CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 991 results for author: <span class="mathjax">Wu, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Wu%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wu, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wu%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wu, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08157">arXiv:2412.08157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.08157">pdf</a>, <a href="https://arxiv.org/format/2412.08157">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Fractional spin Josephson effect in topological spin superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Liang Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hua Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yijia Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08157v1-abstract-short" style="display: inline;"> Topological spin superconductors are $p$-wave spin-triplet exciton insulators whose topological edge modes have been shown to obey non-Abelian braiding statistics. Based on a toy model as the spin counterpart of the Kitaev&#39;s chain, we study the spin Josephson effect adopting the $S$-matrix as well as the Green&#39;s function method. The on-site energies of these topological edge modes lead to a transi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08157v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08157v1-abstract-full" style="display: none;"> Topological spin superconductors are $p$-wave spin-triplet exciton insulators whose topological edge modes have been shown to obey non-Abelian braiding statistics. Based on a toy model as the spin counterpart of the Kitaev&#39;s chain, we study the spin Josephson effect adopting the $S$-matrix as well as the Green&#39;s function method. The on-site energies of these topological edge modes lead to a transition between the fractional and integer spin Josephson effects. Moreover, non-vanishing on-site energies will also induce a charge pump through the spin Josephson junction. These two effects, distinct features of topological spin superconductors and absent in Majorana systems, can be utilized for spin transport detection of topological spin superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08157v1-abstract-full').style.display = 'none'; document.getElementById('2412.08157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03732">arXiv:2412.03732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03732">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the Role of Lewis Base Strength in Small-Molecule Passivation of Defect Perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yi-Chen Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+H">Hsien-Hsin Chou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03732v1-abstract-short" style="display: inline;"> Perovskite materials are highly promising for a range of optoelectronic applications including energy conversion technologies, owing to their high charge-carrier mobilities, adaptability of bandgap tuning, and exceptional light-harvesting capabilities. Yet, defects that arise during manufacturing often lead to performance limitations such as hindered efficiency and stability. This is primarily due&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03732v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03732v1-abstract-full" style="display: none;"> Perovskite materials are highly promising for a range of optoelectronic applications including energy conversion technologies, owing to their high charge-carrier mobilities, adaptability of bandgap tuning, and exceptional light-harvesting capabilities. Yet, defects that arise during manufacturing often lead to performance limitations such as hindered efficiency and stability. This is primarily due to significant deviations in crystal geometry and band structure elements such as the Fermi level, work function, and density of states, compared to pristine perovskite. To mitigate these issues, this study explored the passivation of surface iodide-vacancy defect in perovskite using small-molecule Lewis bases, an approach aims to counteract these detrimental effects. Among the examined N-, P- and O-coordinated benzyl derivatives, those featuring a phosphonic acid group as a passivator for the undercoordinated Pb(II) sites demonstrated outstanding electronic structure properties. This was notably achieved by lowering the Fermi level, increasing the work function, and suppressing surface trap states. The effective restoration of electronic properties achieved by targeted small molecule passivation provides crucial insights into enhanced functionality and efficiency for defect perovskite materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03732v1-abstract-full').style.display = 'none'; document.getElementById('2412.03732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01850">arXiv:2412.01850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01850">pdf</a>, <a href="https://arxiv.org/format/2412.01850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Contractive Unitary and Classical Shadow Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yadong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Ce Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+J">Juan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+H">Hui Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01850v1-abstract-short" style="display: inline;"> The rapid development of quantum technology demands efficient characterization of complex quantum many-body states. However, full quantum state tomography requires an exponential number of measurements in system size, preventing its practical use in large-scale quantum devices. A major recent breakthrough in this direction, called classical shadow tomography, significantly reduces the sample compl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01850v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01850v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01850v1-abstract-full" style="display: none;"> The rapid development of quantum technology demands efficient characterization of complex quantum many-body states. However, full quantum state tomography requires an exponential number of measurements in system size, preventing its practical use in large-scale quantum devices. A major recent breakthrough in this direction, called classical shadow tomography, significantly reduces the sample complexity, the number of samples needed to estimate properties of a state, by implementing random Clifford rotations before measurements. Despite many recent efforts, reducing the sample complexity below $\mathbf{2^k}$ for extracting any non-successive local operators with a size $\sim \mathbf{k}$ remains a challenge. In this work, we achieve a significantly smaller sample complexity of $\mathbf{\sim 1.8^k}$ using a protocol that hybridizes locally random and globally deterministic unitary operations. The key insight is the discovery of a deterministic global unitary, termed as \textit{contractive unitary}, which is more efficient in reducing the operator size to enhance tomography efficiency. The contractive unitary perfectly matches the advantages of the atom array quantum computation platform and is readily realized in the atom array quantum processor. More importantly, it highlights a new strategy in classical shadow tomography, demonstrating that a random-deterministic hybridized protocol can be more efficient than fully random measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01850v1-abstract-full').style.display = 'none'; document.getElementById('2412.01850v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01679">arXiv:2412.01679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01679">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimisation and Loss Analyses of Pulsed Field Magnetisation in a Superconducting Motor with Cryocooled Iron Cores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+L">Luning Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongye Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+G">Guojin Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Haigening Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuyang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhipeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jintao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coombs%2C+T">Tim Coombs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01679v1-abstract-short" style="display: inline;"> A 2D electromagnetic-thermal coupled numerical model has been developed using the finite element method and validated against experimental data to investigate a superconducting machine featuring high-temperature superconducting (HTS) tape stacks and cryocooled iron cores. The HTS stacks are transformed into trapped field stacks (TFSs) through pulsed field magnetisation (PFM), generating rotor fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01679v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01679v1-abstract-full" style="display: none;"> A 2D electromagnetic-thermal coupled numerical model has been developed using the finite element method and validated against experimental data to investigate a superconducting machine featuring high-temperature superconducting (HTS) tape stacks and cryocooled iron cores. The HTS stacks are transformed into trapped field stacks (TFSs) through pulsed field magnetisation (PFM), generating rotor fields. After PFM, the superconducting motor operates on the same principle as permanent magnet synchronous motors. This study explores the behaviour of HTS stacks by altering the stack&#39;s layer number from one to nine and adjusting the pulsed current amplitude from 250 A to 1000 A. The primary objective of this paper is to identify the optimal combination of pulsed current amplitudes and TFS layer numbers for achieving maximum magnetisation fields. The secondary objective is to evaluate the overall losses in both superconducting and non-superconducting parts of the machine during magnetisation, including heat generated in various layers of the TFS, and losses in the motor&#39;s active materials (copper windings and iron cores). Two motor configurations were proposed, and two calculation methods using linear interpolation of iron losses and steel grades were introduced to estimate the iron losses for the studied iron material, M270-35A. This pioneering study is expected to serve as a valuable reference for loss analyses and structural design considerations in developing superconducting machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01679v1-abstract-full').style.display = 'none'; document.getElementById('2412.01679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19pages, 18 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01321">arXiv:2412.01321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01321">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Physically Constrained 3D Diffusion for Inverse Design of Fiber-reinforced Polymer Composite Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+P">Pei Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yunpeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pilla%2C+S">Srikanth Pilla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+F">Feng Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01321v1-abstract-short" style="display: inline;"> Designing fiber-reinforced polymer composites (FRPCs) with a tailored nonlinear stress-strain response can enable innovative applications across various industries. Currently, no efforts have achieved the inverse design of FRPCs that target the entire stress-strain curve. Here, we develop PC3D_Diffusion, a 3D spatial diffusion model designed for the inverse design of FRPCs. We generate 1.35 millio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01321v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01321v1-abstract-full" style="display: none;"> Designing fiber-reinforced polymer composites (FRPCs) with a tailored nonlinear stress-strain response can enable innovative applications across various industries. Currently, no efforts have achieved the inverse design of FRPCs that target the entire stress-strain curve. Here, we develop PC3D_Diffusion, a 3D spatial diffusion model designed for the inverse design of FRPCs. We generate 1.35 million FRPCs and calculate their stress-strain curves for training. Although the vanilla PC3D_Diffusion can generate visually appealing results, less than 10% of FRPCs generated by the vanilla model are collision-free, in which fibers do not intersect with each other. We then propose a loss-guided, learning-free approach to apply physical constraints during generation. As a result, PC3D_Diffusion can generate high-quality designs with tailored mechanical behaviors while guaranteeing to satisfy the physical constraints. PC3D_Diffusion advances FRPC inverse design and may facilitate the inverse design of other 3D materials, offering potential applications in industries reliant on materials with custom mechanical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01321v1-abstract-full').style.display = 'none'; document.getElementById('2412.01321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00619">arXiv:2412.00619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00619">pdf</a>, <a href="https://arxiv.org/format/2412.00619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Floquet Chern Vector Topological Insulators in Three Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+F">Fangyuan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junrong Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ying Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D">Di Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00619v2-abstract-short" style="display: inline;"> We theoretically and numerically investigate Chern vector insulators and topological surface states in a three-dimensional lattice, based on phase-delayed temporal-periodic interactions within the tight-binding model. These Floquet interactions break time-reversal symmetry, effectively inducing a gauge field analogous to magnetic flux. This gauge field results in Chern numbers in all spatial dimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00619v2-abstract-full').style.display = 'inline'; document.getElementById('2412.00619v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00619v2-abstract-full" style="display: none;"> We theoretically and numerically investigate Chern vector insulators and topological surface states in a three-dimensional lattice, based on phase-delayed temporal-periodic interactions within the tight-binding model. These Floquet interactions break time-reversal symmetry, effectively inducing a gauge field analogous to magnetic flux. This gauge field results in Chern numbers in all spatial dimensions, collectively forming the Chern vector. This vector characterizes the topological phases and signifies the emergence of robust surface states. Numerically, we observe these states propagating unidirectionally without backscattering on all open surfaces of the three-dimensional system. Our work paves the way for breaking time-reversal symmetry and realizing three-dimensional Chern vector topological insulators using temporal-periodic Floquet techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00619v2-abstract-full').style.display = 'none'; document.getElementById('2412.00619v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16981">arXiv:2411.16981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16981">pdf</a>, <a href="https://arxiv.org/format/2411.16981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Electrical contact with dielectric breakdown of interfacial gap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yue Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jackson%2C+R+L">Robert L. Jackson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16981v1-abstract-short" style="display: inline;"> Electrical contact is fundamental to almost every aspect of modern industry, including the fast-growing electric vehicle industry. In metallic contacts in atmospheric conditions, most of the electrical current passes via the micro-junctions formed between two electrodes. The classic electrical contact theory predicts an infinite current density at the circular contact periphery. In the present wor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16981v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16981v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16981v1-abstract-full" style="display: none;"> Electrical contact is fundamental to almost every aspect of modern industry, including the fast-growing electric vehicle industry. In metallic contacts in atmospheric conditions, most of the electrical current passes via the micro-junctions formed between two electrodes. The classic electrical contact theory predicts an infinite current density at the circular contact periphery. In the present work, we explore the influence of the dielectric breakdown of air outside the contact area on the electrical contact interface. Incorporating the discharging boundary condition governed by the modified Paschen law, we develop the numerical model as well as two sets of closed-form solutions for low applied voltage cases where two electrodes are in solid-solid contact and complete separation, respectively. For Hertzian contact, the present work theoretically proves that the ignorance of discharge can lead to a singular current density at the contact periphery and an overestimation of the electrical contact resistance. The current density monotonically increases along the radial direction to a finite value at the contact area periphery, followed by a monotonic drop within the discharge zone. The present study serves as a foundation for the modeling of discharging rough surface electrical contact and sheds light on the machine element surface damages caused by the electrical discharge machining. