CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 191 results for author: <span class="mathjax">Lucini, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Lucini%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lucini, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lucini%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lucini, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02127">arXiv:2502.02127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02127">pdf</a>, <a href="https://arxiv.org/format/2502.02127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Exploring Generative Networks for Manifolds with Non-Trivial Topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+S">Shiyang Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02127v1-abstract-short" style="display: inline;"> The expressive power of neural networks in modelling non-trivial distributions can in principle be exploited to bypass topological freezing and critical slowing down in simulations of lattice field theories. Some popular approaches are unable to sample correctly non-trivial topology, which may lead to some classes of configurations not being generated. In this contribution, we present a novel gene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02127v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02127v1-abstract-full" style="display: none;"> The expressive power of neural networks in modelling non-trivial distributions can in principle be exploited to bypass topological freezing and critical slowing down in simulations of lattice field theories. Some popular approaches are unable to sample correctly non-trivial topology, which may lead to some classes of configurations not being generated. In this contribution, we present a novel generative method inspired by a model previously introduced in the ML community (GFlowNets). We demonstrate its efficiency at exploring ergodically configuration manifolds with non-trivial topology through applications such as triple ring models and two-dimensional lattice scalar field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02127v1-abstract-full').style.display = 'none'; document.getElementById('2502.02127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures. Talk presented at the 41th International Symposium on Lattice Field Theory (Lattice 2024), July 28th to August 3rd, 2024, the University of Liverpool, United Kingdom</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19320">arXiv:2501.19320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.19320">pdf</a>, <a href="https://arxiv.org/format/2501.19320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Topological Data Analysis of Abelian Magnetic Monopoles in Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Crean%2C+X">Xavier Crean</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giansiracusa%2C+J">Jeffrey Giansiracusa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19320v1-abstract-short" style="display: inline;"> Motivated by recent literature on the possible existence of a second higher-temperature phase transition in Quantum Chromodynamics, we revisit the proposal that colour confinement is related to the dynamics of magnetic monopoles using methods of Topological Data Analysis, which provides a mathematically rigorous characterisation of topological properties of quantities defined on a lattice. After i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19320v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19320v1-abstract-full" style="display: none;"> Motivated by recent literature on the possible existence of a second higher-temperature phase transition in Quantum Chromodynamics, we revisit the proposal that colour confinement is related to the dynamics of magnetic monopoles using methods of Topological Data Analysis, which provides a mathematically rigorous characterisation of topological properties of quantities defined on a lattice. After introducing persistent homology, one of the main tools in Topological Data Analysis, we shall discuss how this concept can be used to quantitatively analyse the behaviour of monopoles across the deconfinement phase transition. Our approach is first demonstrated for Compact $U(1)$ Lattice Gauge Theory, which is known to have a zero-temperature deconfinement phase transition driven by the restoration of the symmetry associated with the conservation of the magnetic charge. For this system, we perform a finite-size scaling analysis of observables capturing the homology of magnetic current loops, showing that the expected value of the deconfinement critical coupling is reproduced by our analysis. We then extend our method to $SU(3)$ gauge theory, in which Abelian magnetic monopoles are identified after projection in the Maximal Abelian Gauge. A finite-size scaling of our homological observables of Abelian magnetic current loops at temporal size $N_t = 4$ provides the expected value of the critical coupling with an accuracy that is generally higher than that obtained with conventional thermodynamic approaches at comparable statistics, hinting towards the relevance of topological properties of monopole currents for confinement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19320v1-abstract-full').style.display = 'none'; document.getElementById('2501.19320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20496">arXiv:2412.20496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20496">pdf</a>, <a href="https://arxiv.org/format/2412.20496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Random Matrix Theory for Stochastic Gradient Descent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+C">Chanju Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Favoni%2C+M">Matteo Favoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20496v1-abstract-short" style="display: inline;"> Investigating the dynamics of learning in machine learning algorithms is of paramount importance for understanding how and why an approach may be successful. The tools of physics and statistics provide a robust setting for such investigations. Here we apply concepts from random matrix theory to describe stochastic weight matrix dynamics, using the framework of Dyson Brownian motion. We derive the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20496v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20496v1-abstract-full" style="display: none;"> Investigating the dynamics of learning in machine learning algorithms is of paramount importance for understanding how and why an approach may be successful. The tools of physics and statistics provide a robust setting for such investigations. Here we apply concepts from random matrix theory to describe stochastic weight matrix dynamics, using the framework of Dyson Brownian motion. We derive the linear scaling rule between the learning rate (step size) and the batch size, and identify universal and non-universal aspects of weight matrix dynamics. We test our findings in the (near-)solvable case of the Gaussian Restricted Boltzmann Machine and in a linear one-hidden-layer neural network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20496v1-abstract-full').style.display = 'none'; document.getElementById('2412.20496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01170">arXiv:2412.01170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01170">pdf</a>, <a href="https://arxiv.org/format/2412.01170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Meson spectroscopy in the $Sp(4)$ gauge theory with three antisymmetric fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01170v1-abstract-short" style="display: inline;"> We report the results of an extensive numerical study of the $Sp(4)$ lattice gauge theory with three (Dirac) flavors of fermion in the two-index antisymmetric representation. In the presence of (degenerate) fermion masses, the theory has an enhanced global $SU(6)$ symmetry, broken explicitly and spontaneously to its $SO(6)$ subgroup. This symmetry breaking pattern makes the theory interesting for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01170v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01170v1-abstract-full" style="display: none;"> We report the results of an extensive numerical study of the $Sp(4)$ lattice gauge theory with three (Dirac) flavors of fermion in the two-index antisymmetric representation. In the presence of (degenerate) fermion masses, the theory has an enhanced global $SU(6)$ symmetry, broken explicitly and spontaneously to its $SO(6)$ subgroup. This symmetry breaking pattern makes the theory interesting for applications in the context of composite Higgs models, as well as for the implementation of top partial compositeness. It can also provide a dynamical realisation of the strongly interacting massive particle paradigm for the origin of dark matter. We adopt the standard plaquette gauge action with the Wilson-Dirac formulation for the fermions and apply the (rational) hybrid Monte Carlo algorithm in our ensemble generation process. We monitor the autocorrelation and topology of the ensembles. We explore the bare parameter space, and identify the weak and strong coupling regimes separated by a line of first-order bulk phase transitions. We measure two-point correlation functions between meson operators that transform as non-trivial representations of $SO(6)$, and extract the ground-state masses and the decay constants, in all accessible spin and parity channels. In addition, we measure the mass of the first excited state for the vector meson by solving a generalised eigenvalue problem. Spectral quantities show a mass dependence that is compatible with the expectation that, at long distances, the theory undergoes confinement, accompanied by the spontaneous breaking of the approximate global symmetries acting on the matter fields. Finally, we discuss the continuum and massless extrapolations, after setting the physical scale using the gradient flow method, and compare the results to those of existing studies in the quenched approximation, as well as to the literature on closely related theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01170v1-abstract-full').style.display = 'none'; document.getElementById('2412.01170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 20 figures, 11 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-24-32, UTHEP-794, UTCCS-P-160 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18379">arXiv:2411.18379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18379">pdf</a>, <a href="https://arxiv.org/format/2411.18379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress on the spectroscopy of an Sp(4) gauge theory coupled to matter in multiple representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18379v1-abstract-short" style="display: inline;"> We report progress on our lattice calculations for the mass spectra of low-lying composite states in the Sp(4) gauge theory coupled to two and three flavors of Dirac fermions transforming in the fundamental and the two-index antisymmetric representations, respectively. This theory provides an ultraviolet completion to the composite Higgs model with Goldstone modes in the SU(4)/Sp(4) coset and with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18379v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18379v1-abstract-full" style="display: none;"> We report progress on our lattice calculations for the mass spectra of low-lying composite states in the Sp(4) gauge theory coupled to two and three flavors of Dirac fermions transforming in the fundamental and the two-index antisymmetric representations, respectively. This theory provides an ultraviolet completion to the composite Higgs model with Goldstone modes in the SU(4)/Sp(4) coset and with partial compositeness for generating the top-quark mass. We measure the meson and chimera baryon masses. These masses are crucial for constructing the composite Higgs model. In particular, the chimera baryon masses are important inputs for implementing top partial compositeness. We employ Wilson fermions and the Wilson plaquette action in our simulations. Techniques such as APE and Wuppertal smearing, as well as the procedure of generalised eigenvalue problem, are implemented in our analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18379v1-abstract-full').style.display = 'none'; document.getElementById('2411.18379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, 1 tables, Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-24-35 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13512">arXiv:2411.13512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13512">pdf</a>, <a href="https://arxiv.org/format/2411.13512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Dyson Brownian motion and random matrix dynamics of weight matrices during learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hajizadeh%2C+O">Ouraman Hajizadeh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+C">Chanju Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13512v1-abstract-short" style="display: inline;"> During training, weight matrices in machine learning architectures are updated using stochastic gradient descent or variations thereof. In this contribution we employ concepts of random matrix theory to analyse the resulting stochastic matrix dynamics. We first demonstrate that the dynamics can generically be described using Dyson Brownian motion, leading to e.g. eigenvalue repulsion. The level of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13512v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13512v1-abstract-full" style="display: none;"> During training, weight matrices in machine learning architectures are updated using stochastic gradient descent or variations thereof. In this contribution we employ concepts of random matrix theory to analyse the resulting stochastic matrix dynamics. We first demonstrate that the dynamics can generically be described using Dyson Brownian motion, leading to e.g. eigenvalue repulsion. The level of stochasticity is shown to depend on the ratio of the learning rate and the mini-batch size, explaining the empirically observed linear scaling rule. We verify this linear scaling in the restricted Boltzmann machine. Subsequently we study weight matrix dynamics in transformers (a nano-GPT), following the evolution from a Marchenko-Pastur distribution for eigenvalues at initialisation to a combination with additional structure at the end of learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13512v1-abstract-full').style.display = 'none'; document.getElementById('2411.13512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages. Contribution accepted in the NeurIPS 2024 workshop &#34;Machine Learning and the Physical Sciences&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13101">arXiv:2411.13101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13101">pdf</a>, <a href="https://arxiv.org/format/2411.13101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Updates