent progress of our lattice research programme, starting from the glueball mass spectrum and the topology of the pure gauge theory. We present our results on the mass spectrum of mesons in the quenched approximation, by varying the number of colours in the symplectic group. For the $Sp(4)$ theory, we focus on results obtained with dynamical fermion matter content comprising both fundamental and 2-index antisymmetric representations of the gauge group, as dictated by a well known model of composite Higgs with partial top compositeness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14544v1-abstract-full').style.display = 'none'; document.getElementById('2111.14544v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 29 figures, 5 tables, combined proceedings of the 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-21/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12125">arXiv:2111.12125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12125">pdf</a>, <a href="https://arxiv.org/format/2111.12125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202225808003">10.1051/epjconf/202225808003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sp(4) gauge theories and beyond the standard model physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12125v2-abstract-short" style="display: inline;"> We review numerical results for models with gauge group Sp(2N), discussing the glueball spectrum in the large-N limit, the quenched meson spectrum of Sp(4) with Dirac fermions in the fundamental and in the antisymmetric representation and the Sp(4) gauge model with two dynamical Dirac flavours. We also present preliminary results for the meson spectrum in the Sp(4) gauge theory with two fundamenta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12125v2-abstract-full').style.display = 'inline'; document.getElementById('2111.12125v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12125v2-abstract-full" style="display: none;"> We review numerical results for models with gauge group Sp(2N), discussing the glueball spectrum in the large-N limit, the quenched meson spectrum of Sp(4) with Dirac fermions in the fundamental and in the antisymmetric representation and the Sp(4) gauge model with two dynamical Dirac flavours. We also present preliminary results for the meson spectrum in the Sp(4) gauge theory with two fundamental and three antisymmetric Dirac flavours. The main motivation of our programme is to test whether this latter model is viable as a realisation of Higgs compositeness via the pseudo Nambu Goldstone mechanism and at the same time can provide partial top compositeness. In this respect, we report and briefly discuss preliminary results for the mass of the composite baryon made with two fundamental and one antisymmetric fermion (chimera baryon), whose physical properties are highly constrained if partial top compositeness is at work. Our investigation shows that a fully non-perturbative study of Higgs compositeness and partial top compositeness in Sp(4) is within reach with our current lattice methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12125v2-abstract-full').style.display = 'none'; document.getElementById('2111.12125v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected notations in Eq. 1 and redrawn Fig 2, results unchanged; 8 pages, 4 figures, contribution to the proceedings of A Virtual Tribute to Quark Confinement and the Hadron Spectrum (vConf21), August 2nd-6th 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.15241">arXiv:2109.15241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.15241">pdf</a>, <a href="https://arxiv.org/format/2109.15241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.034506">10.1103/PhysRevD.105.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton physics from a heavy-quark operator product expansion: Lattice QCD calculation of the second moment of the pion distribution amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A">Anthony Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R">Robert Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.15241v3-abstract-short" style="display: inline;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for high-energy exclusive processes in quantum chromodynamics. In this article, the second Mellin moment of the pion LCDA is determined as a proof-of-concept calculation for the first numerical implementation of the heavy-quark operator product expansion (HOPE) method. The resulting value for the sec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15241v3-abstract-full').style.display = 'inline'; document.getElementById('2109.15241v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.15241v3-abstract-full" style="display: none;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for high-energy exclusive processes in quantum chromodynamics. In this article, the second Mellin moment of the pion LCDA is determined as a proof-of-concept calculation for the first numerical implementation of the heavy-quark operator product expansion (HOPE) method. The resulting value for the second Mellin moment, determined in quenched QCD at a pion mass of $m_蟺=550$ MeV at a factorization scale of 2 GeV is $ \langle 尉^2 \rangle = 0.210 \pm 0.013\text{ (stat.)} \pm 0.034\text{ (sys.)}$. This result is compatible with those from previous determinations of this quantity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15241v3-abstract-full').style.display = 'none'; document.getElementById('2109.15241v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5330 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 034506 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09529">arXiv:2103.09529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09529">pdf</a>, <a href="https://arxiv.org/format/2103.09529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074511">10.1103/PhysRevD.104.