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16981v1-abstract-full').style.display = 'none'; document.getElementById('2411.16981v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10780">arXiv:2411.10780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10780">pdf</a>, <a href="https://arxiv.org/format/2411.10780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Weak Host Interactions Induced Thermal Transport Properties of Metal Halide Perovskites Deviating from the Rattling Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+L">Linxuan Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+S">Shuming Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yimin Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Liujiang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10780v1-abstract-short" style="display: inline;"> The low-frequency phonon branches of metal halide perovskites typically exhibit the characteristic of hardening with the increase of the cation mass, which leads to anomalous thermal transport phenomenon. However, the underlying physical mechanism is not yet understood. Here, we theoretically compare the thermal transport properties of $A_2$SnI$_6$ ($A$=K, Rb, and Cs) perovskites. The thermal tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10780v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10780v1-abstract-full" style="display: none;"> The low-frequency phonon branches of metal halide perovskites typically exhibit the characteristic of hardening with the increase of the cation mass, which leads to anomalous thermal transport phenomenon. However, the underlying physical mechanism is not yet understood. Here, we theoretically compare the thermal transport properties of $A_2$SnI$_6$ ($A$=K, Rb, and Cs) perovskites. The thermal transport in perovskites is widely explained using the rattling model, where ``guest&#39;&#39; cations inside the metal halide framework act as ``rattlers&#39;&#39;, but this fails to explain the following phenomenon: The low-frequency phonon branch of $A_2$SnI$_6$ perovskites is insensitive to the mass of the $A^+$ cation and strongly correlated with the interaction of the $A^+$ cation with the I$^-$ anion in the octahedral structures. The failure of the rattling model stems mainly from the weak interactions between the octahedral structures. By developing a new spring model, we successfully explain the thermal transport behavior in $A_2$SnI$_6$ perovskites. Our work gives new insights into the thermal transport mechanism in metal halide perovskites, which has a guiding significance for designing extremely low thermal conductivity materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10780v1-abstract-full').style.display = 'none'; document.getElementById('2411.10780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06384">arXiv:2411.06384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06384">pdf</a>, <a href="https://arxiv.org/ps/2411.06384">ps</a>, <a href="https://arxiv.org/format/2411.06384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermal Broadening of Phonon Spectral Function in Classical Lattice Models: Projective Truncation Approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+H">Hu-Wei Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wen-Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yue-Hong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+K">Kou-Han Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+N">Ning-Hua Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06384v1-abstract-short" style="display: inline;"> Thermal broadening of the quasi-particle peak in the spectral function is an important physical feature in many statistical systems, but difficult to calculate. Within the projective truncation approximation (PTA) of Green&#39;s function equation of motion for classical systems, we produce the spectral function with thermal broadened quasi-particles peak using an $H$-expanded basis. We demonstrate thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06384v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06384v1-abstract-full" style="display: none;"> Thermal broadening of the quasi-particle peak in the spectral function is an important physical feature in many statistical systems, but difficult to calculate. Within the projective truncation approximation (PTA) of Green&#39;s function equation of motion for classical systems, we produce the spectral function with thermal broadened quasi-particles peak using an $H$-expanded basis. We demonstrate this method on two model systems, the one-variable anharmonic oscillator model and the one-dimensional classical $蠁^4$ lattice model. Comparison with exact spectral function and the molecular dynamics simulation results shows that the method is semi-quantitatively accurate. Extension of the $H$-expanded basis to PTA for quantum system is possible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06384v1-abstract-full').style.display = 'none'; document.getElementById('2411.06384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05551">arXiv:2411.05551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05551">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Collective Pinning and Vortex Dynamics in type 2 superconducting thin films with Varying Magnetic Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+L">Liangliang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Renfei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiawei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xiaobo Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05551v2-abstract-short" style="display: inline;"> A perpendicular magnetic field penetrating a thin type-II superconductor slab produces vortices, with one vortex per flux quantum, h/2e. The vortices interact repulsively and form an ordered array (Abrikosov lattice) in clean systems, while strong disorder changes the lattice into a vortex glass. Here we investigate type-II superconducting films (PdBi2 and NbSe2) with surface acoustic waves (SAWs)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05551v2-abstract-full').style.display = 'inline'; document.getElementById('2411.05551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05551v2-abstract-full" style="display: none;"> A perpendicular magnetic field penetrating a thin type-II superconductor slab produces vortices, with one vortex per flux quantum, h/2e. The vortices interact repulsively and form an ordered array (Abrikosov lattice) in clean systems, while strong disorder changes the lattice into a vortex glass. Here we investigate type-II superconducting films (PdBi2 and NbSe2) with surface acoustic waves (SAWs) at mK temperature. When sweeping the magnetic field at an extremely slow rate, we observe a series of spikes in the attenuation and velocity of the SAW, on average separated in field by approximately Hc1. We suspect the following scenario: The vortex-free region at the edges of the film produces an edge barrier across which the vortices can enter or leave. When the applied field changes, the induced supercurrents flowing along this edge region lowers this barrier until there is an instability. At that point, vortices avalanche into (or out of) the bulk and change the vortex crystal, suggested by the sharp jump in each such spike. The vortices then gradually relax to a new stable pinned configuration, leading to a ~30s relaxation after the jump. Our observation enriches the limited experimental evidence on the important topic of real-time vortex dynamics in superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05551v2-abstract-full').style.display = 'none'; document.getElementById('2411.05551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01736">arXiv:2411.01736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01736">pdf</a>, <a href="https://arxiv.org/format/2411.01736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Cancellation theorem breaking and resonant spin-tensor Hall conductivity in higher-rank spin-tensor Hall effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xiaoru He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+L">Ling-Zheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Junpeng Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xi-Wang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ya-Jie Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01736v1-abstract-short" style="display: inline;"> With recent advances in simulating quantum phenomena in cold atoms, the higher-rank spin tensor Hall effect was discovered in larger spin systems with spin-tensor-momentum coupling, which is an extension of the celebrated spin Hall effects in larger spins. Previously, it has been proposed that a 2D electron gas with Rashba spin-orbit coupling can generate dissipationless transverse spin current, n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01736v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01736v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01736v1-abstract-full" style="display: none;"> With recent advances in simulating quantum phenomena in cold atoms, the higher-rank spin tensor Hall effect was discovered in larger spin systems with spin-tensor-momentum coupling, which is an extension of the celebrated spin Hall effects in larger spins. Previously, it has been proposed that a 2D electron gas with Rashba spin-orbit coupling can generate dissipationless transverse spin current, namely the spin Hall effect. However, later work showed that the spin current is canceled by vertex correction, which was subsequently proven by a cancellation theorem that does not depend on any assumptions related to the scattering mechanism, the strength of spin-orbit coupling, or the Fermi energy. While the recent proposal demonstrates a universal intrinsic spin-tensor Hall conductivity, it is unclear if it vanishes similarly to the spin Hall effect. In this work, we address this critical problem and show that the rank-2 spin-tensor current can be divergent by considering the contributions of both interbranch and intrabranch transitions, which resembles the quantum Hall effect in some sense. So the \textit{universal} spin-tensor Hall effect can not be observed in a system with finite size. However, we further show that there is an \textit{observable non-zero} resonance of spin-tensor Hall conductivity as the Landau levels cross under the magnetic field. Our work reveals interesting conductivity properties of larger-spin systems and will provide valuable guidance for experimental explorations of higher-rank spin-tensor Hall effects, as well as their potential device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01736v1-abstract-full').style.display = 'none'; document.getElementById('2411.01736v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01232">arXiv:2411.01232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01232">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Probing disorder-induced time-reversal symmetry breaking in Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Daiqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarino%2C+A">Anita Guarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fittipaldi%2C+R">Rosalba Fittipaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wenjie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+N">Niu Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weichao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yerin%2C+Y">Yuriy Yerin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vecchione%2C+A">Antonio Vecchione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuoco%2C+M">Mario Cuoco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01232v1-abstract-short" style="display: inline;"> The relation between superconductivity and time-reversal symmetry (TRS) is one of the most fascinating problems in condensed matter physics. Although most superconductors inherently possess TRS, nonmagnetic disorder can induce states that demonstrate the breaking of this symmetry. Yet, the identification of experimental signatures of superconductivity with broken TRS remains a challenge. Here, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01232v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01232v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01232v1-abstract-full" style="display: none;"> The relation between superconductivity and time-reversal symmetry (TRS) is one of the most fascinating problems in condensed matter physics. Although most superconductors inherently possess TRS, nonmagnetic disorder can induce states that demonstrate the breaking of this symmetry. Yet, the identification of experimental signatures of superconductivity with broken TRS remains a challenge. Here, we fabricate vertical Josephson junctions using metallic superconductor (Al) and ion bombarded Sr2RuO4 to study disorder-driven TRS breaking effects. We observe persistent magnetoresistive hysteresis behavior dependent on the disorder deposition time that provides evidence of TRS breaking below the superconducting transition temperature. Field and temperature dependent measurements suggest that the observed effects arise from disorder-induced anomalous flux in Sr2RuO4 which can be sensitively detected by superconducting Al. Our experimental results can be accounted within a physical framework of disorder-induced reconstruction of the superconducting order parameter as described within a multiband Ginzburg-Landau approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01232v1-abstract-full').style.display = 