on the density of states method in finite temperature symplectic gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mason%2C+D">David Mason</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13101v1-abstract-short" style="display: inline;"> First-order phase transitions in the early universe have rich phenomenological implications, such as the production of a potentially detectable signal of stochastic relic background gravitational waves. The hypothesis that new, strongly coupled dynamics, hiding in a new dark sector, could be detected in this way, via the telltale signs of its confinement/deconfinement phase transition, provides a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13101v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13101v1-abstract-full" style="display: none;"> First-order phase transitions in the early universe have rich phenomenological implications, such as the production of a potentially detectable signal of stochastic relic background gravitational waves. The hypothesis that new, strongly coupled dynamics, hiding in a new dark sector, could be detected in this way, via the telltale signs of its confinement/deconfinement phase transition, provides a fascinating opportunity for interdisciplinary synergy between lattice field theory and astro-particle physics. But its viability relies on completing the challenging task of providing accurate theoretical predictions for the parameters characterising the strongly coupled theory. Density of states methods, and in particular the linear logarithmic relaxation (LLR) method, can be used to address the intrinsic numerical difficulties that arise due the meta-stable dynamics in the vicinity of the critical point. For example, it allows one to obtain accurate determinations of thermodynamic observables that are otherwise inaccessible, such as the free energy. In this contribution, we present an update on results of the analysis of the finite temperature deconfinement phase transition in a pure gauge theory with a symplectic gauge group, $Sp(4)$, by using the LLR method. We present a first analysis of the properties of the transition in the thermodynamic limit, and provide a road map for future work, including a brief preliminary discussion that will inform future publications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13101v1-abstract-full').style.display = 'none'; document.getElementById('2411.13101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures. Contribution to Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19484">arXiv:2410.19484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19484">pdf</a>, <a href="https://arxiv.org/format/2410.19484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Towards the $尾$ function of SU(2) with adjoint matter using Pauli-Villars fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Athenodorou%2C+A">Andreas Athenodorou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Butti%2C+P">Pietro Butti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19484v1-abstract-short" style="display: inline;"> The family of SU(2) theories with matter transforming in the adjoint representation has attracted interest from many angles. The two-flavour theory, known as Minimal Walking Technicolor, has a body of evidence pointing to it being in the conformal window with anomalous dimension $纬_{*}\approx0.3$. Perturbative calculations would suggest that the one-flavour theory should be confining and chirally&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19484v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19484v1-abstract-full" style="display: none;"> The family of SU(2) theories with matter transforming in the adjoint representation has attracted interest from many angles. The two-flavour theory, known as Minimal Walking Technicolor, has a body of evidence pointing to it being in the conformal window with anomalous dimension $纬_{*}\approx0.3$. Perturbative calculations would suggest that the one-flavour theory should be confining and chirally broken; however, lattice studies of the theory have been inconclusive. In this contribution we present a first look at efforts towards the computation of the beta function of these theories using the gradient flow methodology. Following an exploration of the phase diagram of the two theories with Wilson fermions and additional Pauli-Villars fields, we tune the bare fermion mass to near the chiral limit, and subsequently generate ensembles at five lattice volumes and a range of lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19484v1-abstract-full').style.display = 'none'; document.getElementById('2410.19484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures. Contribution to Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11412">arXiv:2410.11412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11412">pdf</a>, <a href="https://arxiv.org/format/2410.11412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress on pseudoscalar flavour-singlets in Sp(4) with mixed fermion representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11412v1-abstract-short" style="display: inline;"> We measure the masses of the pseudoscalar flavour-singlet meson states in the $Sp(4)$ gauge theory coupled to two Dirac fermions transforming in the fundamental representation and three Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet completion for the minimal composite Higgs model implementing also partial compositeness for the top quark. The spec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11412v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11412v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11412v1-abstract-full" style="display: none;"> We measure the masses of the pseudoscalar flavour-singlet meson states in the $Sp(4)$ gauge theory coupled to two Dirac fermions transforming in the fundamental representation and three Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet completion for the minimal composite Higgs model implementing also partial compositeness for the top quark. The spectrum contains two, comparatively light, pseudoscalar flavour-singlet states, which mix with one another. One of them is a Nambu-Goldstone boson (in the massless limit), whereas the other receives a mass from the $U(1)_A$ axial anomaly. We demonstrate how to measure the mixing between these two states. For moderately heavy fermion masses, we find that the two wave functions are dominated by one of the fermion representations, mixing effects being small. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11412v1-abstract-full').style.display = 'none'; document.getElementById('2410.11412v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures, 2 tables, Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11386">arXiv:2410.11386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11386">pdf</a>, <a href="https://arxiv.org/format/2410.11386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress on the spectroscopy of lattice gauge theories using spectral densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+C">Ryan C. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11386v2-abstract-short" style="display: inline;"> Spectral densities encode non-perturbative information crucial in computing physical observables in strongly coupled field theories. Using lattice gauge theory data, we perform a systematic study to demonstrate the potential of recent technological advances in the reconstruction of spectral densities. We develop, maintain and make publicly available dedicated analysis code that can be used for bro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11386v2-abstract-full').style.display = 'inline'; document.getElementById('2410.11386v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11386v2-abstract-full" style="display: none;"> Spectral densities encode non-perturbative information crucial in computing physical observables in strongly coupled field theories. Using lattice gauge theory data, we perform a systematic study to demonstrate the potential of recent technological advances in the reconstruction of spectral densities. We develop, maintain and make publicly available dedicated analysis code that can be used for broad classes of lattice theories. As a test case, we analyse the Sp(4) gauge theory coupled to an admixture of fermions transforming in the fundamental and two-index antisymmetric representations. We measure the masses of mesons in energy-smeared spectral densities, after optimising the smearing parameters for available lattice ensembles. We present a summary of the mesons mass spectrum in all the twelve (flavored) channels available, including also several excited states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11386v2-abstract-full').style.display = 'none'; document.getElementById('2410.11386v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, contribution for the 41th International Symposium on Lattice Field Theory (Lattice 2024), 28 July - 3 August 2024, Liverpool, UK, presenting the results of the paper: arXiv:2405.01388</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-24-11, PNUTP-24/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19426">arXiv:2409.19426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19426">pdf</a>, <a href="https://arxiv.org/format/2409.19426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> The density of states method for symplectic gauge theories at finite temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mason%2C+D">David Mason</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19426v1-abstract-short" style="display: inline;"> We study the finite-temperature behaviour of the $Sp(4)$ Yang-Mills lattice theory in four dimensions, by applying the Logarithmic Linear Relaxation (LLR) algorithm. We demonstrate the presence of coexisting (metastable) phases, when the system is in the proximity of the transition. We measure observables such as the free energy, the expectation value of the plaquette operator and of the Polyakov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19426v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19426v1-abstract-full" style="display: none;"> We study the finite-temperature behaviour of the $Sp(4)$ Yang-Mills lattice theory in four dimensions, by applying the Logarithmic Linear Relaxation (LLR) algorithm. We demonstrate the presence of coexisting (metastable) phases, when the system is in the proximity of the transition. We measure observables such as the free energy, the expectation value of the plaquette operator and of the Polyakov loop, as well as the specific heat, and the Binder cumulant. We use these results to obtain a high-precision measurement of the critical coupling at the confinement-deconfinement transition, and assess its systematic uncertainty, for one value of the lattice extent in the time direction. Furthermore, we perform an extensive study of the finite-volume behaviour of the lattice system, by repeating the measurements for fixed lattice time extent, while increasing the spatial size of the lattice. We hence characterise the first-order transition on the lattice, and present the first results in the literature on this theory for the infinite volume extrapolation of lattice quantities related to latent heat and interface tension. Gauge theories with $Sp(4)$ group have been proposed as new dark sectors to provide a fundamental origin for the current phenomenological evidence of dark matter. A phase transition at high temperature, in such a new dark sector, occurring in the early universe, might have left a relic stochastic background of gravitational waves. Our results represent a milestone toward establishing whether such a new physics signal is detectable in future experiments, as they enter the calculation of the parameters, $伪$ and $尾$, controlling the power spectrum of gravitational waves. We also outline the process needed in the continuum extrapolation of our measurements, and test its feasibility on one additional choice of temporal extent of the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19426v1-abstract-full').style.display = 'none'; document.getElementById('2409.19426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-24 ET-0515A-24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00171">arXiv:2408.00171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00171">pdf</a>, <a href="https://arxiv.org/format/2408.00171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> SU(2) gauge theory with one and two adjoint fermions towards the continuum limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Athenodorou%2C+A">Andreas Athenodorou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Butti%2C+P">Pietro Butti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lenz%2C+J">Julian Lenz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00171v1-abstract-short" style="display: inline;"> We provide an extended lattice study of the SU(2) gauge theory coupled to one Dirac fermion flavour ($N_{\mathrm{f}} =1$) transforming in the adjoint representation as the continuum limit is approached. This investigation is supplemented by numerical results obtained for the SU(2) gauge theory with two Dirac fermion flavours ($N_{\mathrm{f}} =2$) transforming in the adjoint representation, for whi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00171v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00171v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00171v1-abstract-full" style="display: none;"> We provide an extended lattice study of the SU(2) gauge theory coupled to one Dirac fermion flavour ($N_{\mathrm{f}} =1$) transforming in the adjoint representation as the continuum limit is approached. This investigation is supplemented by numerical results obtained for the SU(2) gauge theory with two Dirac fermion flavours ($N_{\mathrm{f}} =2$) transforming in the adjoint representation, for which we perform numerical investigations at a single lattice spacing value, which is analysed together with earlier calculations. The purpose of our study is to advance the characterisation of the infrared properties of both theories, which previous investigations have concluded to be in the conformal window. For both, we determine the mass spectrum and the anomalous dimension of the fermion condensate using finite-size hyperscaling of the spectrum, mode number analysis of the Dirac operator (for which we improve on our previous proposal) and the ratio of masses of the lightest spin-2 particle over the lightest scalar. All methods provide a consistent picture, with the anomalous dimension of the condensate $纬_*$ decreasing significantly as one approaches the continuum limit for the $N_{\mathrm{f}} = 1$ theory towards a value consistent with $纬_* = 0.174(6)$, while for $N_{\mathrm{f}} = 2$ the anomalous dimension decreases more slowly with $尾$. A chiral perturbation theory analysis show that the infrared behaviour of both theories