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton physics from a heavy-quark operator product expansion: Formalism and Wilson coefficients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09529v3-abstract-short" style="display: inline;"> Parton distribution functions (PDFs) and light-cone distribution amplitudes (LCDAs) are central non-perturbative objects of interest in high-energy inelastic and elastic scattering, respectively. As a result, an ab-initio determination of these objects is highly desirable. In this paper we present theoretical details for the calculation of the PDFs and LCDAs using a heavy-quark operator product ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09529v3-abstract-full').style.display = 'inline'; document.getElementById('2103.09529v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09529v3-abstract-full" style="display: none;"> Parton distribution functions (PDFs) and light-cone distribution amplitudes (LCDAs) are central non-perturbative objects of interest in high-energy inelastic and elastic scattering, respectively. As a result, an ab-initio determination of these objects is highly desirable. In this paper we present theoretical details for the calculation of the PDFs and LCDAs using a heavy-quark operator product expansion method. This strategy was proposed in a previous paper [Phys. Rev. D 73, 014501 (2006)] for computing higher moments of the PDFs using lattice QCD. Its central feature is the introduction of a fictitious, valence heavy quark. In the current article, we show that the operator product expansion (OPE) of the hadronic matrix element we study can also be expressed as the convolution of a perturbative matching kernel and the corresponding light-cone distribution, which in principle can be inverted to determine the parton momentum fraction dependence. Regarding the extraction of higher moments, this work also provides the one-loop Wilson coefficients in the OPE formulas for the unpolarized PDF, helicity PDF and pseudo-scalar meson LCDAs. Although these Wilson coefficients for the PDFs can be inferred from existing results in the literature, those for the LCDAs are new. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09529v3-abstract-full').style.display = 'none'; document.getElementById('2103.09529v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures; Text updated to be consistent with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5294 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 074511 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.15781">arXiv:2010.15781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.15781">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054509">10.1103/PhysRevD.103.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueballs and Strings in $Sp(2N)$ Yang-Mills theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.15781v3-abstract-short" style="display: inline;"> Motivated in part by the pseudo-Nambu Goldstone Boson mechanism of electroweak symmetry breaking in Composite Higgs Models, in part by dark matter scenarios with strongly coupled origin, as well as by general theoretical considerations related to the large-N extrapolation, we perform lattice studies of the Yang-Mills theories with $Sp(2N)$ gauge groups. We measure the string tension and the mass s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15781v3-abstract-full').style.display = 'inline'; document.getElementById('2010.15781v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.15781v3-abstract-full" style="display: none;"> Motivated in part by the pseudo-Nambu Goldstone Boson mechanism of electroweak symmetry breaking in Composite Higgs Models, in part by dark matter scenarios with strongly coupled origin, as well as by general theoretical considerations related to the large-N extrapolation, we perform lattice studies of the Yang-Mills theories with $Sp(2N)$ gauge groups. We measure the string tension and the mass spectrum of glueballs, extracted from appropriate 2-point correlation functions of operators organised as irreducible representations of the octahedral symmetry group. We perform the continuum extrapolation and study the magnitude of finite-size effects, showing that they are negligible in our calculation. We present new numerical results for $N=1$, $2$, $3$, $4$, combine them with data previously obtained for $N=2$, and extrapolate towards $N\rightarrow \infty$. We confirm explicitly the expectation that, as already known for $N=1,2$ also for $N=3,4$ a confining potential rising linearly with the distance binds a static quark to its antiquark. We compare our results to the existing literature on other gauge groups, with particular attention devoted to the large-$N$ limit. We find agreement with the known values of the mass of the $0^{++}$, $0^{++*}$ and $2^{++}$ glueballs obtained taking the large-$N$ limit in the $SU(N)$ groups. In addition, we determine for the first time the mass of some heavier glueball states at finite $N$ in $Sp(2N)$ and extrapolate the results towards $N \rightarrow +\infty$ taking the limit in the latter groups. Since the large-$N$ limit of $Sp(2N)$ is the same as in $SU(N)$, our results are relevant also for the study of QCD-like theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15781v3-abstract-full').style.display = 'none'; document.getElementById('2010.15781v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 21 figures, 23 tables. References added. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054509 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.09473">arXiv:2009.09473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.09473">pdf</a>, <a href="https://arxiv.org/format/2009.09473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> A Preliminary Determination of the Second Mellin Moment of the Pion&#39;s Distribution Amplitude Using the Heavy Quark Operator Product Expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.09473v2-abstract-short" style="display: inline;"> We explore the feasibility of determining Mellin moments of the pion&#39;s light cone distribution amplitude using the heavy quark operator product expansion (HOPE) method. As the first step of a proof of principle study we pursue a determination of the second Mellin moment. We discuss our choice of kinematics which allows us to successfully extract the moment at low pion momentum. We describe the num&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09473v2-abstract-full').style.display = 'inline'; document.getElementById('2009.09473v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.09473v2-abstract-full" style="display: none;"> We explore the feasibility of determining Mellin moments of the pion&#39;s light cone distribution amplitude using the heavy quark operator product expansion (HOPE) method. As the first step of a proof of principle study we pursue a determination of the second Mellin moment. We discuss our choice of kinematics which allows us to successfully extract the moment at low pion momentum. We describe the numerical simulation, and describe the data analysis, which leads us to a preliminary determination of the second Mellin moment in the continuum limit in the quenched approximation as $\langle尉^2\rangle=0.19(7)$ in the $\bar{\text{MS}}$ scheme at 2 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09473v2-abstract-full').style.display = 'none'; document.getElementById('2009.09473v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures. Contribution to the proceedings of the 2020 Asia-Pacific Symposium on Lattice Field Theory (APLAT 2020). Several citations and additional affiliation added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5236 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11063">arXiv:2004.11063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.11063">pdf</a>, <a href="https://arxiv.org/format/2004.11063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.011501">10.1103/PhysRevD.102.011501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Color dependence of tensor and scalar glueball masses in Yang-Mills theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11063v2-abstract-short" style="display: inline;"> We report the masses of the lightest spin-0 and spin-2 glueballs obtained in an extensive lattice study of the continuum and infinite volume limits of $Sp(N_c)$ gauge theories for $N_c=2,4,6,8$. We also extrapolate the combined results towards the large-$N_c$ limit. We compute the ratio of scalar and tensor masses, and observe evidence that this ratio is independent of $N_{c}$. Other lattice studi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11063v2-abstract-full').style.display = 'inline'; document.getElementById('2004.11063v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11063v2-abstract-full" style="display: none;"> We report the masses of the lightest spin-0 and spin-2 glueballs obtained in an extensive lattice study of the continuum and infinite volume limits of $Sp(N_c)$ gauge theories for $N_c=2,4,6,8$. We also extrapolate the combined results towards the large-$N_c$ limit. We compute the ratio of scalar and tensor masses, and observe evidence that this ratio is independent of $N_{c}$. Other lattice studies of Yang-Mills theories at the same space-time dimension provide a compatible ratio. We further compare these results to various analytical ones and discuss them in view of symmetry-based arguments related to the breaking of scale invariance in the underlying dynamics, showing that a constant ratio might emerge in a scenario in which the $0^{++}$ glueball is interpreted as a dilaton state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11063v2-abstract-full').style.display = 'none'; document.getElementById('2004.11063v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure: v2. minor changes in Sp(4) data and the title, to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-20/A02 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 011501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.09788">arXiv:1912.09788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.09788">pdf</a>, <a href="https://arxiv.org/format/1912.09788">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> $Sp(2N)$ Yang-Mills towards large $N$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.09788v2-abstract-short" style="display: inline;"> Non-perturbative aspects of the physics of $Sp(2N)$ gauge theories are interesting for phenomenological and theoretical reasons, and little studied so far, particularly in the approach to the large-$N$ limit. We examine the spectrum of glueballs and the string tension of Yang-Mills theories based upon these groups. Glueball masses are calculated numerically with a variational method from Monte-Car&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09788v2-abstract-full').style.display = 'inline'; document.getElementById('1912.09788v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.09788v2-abstract-full" style="display: none;"> Non-perturbative aspects of the physics of $Sp(2N)$ gauge theories are interesting for phenomenological and theoretical reasons, and little studied so far, particularly in the approach to the large-$N$ limit. We examine the spectrum of glueballs and the string tension of Yang-Mills theories based upon these groups. Glueball masses are calculated numerically with a variational method from Monte-Carlo generated lattice gauge configurations. After taking continuum limits for $N$ = 1, 2, 3 and 4, we extrapolate the results towards large $N$. We compare the resulting spectrum with that of $SU(N)$ gauge theories, both at finite $N$ and as $N$ approaches infinity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09788v2-abstract-full').style.display = 'none'; document.getElementById('1912.09788v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+6 pages. 2 figures. Proceedings of the 37th International Symposium on Lattice Field Theory - Lattice 2019, Wuhan (China) V2: typo in list of authors has been corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-19/A04 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07343">arXiv:1912.07343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07343">pdf</a>, <a href="https://arxiv.org/format/1912.07343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.363.0022">10.22323/1.363.0022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase structure and real-time dynamics of the massive Thirring model in 1+1 dimensions using the tensor-network method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ba%C3%B1uls%2C+M+C">Mari Carmen Ba帽uls</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hung%2C+H">Hao-Ti Hung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yu-Ping Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+D+T+-">David T. -L. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07343v1-abstract-short" style="display: inline;"> We present concluding results from our study for zero-temperature phase structure of the massive Thirring model in 1+1 dimensions with staggered regularisation. Employing the method of matrix product states, several quantities, including two types of correlators, are investigated, leading to numerical evidence of a Berezinskii-Kosterlitz-Thouless phase transition. Exploratory results for real-time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07343v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07343v1-abstract-full" style="display: none;"> We present concluding results from our study for zero-temperature phase structure of the massive Thirring model in 1+1 dimensions with staggered regularisation. Employing the method of matrix product states, several quantities, including two types of correlators, are investigated, leading to numerical evidence of a Berezinskii-Kosterlitz-Thouless phase transition. Exploratory results for real-time dynamics pertaining to this transition, obtained using the approaches of variational uniform matrix product state and time-dependent variational principle, are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07343v1-abstract-full').style.display = 'none'; document.getElementById('1912.07343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, contribution to the 37th International Symposium on Lattice Field Theory (LATTICE2019), 16-22 June 2019, Wuhan, China</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06505">arXiv:1912.06505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.06505">pdf</a>, <a href="https://arxiv.org/format/1912.06505">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.074516">10.1103/PhysRevD.101.074516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sp(4) gauge theories on the lattice: Quenched fundamental and antisymmetric fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rantaharju%2C+J">Jarno Rantaharju</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06505v2-abstract-short" style="display: inline;"> We perform lattice studies of meson mass spectra and decay constants of the $Sp(4)$ gauge theory in the quenched approximation. We consider two species of (Dirac) fermions as matter field content, transforming in the 2-index antisymmetric and the fundamental representation of the gauge group, respectively. All matter fields are formulated as Wilson fermions. We extrapolate to the continuum and mas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06505v2-abstract-full').style.display = 'inline'; document.getElementById('1912.06505v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06505v2-abstract-full" style="display: none;"> We perform lattice studies of meson mass spectra and decay constants of the $Sp(4)$ gauge theory in the quenched approximation. We consider two species of (Dirac) fermions as matter field content, transforming in the 2-index antisymmetric and the fundamental representation of the gauge group, respectively. All matter fields are formulated as Wilson fermions. We extrapolate to the continuum and massless limits, and compare to each other the results obtained for the two species of mesons. In the case of two fundamental and three antisymmetric fermions, the long-distance dynamics is relevant for composite Higgs models. This is the first lattice study of this class of theories. The global $SU(4) \times SU(6)$ symmetry is broken to the $Sp(4) \times SO(6)$ subgroup, and the condensates align with the explicit mass terms present in the lattice formulation of the theory. The main results of our quenched calculations are that, with fermions in the 2-index antisymmetric representation of the group, the masses squared and decay