'none'; document.getElementById('2411.01232v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21522">arXiv:2410.21522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21522">pdf</a>, <a href="https://arxiv.org/format/2410.21522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Classical theory of nucleation applied to condensation of a Lennard-Jones fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yijian Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Philippe%2C+T">Thomas Philippe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21522v1-abstract-short" style="display: inline;"> The classical nucleation theory (CNT) and its modified versions provide a convenient framework for describing the nucleation process under the capillary approximation. However, these models often predict nucleation rates that depart significantly from simulation results, even for a simple Lennard-Jones fluid. This large discrepancy is likely due to the inaccurate estimation of the driving force fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21522v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21522v1-abstract-full" style="display: none;"> The classical nucleation theory (CNT) and its modified versions provide a convenient framework for describing the nucleation process under the capillary approximation. However, these models often predict nucleation rates that depart significantly from simulation results, even for a simple Lennard-Jones fluid. This large discrepancy is likely due to the inaccurate estimation of the driving force for nucleation, which most traditional models estimate within the ideal solution approximation. In this study, we address this issue by directly calculating the driving force for nucleation using equations of state (EOS) and integrating this approach into the calculation of nucleation rates within the framework of CNT and its modified model. We apply this method to examine the condensation of a Lennard-Jones fluid and compare the resulting nucleation rates with molecular dynamics (MD) simulation data. Our results demonstrate that at relatively low supersaturation, where the capillary approximation is reasonable, our thermodynamic models exhibit excellent agreement with MD results, significantly outperforming traditional models. At moderate and high supersaturation, our approach continues to show a reasonable agreement with MD results. Furthermore, when comparing the results obtained by using different EOS, we find that more precise EOS generally yield better agreement with MD data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21522v1-abstract-full').style.display = 'none'; document.getElementById('2410.21522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19554">arXiv:2410.19554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19554">pdf</a>, <a href="https://arxiv.org/format/2410.19554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.023307">10.1103/PhysRevA.109.023307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological bosonic Bogoliubov excitations with sublattice symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+L">Ling-Xia Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+L">Liang-Liang Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+L">Liu-Gang Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BC%2C+X">Xin-You L眉</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ying Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19554v1-abstract-short" style="display: inline;"> Here we investigate the internal sublattice symmetry, and thus the enriched topological classification of bosonic Bogoliubov excitations of thermodynamically stable free-boson systems with non-vanishing particle-number-nonconserving terms. Specifically, we show that such systems well described by the bosonic Bogoliubov-de Gennes Hamiltonian can be in general reduced to particle-number-conserving (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19554v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19554v1-abstract-full" style="display: none;"> Here we investigate the internal sublattice symmetry, and thus the enriched topological classification of bosonic Bogoliubov excitations of thermodynamically stable free-boson systems with non-vanishing particle-number-nonconserving terms. Specifically, we show that such systems well described by the bosonic Bogoliubov-de Gennes Hamiltonian can be in general reduced to particle-number-conserving (single-particle) ones. Building upon this observation, the sublattice symmetry is uncovered with respect to an excitation energy, which is usually hidden in the bosonic Bogoliubov-de Gennes Hamiltonian. Thus, we obtain an additional topological class, i.e., class AIII, which enriches the framework for the topological threefold way of free-boson systems. Moreover, a construction is proposed to show a category of systems respecting such a symmetry. For illustration, we resort to a one-dimensional (1D) prototypical model to demonstrate the topological excitation characterized by a winding number or symplectic polarization. By introducing the correlation function, we present an approach to measure the topological invariant. In addition, the edge excitation together with its robustness to symmetry-preserving disorders is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19554v1-abstract-full').style.display = 'none'; document.getElementById('2410.19554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109, 023307 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19158">arXiv:2410.19158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19158">pdf</a>, <a href="https://arxiv.org/format/2410.19158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale magnetic ordering dynamics in a high Curie temperature ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yueh-Chun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hal%C3%A1sz%2C+G+B">G谩bor B. Hal谩sz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damron%2C+J+T">Joshua T. Damron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gai%2C+Z">Zheng Gai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Huan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuxin Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dahmen%2C+K+A">Karin A Dahmen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carlson%2C+E+W">Erica W. Carlson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+C">Chengyun Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jeongkeun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+N">Ho Nyung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawrie%2C+B+J">Benjamin J. Lawrie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19158v1-abstract-short" style="display: inline;"> Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature $\mathrm{T_c}$, but it has proven technically challenging to probe the relevant length and time scales with most conventional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19158v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19158v1-abstract-full" style="display: none;"> Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature $\mathrm{T_c}$, but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high-$\mathrm{T_c}$ ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near $\mathrm{T_c}$. Meanwhile, the temperature-dependent spin dynamics, measured through all optical relaxometry suggest that the phase transition is in the XY universality class. Our results capture both static and dynamic aspects of critical behavior, providing insights into universal properties that govern phase transitions in magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19158v1-abstract-full').style.display = 'none'; document.getElementById('2410.19158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17014">arXiv:2410.17014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17014">pdf</a>, <a href="https://arxiv.org/format/2410.17014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantifying the non-Abelian property of Andreev bound states in inhomogeneous Majorana nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yijia Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17014v1-abstract-short" style="display: inline;"> Non-Abelian braiding is a key property of Majorana zero modes (MZMs) that can be utilized for topological quantum computation. However, the presence of trivial Andreev bound states (ABSs) in topological superconductors can hinder the non-Abelian braiding of MZMs. We systematically investigate the braiding properties of ABSs induced by various inhomogeneous potentials in nanowires and quantify the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17014v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17014v1-abstract-full" style="display: none;"> Non-Abelian braiding is a key property of Majorana zero modes (MZMs) that can be utilized for topological quantum computation. However, the presence of trivial Andreev bound states (ABSs) in topological superconductors can hinder the non-Abelian braiding of MZMs. We systematically investigate the braiding properties of ABSs induced by various inhomogeneous potentials in nanowires and quantify the main obstacles to non-Abelian braiding. We find that if a trivial ABSs is present at zero energy with a tiny energy fluctuation, their non-Abelian braiding property can be sustained for a longer braiding time cost, since the undesired dynamic phase is suppressed. Under certain conditions, the non-Abelian braiding of ABSs can even surpass that of MZMs in realistic systems, suggesting that ABSs might also be suitable for topological quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17014v1-abstract-full').style.display = 'none'; document.getElementById('2410.17014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12390">arXiv:2410.12390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12390">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A Novel Energy-Efficient Salicide-Enhanced Tunnel Device Technology Based on 300mm Foundry Platform Towards AIoT Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qianqian Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yongqin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Ye Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+R">Renjie Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhixuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Libo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fangxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+K">Kexing Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiqing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Mengxuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+K">Kai Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jin Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+L">Le Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lining Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bu%2C+W">Weihai Bu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Ru Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12390v1-abstract-short" style="display: inline;"> This work demonstrates a novel energy-efficient tunnel FET (TFET)-CMOS hybrid foundry platform for ultralow-power AIoT applications. By utilizing the proposed monolithic integration process, the novel complementary n and p-type Si TFET technology with dopant segregated source junction and self-aligned drain underlap design is successfully integrated into a 300mm CMOS baseline process without CMOS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12390v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12390v1-abstract-full" style="display: none;"> This work demonstrates a novel energy-efficient tunnel FET (TFET)-CMOS hybrid foundry platform for ultralow-power AIoT applications. By utilizing the proposed monolithic integration process, the novel complementary n and p-type Si TFET technology with dopant segregated source junction and self-aligned drain underlap design is successfully integrated into a 300mm CMOS baseline process without CMOS performance penalty and any new materials, experimentally demonstrating the large Ion and record high Ion/Ioff ratio of 10^7 among TFETs by industry-manufacturers. The device performance and variability are also co-optimized for high-volume production. Further circuit-level implementations are presented based on the calibrated compact model. The proposed TFET-CMOS hybrid logic and SRAM topologies show significant energy efficiency improvement with comparable operation speed compared with standard CMOS circuits, indicating its great potential for power-constraint AIoT applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12390v1-abstract-full').style.display = 'none'; document.getElementById('2410.12390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09793">arXiv:2410.09793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09793">pdf</a>, <a href="https://arxiv.org/format/2410.09793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Energy Bands of Incommensurate Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xin-Yu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jin-Rong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+M">Miao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ying-Hai Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jin-Hua Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09793v1-abstract-short" style="display: inline;"> Energy band theory is a fundamental cornerstone of condensed matter physics. According to conventional wisdom, discrete translational symmetry is mandatory for defining energy bands. Here, we illustrate that, in fact, the concept of energy band can be generalized to incommensurate systems lacking such symmetry, thus transcending the traditional paradigm of energy band. The validity of our theory i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09793v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09793v1-abstract-full" style="display: none;"> Energy band theory is a fundamental cornerstone of condensed matter physics. According to conventional wisdom, discrete translational symmetry is mandatory for defining energy bands. Here, we illustrate that, in fact, the concept of energy band can be generalized to incommensurate systems lacking such symmetry, thus transcending the traditional paradigm of energy band. The validity of our theory is verified by extensive numerical calculations in the celebrated Aubry-Andr茅-Harper model and a two-dimensional incommensurate model of graphene. Building upon the proposed concept of incommensurate energy bands, we further develop a theory of angle-resolved photoemission spectroscopy (ARPES) for incommensurate systems, providing a clear physical picture for the incommensurate ARPES spectra. Our work establishes a comprehensive energy band theory for incommensurate systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09793v1-abstract-full').style.display = 'none'; document.getElementById('2410.09793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05957">arXiv:2410.05957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05957">pdf</a>, <a href="https://arxiv.org/format/2410.05957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Unified model for non-Abelian braiding of Majorana and Dirac fermion zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T">Tianyu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiong-Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yijia Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05957v1-abstract-short" style="display: inline;"> Majorana zero modes (MZMs) are the most intensively studied non-Abelian anyons. The Dirac fermion zero modes in topological insulators can be interpreted as the symmetry-protected &#34;doubling&#34; of the MZMs, suggesting an intrinsic connection