is incompatible with the breaking of chiral symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00171v1-abstract-full').style.display = 'none'; document.getElementById('2408.00171v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16427">arXiv:2407.16427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16427">pdf</a>, <a href="https://arxiv.org/format/2407.16427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.111.015303">10.1103/PhysRevE.111.015303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stochastic weight matrix dynamics during learning and Dyson Brownian motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+C">Chanju Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16427v2-abstract-short" style="display: inline;"> We demonstrate that the update of weight matrices in learning algorithms can be described in the framework of Dyson Brownian motion, thereby inheriting many features of random matrix theory. We relate the level of stochasticity to the ratio of the learning rate and the mini-batch size, providing more robust evidence to a previously conjectured scaling relationship. We discuss universal and non-uni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16427v2-abstract-full').style.display = 'inline'; document.getElementById('2407.16427v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16427v2-abstract-full" style="display: none;"> We demonstrate that the update of weight matrices in learning algorithms can be described in the framework of Dyson Brownian motion, thereby inheriting many features of random matrix theory. We relate the level of stochasticity to the ratio of the learning rate and the mini-batch size, providing more robust evidence to a previously conjectured scaling relationship. We discuss universal and non-universal features in the resulting Coulomb gas distribution and identify the Wigner surmise and Wigner semicircle explicitly in a teacher-student model and in the (near-)solvable case of the Gaussian restricted Boltzmann machine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16427v2-abstract-full').style.display = 'none'; document.getElementById('2407.16427v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 16 figures; minor changes and references added, version to appear in Physical Review E</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.E 111 (2025) 015303 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05765">arXiv:2405.05765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05765">pdf</a>, <a href="https://arxiv.org/format/2405.05765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Mixing between flavor singlets in lattice gauge theories coupled to matter fields in multiple representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05765v2-abstract-short" style="display: inline;"> We provide the first extensive, numerical study of the non-trivial problem of mixing between flavor-singlet composite states emerging in strongly coupled lattice field theories with matter field content consisting of fermions transforming in different representations of the gauge group. The theory of interest is the minimal candidate for a composite Higgs model that also accommodates a mechanism f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05765v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05765v2-abstract-full" style="display: none;"> We provide the first extensive, numerical study of the non-trivial problem of mixing between flavor-singlet composite states emerging in strongly coupled lattice field theories with matter field content consisting of fermions transforming in different representations of the gauge group. The theory of interest is the minimal candidate for a composite Higgs model that also accommodates a mechanism for top partial compositeness: the $Sp(4)$ gauge theory coupled to two (Dirac) fermions transforming as the fundamental and three as the two-index antisymmetric representation of the gauge group, respectively. We apply an admixture of APE and Wuppertal smearings, as well as the generalized eigenvalue problem approach, to two-point functions involving flavor-singlet mesons, for ensembles having time extent longer than the space extent. We demonstrate that, in the region of lattice parameter space accessible to this study, both masses and mixing angles can be measured effectively, despite the presence of (numerically noisy) contributions from disconnected diagrams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05765v2-abstract-full').style.display = 'none'; document.getElementById('2405.05765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures, 5 tables; v2: minor changes, added appendix A, version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-24-12, PNUTP-24/A03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01388">arXiv:2405.01388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01388">pdf</a>, <a href="https://arxiv.org/format/2405.01388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Meson spectroscopy from spectral densities in lattice gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+C">Ryan C. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01388v2-abstract-short" style="display: inline;"> Spectral densities encode non-perturbative information that enters the calculation of a plethora of physical observables in strongly coupled field theories. Phenomenological applications encompass aspects of standard-model hadronic physics, observable at current colliders, as well as correlation functions characterizing new physics proposals, testable in future experiments. By making use of numeri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01388v2-abstract-full').style.display = 'inline'; document.getElementById('2405.01388v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01388v2-abstract-full" style="display: none;"> Spectral densities encode non-perturbative information that enters the calculation of a plethora of physical observables in strongly coupled field theories. Phenomenological applications encompass aspects of standard-model hadronic physics, observable at current colliders, as well as correlation functions characterizing new physics proposals, testable in future experiments. By making use of numerical data produced in a Sp(4) lattice gauge theory with matter transforming in an admixture of fundamental and 2-index antisymmetric representations of the gauge group, we perform a systematic study to demonstrate the effectiveness of recent technological progress in the reconstruction of spectral densities. To this purpose, we write and test new software packages that use energy-smeared spectral densities to analyze the mass spectrum of mesons. We assess the effectiveness of different smearing kernels and optimize the smearing parameters to the characteristics of available lattice ensembles. We generate new ensembles for the theory in consideration, with lattices that have a longer extent in the time direction with respect to the spatial ones. We run our tests on these ensembles, obtaining new results about the spectrum of light mesons and their excitations. We make available our algorithm and software for the extraction of spectral densities, that can be applied to theories with other gauge groups, including the theory of strong interactions (QCD) governing hadronic physics in the standard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01388v2-abstract-full').style.display = 'none'; document.getElementById('2405.01388v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version approved for publication. 45 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07739">arXiv:2403.07739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07739">pdf</a>, <a href="https://arxiv.org/format/2403.07739">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.17.4.100">10.21468/SciPostPhys.17.4.100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Data Analysis of Monopole Current Networks in $U(1)$ Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Crean%2C+X">Xavier Crean</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giansiracusa%2C+J">Jeffrey Giansiracusa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07739v4-abstract-short" style="display: inline;"> In $4$-dimensional pure compact $U(1)$ lattice gauge theory, we analyse topological aspects of the dynamics of monopoles across the deconfinement phase transition. We do this using tools from Topological Data Analysis (TDA). We demonstrate that observables constructed from the zeroth and first homology groups of monopole current networks may be used to quantitatively and robustly locate the critic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07739v4-abstract-full').style.display = 'inline'; document.getElementById('2403.07739v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07739v4-abstract-full" style="display: none;"> In $4$-dimensional pure compact $U(1)$ lattice gauge theory, we analyse topological aspects of the dynamics of monopoles across the deconfinement phase transition. We do this using tools from Topological Data Analysis (TDA). We demonstrate that observables constructed from the zeroth and first homology groups of monopole current networks may be used to quantitatively and robustly locate the critical inverse coupling $尾_{c}$ through finite-size scaling. Our method provides a mathematically robust framework for the characterisation of topological invariants related to monopole currents, putting on firmer ground earlier investigations. Moreover, our approach can be generalised to the study of Abelian monopoles in non-Abelian gauge theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07739v4-abstract-full').style.display = 'none'; document.getElementById('2403.07739v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 8 figures, 6 tables, resubmission to SciPost; v4: clarifications added; typos corrected; analysis, results and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 17, 100 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05637">arXiv:2401.05637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05637">pdf</a>, <a href="https://arxiv.org/format/2401.05637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chimera baryon spectrum in the Sp(4) completion of composite Higgs models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05637v1-abstract-short" style="display: inline;"> In strongly coupled gauge theories that serve as completions of composite Higgs models, the fermionic bound states formed by fermions (hyperquarks) transforming in different representations, called chimera baryons, could serve as top partners, by embedding of the Standard Model appropriately. We report our results on the spectrum of chimera baryons in the Sp(4) gauge theory with hyperquarks transf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05637v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05637v1-abstract-full" style="display: none;"> In strongly coupled gauge theories that serve as completions of composite Higgs models, the fermionic bound states formed by fermions (hyperquarks) transforming in different representations, called chimera baryons, could serve as top partners, by embedding of the Standard Model appropriately. We report our results on the spectrum of chimera baryons in the Sp(4) gauge theory with hyperquarks transforming in fundamental and two-index antisymmetric representations. For this study, we adopt the quenched approximation. We investigate the mass hierarchy between the lightest chimera baryons with different quantum numbers, as a function of the lattice parameters. Inspired by baryon chiral effective field theory, and the Akaike Information Criterion, we perform a first extrapolation to the continuum and massless-hyperquark limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05637v1-abstract-full').style.display = 'none'; document.getElementById('2401.05637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, contribution to the proceedings of the 40th International Symposium on Lattice Field Theory (LATTICE2023), July 31st - August 4th, 2023, Fermi National Accelerator Laboratory, Batavia, Illinois, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08465">arXiv:2312.08465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08465">pdf</a>, <a href="https://arxiv.org/format/2312.08465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> On the spectrum of mesons in quenched $Sp(2N)$ gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08465v3-abstract-short" style="display: inline;"> We report the findings of our extensive study of the spectra of flavoured mesons in lattice gauge theories with symplectic gauge group and fermion matter content treated in the quenched approximation. For the $Sp(4)$, $Sp(6)$, and $Sp(8)$ gauge groups, the (Dirac) fermions transform in either the fundamental, or the 2-index, antisymmetric or symmetric, representations. This study sets the stage fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08465v3-abstract-full').style.display = 'inline'; document.getElementById('2312.08465v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08465v3-abstract-full" style="display: none;"> We report the findings of our extensive study of the spectra of flavoured mesons in lattice gauge theories with symplectic gauge group and fermion matter content treated in the quenched approximation. For the $Sp(4)$, $Sp(6)$, and $Sp(8)$ gauge groups, the (Dirac) fermions transform in either the fundamental, or the 2-index, antisymmetric or symmetric, representations. This study sets the stage for future precision calculations with dynamical fermions in the low mass region of lattice parameter space. Our results have potential phenomenological applications ranging from composite Higgs models, to top (partial) compositeness, to dark matter models with composite, strong-coupling dynamical origin. Having adopted the Wilson flow as a scale-setting procedure, we apply Wilson chiral perturbation theory to extract the continuum and massless limits for the observables of interest. The resulting measurements are used to perform a simplified extrapolation to the large-$N$ limit, hence drawing a preliminary connection with gauge theories with unitary groups. We conclude with a brief discussion of the Weinberg sum rules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08465v3-abstract-full').style.display = 'none'; document.getElementById('2312.08465v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 28 figures, 7 tables. Version accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14663">arXiv:2311.14663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14663">pdf</a>, <a href="https://arxiv.org/format/2311.14663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice investigations of the chimera baryon spectrum in the Sp(4) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14663v2-abstract-short" style="display: inline;"> We report the results of lattice numerical studies of the Sp(4) gauge