constant squared of all the mesons we considered are larger than the corresponding quantities for the fundamental representation, by factors that vary between $\sim$1.2 and $\sim$2.7. We also present technical results that will be useful for future lattice investigations of dynamical simulations, of composite chimera baryons, and of the approach to large $N$ in the $Sp(2N)$ theories considered. We briefly discuss their high-temperature behaviour, where symmetry restoration and enhancement are expected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06505v2-abstract-full').style.display = 'none'; document.getElementById('1912.06505v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 11 figures, 20 tables; Version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-19/A03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 074516 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01489">arXiv:1912.01489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01489">pdf</a>, <a href="https://arxiv.org/ps/1912.01489">ps</a>, <a href="https://arxiv.org/format/1912.01489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chiral Condensate and Susceptibility of SU(2) $n_f=8$ Naive Staggered System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01489v1-abstract-short" style="display: inline;"> The SU(2) gauge theory with 8 fundamental fermions is studied using unimproved staggered regularization. A phase transition or a crossover at strong coupling, which can be a bulk transition. By using chiral random matrix model we analyze the chiral condensate of this system. We also report the chiral susceptibility and its volume dependence near the transition point. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01489v1-abstract-full" style="display: none;"> The SU(2) gauge theory with 8 fundamental fermions is studied using unimproved staggered regularization. A phase transition or a crossover at strong coupling, which can be a bulk transition. By using chiral random matrix model we analyze the chiral condensate of this system. We also report the chiral susceptibility and its volume dependence near the transition point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01489v1-abstract-full').style.display = 'none'; document.getElementById('1912.01489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, talk presented at 37th International Symposium on Lattice Field Theory - Lattice2019, 16 - 22 June 2019, Wuhan, China</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.00437">arXiv:1911.00437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.00437">pdf</a>, <a href="https://arxiv.org/format/1911.00437">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Meson spectrum of Sp(4) lattice gauge theory with two fundamental Dirac fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.00437v1-abstract-short" style="display: inline;"> We calculate the meson spectrum of the Sp(4) lattice gauge theory coupled to two fundamental flavours of dynamical Dirac fermions. We focus on some of the lightest (flavoured) spin-0 and spin-1 states. This theory provides an ultraviolet completion for composite Higgs models based upon the SU(4)/Sp(4) coset. We analyse the strongly coupled dynamics in isolation, without explicit coupling to the st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00437v1-abstract-full').style.display = 'inline'; document.getElementById('1911.00437v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.00437v1-abstract-full" style="display: none;"> We calculate the meson spectrum of the Sp(4) lattice gauge theory coupled to two fundamental flavours of dynamical Dirac fermions. We focus on some of the lightest (flavoured) spin-0 and spin-1 states. This theory provides an ultraviolet completion for composite Higgs models based upon the SU(4)/Sp(4) coset. We analyse the strongly coupled dynamics in isolation, without explicit coupling to the standard model. We carry out continuum extrapolations using dynamical ensembles generated at five different values of bare lattice coupling, and for several values of the bare fermion mass. We fit the resulting meson masses and decay constants to a low-energy effective field theory built along the ideas of hidden local symmetry. We also compare our results to those of other closely related lattice gauge theories, which have matter content consisting of two fundamental Dirac flavours. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00437v1-abstract-full').style.display = 'none'; document.getElementById('1911.00437v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 table, 4 figures, Contribution to the 37th International Symposium on Lattice Field Theory - LATTICE2019, 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-19/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.12662">arXiv:1909.12662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.12662">pdf</a>, <a href="https://arxiv.org/format/1909.12662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2019)053">10.1007/JHEP12(2019)053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sp(4) gauge theories on the lattice: $N_f=2$ dynamical fundamental fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.12662v2-abstract-short" style="display: inline;"> We perform lattice studies of the gauge theory with Sp(4) gauge group and two flavours of (Dirac) fundamental matter. The global SU(4) symmetry is spontaneously broken by the fermion condensate. The dynamical Wilson fermions in the lattice action introduce a mass that breaks the global symmetry also explicitly. The resulting pseudo-Nambu-Goldstone bosons describe the SU(4)/Sp(4) coset, and