between the quantum statistics of the two types of zero modes. Here we find that the minimal Kitaev chain model provides a unified characterization of the non-Ab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05957v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05957v1-abstract-full" style="display: none;"> Majorana zero modes (MZMs) are the most intensively studied non-Abelian anyons. The Dirac fermion zero modes in topological insulators can be interpreted as the symmetry-protected &#34;doubling&#34; of the MZMs, suggesting an intrinsic connection between the quantum statistics of the two types of zero modes. Here we find that the minimal Kitaev chain model provides a unified characterization of the non-Abelian braiding statistics of both the MZMs and Dirac fermion zero modes under different parameter regimes. In particular, we introduce a minimal tri-junction setting based on the minimal Kitaev chain model and show it facilitates the unified scheme of braiding Dirac fermion zero modes, as well as the MZMs in the assistance of a Dirac mode. This unified minimal model unveils that the non-Abelian braiding of the MZMs can be continuously extended to the realm of Dirac fermion zero modes. The present study reveals deeper insights into the non-Abelian statistics and enables a broader search for non-Abelian anyons beyond the scope of MZMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05957v1-abstract-full').style.display = 'none'; document.getElementById('2410.05957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05485">arXiv:2410.05485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05485">pdf</a>, <a href="https://arxiv.org/format/2410.05485">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Slow Equilibrium Relaxation in a Chiral Magnet Mediated by Topological Defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenhao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+H">Haonan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">Raymond Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steadman%2C+P">Paul Steadman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Laan%2C+G">Gerrit van der Laan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05485v2-abstract-short" style="display: inline;"> We performed a pump-probe experiment on the chiral magnet Cu$_2$OSeO$_3$ to study the relaxation dynamics of its non-collinear magnetic orders, employing a millisecond magnetic field pulse as the pump and resonant elastic x-ray scattering as the probe. Our findings reveal that the system requires $\sim$0.2 s to stabilize after the perturbation applied to both the conical and skyrmion lattice phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05485v2-abstract-full').style.display = 'inline'; document.getElementById('2410.05485v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05485v2-abstract-full" style="display: none;"> We performed a pump-probe experiment on the chiral magnet Cu$_2$OSeO$_3$ to study the relaxation dynamics of its non-collinear magnetic orders, employing a millisecond magnetic field pulse as the pump and resonant elastic x-ray scattering as the probe. Our findings reveal that the system requires $\sim$0.2 s to stabilize after the perturbation applied to both the conical and skyrmion lattice phase; significantly slower than the typical nanosecond timescale observed in micromagnetics. This prolonged relaxation is attributed to the formation and slow dissipation of local topological defects, such as emergent monopoles. By unveiling the experimental lifetime of these emergent singularities in a non-collinear magnetic system, our study highlights a universal relaxation mechanism in solitonic textures within the slow dynamics regime, offering new insights into topological physics and advanced information storage solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05485v2-abstract-full').style.display = 'none'; document.getElementById('2410.05485v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02993">arXiv:2410.02993</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02993">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Resolving and routing the magnetic polymorphs in 2D layered antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+C">Canyu Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z">Zhiyuan Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shuang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+B">Bokai Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei-Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Q">Qixi Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02993v1-abstract-short" style="display: inline;"> Polymorphism, commonly denoting the variety of molecular or crystal structures, is a vital element in many natural science disciplines. In van der Waals layered antiferromagnets, a new type of magnetic polymorphism is allowed by having multiple layer-selective magnetic structures with the same total magnetization. However, resolving and manipulating such magnetic polymorphs remain a great challeng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02993v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02993v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02993v1-abstract-full" style="display: none;"> Polymorphism, commonly denoting the variety of molecular or crystal structures, is a vital element in many natural science disciplines. In van der Waals layered antiferromagnets, a new type of magnetic polymorphism is allowed by having multiple layer-selective magnetic structures with the same total magnetization. However, resolving and manipulating such magnetic polymorphs remain a great challenge. Here we use the phase-resolved magnetic second-harmonic generation microscopy to elucidate such magnetic polymorphism in the 2D semiconducting layered antiferromagnet chromium sulfur bromide (CrSBr), and demonstrate how the magnetic polymorphs can be deterministically switched in an unprecedented layer-selective manner. With the nonlinear magneto-optical technique unveiling the magnetic symmetry information through the amplitude and phase of light, we could unambiguously resolve the polymorphic spin-flip transitions in CrSBr bilayers and tetralayers. Remarkably, the deterministic routing of polymorphic transitions originates from the breaking of energy degeneracy via a magnetic layer-sharing effect: the spin-flip transitions in a tetralayer are governed by the laterally extended bilayer, which acts as a control bit. We envision such controllable magnetic polymorphism to be ubiquitous for van der Waals layered antiferromagnets, and could lead to conceptually new design and construction of spintronic and opto-spintronic devices for probabilistic computation and neuromorphic engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02993v1-abstract-full').style.display = 'none'; document.getElementById('2410.02993v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02007">arXiv:2410.02007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02007">pdf</a>, <a href="https://arxiv.org/ps/2410.02007">ps</a>, <a href="https://arxiv.org/format/2410.02007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity in the parent infinite-layer nickelate NdNiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Parzyck%2C+C+T">C. T. Parzyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhatt%2C+L">L. Bhatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">M. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arthur%2C+Z">Z. Arthur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">T. M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herranz%2C+G">G. Herranz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georgescu%2C+A+B">A. B. Georgescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">L. F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D+A">D. A. Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02007v1-abstract-short" style="display: inline;"> We report evidence for superconductivity with onset temperatures up to 11 K in thin films of the infinite-layer nickelate parent compound NdNiO$_2$. A combination of oxide molecular-beam epitaxy and atomic hydrogen reduction yields samples with high crystallinity and low residual resistivities, a substantial fraction of which exhibit superconducting transitions. We survey a large series of samples&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02007v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02007v1-abstract-full" style="display: none;"> We report evidence for superconductivity with onset temperatures up to 11 K in thin films of the infinite-layer nickelate parent compound NdNiO$_2$. A combination of oxide molecular-beam epitaxy and atomic hydrogen reduction yields samples with high crystallinity and low residual resistivities, a substantial fraction of which exhibit superconducting transitions. We survey a large series of samples with a variety of techniques, including electrical transport, scanning transmission electron microscopy, x-ray absorption spectroscopy, and resonant inelastic x-ray scattering, to investigate the possible origins of superconductivity. We propose that superconductivity could be intrinsic to the undoped infinite-layer nickelates but suppressed by disorder due to its nodal order parameter, a finding which would necessitate a reconsideration of the nickelate phase diagram. Another possible hypothesis is that the parent materials can be hole doped from randomly dispersed apical oxygen atoms, which would suggest an alternative pathway for achieving superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02007v1-abstract-full').style.display = 'none'; document.getElementById('2410.02007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 10 pages, 6 figures. Supplementary: 9 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17586">arXiv:2409.17586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17586">pdf</a>, <a href="https://arxiv.org/format/2409.17586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chenyazhi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenhui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiadian He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiaohui Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanjiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+P">Peng Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yueshen Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17586v1-abstract-short" style="display: inline;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17586v1-abstract-full" style="display: none;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals (vdW) heterostructure. By injecting high-energy electrons into NbSe$_2$ under an electric field, a non-equilibrium state is induced, resulting in significant modulation of the superconducting properties. Owing to the intrinsic polarization of ferroelectric GaSe, a much steeper subthreshold slope and asymmetric modulation are achieved, which is beneficial to the device performance. Based on these results, a superconducting switch is realized that can reversibly and controllably switch between the superconducting and normal state under an electric field. Our findings highlight a significant high-energy injection effect from band engineering in 2D vdW heterostructures combining superconductors and ferroelectric semiconductors, and demonstrate the potential applications for superconducting integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'none'; document.getElementById('2409.17586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16398">arXiv:2409.16398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16398">pdf</a>, <a href="https://arxiv.org/format/2409.16398">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Shot noise in a phenomenological model of a marginal Fermi liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yi-Ming Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J+J">Josephine J. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raghu%2C+S">S. Raghu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16398v1-abstract-short" style="display: inline;"> The strange metal is a mysterious non-Fermi liquid which shows linear-in-$T$ resistivity behavior at finite temperatures, and, as found in recent experiment, vanishingly small shot noise in the linear-in-$T$ regime. Here, we investigate the shot noise of a strange metal based on a phenomenological model of marginal Fermi liquid (MFL), where fermions couple to some collective boson mode, leading to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16398v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16398v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16398v1-abstract-full" style="display: none;"> The strange metal is a mysterious non-Fermi liquid which shows linear-in-$T$ resistivity behavior at finite temperatures, and, as found in recent experiment, vanishingly small shot noise in the linear-in-$T$ regime. Here, we investigate the shot noise of a strange metal based on a phenomenological model of marginal Fermi liquid (MFL), where fermions couple to some collective boson mode, leading to $T$-linear scattering rate at finite $T$. It is found that in the diffusive regime where the MFL scattering length is small compared to the system size, the shot noise vanishes, and the thermal noise becomes a temperature- and voltage-independent constant. Introducing additional impurity scattering increases the shot noise, and is probably consistent with the current experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16398v1-abstract-full').style.display = 'none'; document.getElementById('2409.16398v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages with 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14843">arXiv:2409.14843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Creation of independently controllable and long lifetime polar skyrmion textures in ferroelectric-metallic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+F">Fei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jianhua Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongfang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jianwei Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Linjie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mengjun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoyue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenpeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Weijin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yue Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14843v1-abstract-short" style="display: inline;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14843v1-abstract-full" style="display: none;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a metallic contact undergo a topological phase transition and stabilize a broad family of skyrmion-like textures (e.g., skyrmion bubbles, multiple 蟺-twist target skyrmions, and skyrmion bags) with independent controllability, analogous to those reported in magnetic systems. Weakly-interacted skyrmion arrays with a density over 300 Gb/inch2 are successfully written, erased and read-out by local electrical and mechanical stimuli of a scanning probe. Interestingly, in contrast to the relatively short lifetime &lt;20 hours of the skyrmion bubbles, the multiple 蟺-twist target skyrmions and skyrmion bags show topology-enhanced stability with lifetime over two weeks. Experimental and theoretical analysis implies the heterostructures carry electric Dzyaloshinskii-Moriya interaction mediated by oxygen octahedral tiltings. Our results demonstrate ferroelectric-metallic heterostructures as fertile playground for topological states and emergent phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'none'; document.getElementById('2409.14843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12501">arXiv:2409.12501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12501">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetostatic effect on spin dynamics properties in antiferromagnetic Van der Waals material CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hongyue Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+N">Nan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haoran Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yongwei Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yunzhuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z">Zhiyuan Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jia Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Q">Qixi Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weichao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12501v1-abstract-short" style="display: inline;"> Van der Waals (vdW) antiferromagnets are exceptional platforms for exploring the spin dynamics of antiferromagnetic materials owing to their weak interlayer exchange coupling. In this study, we examined the antiferromagnetic resonance spectra of anisotropic Van der Waals antiferromagnet CrSBr. In addition to the ordinary resonance modes, we observed a dipolar spin wave mode when the microwave fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12501v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12501v1-abstract-full" style="display: none;"> Van der Waals (vdW) antiferromagnets are exceptional platforms for exploring the spin dynamics of antiferromagnetic materials owing to their weak interlayer exchange coupling. In this study, we examined the antiferromagnetic resonance spectra of anisotropic Van der Waals antiferromagnet CrSBr. In addition to the ordinary resonance modes, we observed a dipolar spin wave mode when the microwave field was oriented perpendicular to the in-plane easy axis of CrSBr. Furthermore, our results uncovered a pronounced dependency of various resonant modes on the orientation of the microwave field, which is pivotal for the accurate determination of exchange coupling constants. Numerical simulations have elucidated this orientation dependence of spin dynamics arises from the magnetostatic effect. This discovery underscores the previously underappreciated significance of dipolar interactions in shaping the dynamical properties of two-dimensional AFM materials, thereby enhancing our understanding of the intrinsic dynamic properties of vdW magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12501v1-abstract-full').style.display = 'none'; document.getElementById('2409.12501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11046">arXiv:2409.11046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11046">pdf</a>, <a href="https://arxiv.org/format/2409.11046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Crosscap states and duality of Ising field theory in two dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yueshui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ying-Hai Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+H">Hong-Hao Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11046v1-abstract-short" style="display: inline;"> We propose two distinct crosscap states for the two-dimensional (2D) Ising field theory. These two crosscap states, identifying Ising spins or dual spins (domain walls) at antipodal points, are shown to be related via the Kramers-Wannier duality transformation. We derive their Majorana free field representations and extend bosonization techniques to calculate correlation functions of the 2D Ising&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11046v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11046v1-abstract-full" style="display: none;"> We propose two distinct crosscap states for the two-dimensional (2D) Ising field theory. These two crosscap states, identifying Ising spins or dual spins (domain walls) at antipodal points, are shown to be related via the Kramers-Wannier duality transformation. We derive their Majorana free field representations and extend bosonization techniques to calculate correlation functions of the 2D Ising conformal field theory (CFT) with different crosscap boundaries. We further develop a conformal perturbation theory to calculate the Klein bottle entropy as a universal scaling function [Phys. Rev. Lett. 130, 151602 (2023)] in the 2D Ising field theory. The formalism developed in this work is applicable to many other 2D CFTs perturbed by relevant operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11046v1-abstract-full').style.display = 'none'; document.getElementById('2409.11046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+30 pages, 1+2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09583">arXiv:2409.09583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09583">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Machine learning assisted screening of metal binary alloys for anode materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xingyue Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Linming Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuhui Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yongjun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+Z">Zijian Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09583v1-abstract-short" style="display: inline;"> In the dynamic and rapidly advancing battery field, alloy anode materials are a focal point due to their superior electrochemical performance. Traditional screening methods are inefficient and time-consuming. Our research introduces a machine learning-assisted strategy to expedite the discovery and optimization of these materials. We compiled a vast dataset from the MP and AFLOW databases, encompa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09583v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09583v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09583v1-abstract-full" style="display: none;"> In the dynamic and rapidly advancing battery field, alloy anode materials are a focal point due to their superior electrochemical performance. Traditional screening methods are inefficient and time-consuming. Our research introduces a machine learning-assisted strategy to expedite the discovery and optimization of these materials. We compiled a vast dataset from the MP and AFLOW databases, encompassing tens of thousands of alloy compositions and properties. Utilizing a CGCNN, we accurately predicted the potential and specific capacity of alloy anodes, validated against experimental data. This approach identified approximately 120 low potential and high specific capacity alloy anodes suitable for various battery systems including Li, Na, K, Zn, Mg, Ca, and Al-based. Our method not only streamlines the screening of battery anode materials but also propels the advancement of battery material research and innovation in energy storage technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09583v1-abstract-full').style.display = 'none'; document.getElementById('2409.09583v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages include SI, 5 figures in main</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09419">arXiv:2409.09419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09419">pdf</a>, <a href="https://arxiv.org/format/2409.09419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superband: an Electronic-band and Fermi surface structure database of superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tengdong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suo%2C+C">Chenyu Suo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanling Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09419v1-abstract-short" style="display: inline;"> In comparison to simpler data such as chemical formulas and lattice structures, electronic band structure data provide a more fundamental and intuitive insight into superconducting phenomena. In this work, we generate superconductor&#39;s lattice structure files optimized for density functional theory (DFT) calculations. Through DFT, we obtain electronic band superconductors, including band structures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09419v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09419v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09419v1-abstract-full" style="display: none;"> In comparison to simpler data such as chemical formulas and lattice structures, electronic band structure data provide a more fundamental and intuitive insight into superconducting phenomena. In this work, we generate superconductor&#39;s lattice structure files optimized for density functional theory (DFT) calculations. Through DFT, we obtain electronic band superconductors, including band structures, density of states (DOS), and Fermi surface data. Additionally, we outline efficient methodologies for acquiring structure data, establish high-throughput DFT computational protocols, and introduce tools for extracting this data from large-scale DFT calculations. As an example, we have curated a dataset containing information on 2474 superconductors along with their experimentally determined superconducting transition temperatures, which is well-suited for machine learning applications. This work also provides guidelines for accessing and utilizing this dataset. Furthermore, we present a neural network model designed for training with this data. All the aforementioned data and code are publicly available at http://www.superband.work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09419v1-abstract-full').style.display = 'none'; document.getElementById('2409.09419v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07721">arXiv:2409.07721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07721">pdf</a>, <a href="https://arxiv.org/format/2409.07721">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A deep learning approach to search for superconductors from electronic bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+W">Wenqi Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tengdong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanling Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07721v1-abstract-short" style="display: inline;"> Energy band theory is a foundational framework in condensed matter physics. In this work, we employ a deep learning method, BNAS, to find a direct correlation between electronic band structure and superconducting transition temperature. Our findings suggest that electronic band structures can act as primary indicators of superconductivity. To avoid overfitting, we utilize a relatively simple deep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07721v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07721v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07721v1-abstract-full" style="display: none;"> Energy band theory is a foundational framework in condensed matter physics. In this work, we employ a deep learning method, BNAS, to find a direct correlation between electronic band structure and superconducting transition temperature. Our findings suggest that electronic band structures can act as primary indicators of superconductivity. To avoid overfitting, we utilize a relatively simple deep learning neural network model, which, despite its simplicity, demonstrates predictive capabilities for superconducting properties. By leveraging the attention mechanism within deep learning, we are able to identify specific regions of the electronic band structure most correlated with superconductivity. This novel approach provides new insights into the mechanisms driving superconductivity from an alternative perspective. Moreover, we predict several potential superconductors that may serve as candidates for future experimental synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07721v1-abstract-full').style.display = 'none'; document.getElementById('2409.07721v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06181">arXiv:2409.06181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06181">pdf</a>, <a href="https://arxiv.org/ps/2409.06181">ps</a>, <a href="https://arxiv.org/format/2409.06181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ferroelectric tuning of the valley polarized metal-semiconductor transition in Mn2P2S3Se3/Sc2CO2 van der Waals heterostructures and application to nonlinear Hall effect devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hanbo Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yewei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+P">Pengqiang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Weixi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yin-Zhong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Ping Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06181v1-abstract-short" style="display: inline;"> In order to promote the development of the next generation of nano-spintronic devices, it is of great significance to tune the freedom of valley in two-dimensional (2D) materials. Here, we propose a mechanism for manipulating the valley and nonlinear Hall effect by the 2D ferroelectric substrate. The monolayer Mn2P2S3Se3 is a robust antiferromagnetic valley polarized semiconductor. Importantly, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06181v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06181v1-abstract-full" style="display: none;"> In order to promote the development of the next generation of nano-spintronic devices, it is of great significance to tune the freedom of valley in two-dimensional (2D) materials. Here, we propose a mechanism for manipulating the valley and nonlinear Hall effect by the 2D ferroelectric substrate. The monolayer Mn2P2S3Se3 is a robust antiferromagnetic valley polarized semiconductor. Importantly, the valley polarized metal-semiconductor phase transition of Mn2P2S3Se3 can be effectively tuned by switching the ferroelectric polarization of Sc2CO2. We reveal the microscopic mechanism of phase transition, which origins from the charge transfer and band alignment. Additionally, we find that transformed polarization direction of Sc2CO2 flexibly manipulate the Berry curvature dipole. Based on this discovery, we present the detection valley polarized metal-semiconductor transition by the nonlinear Hall effect devices. These findings not only offer a scheme to tune the valley degree of freedom, but also provide promising platform to design the nonlinear Hall effect devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06181v1-abstract-full').style.display = 'none'; document.getElementById('2409.06181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04093">arXiv:2409.04093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04093">pdf</a>, <a href="https://arxiv.org/ps/2409.04093">ps</a>, <a href="https://arxiv.org/format/2409.04093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of superconducting diode effect in antiferromagnetic Mott insulator $伪$-RuCl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiadian He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiaohui Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanjiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+P">Peng Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yueshen Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+K">Kecheng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+K">Kejing Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shun-Li Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04093v1-abstract-short" style="display: inline;"> Nonreciprocal superconductivity, also called as superconducting diode effect that spontaneously breaks time-reversal symmetry, is characterized by asymmetric critical currents