theory coupled to fermions (hyperquarks) transforming in the fundamental and two-index antisymmetric representations of the gauge group. This strongly-coupled theory is the minimal candidate for the ultraviolet completion of composite Higgs models that facilitate the mechanism of partial compositeness for generating the top-quar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14663v2-abstract-full').style.display = 'inline'; document.getElementById('2311.14663v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14663v2-abstract-full" style="display: none;"> We report the results of lattice numerical studies of the Sp(4) gauge theory coupled to fermions (hyperquarks) transforming in the fundamental and two-index antisymmetric representations of the gauge group. This strongly-coupled theory is the minimal candidate for the ultraviolet completion of composite Higgs models that facilitate the mechanism of partial compositeness for generating the top-quark mass. We measure the spectrum of the low-lying, half-integer spin, bound states composed of two fundamental and one antisymmetric hyperquarks, dubbed chimera baryons, in the quenched approximation. In this first systematic, non-perturbative study, we focus on the three lightest parity-even chimera-baryon states, in analogy with QCD, denoted as $螞_{\rm CB}$, $危_{\rm CB}$ (both with spin 1/2), and $危_{\rm CB}^\ast$(with spin 3/2). The spin-1/2 such states are candidates of the top partners. The extrapolation of our results to the continuum and massless-hyperquark limit is performed using formulae inspired by QCD heavy-baryon Wilson chiral perturbation theory. Within the range of hyperquark masses in our simulations, we find that $危_{\mathrm{CB}}$ is not heavier than $螞_{\mathrm{CB}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14663v2-abstract-full').style.display = 'none'; document.getElementById('2311.14663v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 12 figures, 19 tables; minor improvements and corrections; aligning numbers in Data release; version accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02145">arXiv:2310.02145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02145">pdf</a>, <a href="https://arxiv.org/format/2310.02145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> The deconfinement phase transition in $Sp(2N)$ gauge theories and the density of states method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mason%2C+D">David Mason</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02145v1-abstract-short" style="display: inline;"> First-order phase transitions in the early universe might produce a detectable background of gravitational waves. As these phase transitions can be generated by new physics, it is important to quantify these effects. Many pure Yang-Mills gauge theories are known to undergo first-order deconfinement phase transitions, with properties that can be studied with lattice simulations. Despite the recent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02145v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02145v1-abstract-full" style="display: none;"> First-order phase transitions in the early universe might produce a detectable background of gravitational waves. As these phase transitions can be generated by new physics, it is important to quantify these effects. Many pure Yang-Mills gauge theories are known to undergo first-order deconfinement phase transitions, with properties that can be studied with lattice simulations. Despite the recent surge of interest in $Sp(2N)$ gauge theories as a candidate for models of physics beyond the standard model, studies of these theories at finite temperature are still very limited. In this contribution we will present preliminary results of an ongoing numerical investigation of the thermodynamic properties of the deconfinement phase transition in $Sp(4)$ Yang-Mills theory, using the linear logarithmic relaxation algorithm. This method enables us to obtain a highly accurate determination of the density of states, allowing for a precise reconstruction of thermodynamic observables. In particular, it gives access to otherwise difficult to determine quantities such as the free energy of the system, even along metastable and unstable branches, hence providing an additional direct observable to study the dynamics of the phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02145v1-abstract-full').style.display = 'none'; document.getElementById('2310.02145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, contribution for the 40th International Symposium on Lattice Field Theory (Lattice 2023), July 31st - August 4th, 2023, Fermi National Accelerator Laboratory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02111">arXiv:2310.02111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02111">pdf</a>, <a href="https://arxiv.org/format/2310.02111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice studies of Sp(2N) gauge theories using GRID </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lenz%2C+J">Julian Lenz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02111v1-abstract-short" style="display: inline;"> Four-dimensional gauge theories based on symplectic Lie groups provide elegant realisations of the microscopic origin of several new physics models. Numerical studies pursued on the lattice provide quantitative information necessary for phenomenological applications. To this purpose, we implemented Sp(2N) gauge theories using Monte Carlo techniques within Grid, a performant framework designed for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02111v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02111v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02111v1-abstract-full" style="display: none;"> Four-dimensional gauge theories based on symplectic Lie groups provide elegant realisations of the microscopic origin of several new physics models. Numerical studies pursued on the lattice provide quantitative information necessary for phenomenological applications. To this purpose, we implemented Sp(2N) gauge theories using Monte Carlo techniques within Grid, a performant framework designed for the numerical study of quantum field theories on the lattice. We show the first results obtained using this library, focusing on the case-study provided by the Sp(4) theory coupled to Nas = 4 Wilson-Dirac fermions transforming in the 2-index antisymmetric representation. In particular, we discuss preliminary tests of the algorithm and we test some of its main functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02111v1-abstract-full').style.display = 'none'; document.getElementById('2310.02111v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, contribution for the 40th International Symposium on Lattice Field Theory (Lattice 2023), July 31st - August 4th, 2023, Fermi National Accelerator Laboratory, presenting the results of the paper: arXiv:2306.11649</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-23/A03, CTPU-PTC-23-26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15002">arXiv:2309.15002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15002">pdf</a>, <a href="https://arxiv.org/format/2309.15002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Scalar field Restricted Boltzmann Machine as an ultraviolet regulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+C">Chanju Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15002v2-abstract-short" style="display: inline;"> Restricted Boltzmann Machines (RBMs) are well-known tools used in Machine Learning to learn probability distribution functions from data. We analyse RBMs with scalar fields on the nodes from the perspective of lattice field theory. Starting with the simplest case of Gaussian fields, we show that the RBM acts as an ultraviolet regulator, with the cutoff determined by either the number of hidden nod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15002v2-abstract-full').style.display = 'inline'; document.getElementById('2309.15002v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15002v2-abstract-full" style="display: none;"> Restricted Boltzmann Machines (RBMs) are well-known tools used in Machine Learning to learn probability distribution functions from data. We analyse RBMs with scalar fields on the nodes from the perspective of lattice field theory. Starting with the simplest case of Gaussian fields, we show that the RBM acts as an ultraviolet regulator, with the cutoff determined by either the number of hidden nodes or a model mass parameter. We verify these ideas in the scalar field case, where the target distribution is known, and explore implications for cases where it is not known using the MNIST data set. We also demonstrate that infrared modes are learnt quickest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15002v2-abstract-full').style.display = 'none'; document.getElementById('2309.15002v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, many figures, minor clarifications added, version to appear in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11649">arXiv:2306.11649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11649">pdf</a>, <a href="https://arxiv.org/format/2306.11649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Symplectic lattice gauge theories on Grid: approaching the conformal window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lenz%2C+J">Julian Lenz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11649v3-abstract-short" style="display: inline;"> Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compell&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11649v3-abstract-full').style.display = 'inline'; document.getElementById('2306.11649v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11649v3-abstract-full" style="display: none;"> Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compelling research aim is the determination of the extent of the conformal window in gauge theories with symplectic groups coupled to matter, for different groups and for field content consisting of fermions transforming in different representations. Such determination would have far-reaching implications, but requires overcoming huge technical challenges. Numerical studies based on lattice field theory can provide the quantitative information necessary to this endeavour. We developed new software to implement symplectic groups in the Monte Carlo algorithms within the Grid framework. In this paper, we focus most of our attention on the Sp(4) lattice gauge theory coupled to four (Wilson-Dirac) fermions transforming in the 2-index antisymmetric representation, as a case study. We discuss an extensive catalogue of technical tests of the algorithms and present preliminary measurements to set the stage for future large-scale numerical investigations. We also include the scan of parameter space of all asymptotically free Sp(4) lattice gauge theories coupled to varying number of fermions transforming in the antisymmetric representation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11649v3-abstract-full').style.display = 'none'; document.getElementById('2306.11649v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 16 figures. Version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-23/A03, CTPU-PTC-23-26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07463">arXiv:2305.07463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07463">pdf</a>, <a href="https://arxiv.org/format/2305.07463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> First-order phase transitions in Yang-Mills theories and the density of state method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mason%2C+D">David Mason</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07463v2-abstract-short" style="display: inline;"> When studied at finite temperature, Yang-Mills theories in $3+1$ dimensions display the presence of confinement/deconfinement phase transitions, which are known to be of first order -- the $SU(2)$ gauge theory being the exception. Theoretical as well as phenomenological considerations indicate that it is essential to establish a precise characterisation of these physical systems in proximity of su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07463v2-abstract-full').style.display = 'inline'; document.getElementById('2305.07463v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07463v2-abstract-full" style="display: none;"> When studied at finite temperature, Yang-Mills theories in $3+1$ dimensions display the presence of confinement/deconfinement phase transitions, which are known to be of first order -- the $SU(2)$ gauge theory being the exception. Theoretical as well as phenomenological considerations indicate that it is essential to establish a precise characterisation of these physical systems in proximity of such phase transitions. We present and test a new method to study the critical region of parameter space in non-Abelian quantum field theories on the lattice, based upon the Logarithmic Linear Relaxation (LLR) algorithm. We apply this method to the $SU(3)$ Yang Mills lattice gauge theory, and perform extensive calculations with one fixed choice of lattice size. We identify the critical temperature, and measure interesting physical quantities near the transition. Among them, we determine the free energy of the model in the critical region, exposing for the first time its multi-valued nature with a numerical calculation from first principles, providing this novel evidence in support of a first order phase transition. This study sets the stage for future high precision measurements, by demonstrating the potential of the method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07463v2-abstract-full').style.display = 'none'; document.getElementById('2305.07463v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 21 figures. Version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-23 ET-0164A-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07191">arXiv:2304.07191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.07191">pdf</a>, <a href="https://arxiv.org/format/2304.07191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Singlets in gauge theories with fundamental matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maas%2C+A">Axel Maas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zierler%2C+F">Fabian Zierler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07191v3-abstract-short" style="display: inline;"> We provide the first determination of the mass of the lightest flavor-singlet pseudoscalar and scalar bound states (mesons), in the $\rm{Sp}(4)$ Yang-Mills theory coupled to two flavors of fundamental fermions, using lattice methods. This theory has applications both to composite Higgs and strongly-interacting dark matter scenarios. We find the singlets to have masses comparable to those of the li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07191v3-abstract-full').style.display = 'inline'; document.getElementById('2304.07191v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07191v3-abstract-full" style="display: none;"> We provide the first determination of the mass of the lightest flavor-singlet pseudoscalar and scalar bound states (mesons), in the $\rm{Sp}(4)$ Yang-Mills theory coupled to two flavors of fundamental fermions, using lattice methods. This theory has applications both to composite Higgs and strongly-interacting dark matter scenarios. We find the singlets to have masses comparable to those of the light flavored states, which might have important implications for phenomenological models. We focus on regions of parameter space corresponding to a moderately heavy mass regime for the fermions. We compare the spectra we computed to existing and new results for $\rm{SU}(2)$ and $\rm{SU}(3)$ theories, uncovering an intriguing degree of commonality. As a by-product, in order to perform the aforementioned measurements, we implemented and tested, in the context of symplectic lattice gauge theories, several strategies for the treatment of disconnected-diagram contributions to two-point correlation functions. These technical advances set the stage for future studies of the singlet sector in broader portions of parameter space of this and other lattice theories with a symplectic gauge group. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07191v3-abstract-full').style.display = 'none'; document.getElementById('2304.07191v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 7 figures, 6 tables; v2: added references to data and workflow release, minor changes; v3: replaced analysis in Sec. IV.B. for the Nf=1+1 theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-23-11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01070">arXiv:2304.01070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01070">pdf</a>, <a href="https://arxiv.org/format/2304.01070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> $Sp(2N)$ Lattice Gauge Theories and Extensions of the Standard Model of Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01070v2-abstract-short" style="display: inline;"> We review the current status of the long-term programme of numerical investigation of $Sp(2N)$ gauge theories with and without fermionic matter content. We start by introducing the phenomenological as well as theoretical motivations for this research programme, which are related to composite Higgs models, models of partial top compositeness, dark matter models, and in general to the physics of str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01070v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01070v2-abstract-full" style="display: none;"> We review the current status of the long-term programme of numerical investigation of $Sp(2N)$ gauge theories with and without fermionic matter content. We start by introducing the phenomenological as well as theoretical motivations for this research programme, which are related to composite Higgs models, models of partial top compositeness, dark matter models, and in general to the physics of strongly coupled theories and their approach to the large-N limit. We summarise the results of lattice studies conducted so far in the $Sp(2N)$ Yang-Mills theories, measuring the string tension, the mass spectrum of glueballs and the topological susceptibility, and discuss their large-N extrapolation. We then focus our discussion on $Sp(4)$, and summarise numerical measurements of mass and decay constant of mesons in the theories with fermion matter in either the fundamental or the antisymmetric representation, first in the quenched approximation, and then with dynamical fermions. We finally discuss the case of dynamical fermions in mixed representations, and exotic composite fermion states such as the chimera baryons. We conclude by sketching the future stages of the programme. And we describe our approach to open access. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01070v2-abstract-full').style.display = 'none'; document.getElementById('2304.01070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">75 pages, 22 figures, 3 tables; contribution to the special issue of Universe &#34;Numerical Studies of Strongly Coupled Gauge Theories (SCGTs) in the Search of New Physics&#34;; version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTPU-PTC-23-09, PNUTP-23/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04382">arXiv:2301.04382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04382">pdf</a>, <a href="https://arxiv.org/format/2301.04382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2023.104070">10.1016/j.ppnp.2023.104070 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase Transitions in Particle Physics -- Results and Perspectives from Lattice Quantum Chromo-Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aichelin%2C+J">Joerg Aichelin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Allton%2C+C">Chris Allton</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Athenodorou%2C+A">Andreas Athenodorou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bachtis%2C+D">Dimitrios Bachtis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bonanno%2C+C">Claudio Bonanno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">Nora Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bratkovskaya%2C+E">Elena Bratkovskaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Caselle%2C+M">Michele Caselle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Conti%2C+C">Costanza Conti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Contino%2C+R">Roberto Contino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cosmai%2C+L">Leonardo Cosmai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=D%27Elia%2C+M">Massimo D&#39;Elia</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Di+Renzo%2C+F">Francesco Di Renzo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Galatyuk%2C+T">Tetyana Galatyuk</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Houtz%2C+R">Rachel Houtz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karsch%2C+F">Frithjof Karsch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kotov%2C+A+Y">Andrey Yu. Kotov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lombardo%2C+M+P">Maria Paola Lombardo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04382v2-abstract-short" style="display: inline;"> Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases. We discuss phase transitions in strong interact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04382v2-abstract-full').style.display = 'inline'; document.getElementById('2301.04382v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04382v2-abstract-full" style="display: none;"> Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases. We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building for Dark Matter and Electro-Weak Symmetry Breaking. Methodological challenges are addressed as well, including new developments in Artificial Intelligence geared towards the identification of different phases and transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04382v2-abstract-full').style.display = 'none'; document.getElementById('2301.04382v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">94 pages, 23 figures, GGI workshop &#34;Phase Transitions in Particle Physics&#34; review - v2: minor revisions and typo corrected, matches accepted version on PPNP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog. Part. Nucl. Phys. 133 (2023) 104070 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09173">arXiv:2212.09173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09173">pdf</a>, <a href="https://arxiv.org/format/2212.09173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Update on $SU(2)$ with one adjoint Dirac flavor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Athenodorou%2C+A">Andreas Athenodorou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Butti%2C+P">Pietro Butti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09173v2-abstract-short" style="display: inline;"> We present an update of our ongoing study of the SU(2) gauge theory with one flavor of Dirac fermion in the adjoint representation. Compared to our previous results we now have data at larger lattice volumes, smaller values of the fermion mass, and also larger values of $尾$. We present data for the spectrum of mesons, baryons, glueballs, and the hybrid fermion-glue state, as well as new estimates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09173v2-abstract-full').style.display = 'inline'; document.getElementById('2212.09173v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09173v2-abstract-full" style="display: none;"> We present an update of our ongoing study of the SU(2) gauge theory with one flavor of Dirac fermion in the adjoint representation. Compared to our previous results we now have data at larger lattice volumes, smaller values of the fermion mass, and also larger values of $尾$. We present data for the spectrum of mesons, baryons, glueballs, and the hybrid fermion-glue state, as well as new estimates of the mass anomalous dimension from both finite-size hyperscaling and the Dirac mode number, and discuss the implications of these data for the presence or otherwise of chiral symmetry breaking in this theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09173v2-abstract-full').style.display = 'none'; document.getElementById('2212.09173v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures. Contribution to the 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Bonn, Germany. Version accepted for publication in Proceedings of Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01074">arXiv:2212.01074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01074">pdf</a>, <a href="https://arxiv.org/format/2212.01074">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> The density of state method for first-order phase transitions in Yang-Mills theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mason%2C+D">David Mason</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01074v2-abstract-short" style="display: inline;"> Lattice Field Theory can be used to study finite temperature first-order phase transitions in new, strongly-coupled gauge theories of phenomenological interest. Metastable dynamics arising in proximity of the phase transition can lead to large, uncontrolled numerical errors when analysed with standard methods. In this contribution, we discuss a prototype lattice calculation in which the first-orde&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01074v2-abstract-full').style.display = 'inline'; document.getElementById('2212.01074v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01074v2-abstract-full" style="display: none;"> Lattice Field Theory can be used to study finite temperature first-order phase transitions in new, strongly-coupled gauge theories of phenomenological interest. Metastable dynamics arising in proximity of the phase transition can lead to large, uncontrolled numerical errors when analysed with standard methods. In this contribution, we discuss a prototype lattice calculation in which the first-order deconfinement transition in the strong Yang-Mills sector of the standard model is analysed using a novel lattice method, the logarithmic linear relaxation algorithm. This method provides a determination of the density of states of the system with exponential error suppression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01074v2-abstract-full').style.display = 'none'; document.getElementById('2212.01074v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor improvements in abstract and notation. Content and results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-22 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16273">arXiv:2211.16273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16273">pdf</a>, <a href="https://arxiv.org/format/2211.16273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.430.0387">10.22323/1.430.0387 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent homology as a probe for center vortices and deconfinement in SU(2) lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sale%2C+N">Nicholas Sale</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giansiracusa%2C+J">Jeffrey Giansiracusa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16273v1-abstract-short" style="display: inline;"> Topological Data Analysis (TDA) is a field that leverages tools and ideas from algebraic topology to provide robust methods for analysing geometric and topological aspects of data. One of the principal tools of TDA, persistent homology, produces a quantitative description of how the connectivity and structure of data changes when viewed over a sequence of scales. We propose that this presents a me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16273v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16273v1-abstract-full" style="display: none;"> Topological Data Analysis (TDA) is a field that leverages tools and ideas from algebraic topology to provide robust methods for analysing geometric and topological aspects of data. One of the principal tools of TDA, persistent homology, produces a quantitative description of how the connectivity and structure of data changes when viewed over a sequence of scales. We propose that this presents a means to directly probe topological objects in gauge theories. We present recent work on using persistent homology to detect center vortices in SU(2) lattice gauge theory configurations in a gauge-invariant manner. We introduce the basics of persistence, describe our construction, and demonstrate that the result is sensitive to vortices. Moreover we discuss how, with simple machine learning, one can use the resulting persistence to quantitatively analyse the deconfinement transition via finite-size scaling, providing evidence on the role of vortices in relation to confinement in Yang-Mills theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16273v1-abstract-full').style.display = 'none'; document.getElementById('2211.16273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures. Proceeding for the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany. A condensed writeup of results from arXiv:2207.13392</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10373">arXiv:2211.10373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10373">pdf</a>, <a href="https://arxiv.org/format/2211.10373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202227408007">10.1051/epjconf/202227408007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The density of states method in Yang-Mills theories and first order phase transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mason%2C+D">David Mason</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10373v1-abstract-short" style="display: inline;"> Extensions of the standard model that lead to first-order phase transitions in the early universe can produce a stochastic background of