are rel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12662v2-abstract-full').style.display = 'inline'; document.getElementById('1909.12662v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.12662v2-abstract-full" style="display: none;"> We perform lattice studies of the gauge theory with Sp(4) gauge group and two flavours of (Dirac) fundamental matter. The global SU(4) symmetry is spontaneously broken by the fermion condensate. The dynamical Wilson fermions in the lattice action introduce a mass that breaks the global symmetry also explicitly. The resulting pseudo-Nambu-Goldstone bosons describe the SU(4)/Sp(4) coset, and are relevant, in the context of physics beyond the Standard Model, for composite Higgs models. We discuss scale setting, continuum extrapolation and finite volume effects in the lattice theory. We study mesonic composite states, which span representations of the unbroken Sp(4) global symmetry, and we measure masses and decay constants of the (flavoured) spin-0 and spin-1 states accessible to the numerical treatment, as a function of the fermion mass. With help from the effective field theory treatment of such mesons, we perform a first extrapolation towards the massless limit. We assess our results by critically comparing to the literature on other models and to the quenched results, and we conclude by outlining future avenues for further exploration. The results of our spectroscopic analysis provide new input data for future phenomenological studies in the contexts of composite Higgs models, and of dark matter models with a strongly coupled dynamical origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12662v2-abstract-full').style.display = 'none'; document.getElementById('1909.12662v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages, 23 figures, 13 tables; Revised version; Accepted for publication in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-19/A01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.04536">arXiv:1908.04536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.04536">pdf</a>, <a href="https://arxiv.org/format/1908.04536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.094504">10.1103/PhysRevD.100.094504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase structure of the 1+1 dimensional massive Thirring model from matrix product states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ba%C3%B1uls%2C+M+C">Mari Carmen Ba帽uls</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yu-Ping Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+D+T+-">David T. -L. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.04536v3-abstract-short" style="display: inline;"> Employing matrix product states as an ansatz, we study the non-thermal phase structure of the (1+1)-dimensional massive Thirring model in the sector of vanishing total fermion number with staggered regularization. In this paper, details of the implementation for this project are described. To depict the phase diagram of the model, we examine the entanglement entropy, the fermion bilinear condensat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04536v3-abstract-full').style.display = 'inline'; document.getElementById('1908.04536v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.04536v3-abstract-full" style="display: none;"> Employing matrix product states as an ansatz, we study the non-thermal phase structure of the (1+1)-dimensional massive Thirring model in the sector of vanishing total fermion number with staggered regularization. In this paper, details of the implementation for this project are described. To depict the phase diagram of the model, we examine the entanglement entropy, the fermion bilinear condensate and two types of correlation functions. Our investigation shows the existence of two phases, with one of them being critical and the other gapped. An interesting feature of the phase structure is that the theory with non-zero fermion mass can be conformal. We also find clear numerical evidence that these phases are separated by a transition of the Berezinskii-Kosterlitz-Thouless type. Results presented in this paper establish the possibility of using the matrix product states for probing this type of phase transition in quantum field theories. They can provide information for further exploration of scaling behaviour, and serve as an important ingredient for controlling the continuum extrapolation of the model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04536v3-abstract-full').style.display = 'none'; document.getElementById('1908.04536v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 18 figures; minor changes to the text, typos corrected, references added; version published in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 094504 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.08191">arXiv:1902.08191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.08191">pdf</a>, <a href="https://arxiv.org/ps/1902.08191">ps</a>, <a href="https://arxiv.org/format/1902.08191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7354-7">10.1140/epjc/s10052-019-7354-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FLAG Review 2019 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Becirevic%2C+D">D. Becirevic</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=D%C3%BCrr%2C+S">S. D眉rr</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fukaya%2C+H">H. Fukaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">R. Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Herdoiza%2C+G">G. Herdoiza</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaneko%2C+T">T. Kaneko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. D. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lunghi%2C+E">E. Lunghi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R">R. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">A. Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Onogi%2C+T">T. Onogi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pena%2C+C">C. Pena</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.08191v3-abstract-short" style="display: inline;"> We review lattice results related to pion, kaon, $D$-meson, $B$-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor $f_+(0)$ arising in the semileptonic $K \to 蟺$ transition at zero momentum transfer, as well as the decay constant ratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08191v3-abstract-full').style.display = 'inline'; document.getElementById('1902.08191v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.08191v3-abstract-full" style="display: none;"> We review lattice results related to pion, kaon, $D$-meson, $B$-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor $f_+(0)$ arising in the semileptonic $K \to 蟺$ transition at zero momentum transfer, as well as the decay constant ratio $f_K/f_蟺$ and its consequences for the CKM matrix elements $V_{us}$ and $V_{ud}$. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of $SU(2)_L\times SU(2)_R$ and $SU(3)_L\times SU(3)_R$ Chiral Perturbation Theory. We review the determination of the $B_K$ parameter of neutral kaon mixing as well as the additional four $B$ parameters that arise in theories of physics beyond the Standard Model. For the heavy-quark sector, we provide results for $m_c$ and $m_b$ as well as those for $D$- and $B$-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling constant $伪_s$. Finally, in this review we have added a new section reviewing results for nucleon matrix elements of the axial, scalar and tensor bilinears, both isovector and flavor diagonal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08191v3-abstract-full').style.display = 'none'; document.getElementById('1902.08191v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">458 pages, 46 figures, 209 tables, 1146 references. Minor changes, version as published in EPJC. arXiv admin note: substantial text overlap with arXiv:1607.00299, arXiv:1310.8555</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05667">arXiv:1811.05667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.05667">pdf</a>, <a href="https://arxiv.org/format/1811.05667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2019)110">10.1007/JHEP01(2019)110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite-size scaling for four-dimensional Higgs-Yukawa model near the Gaussian fixed point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chu%2C+D+Y+-">David Y. -J Chu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05667v2-abstract-short" style="display: inline;"> We analyse finite-size scaling behaviour of a four-dimensional Higgs-Yukawa model near the Gaussian infrared fixed point. Through improving the mean-field scaling laws by solving one-loop renormalisation group equations, the triviality property of this model can be manifested in the volume-dependence of moments of the scalar-field zero mode. The scaling formulae for the moments are derived in this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05667v2-abstract-full').style.display = 'inline'; document.getElementById('1811.05667v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05667v2-abstract-full" style="display: none;"> We analyse finite-size scaling behaviour of a four-dimensional Higgs-Yukawa model near the Gaussian infrared fixed point. Through improving the mean-field scaling laws by solving one-loop renormalisation group equations, the triviality property of this model can be manifested in the volume-dependence of moments of the scalar-field zero mode. The scaling formulae for the moments are derived in this work with the inclusion of the leading-logarithmic corrections. To test these formulae, we confront them with data from lattice simulations in a simpler model, namely the O(4) pure scalar theory, and find numerical evidence of good agreement. Our results of the finite-size scaling can in principle be employed to establish triviality of Higgs-Yukawa models, or to search for alternative scenarios in studying their fixed-point structure, if sufficiently large lattices can be reached. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05667v2-abstract-full').style.display = 'none'; document.getElementById('1811.05667v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures; minor revision with typos corrected and clarification added; version published in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP01 (2019) 110 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00276">arXiv:1811.00276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00276">pdf</a>, <a href="https://arxiv.org/format/1811.00276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress in the lattice simulations of Sp(2N) gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00276v1-abstract-short" style="display: inline;"> We report on the status of our programme to simulate Sp($2N$) gauge theories on the lattice. Motivated by the potential realization of an SU($4$)/Sp($4$)$\sim$SO($6$)/SO($5$) composite Higgs model and the applications to self interacting dark matter, we first perform dynamical simulations of Sp($4$) theories with two Dirac flavors in the fundamental representation. Preliminary results of the meson&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00276v1-abstract-full').style.display = 'inline'; document.getElementById('1811.00276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00276v1-abstract-full" style="display: none;"> We report on the status of our programme to simulate Sp($2N$) gauge theories on the lattice. Motivated by the potential realization of an SU($4$)/Sp($4$)$\sim$SO($6$)/SO($5$) composite Higgs model and the applications to self interacting dark matter, we first perform dynamical simulations of Sp($4$) theories with two Dirac flavors in the fundamental representation. Preliminary results of the meson spectrum are presented, along with discussion of the lattice systematics. We also introduce two-index anti-symmetric Dirac fermions. Such fermions are relevant in the context of partial top compositeness, provided they carry SU($3$) color quantum numbers, and hence we introduce three (Dirac) copies of them. We present the quenched meson spectrum and explore the phase space of bare lattice parameters. For all the numerical simulations we use the standard Wilson lattice gauge and fermion actions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00276v1-abstract-full').style.display = 'none'; document.getElementById('1811.00276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, Contribution to The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018, 22-28 July 2018, East Lansing, Michigan, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-18/A06 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2018)192 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12194">arXiv:1810.12194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.12194">pdf</a>, <a href="https://arxiv.org/format/1810.12194">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Moments of pion distribution amplitude using operator product expansion on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12194v1-abstract-short" style="display: inline;"> We report an exploratory study of the current-current matrix elements that are relevant to the extraction of moments of the pion light-cone distribution amplitude, employing the method of introducing a valence relativistic heavy quark. The numerical investigation is carried out in the quenched approximation with the physical volume $L\approx 2.4$ fm at two values of lattice spacing (0.05 and 0.075&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12194v1-abstract-full').style.display = 'inline'; document.getElementById('1810.12194v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12194v1-abstract-full" style="display: none;"> We report an exploratory study of the current-current matrix elements that are relevant to the extraction of moments of the pion light-cone distribution amplitude, employing the method of introducing a valence relativistic heavy quark. The numerical investigation is carried out in the quenched approximation with the physical volume $L\approx 2.4$ fm at two values of lattice spacing (0.05 and 0.075 fm). We obtain clean signals for the relevant Euclidean hadronic tensor with reasonable statistics, but observe that the lattice artefacts are non-negligible in our results. The key conclusion from the analysis hitherto is that although our approach has the potential for making significant contributions to parton physics, data at finer lattice spacings that are currently being produced are needed in order to control the continuum extrapolation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12194v1-abstract-full').style.display = 'none'; document.getElementById('1810.12194v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures; contribution to the proceedings of Lattice 2018 conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12038">arXiv:1810.12038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.12038">pdf</a>, <a href="https://arxiv.org/format/1810.12038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.334.0229">10.22323/1.334.0229 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of the 1+1 dimensional Thirring model using the method of matrix product states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Banuls%2C+M+C">Mari Carmen Banuls</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yu-Ping Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+D+T+-">David T. -L Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12038v1-abstract-short" style="display: inline;"> We present preliminary results of a study on the non-thermal phase structure of the (1+1) dimensional massive Thirring model, employing the method of matrix product states. Through investigating the entanglement entropy, the fermion correlators and the chiral condensate, it is found that this approach enables us to observe numerical evidence of a Kosterlitz-Thouless phase transition in the model. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12038v1-abstract-full" style="display: none;"> We present preliminary results of a study on the non-thermal phase structure of the (1+1) dimensional massive Thirring model, employing the method of matrix product states. Through investigating the entanglement entropy, the fermion correlators and the chiral condensate, it is found that this approach enables us to observe numerical evidence of a Kosterlitz-Thouless phase transition in the model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12038v1-abstract-full').style.display = 'none'; document.getElementById('1810.12038v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; contribution to the proceedings of Lattice 2018 conference</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+C+-+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10