under opposite applied current directions. This distinct state unveils a rich ore of intriguing physical properties, particularly in the realm of nanoscience application of superconductors. Towards the experimental realizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04093v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04093v1-abstract-full" style="display: none;"> Nonreciprocal superconductivity, also called as superconducting diode effect that spontaneously breaks time-reversal symmetry, is characterized by asymmetric critical currents under opposite applied current directions. This distinct state unveils a rich ore of intriguing physical properties, particularly in the realm of nanoscience application of superconductors. Towards the experimental realization of superconducting diode effect, the construction of two-dimensional heterostructures of magnets and $s$-wave superconductors is considered to be a promising pathway. In this study, we present our findings of superconducting diode effect manifested in the magnetic Mott insulator $伪$-RuCl$_3$. This phenomenon is induced by the proximity effect within a van der Waals heterostructure, consisting of thin $伪$-RuCl$_3$/NbSe$_2$ flakes. Through transport property measurements, we have confirmed a weak superconducting gap of 0.2 meV, which is significantly lower than the intrinsic gap of NbSe$_2$(1.2 meV). Upon the application of a weak magnetic field below 70 mT, we observed an asymmetry in the critical currents under positive and negative applied currents. This observation demonstrates a typical superconducting diode effect in the superconducting $伪$-RuCl$_3$. The superconducting diode effect and nonreciprocal resistance are observed exclusively when the magnetic field is aligned out-of-plane. This suggests that an Ising-type spin-orbit coupling in the superconducting $伪$-RuCl$_3$ may be responsible for the mechanism. Our findings furnish a platform for the exploration of superconducting diode effect via the artificial construction of heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04093v1-abstract-full').style.display = 'none'; document.getElementById('2409.04093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03210">arXiv:2409.03210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03210">pdf</a>, <a href="https://arxiv.org/format/2409.03210">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic Spin Stripe Domains in Bilayer La$_3$Ni$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+N+K">N. K Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+R">R. Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">M. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parzyck%2C+C+T">C. T. Parzyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gregory%2C+B+Z">B. Z. Gregory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Costa%2C+N">N. Costa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarker%2C+S">S. Sarker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03210v1-abstract-short" style="display: inline;"> The discovery of superconductivity in La$_3$Ni$_2$O$_7$ under pressure has motivated the investigation of a parent spin density wave (SDW) state which could provide the underlying pairing interaction. Here, we employ resonant soft x-ray scattering and polarimetry on thin films of bilayer La$_3$Ni$_2$O$_7$ to determine that the magnetic structure of the SDW forms unidirectional diagonal spin stripe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03210v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03210v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03210v1-abstract-full" style="display: none;"> The discovery of superconductivity in La$_3$Ni$_2$O$_7$ under pressure has motivated the investigation of a parent spin density wave (SDW) state which could provide the underlying pairing interaction. Here, we employ resonant soft x-ray scattering and polarimetry on thin films of bilayer La$_3$Ni$_2$O$_7$ to determine that the magnetic structure of the SDW forms unidirectional diagonal spin stripes with moments lying within the NiO$_2$ plane and perpendicular to $\mathbf{Q}_{SDW}$, but without the strong charge disproportionation typically associated with other nickelates. These stripes form anisotropic domains with shorter correlation lengths perpendicular versus parallel to $\mathbf{Q}_{SDW}$, revealing nanoscale rotational and translational symmetry breaking analogous to the cuprate and Fe-based superconductors, with Bloch-like antiferromagnetic domain walls separating orthogonal domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03210v1-abstract-full').style.display = 'none'; document.getElementById('2409.03210v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages including supplementary, 4 figures + 9 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16275">arXiv:2408.16275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16275">pdf</a>, <a href="https://arxiv.org/format/2408.16275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Non-Abelian fractional quantum Hall states at filling factor 3/4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kai-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ying-Hai Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16275v1-abstract-short" style="display: inline;"> Fractional quantum Hall states have been observed at filling factor $谓=3/4$ in three platforms. General theoretical analysis of topological orders at $谓=3/4$ revealed that four types of non-Abelian states with Ising anyons have ground state degeneracy $12$ on the torus. The properties of $谓=3/4$ states can be analyzed using two complementary approaches. In the first one, they are treated as partic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16275v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16275v1-abstract-full" style="display: none;"> Fractional quantum Hall states have been observed at filling factor $谓=3/4$ in three platforms. General theoretical analysis of topological orders at $谓=3/4$ revealed that four types of non-Abelian states with Ising anyons have ground state degeneracy $12$ on the torus. The properties of $谓=3/4$ states can be analyzed using two complementary approaches. In the first one, they are treated as particle-hole conjugate of $谓=1/4$ Moore-Read types states. In the second one, they are mapped to composite fermions with reverse flux attachment at effective filling factor $3/2$, whose integral part realizes an integer quantum Hall state and the fractional part realizes $谓=1/2$ Moore-Read type states. For the specific case of bilayer graphene, numerical calculations demonstrate that strong Landau level mixing could generate a gapped state at $谓=3/4$ with 12 fold ground state degeneracy on the torus. Its chiral graviton spectral functions has one low energy peak with negative chirality and one high energy peak with positive chirality. This points to a specific member of the Moore-Read type states and agrees with the deduction based on daughter states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16275v1-abstract-full').style.display = 'none'; document.getElementById('2408.16275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13694">arXiv:2408.13694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13694">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Giant enhancement of bacterial upstream swimming in macromolecular flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+D">Ding Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+R">Ran Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Th%C3%A9ry%2C+A">Albane Th茅ry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathijssen%2C+A+J+T+M">Arnold J. T. M. Mathijssen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yilin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13694v1-abstract-short" style="display: inline;"> Many bacteria live in natural and clinical environments with abundant macromolecular polymers. Macromolecular fluids commonly display viscoelasticity and non-Newtonian rheological behavior; it is unclear how these complex-fluid properties affect bacterial transport in flows. Here we combine high-resolution microscopy and numerical simulations to study bacterial response to shear flows of various m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13694v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13694v1-abstract-full" style="display: none;"> Many bacteria live in natural and clinical environments with abundant macromolecular polymers. Macromolecular fluids commonly display viscoelasticity and non-Newtonian rheological behavior; it is unclear how these complex-fluid properties affect bacterial transport in flows. Here we combine high-resolution microscopy and numerical simulations to study bacterial response to shear flows of various macromolecular fluids. In stark contrast to the case in Newtonian shear flows, we found that flagellated bacteria in macromolecular flows display a giant capacity of upstream swimming (a behavior resembling fish swimming against current) near solid surfaces: The cells can counteract flow washing at shear rates up to ~65 $s^{-1}$, one order of magnitude higher than the limit for cells swimming in Newtonian flows. The significant enhancement of upstream swimming depends on two characteristic complex-fluid properties, namely viscoelasticity and shear-thinning viscosity; meanwhile, increasing the viscosity with a Newtonian polymer can prevent upstream motion. By visualizing flagellar bundles and modeling bacterial swimming in complex fluids, we explain the phenomenon as primarily arising from the augmentation of a &#34;weathervane effect&#34; in macromolecular flows due to the presence of a viscoelastic lift force and a shear-thinning induced azimuthal torque promoting the alignment of bacteria against the flow direction. Our findings shed light on bacterial transport and surface colonization in macromolecular environments, and may inform the design of artificial helical microswimmers for biomedical applications in physiological conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13694v1-abstract-full').style.display = 'none'; document.getElementById('2408.13694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10032">arXiv:2408.10032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10032">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable interfacial Rashba spin-orbit coupling in asymmetric Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+H">Hanzhi Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhi%2C+Z">Zhenghang Zhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuyang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiuming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Puyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+S">Shan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+C">Chenjia Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Lu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yifan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yujie Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+R">Renchao Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10032v1-abstract-short" style="display: inline;"> The manipulation of Rashba-type spin-orbit coupling (SOC) in molecular beam epitaxy-grown Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures is reported. The effective band bending provides robust two-dimensional quantum confinement, while the unidirectional built-in electric field from the asymmetric hetero-interfaces results in pronounced Rashba SOC strength. By tuning the Al concentrati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10032v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10032v1-abstract-full" style="display: none;"> The manipulation of Rashba-type spin-orbit coupling (SOC) in molecular beam epitaxy-grown Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures is reported. The effective band bending provides robust two-dimensional quantum confinement, while the unidirectional built-in electric field from the asymmetric hetero-interfaces results in pronounced Rashba SOC strength. By tuning the Al concentration in the top Al$_x$In$_{1-x}$Sb barrier layer, the optimal structure with $x = 0.15$ shows the largest Rashba coefficient of 0.23 eV-Angstrom. and the highest low-temperature electron mobility of 4400 cm$^2$/Vs . Quantitative investigations of the weak anti-localization effect further confirm the dominant D&#39;yakonov-Perel (DP) spin relaxation mechanism during charge-to-spin conversion. These findings highlight the significance of quantum well engineering in shaping magneto-resistance responses, and narrow bandgap semiconductor-based heterostructures may offer a reliable platform for energy-efficient spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10032v1-abstract-full').style.display = 'none'; document.getElementById('2408.10032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09213">arXiv:2408.09213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09213">pdf</a>, <a href="https://arxiv.org/format/2408.09213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Complexions at the Iron-Magnetite Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bienvenu%2C+B">Baptiste Bienvenu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuxiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=da+Silva%2C+A+K">Alisson Kwiatkowski da Silva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ophus%2C+C">Colin Ophus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+D">Dierk Raabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09213v1-abstract-short" style="display: inline;"> Synthesizing distinct phases and controlling the crystalline defects in them are key concepts in materials and process design. These approaches are usually described by decoupled theories, with the former resting on equilibrium thermodynamics and the latter on nonequilibrium kinetics. By combining them into a holistic form of defect phase diagrams, we can apply phase equilibrium models to the ther&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09213v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09213v1-abstract-full" style="display: none;"> Synthesizing distinct phases and controlling the crystalline defects in them are key concepts in materials and process design. These approaches are usually described by decoupled theories, with the former resting on equilibrium thermodynamics and the latter on nonequilibrium kinetics. By combining them into a holistic form of defect phase diagrams, we can apply phase equilibrium models to the thermodynamic evaluation of defects such as vacancies, dislocations, surfaces, grain boundaries, and phase boundaries, placing the understanding of material imperfections and their role on properties on solid thermodynamic and theoretical grounds. In this study, we characterize an interface-stabilized phase between Fe and Fe3O4 (magnetite) with differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). This method uniquely enables the simultaneous imaging of both heavy Fe atoms and light O atoms, providing precise mapping of the atomic structure and chemical composition at this heterogeneous metal-oxide interface. We identify a well-ordered two-layer interface-stabilized phase state (referred to as complexion) at the Fe[001]/Fe3O4[001] interface. Using density-functional theory (DFT), we not only explain the observed complexion but also map out various interface-stabilized phases as a function of the O chemical potential. We show that the formation of complexions influences the properties of the interface, increasing its adhesion by 20 % and changing the charge transfer between adjacent materials, also leveraging impact on the transport properties across such interfaces. Our findings highlight the potential of tunable phase states at defects as a new asset in advanced materials design, paving the way for knowledge-based and optimized corrosion protection, catalysis, magnetism, and redox-driven phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09213v1-abstract-full').style.display = 'none'; document.getElementById('2408.09213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08577">arXiv:2408.08577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08577">pdf</a>, <a href="https://arxiv.org/format/2408.08577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Mechanistic Modeling of Lipid Nanoparticle Formation for the Delivery of Nucleic Acid Therapeutics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Inguva%2C+P+K">Pavan K. Inguva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+S">Saikat Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+P+J">Pierre J. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanso%2C+M+A">Mona A. Kanso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanchen Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tenberg%2C+V">Vico Tenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santra%2C+S">Srimanta Santra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">Shalini Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S+H">Shin Hyuk Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trout%2C+B+L">Bernhardt L. Trout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bazant%2C+M+Z">Martin Z. Bazant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Myerson%2C+A+S">Allan S. Myerson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braatz%2C+R+D">Richard D. Braatz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08577v1-abstract-short" style="display: inline;"> Nucleic acids such as mRNA have emerged as a promising therapeutic modality with the capability of addressing a wide range of diseases. Lipid nanoparticles (LNPs) as a delivery platform for nucleic acids were used in the COVID-19 vaccines and have received much attention. While modern manufacturing processes which involve rapidly mixing an organic stream containing the lipids with an aqueous strea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08577v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08577v1-abstract-full" style="display: none;"> Nucleic acids such as mRNA have emerged as a promising therapeutic modality with the capability of addressing a wide range of diseases. Lipid nanoparticles (LNPs) as a delivery platform for nucleic acids were used in the COVID-19 vaccines and have received much attention. While modern manufacturing processes which involve rapidly mixing an organic stream containing the lipids with an aqueous stream containing the nucleic acids are conceptually straightforward, detailed understanding of LNP formation and structure is still limited and scale-up can be challenging. Mathematical and computational methods are a promising avenue for deepening scientific understanding of the LNP formation process and facilitating improved process development and control. This article describes strategies for the mechanistic modeling of LNP formation, starting with strategies to estimate and predict important physicochemical properties of the various species such as diffusivities and solubilities. Subsequently, a framework is outlined for constructing mechanistic models of reactor- and particle-scale processes. Insights gained from the various models are mapped back to product quality attributes and process insights. Lastly, the use of the models to guide development of advanced process control and optimization strategies is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08577v1-abstract-full').style.display = 'none'; document.getElementById('2408.08577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06751">arXiv:2408.06751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06751">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Polarization entanglement enabled by orthogonally stacked van der Waals NbOCl2 crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qiangbing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yun-Kun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiuhong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al%C3%B9%2C+A">Andrea Al霉</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xi-Feng Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06751v1-abstract-short" style="display: inline;"> Polarization entanglement holds significant importance for photonic quantum technologies. Recently emerging subwavelength nonlinear quantum light sources, e.g., GaP and LiNbO3 thin films, benefiting from the relaxed phase-matching constraints and volume confinement, has shown intriguing properties, such as high-dimensional hyperentanglement and robust entanglement anti-degradation. Van der Waals (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06751v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06751v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06751v1-abstract-full" style="display: none;"> Polarization entanglement holds significant importance for photonic quantum technologies. Recently emerging subwavelength nonlinear quantum light sources, e.g., GaP and LiNbO3 thin films, benefiting from the relaxed phase-matching constraints and volume confinement, has shown intriguing properties, such as high-dimensional hyperentanglement and robust entanglement anti-degradation. Van der Waals (vdW) NbOCl2 crystal, renowned for its superior optical nonlinearities, has emerged as one of ideal candidates for ultrathin quantum light sources [Nature 613, 53 (2023)]. However, polarization-entanglement is inaccessible in NbOCl2 crystal due to its unfavorable nonlinear susceptibility tensor. Here, by leveraging the twist-stacking degree of freedom inherently in vdW systems, we showcase the preparation of tunable polarization entanglement and quantum Bell states. Our work not only provides a new and tunable polarization-entangled vdW photon-pair source, but also introduces a new knob in engineering the entanglement state of quantum light at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06751v1-abstract-full').style.display = 'none'; document.getElementById('2408.06751v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03815">arXiv:2408.03815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03815">pdf</a>, <a href="https://arxiv.org/format/2408.03815">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dissipation Driven Coherent Dynamics Observed in Bose-Einstein Condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Ye Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yajuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yue Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+J">Jilai Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+S">Shuyao Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+Z">Zhihao Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+T">Tian Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Ce Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhe-Yu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiazhong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+H">Hui Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenlan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03815v1-abstract-short" style="display: inline;"> We report the first experimental observation of dissipation-driven coherent quantum many-body oscillation, and this oscillation is manifested as the coherent exchange of atoms between the thermal and the condensate components in a three-dimensional partially condensed Bose gas. Firstly, we observe that the dissipation leads to two different atom loss rates between the thermal and the condensate co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03815v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03815v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03815v1-abstract-full" style="display: none;"> We report the first experimental observation of dissipation-driven coherent quantum many-body oscillation, and this oscillation is manifested as the coherent exchange of atoms between the thermal and the condensate components in a three-dimensional partially condensed Bose gas. Firstly, we observe that the dissipation leads to two different atom loss rates between the thermal and the condensate components, such that the thermal fraction increases as dissipation time increases. Therefore, this dissipation process serves as a tool to uniformly ramp up the system&#39;s temperature without introducing extra density excitation. Subsequently, a coherent pair exchange of atoms between the thermal and the condensate components occurs, resulting in coherent oscillation of atom numbers in both components. This oscillation, permanently embedded in the atom loss process, is revealed clearly when we inset a duration of dissipation-free evolution into the entire dynamics, manifested as an oscillation of total atom number at the end. Finally, we also present a theoretical calculation to support this physical mechanism, which simultaneously includes dissipation, interaction, finite temperature, and harmonic trap effects. Our work introduces a highly controllable dissipation as a new tool to control quantum many-body dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03815v1-abstract-full').style.display = 'none'; document.getElementById('2408.03815v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02576">arXiv:2408.02576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02576">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale Engineering of Wurtzite Ferroelectrics: Unveiling Phase Transition and Ferroelectric Switching in ScAlN Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Ding Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mondal%2C+S">Shubham Mondal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mingtao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuanpeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Danhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Z">Zetian Mi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02576v1-abstract-short" style="display: inline;"> The pursuit of extreme device miniaturization and the exploration of novel physical phenomena have spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. Recently, wurtzite ferroelectrics have emerged as a new class of functional materials, offering intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02576v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02576v1-abstract-full" style="display: none;"> The pursuit of extreme device miniaturization and the exploration of novel physical phenomena have spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. Recently, wurtzite ferroelectrics have emerged as a new class of functional materials, offering intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless integration with mainstream semiconductor technology. However, the exploration of crystallographic phase and ferroelectric switching in reduced dimensions, especially in nanostructures, has remained a largely uncharted territory. In this study, we present the first comprehensive investigation into the crystallographic phase transition of ScAlN nanowires across the full Sc compositional range. While a gradual transition from wurtzite to cubic phase was observed with increasing Sc composition, we further demonstrated that a highly ordered wurtzite phase ScAlN could be confined at the ScAlN/GaN interface for Sc contents surpassing what is possible in conventional films, holding great potential to addressing the fundamental high coercive field of wurtzite ferroelectrics. In addition, we provide the first evidence of ferroelectric switching in ScAlN nanowires, a result that holds significant implications for future device miniaturization. Our demonstration of tunable ferroelectric ScAlN nanowires opens new possibilities for nanoscale, domain, alloy, strain, and quantum engineering of wurtzite ferroelectrics, representing a significant stride towards the development of next-generation, miniaturized devices based on wurtzite ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02576v1-abstract-full').style.display = 'none'; document.getElementById('2408.02576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02010">arXiv:2408.02010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02010">pdf</a>, <a href="https://arxiv.org/format/2408.02010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhysCodeb.41">10.21468/SciPostPhysCodeb.41 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tensor Network Python (TeNPy) version 1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hauschild%2C+J">Johannes Hauschild</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Unfried%2C+J">Jakob Unfried</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anand%2C+S">Sajant Anand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrews%2C+B">Bartholomew Andrews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bintz%2C+M">Marcus Bintz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borla%2C+U">Umberto Borla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Divic%2C+S">Stefan Divic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drescher%2C+M">Markus Drescher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiger%2C+J">Jan Geiger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hefel%2C+M">Martin Hefel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A9mery%2C+K">K茅vin H茅mery</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kadow%2C+W">Wilhelm Kadow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemp%2C+J">Jack Kemp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirchner%2C+N">Nico Kirchner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+V+S">Vincent S. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%B6ller%2C+G">Gunnar M枚ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D">Daniel Parker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+M">Michael Rader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romen%2C+A">Anton Romen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scalet%2C+S">Samuel Scalet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoonderwoerd%2C+L">Leon Schoonderwoerd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+M">Maximilian Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thoma%2C+P">Philipp Thoma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yantao Wu</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02010v3-abstract-short" style="display: inline;"> TeNPy (short for &#39;Tensor Network Python&#39;) is a python library for the simulation of strongly correlated quantum systems with tensor networks. The philosophy of this library is to achieve a balance of readability and usability for new-comers, while at the same time providing powerful algorithms for experts. The focus is on MPS algorithms for 1D and 2D lattices, such as DMRG ground state search, as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02010v3-abstract-full').style.display = 'inline'; document.getElementById('2408.02010v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02010v3-abstract-full" style="display: none;"> TeNPy (short for &#39;Tensor Network Python&#39;) is a python library for the simulation of strongly correlated quantum systems with tensor networks. The philosophy of this library is to achieve a balance of readability and usability for new-comers, while at the same time providing powerful algorithms for experts. The focus is on MPS algorithms for 1D and 2D lattices, such as DMRG ground state search, as well as dynamics using TEBD, TDVP, or MPO evolution. This article is a companion to the recent version 1.0 release of TeNPy and gives a brief overview of the package. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02010v3-abstract-full').style.display = 'none'; document.getElementById('2408.02010v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v3: published version with small additional clarifications suggested by referees</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. Codebases 41 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01155">arXiv:2408.01155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01155">pdf</a>, <a href="https://arxiv.org/format/2408.01155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient conversion from fermionic Gaussian states to matrix product states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ying-Hai Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+H">Hong-Hao Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01155v1-abstract-short" style="display: inline;"> Fermionic Gaussian states are eigenstates of quadratic Hamiltonians and widely used in quantum many-body problems. We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states. It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems with translation invariance. If th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01155v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01155v1-abstract-full" style="display: none;"> Fermionic Gaussian states are eigenstates of quadratic Hamiltonians and widely used in quantum many-body problems. We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states. It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems with translation invariance. If the ground states of a topologically ordered system on infinite cylinders are expressed as matrix product states, then the fixed points of the transfer matrix can be harnessed to filter out the anyon eigenbasis, also known as minimally entangled states. This allows for efficient computation of universal properties such as entanglement spectrum and modular matrices. The potential of our method is demonstrated by numerical calculations in two chiral spin liquids that have the same topological orders as the bosonic Laughlin and Moore-Read states, respectively. The anyon eigenbasis for the first one has been worked out before and serves as a useful benchmark. The anyon eigenbasis of the second one is, however, not transparent and its successful construction provides a nontrivial corroboration of our method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01155v1-abstract-full').style.display = 'none'; document.getElementById('2408.01155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21302">arXiv:2407.21302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21302">pdf</a>, <a href="https://arxiv.org/format/2407.21302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> The possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tengdong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">Rui Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanling Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21302v1-abstract-short" style="display: inline;"> Transition metal dichalcogenides (TMDs), exhibit a range of crystal structures and topological quantum states. The 1$T$ phase, in particular, shows promise for superconductivity driven by electron-phonon coupling, strain, pressure, and chemical doping. In this theoretical investigation, we explore 1$T$-RhSeTe as a novel type of TMD superconductor with topological electronic states. The optimal dop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21302v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21302v1-abstract-full" style="display: none;"> Transition metal dichalcogenides (TMDs), exhibit a range of crystal structures and topological quantum states. The 1$T$ phase, in particular, shows promise for superconductivity driven by electron-phonon coupling, strain, pressure, and chemical doping. In this theoretical investigation, we explore 1$T$-RhSeTe as a novel type of TMD superconductor with topological electronic states. The optimal doping structure and atomic arrangement of 1$T$-RhSeTe are constructed. Phonon calculations validate the integrity of the constructed doping structure. The analysis of the electron-phonon coupling (EPC) using the Electron-phonon Wannier (EPW) method has confirmed the existence of a robust electron-phonon interaction in 1$T$-RhSeTe, resulting in total EPC constant $位$ = 2.02, the logarithmic average frequency $蠅_{\text{log}}$ = 3.15 meV and $T_c$ = 4.61 K, consistent with experimental measurements and indicative of its classification as a BCS superconductor. The band structure analysis revealed the presence of Dirac-like band crossing points. The topological non-trivial electronic structures of the 1$T$-RhSeTe are confirmed via the evolution of Wannier charge centers (WCCs). Collectively, these distinctive properties underscore 1$T$-RhSeTe as a possible candidate for a topological superconductor, warranting further investigation into its potential implications and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21302v1-abstract-full').style.display = 'none'; document.getElementById('2407.21302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16532">arXiv:2407.16532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16532">pdf</a>, <a href="https://arxiv.org/format/2407.16532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Propulsion Contribution from Individual Filament in Flagellar Bundle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Yateng Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Lingchun Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yibo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+H">Hongyi Bian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yidi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuxin Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yingyue Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+R+H+C">Russell Hii Ching Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teng%2C+Y">Yinuo Teng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yunlong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gaojin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+Z">Zijie Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16532v1-abstract-short" style="display: inline;"> Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16532v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16532v1-abstract-full" style="display: none;"> Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-functional macroscopic experimental system and employ advanced numerical simulations for verification. Flagella arrangements and phase differences between helices are investigated, revealing the variation in propulsion contribution from the individual helix. Numerically, we build a time-dependent model to match the bundling process and study the influence of hydrodynamic interactions. Surprisingly, it is found that the total propulsion generated by a bundle of two filaments is constant at various phase differences between the helices. However, the difference between the propulsion from each helix is significantly affected by the phase difference, and only one of the helices is responsible for the total propulsion at a phase difference equals to pi. Through our experimental and computational results, we provide a new model considering the propulsion contribution of each filament to better understand microbial locomotion mechanisms, especially on the wobbling behavior of the cell. Our work also sheds light on the design and control of artificial microswimmers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16532v1-abstract-full').style.display = 'none'; document.getElementById('2407.16532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13886">arXiv:2407.13886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13886">pdf</a>, <a href="https://arxiv.org/format/2407.13886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unraveling nano-scale effects of topotactic reduction in LaNiO$_2$ crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu-Mi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puphal%2C+P">Pascal Puphal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isobe%2C+M">Masahiko Isobe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">Matthias Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suyolcu%2C+Y+E">Y. Eren Suyolcu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Aken%2C+P+A">Peter A. van Aken</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13886v1-abstract-short" style="display: inline;"> Infinite-layer nickelates stand as a promising frontier in the exploration of unconventional superconductivity. Their synthesis through topotactic oxygen reduction from the parent perovskite phase remains a complex and elusive process. This study delves into the nano-scale effects of the topotactic lattice transformation within LaNiO$_2$ crystals. Leveraging high-resolution scanning transmission e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13886v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13886v1-abstract-full" style="display: none;"> Infinite-layer nickelates stand as a promising frontier in the exploration of unconventional superconductivity. Their synthesis through topotactic oxygen reduction from the parent perovskite phase remains a complex and elusive process. This study delves into the nano-scale effects of the topotactic lattice transformation within LaNiO$_2$ crystals. Leveraging high-resolution scanning transmission electron microscopy and spectroscopy, our investigations uncover a panorama of structural alterations, including grain boundaries and coherent twin boundaries, triggered by reduction-induced transformations. In addition, our analyses unveil the formation of an oxygen-rich disordered transition phase encircling impurities and pervading crystalline domains, and the internal strain is accommodated by grain boundary formation. By unraveling these nano-scale effects, our findings provide insights into the microscopic intricacies of the topotactic reduction process elucidating the transition from the perovskite to the infinite-layer phase within nickelate bulk crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13886v1-abstract-full').style.display = 'none'; document.getElementById('2407.13886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01934">arXiv:2407.01934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01934">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-Ion Spectroscopy of h-BN Point Defect Fluorescence in Liquid Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yecun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Kun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarker%2C+H+P">Hori Pada Sarker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abild-Pedersen%2C+F">Frank Abild-Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majumdar%2C+A">Arun Majumdar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzeng%2C+Y">Yan-Kai Tzeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+S">Steven Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01934v2-abstract-short" style="display: inline;"> Understanding individual ions in solutions is essential for advancing our knowledge of complex chemical systems. However, tracking and detecting ions at the single-ion level in liquid environments remains a challenge. We introduce a strategy for visualization and differentiation of different ions in liquid environment via point defects in hexagonal boron nitride (h-BN) as the ion sensor. Ions inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01934v2-abstract-full').style.display = 'inline'; document.getElementById('2407.01934v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01934v2-abstract-full" style="display: none;"> Understanding individual ions in solutions is essential for advancing our knowledge of complex chemical systems. However, tracking and detecting ions at the single-ion level in liquid environments remains a challenge. We introduce a strategy for visualization and differentiation of different ions in liquid environment via point defects in hexagonal boron nitride (h-BN) as the ion sensor. Ions interacting with the optically active point defects in h-BN alter emission properties, allowing us to capture these changes and visualize single ions. Using Li+ in organic electrolytes as a model, we observed a spectral shift of over 10 nm upon Li+ addition, and an over 50 nm red shift with applied electric fields due to reactions between Li+ and h-BN point defects. Frequency domain analysis further revealed the rapid dynamics of ion migration and the slow electrochemical reactions. We further spectroscopically differentiated various ions (H+, Li+, Na+, K+, Zn2+, Al3+) in aqueous solution. Each ion, with its distinct electron cloud configuration, interacts distinctively with the electron clouds of h-BN defects, resulting in specific and identifiable spectroscopic signatures. This ion sensing platform enables the direct visualization and differentiation of individual ions in a liquid environment, offering insights into chemical reactions at the single-ion level. This capability presents potential applications in various fields involving ions in liquids, including but not limited to biology, battery technology, and environmental science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01934v2-abstract-full').style.display = 'none'; document.getElementById('2407.01934v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00661">arXiv:2407.00661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00661">pdf</a>, <a href="https://arxiv.org/format/2407.00661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.104308">10.1103/PhysRevB.110.104308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> When is the Four-phonon Effect in Half-Heusler Materials more Pronounced? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Shengnan Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+L">Linxuan Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yimin Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Liujiang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00661v1-abstract-short" style="display: inline;"> Suppressed three-phonon scattering processes have been considered to be the direct cause of materials exhibiting significant higher-order four-phonon interactions. However, after calculating the phonon-phonon interactions of 128 Half-Heusler materials by high-throughput, we find that the acoustic phonon bandwidth dominates the three-phonon and four-phonon scattering channels and keeps them roughly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00661v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00661v1-abstract-full" style="display: none;"> Suppressed three-phonon scattering processes have been considered to be the direct cause of materials exhibiting significant higher-order four-phonon interactions. However, after calculating the phonon-phonon interactions of 128 Half-Heusler materials by high-throughput, we find that the acoustic phonon bandwidth dominates the three-phonon and four-phonon scattering channels and keeps them roughly in a co-increasing or decreasing behavior. The $aao$ and $aaa$ three-phonon scattering channels in Half-Heusler materials are weakly affected by the acoustic-optical gap and acoustic bunched features respectively only when acoustic phonon bandwidths are close. Finally, we found that Half-Heusler materials with smaller acoustic bandwidths tend to have a more pronounced four-phonon effect, although three-phonon scattering may not be significantly suppressed at this time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00661v1-abstract-full').style.display = 'none'; document.getElementById('2407.00661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10