gravitational waves, which may be accessible to future detectors. Thermodynamic observables at the transition, such as the latent heat, can be determined by lattice simulations, and then used to predict the expected signatures in a given theory. In lattice calcul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10373v1-abstract-full').style.display = 'inline'; document.getElementById('2211.10373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10373v1-abstract-full" style="display: none;"> Extensions of the standard model that lead to first-order phase transitions in the early universe can produce a stochastic background of gravitational waves, which may be accessible to future detectors. Thermodynamic observables at the transition, such as the latent heat, can be determined by lattice simulations, and then used to predict the expected signatures in a given theory. In lattice calculations, the emergence of metastabilities in proximity of the phase transition may make the precise determination of these observables quite challenging, and may lead to large uncontrolled numerical errors. In this contribution, we discuss as a prototype lattice calculation the first order deconfinement transition that arises in the strong SU(3) Yang-Mills sector. We adopt the novel logarithmic linear relaxation method, which can provide a determination of the density of states of the system with exponential error suppression. Thermodynamic observables can be reconstructed with a controlled error, providing a promising direction for accurate model predictions in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10373v1-abstract-full').style.display = 'none'; document.getElementById('2211.10373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures; contribution to the proceedings of the 15th Quark Confinement and the Hadron Spectrum conference (ConfXV), 1st-6th August 2022, Stavanger, Norway</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09262">arXiv:2211.09262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09262">pdf</a>, <a href="https://arxiv.org/format/2211.09262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202227408005">10.1051/epjconf/202227408005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite dynamics in Sp($2N$) gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09262v1-abstract-short" style="display: inline;"> Sp($2N$) gauge theories with fermonic matter provide an ideal laboratory to build extensions of the standard model based on novel composite dynamics. Examples include composite Higgs along with top partial compositeness and composite dark matter. Without fermions, their study also complements those based on SU($N_c$) gauge theories with which they share a common sector in the large $N_c=2N$ limit.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09262v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09262v1-abstract-full" style="display: none;"> Sp($2N$) gauge theories with fermonic matter provide an ideal laboratory to build extensions of the standard model based on novel composite dynamics. Examples include composite Higgs along with top partial compositeness and composite dark matter. Without fermions, their study also complements those based on SU($N_c$) gauge theories with which they share a common sector in the large $N_c=2N$ limit. We report on our recent progress in the numerical studies of Sp($2N$) gauge theories discretised on a four-dimensional Euclidean lattice. In particular, we present preliminary results for the low-lying mass spectra of mesons and chimera baryons in the theories with $N=2$. We also compute the topological susceptibility for various values of $N$, extrapolate the results to the large $N$ limit, and discuss certain universal properties in Yang-Mills theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09262v1-abstract-full').style.display = 'none'; document.getElementById('2211.09262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, Contribution to the proceedings of the 15th Quark Confinement and the Hadron Spectrum conference (ConfXV), 1st-6th August 2022, Stavanger, Norway</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A07 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.03955">arXiv:2211.03955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.03955">pdf</a>, <a href="https://arxiv.org/format/2211.03955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of chimera baryons in a $Sp(4)$ lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.03955v2-abstract-short" style="display: inline;"> Chimera baryons are an important element of strongly coupled theories that provide a microscopic origin for UV complete composite Higgs models (CHMs), since they play the role of top partners in top partial compositeness. In a particular interesting realisation of CHMs based upon an underlying $Sp(4)$ gauge theory, such exotic objects are composed of two fermion constituents transforming on the fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03955v2-abstract-full').style.display = 'inline'; document.getElementById('2211.03955v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.03955v2-abstract-full" style="display: none;"> Chimera baryons are an important element of strongly coupled theories that provide a microscopic origin for UV complete composite Higgs models (CHMs), since they play the role of top partners in top partial compositeness. In a particular interesting realisation of CHMs based upon an underlying $Sp(4)$ gauge theory, such exotic objects are composed of two fermion constituents transforming on the fundamental, and one on the 2-index antisymmetric representations. We perform lattice computations of the chimera baryon spectrum in the quenched approximation. We present preliminary results for the masses of various chimera baryons with different quantum numbers, including the one interpreted as the top partner. We test the technology needed for future calculations with dynamical fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03955v2-abstract-full').style.display = 'none'; document.getElementById('2211.03955v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, contribution to the proceedings of the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8th-13th August 2022, Bonn, Germany. Minor changes: two references included, clarification of the choice of the top partner</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02370">arXiv:2211.02370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.02370">pdf</a>, <a href="https://arxiv.org/format/2211.02370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Topological susceptibility, scale setting and universality from $Sp(N_c)$ gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02370v1-abstract-short" style="display: inline;"> In this contribution, we report on our study of the properties of the Wilson flow and on the calculation of the topological susceptibility of $Sp(N_c)$ gauge theories for $N_c=2,\,4,\,6,\,8$. The Wilson flow is shown to scale according to the quadratic Casimir operator of the gauge group, as was already observed for $SU(N_c)$, and the commonly used scales $t_0$ and $w_0$ are obtained for a large i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02370v1-abstract-full').style.display = 'inline'; document.getElementById('2211.02370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02370v1-abstract-full" style="display: none;"> In this contribution, we report on our study of the properties of the Wilson flow and on the calculation of the topological susceptibility of $Sp(N_c)$ gauge theories for $N_c=2,\,4,\,6,\,8$. The Wilson flow is shown to scale according to the quadratic Casimir operator of the gauge group, as was already observed for $SU(N_c)$, and the commonly used scales $t_0$ and $w_0$ are obtained for a large interval of the inverse coupling for each probed value of $N_c$. The continuum limit of the topological susceptibility is computed and we conjecture that it scales with the dimension of the group. The lattice measurements performed in the $SU(N_c)$ Yang-Mills theories by several independent collaborations allow us to test this conjecture and to obtain a universal large-$N_c$ limit of the rescaled topological susceptibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02370v1-abstract-full').style.display = 'none'; document.getElementById('2211.02370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Proceeding for the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08154">arXiv:2210.08154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08154">pdf</a>, <a href="https://arxiv.org/format/2210.08154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of $Sp(4)$ lattice gauge theory with $n_f=3$ antisymmetric fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08154v1-abstract-short" style="display: inline;"> We perform numerical calculations of masses and decay constants of the lightest (flavoured) pseudoscalar, vector and axial vector mesons in the $Sp(4)$ lattice gauge theory with three Dirac fermions in the antisymmetric representation. The corresponding continuum theory plays an important role in certain ultra-violet complete realisations of composite Higgs, partial top compositeness, and composit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08154v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08154v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08154v1-abstract-full" style="display: none;"> We perform numerical calculations of masses and decay constants of the lightest (flavoured) pseudoscalar, vector and axial vector mesons in the $Sp(4)$ lattice gauge theory with three Dirac fermions in the antisymmetric representation. The corresponding continuum theory plays an important role in certain ultra-violet complete realisations of composite Higgs, partial top compositeness, and composite dark matter models. In addition, we measure the masses of other flavoured mesons in spin-$0$ and $1$ channels, as well as the first excited state of the vector mesons. Using the gradient flow to set the scale, we carry out the continuum extrapolation and show preliminary results for the meson spectrum of the theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08154v1-abstract-full').style.display = 'none'; document.getElementById('2210.08154v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 Table, Proceedings of the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A06 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07622">arXiv:2210.07622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07622">pdf</a>, <a href="https://arxiv.org/ps/2210.07622">ps</a>, <a href="https://arxiv.org/format/2210.07622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Towards glueball masses of large-$N~\mathrm{SU}(N)$ Yang-Mills theories without topological freezing via parallel tempering on boundary conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bonanno%2C+C">Claudio Bonanno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=D%27Elia%2C+M">Massimo D&#39;Elia</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07622v1-abstract-short" style="display: inline;"> Standard local updating algorithms experience a critical slowing down close to the continuum limit, which is particularly severe for topological observables. In practice, the Markov chain tends to remain trapped in a fixed topological sector. This problem further worsens at large $N$, and is known as $\mathit{topological}~\mathit{freezing}$. To mitigate it, we adopt the parallel tempering on bound&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07622v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07622v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07622v1-abstract-full" style="display: none;"> Standard local updating algorithms experience a critical slowing down close to the continuum limit, which is particularly severe for topological observables. In practice, the Markov chain tends to remain trapped in a fixed topological sector. This problem further worsens at large $N$, and is known as $\mathit{topological}~\mathit{freezing}$. To mitigate it, we adopt the parallel tempering on boundary conditions proposed by M. Hasenbusch. This algorithm allows to obtain a reduction of the auto-correlation time of the topological charge up to several orders of magnitude. With this strategy we are able to provide the first computation of low-lying glueball masses at large $N$ free of any systematics related to topological freezing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07622v1-abstract-full').style.display = 'none'; document.getElementById('2210.07622v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 eps figures, Proceedings of the 39th International Symposium on Lattice Field Theory, LATTICE2022, 8th-13th August, 2022, Rheinische Friedrich-Wilhelms-Universit盲t Bonn, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13392">arXiv:2207.13392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.13392">pdf</a>, <a href="https://arxiv.org/format/2207.13392">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.034501">10.1103/PhysRevD.107.034501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing center vortices and deconfinement in $\mathrm{SU}(2)$ lattice gauge theory with persistent homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sale%2C+N">Nicholas Sale</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giansiracusa%2C+J">Jeffrey Giansiracusa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13392v2-abstract-short" style="display: inline;"> We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in $\mathrm{SU}(2)$ lattice gauge theory in a gauge-invariant manner. We provide evidence for the sensitivity of our method to vortices by detecting a vortex explicitly inserted using twisted boundary conditions in the deconfined phase. This inspire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13392v2-abstract-full').style.display = 'inline'; document.getElementById('2207.13392v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13392v2-abstract-full" style="display: none;"> We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in $\mathrm{SU}(2)$ lattice gauge theory in a gauge-invariant manner. We provide evidence for the sensitivity of our method to vortices by detecting a vortex explicitly inserted using twisted boundary conditions in the deconfined phase. This inspires the definition of a new phase indicator for the deconfinement phase transition. We also construct a phase indicator without reference to twisted boundary conditions using a simple $k$-nearest neighbours classifier. Finite-size scaling analyses of both persistence-based indicators yield accurate estimates of the critical $尾$ and critical exponent of correlation length $谓$ of the deconfinement phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13392v2-abstract-full').style.display = 'none'; document.getElementById('2207.13392v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 19 figures, accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09364">arXiv:2205.09364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09364">pdf</a>, <a href="https://arxiv.org/format/2205.09364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.094503">10.1103/PhysRevD.106.094503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $Sp(2N)$ Yang-Mills theories on the lattice: scale setting and topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09364v4-abstract-short" style="display: inline;"> We study Yang-Mills lattice theories with $Sp(N_c)$ gauge group, with $N_c=2N$, for $N=1,\,\cdots,\,4$. We show that if we divide the renormalised couplings appearing in the Wilson flow by the quadratic Casimir $C_2(F)$ of the $Sp(N_c)$ group, then the resulting quantities display a good agreement among all values of $N_c$ considered, over a finite interval in flow time. We use this scaled version&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09364v4-abstract-full').style.display = 'inline'; document.getElementById('2205.09364v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09364v4-abstract-full" style="display: none;"> We study Yang-Mills lattice theories with $Sp(N_c)$ gauge group, with $N_c=2N$, for $N=1,\,\cdots,\,4$. We show that if we divide the renormalised couplings appearing in the Wilson flow by the quadratic Casimir $C_2(F)$ of the $Sp(N_c)$ group, then the resulting quantities display a good agreement among all values of $N_c$ considered, over a finite interval in flow time. We use this scaled version of the Wilson flow as a scale-setting procedure, compute the topological susceptibility of the $Sp(N_c)$ theories, and extrapolate the results to the continuum limit for each $N_c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09364v4-abstract-full').style.display = 'none'; document.getElementById('2205.09364v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures. v4: Typos corrected in eq. 35, Figures 3 and 4. Results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09254">arXiv:2205.09254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09254">pdf</a>, <a href="https://arxiv.org/format/2205.09254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137504">10.1016/j.physletb.2022.137504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Color dependence of the topological susceptibility in Yang-Mills theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09254v3-abstract-short" style="display: inline;"> For Yang-Mills theories in four dimensions, we propose to rescale the ratio between topological susceptibility and string tension squared in a universal way, dependent only on group factors. We apply this suggestion to $SU(N_c)$ and $Sp(N_c)$ groups, and compare lattice measurements performed by several independent collaborations. We show that the two sequences of (rescaled) numerical results in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09254v3-abstract-full').style.display = 'inline'; document.getElementById('2205.09254v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09254v3-abstract-full" style="display: none;"> For Yang-Mills theories in four dimensions, we propose to rescale the ratio between topological susceptibility and string tension squared in a universal way, dependent only on group factors. We apply this suggestion to $SU(N_c)$ and $Sp(N_c)$ groups, and compare lattice measurements performed by several independent collaborations. We show that the two sequences of (rescaled) numerical results in these two families of groups are compatible with each other. We hence perform a combined fit, and extrapolate to the common large-$N_c$ limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09254v3-abstract-full').style.display = 'none'; document.getElementById('2205.09254v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures; v2 minor change, a reference added; v3. minor changes to match the version accepted in PLB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.06190">arXiv:2205.06190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.06190">pdf</a>, <a href="https://arxiv.org/ps/2205.06190">ps</a>, <a href="https://arxiv.org/format/2205.06190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137281">10.1016/j.physletb.2022.137281 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards glueball masses of large-$N$ $\mathrm{SU}(N)$ pure-gauge theories without topological freezing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bonanno%2C+C">Claudio Bonanno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=D%27Elia%2C+M">Massimo D&#39;Elia</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.06190v2-abstract-short" style="display: inline;"> In commonly used Monte Carlo algorithms for lattice gauge theories the integrated autocorrelation time of the topological charge is known to be exponentially-growing as the continuum limit is approached. This $\mathit{topological}\,\,\textit{freezing}$, whose severity increases with the size of the gauge group, can result in potentially large systematics. To provide a direct quantification of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06190v2-abstract-full').style.display = 'inline'; document.getElementById('2205.06190v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.06190v2-abstract-full" style="display: none;"> In commonly used Monte Carlo algorithms for lattice gauge theories the integrated autocorrelation time of the topological charge is known to be exponentially-growing as the continuum limit is approached. This $\mathit{topological}\,\,\textit{freezing}$, whose severity increases with the size of the gauge group, can result in potentially large systematics. To provide a direct quantification of the latter, we focus on $\mathrm{SU}(6)$ Yang--Mills theory at a lattice spacing for which conventional methods associated to the decorrelation of the topological charge have an unbearable computational cost. We adopt the recently proposed $\mathit{parallel}\,\,\mathit{tempering}\,\,\mathit{on}\,\,\mathit{boundary}\,\,\mathit{conditions}$ algorithm, which has been shown to remove systematic effects related to topological freezing, and compute glueball masses with a typical accuracy of $2-5\%$. We observe no sizeable systematic effect in the mass of the first lowest-lying glueball states, with respect to calculations performed at nearly-frozen topological sector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06190v2-abstract-full').style.display = 'none'; document.getElementById('2205.06190v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 eps figures, revised version matches published one</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters B 833 (2022) 137281 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05838">arXiv:2202.05838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05838">pdf</a>, <a href="https://arxiv.org/ps/2202.05838">ps</a>, <a href="https://arxiv.org/format/2202.05838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Applications of Machine Learning to Lattice Quantum Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cal%C3%AC%2C+S">Salvatore Cal矛</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Foreman%2C+S">Sam Foreman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandru%2C+A">Andrei Alexandru</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05838v1-abstract-short" style="display: inline;"> There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and outline what is needed to enable exploration and deployment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05838v1-abstract-full').style.display = 'inline'; document.getElementById('2202.05838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05838v1-abstract-full" style="display: none;"> There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and outline what is needed to enable exploration and deployment of this approach in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05838v1-abstract-full').style.display = 'none'; document.getElementById('2202.05838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, contribution to Snowmass 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5405 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05516">arXiv:2202.05516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05516">pdf</a>, <a href="https://arxiv.org/format/2202.05516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.014501">10.1103/PhysRevD.106.014501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice studies of the $Sp(4)$ gauge theory with two fundamental and three antisymmetric Dirac fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05516v3-abstract-short" style="display: inline;"> We consider the $Sp(4)$ gauge theory coupled to $N_f=2$ fundamental and $n_f=3$ antisymmetric flavours of Dirac fermions in four dimensions. This theory serves as the microscopic origin for composite Higgs models with $SU(4)/Sp(4)$ coset, supplemented by partial top compositeness. We study numerically its lattice realisation, and couple the fundamental plaquette action to Wilson-Dirac fermions in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05516v3-abstract-full').style.display = 'inline'; document.getElementById('2202.05516v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05516v3-abstract-full" style="display: none;"> We consider the $Sp(4)$ gauge theory coupled to $N_f=2$ fundamental and $n_f=3$ antisymmetric flavours of Dirac fermions in four dimensions. This theory serves as the microscopic origin for composite Higgs models with $SU(4)/Sp(4)$ coset, supplemented by partial top compositeness. We study numerically its lattice realisation, and couple the fundamental plaquette action to Wilson-Dirac fermions in mixed representations, by adopting a (rational) hybrid Monte Carlo method, to perform non-trivial tests of the properties of the resulting lattice theory. We find evidence of a surface (with boundaries) of first-order bulk phase transitions in the three-dimensional space of bare parameters (one coupling and two masses). Explicit evaluation of the Dirac eigenvalues confirms the expected patterns of global symmetry breaking. After investigating finite volume effects in the weak-coupling phase of the theory, for the largest available lattice we study the mass spectra of the lightest spin-0 and spin-1 flavoured mesons composed of fermions in each representation, and of the lightest half-integer spin composite particle made of fermions in different representations -- the chimera baryon. This work sets the stage for future systematical studies of the non-perturbative dynamics in phenomenologically relevant regions of parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05516v3-abstract-full').style.display = 'none'; document.getElementById('2202.05516v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 20 figures, 6 tables; minor improvements and references added; version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-22/A01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14544">arXiv:2111.14544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14544">pdf</a>, <a href="https://arxiv.org/format/2111.14544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Progress in $Sp(2N)$ lattice gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14544v1-abstract-short" style="display: inline;"> Lattice studies of gauge theories with symplectic gauge groups provide valuable information about gauge dynamics, and complement the results of lattice investigations focused on unitary gauge groups. These theories play a central role in phenomenological contexts such as composite Higgs and strongly interacting dark matter models. We report on recent progress of our lattice research programme, sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14544v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14544v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14544v1-abstract-full" style="display: none;"> Lattice studies of gauge theories with symplectic gauge groups provide valuable information about gauge dynamics, and complement the results of lattice investigations focused on unitary gauge groups. These theories play a central role in phenomenological contexts such as composite Higgs and strongly interacting dark matter models. We report on recent progress of our lattice research programme, starting from the glueball mass spectrum and the topology of the pure gauge theory. We present our results on the mass spectrum of mesons in the quenched approximation, by varying the number of colours in the symplectic group. For the $Sp(4)$ theory, we focus on results obtained with dynamical fermion matter content comprising both fundamental and 2-index antisymmetric representations of the gauge group, as dictated by a well known model of composite Higgs with partial top compositeness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14544v1-abstract-full').style.display = 'none'; document.getElementById('2111.14544v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 29 figures, 5 tables, combined proceedings of the 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-21/A02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12125">arXiv:2111.12125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12125">pdf</a>, <a href="https://arxiv.org/format/2111.12125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202225808003">10.1051/epjconf/202225808003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sp(4) gauge theories and beyond the standard model physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsiao%2C+H">Ho Hsiao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mesiti%2C+M">Michele Mesiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12125v2-abstract-short" style="display: inline;"> We review numerical results for models with gauge group Sp(2N), discussing the glueball spectrum in the large-N limit, the quenched meson spectrum of Sp(4) with Dirac fermions in the fundamental and in the antisymmetric representation and the Sp(4) gauge model with two dynamical Dirac flavours. We also present preliminary results for the meson spectrum in the Sp(4) gauge theory with two fundamenta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12125v2-abstract-full').style.display = 'inline'; document.getElementById('2111.12125v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12125v2-abstract-full" style="display: none;"> We review numerical results for models with gauge group Sp(2N), discussing the glueball spectrum in the large-N limit, the quenched meson spectrum of Sp(4) with Dirac fermions in the fundamental and in the antisymmetric representation and the Sp(4) gauge model with two dynamical Dirac flavours. We also present preliminary results for the meson spectrum in the Sp(4) gauge theory with two fundamental and three antisymmetric Dirac flavours. The main motivation of our programme is to test whether this latter model is viable as a realisation of Higgs compositeness via the pseudo Nambu Goldstone mechanism and at the same time can provide partial top compositeness. In this respect, we report and briefly discuss preliminary results for the mass of the composite baryon made with two fundamental and one antisymmetric fermion (chimera baryon), whose physical properties are highly constrained if partial top compositeness is at work. Our investigation shows that a fully non-perturbative study of Higgs compositeness and partial top compositeness in Sp(4) is within reach with our current lattice methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12125v2-abstract-full').style.display = 'none'; document.getElementById('2111.12125v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected notations in Eq. 1 and redrawn Fig 2, results unchanged; 8 pages, 4 figures, contribution to the proceedings of A Virtual Tribute to Quark Confinement and the Hadron Spectrum (vConf21), August 2nd-6th 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00353">arXiv:2111.00353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00353">pdf</a>, <a href="https://arxiv.org/format/2111.00353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2207/1/012052">10.1088/1742-6596/2207/1/012052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient computations of continuous action densities of states for lattice models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francesconi%2C+O">Olmo Francesconi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holzmann%2C+M">Markus Holzmann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lancaster%2C+D">David Lancaster</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rago%2C+A">Antonio Rago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00353v1-abstract-short" style="display: inline;"> The Logarithmic Linear Relaxation (LLR) algorithm is an efficient method for computing densities of states for systems with a continuous spectrum. A key feature of this method is exponential error reduction, which allows us to evaluate the density of states of a system over hundreds of thousands of orders of magnitude with a fixed level of relative accuracy. As a consequence of exponential error r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00353v1-abstract-full').style.display = 'inline'; document.getElementById('2111.00353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00353v1-abstract-full" style="display: none;"> The Logarithmic Linear Relaxation (LLR) algorithm is an efficient method for computing densities of states for systems with a continuous spectrum. A key feature of this method is exponential error reduction, which allows us to evaluate the density of states of a system over hundreds of thousands of orders of magnitude with a fixed level of relative accuracy. As a consequence of exponential error reduction, the LLR method provides a robust alternative to traditional Monte Carlo calculations in cases in which states suppressed by the Boltzmann weight play nevertheless a relevant role, e.g., as transition regions between dominant configuration sets. After reviewing the algorithm, we will show an application in U(1) Lattice Gauge Theory that has enabled us to obtain the most accurate estimate of the critical coupling with modest computational resources, defeating exponential tunneling times between metastable vacua. As a further showcase, we will then present an application of the LLR method to the decorrelation of the topological charge in SU(3) Lattice Gauge Theory near the continuum limit. Finally, we will review in general applications of the LLR algorithm to systems affected by a strong sign problem and discuss the case of the Bose gas at finite chemical potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00353v1-abstract-full').style.display = 'none'; document.getElementById('2111.00353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures. Talk presented by B. Lucini at the XXXII IUPAP Conference on Computational Physics 21, Coventry, UK, 1-5 August 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12979">arXiv:2110.12979</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12979">pdf</a>, <a href="https://arxiv.org/format/2110.12979">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> New lattice results for SU(2) gauge theory with one adjoint Dirac flavor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Athenodorou%2C+A">Andreas Athenodorou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12979v2-abstract-short" style="display: inline;"> Motivated by recent scenarios of exotic infrared behaviour and by earlier lattice findings, we present results for the SU(2) gauge theory with one Dirac flavor in the adjoint representation. This provides a major update on our previous investigation of this theory, including data for four values of the gauge coupling $尾$, and for smaller masses and larger volumes than previously considered. Result&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12979v2-abstract-full').style.display = 'inline'; document.getElementById('2110.12979v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12979v2-abstract-full" style="display: none;"> Motivated by recent scenarios of exotic infrared behaviour and by earlier lattice findings, we present results for the SU(2) gauge theory with one Dirac flavor in the adjoint representation. This provides a major update on our previous investigation of this theory, including data for four values of the gauge coupling $尾$, and for smaller masses and larger volumes than previously considered. Results for the particle spectrum, topological observables, and the anomalous dimension from both hyperscaling and the Dirac mode number are presented. At the finest coupling, we observe a mass anomalous dimension of $纬_* \gtrsim 0.6$. Our findings are analysed in relation to possible infrared behaviours of the model. In particular, we show that our results are not compatible with a confining scenario in which chiral symmetry is broken. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12979v2-abstract-full').style.display = 'none'; document.getElementById('2110.12979v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">update title to disambiguate from PRD paper. no other changes. 8 pages, 5 figures. Talk given at the 38th International Symposium on Lattice Field Theory (LATTICE2021) - Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10928">arXiv:2110.10928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10928">pdf</a>, <a href="https://arxiv.org/format/2110.10928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2207/1/012056">10.1088/1742-6596/2207/1/012056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum field theories, Markov random fields and machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bachtis%2C+D">Dimitrios Bachtis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10928v2-abstract-short" style="display: inline;"> The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine learning within quantum field theory. Here, we will discuss how discretized Euclidean field theories, such as the $蠁^{4}$ lattice field theory on a square lattice, are mathematically equivalent to Markov fields, a notable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10928v2-abstract-full').style.display = 'inline'; document.getElementById('2110.10928v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10928v2-abstract-full" style="display: none;"> The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine learning within quantum field theory. Here, we will discuss how discretized Euclidean field theories, such as the $蠁^{4}$ lattice field theory on a square lattice, are mathematically equivalent to Markov fields, a notable class of probabilistic graphical models with applications in a variety of research areas, including machine learning. The results are established based on the Hammersley-Clifford theorem. We will then derive neural networks from quantum field theories and discuss applications pertinent to the minimization of the Kullback-Leibler divergence for the probability distribution of the $蠁^{4}$ machine learning algorithms and other probability distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10928v2-abstract-full').style.display = 'none'; document.getElementById('2110.10928v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10960">arXiv:2109.10960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10960">pdf</a>, <a href="https://arxiv.org/format/2109.10960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.105.024121">10.1103/PhysRevE.105.024121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantitative analysis of phase transitions in two-dimensional XY models using persistent homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sale%2C+N">Nicholas Sale</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giansiracusa%2C+J">Jeffrey Giansiracusa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10960v2-abstract-short" style="display: inline;"> We use persistent homology and persistence images as an observable of three different variants of the two-dimensional XY model in order to identify and study their phase transitions. We examine models with the classical XY action, a topological lattice action, and an action with an additional nematic term. In particular, we introduce a new way of computing the persistent homology of lattice spin m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10960v2-abstract-full').style.display = 'inline'; document.getElementById('2109.10960v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10960v2-abstract-full" style="display: none;"> We use persistent homology and persistence images as an observable of three different variants of the two-dimensional XY model in order to identify and study their phase transitions. We examine models with the classical XY action, a topological lattice action, and an action with an additional nematic term. In particular, we introduce a new way of computing the persistent homology of lattice spin model configurations and, by considering the fluctuations in the output of logistic regression and k-nearest neighbours models trained on persistence images, we develop a methodology to extract estimates of the critical temperature and the critical exponent of the correlation length. We put particular emphasis on finite-size scaling behaviour and producing estimates with quantifiable error. For each model we successfully identify its phase transition(s) and are able to get an accurate determination of the critical temperatures and critical exponents of the correlation length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10960v2-abstract-full').style.display = 'none'; document.getElementById('2109.10960v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 29 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08497">arXiv:2109.08497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.08497">pdf</a>, <a href="https://arxiv.org/format/2109.08497">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Interpreting machine learning functions as physical observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bachtis%2C+D">Dimitrios Bachtis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08497v1-abstract-short" style="display: inline;"> We propose to interpret machine learning functions as physical observables, opening up the possibility to apply &#34;standard&#34; statistical-mechanical methods to outputs from neural networks. This includes histogram reweighting and finite-size scaling, to analyse phase transitions quantitatively. In addition we incorporate predictive functions as conjugate variables coupled to an external field within&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08497v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08497v1-abstract-full" style="display: none;"> We propose to interpret machine learning functions as physical observables, opening up the possibility to apply &#34;standard&#34; statistical-mechanical methods to outputs from neural networks. This includes histogram reweighting and finite-size scaling, to analyse phase transitions quantitatively. In addition we incorporate predictive functions as conjugate variables coupled to an external field within the Hamiltonian of a system, allowing to induce order-disorder phase transitions in a novel manner. A noteworthy feature of this approach is that no knowledge of the symmetries in the Hamiltonian is required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08497v1-abstract-full').style.display = 'none'; document.getElementById('2109.08497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, contribution to the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.07730">arXiv:2109.07730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.07730">pdf</a>, <a href="https://arxiv.org/format/2109.07730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0201">10.22323/1.396.0201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine learning with quantum field theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bachtis%2C+D">Dimitrios Bachtis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.07730v1-abstract-short" style="display: inline;"> The precise equivalence between discretized Euclidean field theories and a certain class of probabilistic graphical models, namely the mathematical framework of Markov random fields, opens up the opportunity to investigate machine learning from the perspective of quantum field theory. In this contribution we will demonstrate, through the Hammersley-Clifford theorem, that the $蠁^{4}$ scalar field t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07730v1-abstract-full').style.display = 'inline'; document.getElementById('2109.07730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.07730v1-abstract-full" style="display: none;"> The precise equivalence between discretized Euclidean field theories and a certain class of probabilistic graphical models, namely the mathematical framework of Markov random fields, opens up the opportunity to investigate machine learning from the perspective of quantum field theory. In this contribution we will demonstrate, through the Hammersley-Clifford theorem, that the $蠁^{4}$ scalar field theory on a square lattice satisfies the local Markov property and can therefore be recast as a Markov random field. We will then derive from the $蠁^{4}$ theory machine learning algorithms and neural networks which can be viewed as generalizations of conventional neural network architectures. Finally, we will conclude by presenting applications based on the minimization of an asymmetric distance between the probability distribution of the $蠁^{4}$ machine learning algorithms and target probability distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07730v1-abstract-full').style.display = 'none'; document.getElementById('2109.07730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presentation at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lucini%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10