CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 483 results for author: <span class="mathjax">Chen, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Chen%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11297">arXiv:2502.11297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.11297">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Tri-layer SiN-on-Si 8x8 Optical Switches with Thermo-optic and Electro-optic Actuators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+B">Bohao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+C">Chunhui Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tongyun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Ziyao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+P">Peng Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minjia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+A+Y">Alan Yilun Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+C">Chenxi Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z">Zhitian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wonfor%2C+A">Adrian Wonfor</a>, <a href="/search/physics?searchtype=author&amp;query=Savory%2C+S">Seb Savory</a>, <a href="/search/physics?searchtype=author&amp;query=Bergman%2C+K">Keren Bergman</a>, <a href="/search/physics?searchtype=author&amp;query=Penty%2C+R">Richard Penty</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qixiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11297v1-abstract-short" style="display: inline;"> We present two spatial-multiplexed switch-and-select (S&amp;S) 8x8 optical switches incorporating a tri-layer SiN-on-Si platform, one equipped with thermo-optic (T-O) and the other electro-optic (E-O) switching elements. To the best of our knowledge, the electro-optic switch fabric is the first-of-its-kind device assembled in such a multi-layer platform. The shuffle between the multiplexer and demulti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11297v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11297v1-abstract-full" style="display: none;"> We present two spatial-multiplexed switch-and-select (S&amp;S) 8x8 optical switches incorporating a tri-layer SiN-on-Si platform, one equipped with thermo-optic (T-O) and the other electro-optic (E-O) switching elements. To the best of our knowledge, the electro-optic switch fabric is the first-of-its-kind device assembled in such a multi-layer platform. The shuffle between the multiplexer and demultiplexer array is established via a tri-layer Si-SiN-SiN structure, creating a three-dimensional crossing-free photonic shuffle network. At the same time, the implementation of the S&amp;S topology can effectively suppress the first-order crosstalk. The measured on-chip losses for the T-O switch range from 2.1 to 11.5 dB, with a 5.2 dB average, while the E-O device exhibits losses between 8.7 to 19.6 dB, with a 15.1 dB average. Both switches demonstrate ultra-low crosstalk, with measured ranges of 38.9 to 50.8 dB and 42.8 to 51.9 dB, for the T-O and E-O devices respectively. The switching times are 17.6 us for the T-O switch and 5.9 ns with the E-O actuated one. These performance metrics highlight the potential of these switches for next-generation data center applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11297v1-abstract-full').style.display = 'none'; document.getElementById('2502.11297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10520">arXiv:2502.10520</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10520">pdf</a>, <a href="https://arxiv.org/format/2502.10520">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Inverse design of 3D-printable metalenses with complementary dispersion for terahertz imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mo Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+K+F">Ka Fai Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Hammond%2C+A+M">Alec M. Hammond</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+C+H">Chi Hou Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+S+G">Steven G. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10520v1-abstract-short" style="display: inline;"> This study formulates a volumetric inverse-design methodology to generate a pair of complementary focusing metalenses for terahertz imaging: the two lenses exhibit equal and opposite shifts in focal length with frequency. An asymmetry arises, where we find a focal length that decreases with frequency to be more challenging to achieve (without material dispersion) given fabrication constraints, but&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10520v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10520v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10520v1-abstract-full" style="display: none;"> This study formulates a volumetric inverse-design methodology to generate a pair of complementary focusing metalenses for terahertz imaging: the two lenses exhibit equal and opposite shifts in focal length with frequency. An asymmetry arises, where we find a focal length that decreases with frequency to be more challenging to achieve (without material dispersion) given fabrication constraints, but it is still possible. We employ topology optimization, coupled with manufacturing constraints, to explore fully freeform designs compatible with 3D printing. Formulating an optimization problem that quantifies the goal of maximal complementary focal shifts, while remaining differentiable and tractable, requires a carefully selected sequence of constraints and approximations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10520v1-abstract-full').style.display = 'none'; document.getElementById('2502.10520v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08351">arXiv:2502.08351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08351">pdf</a>, <a href="https://arxiv.org/ps/2502.08351">ps</a>, <a href="https://arxiv.org/format/2502.08351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effects of initial spin orientation on the generation of polarized electron beams from laser wakefield acceleration in plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yin%2C+L+R">L. R. Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X+F">X. F. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y+J">Y. J. Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+N">N. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+Q">Q. Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Buescher%2C+M">M. Buescher</a>, <a href="/search/physics?searchtype=author&amp;query=Weng%2C+S+M">S. M. Weng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+Z+M">Z. M. Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08351v1-abstract-short" style="display: inline;"> The effects of the initial spin orientation on the final electron beam polarization via laser wakefield acceleration in pre-polarized plasma are investigated theoretically and numerically. From a variation of the initial spin direction, the spin dynamics of the electron beam is found to depend on the self-injection mechanism. The effects of wakefields and laser fields are studied using test partic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08351v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08351v1-abstract-full" style="display: none;"> The effects of the initial spin orientation on the final electron beam polarization via laser wakefield acceleration in pre-polarized plasma are investigated theoretically and numerically. From a variation of the initial spin direction, the spin dynamics of the electron beam is found to depend on the self-injection mechanism. The effects of wakefields and laser fields are studied using test particle dynamics and particle-in-cell simulation based on the Thomas-Bargmann-Michel-Telegdi equation, respectively. Compared to the case of transverse injection, the scheme of longitudinal injection is more favorable to obtain a highly polarization electron beam. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08351v1-abstract-full').style.display = 'none'; document.getElementById('2502.08351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08174">arXiv:2502.08174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08174">pdf</a>, <a href="https://arxiv.org/format/2502.08174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Towards the generation of petawatt near-infrared few-cycle light pulses via forward Raman amplification in plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lei%2C+Z">Zhi-Yu Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+Z">Zheng-Ming Sheng</a>, <a href="/search/physics?searchtype=author&amp;query=Weng%2C+S">Su-Ming Weng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08174v1-abstract-short" style="display: inline;"> Light amplification towards extremely high power in the infrared regime remains a significant challenge due to the lack of suitable gain media. Here we propose a new scheme to amplify a laser pulse with tunable wavelengths towards extremely high power via forward Raman amplification in plasma. Different from those previously proposed schemes based upon backward Raman or Brillouin amplification, ou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08174v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08174v1-abstract-full" style="display: none;"> Light amplification towards extremely high power in the infrared regime remains a significant challenge due to the lack of suitable gain media. Here we propose a new scheme to amplify a laser pulse with tunable wavelengths towards extremely high power via forward Raman amplification in plasma. Different from those previously proposed schemes based upon backward Raman or Brillouin amplification, our scheme involves a pump pulse and a seed pulse co-propagating in moderate density plasma, with the phase matching conditions for forward Raman scattering fulfilled. Due to their group velocity difference in plasma, the pump with a shorter wavelength and longer duration will chase the seed and transfer energy to the latter efficiently. Analytical models both for linear and nonlinear stages of amplification as well as particle-in-cell simulation show that by employing a 1.0 $\mathrm{渭m}$ pump laser, a 1.8 $\mathrm{渭m}$ seed pulse can be amplified $10^4$ times in its intensity, and then self-compressed to near-single-cycle. Our scheme shows the merits of high efficiency, high compactness, and relatively easy implementation with the co-propagating configuration, which may provide a unique route towards the petawatt few-cycle infrared laser pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08174v1-abstract-full').style.display = 'none'; document.getElementById('2502.08174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08048">arXiv:2502.08048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08048">pdf</a>, <a href="https://arxiv.org/format/2502.08048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Efficiently Laser Driven Terahertz Surface Plasmon Polaritons on Long Metal Wire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shao%2C+S">Shuoting Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiangbing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+R">Rong Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guangyue Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Huibo Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Kuang%2C+L">Longyu Kuang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yuxi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y">Yuqiu Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yongkun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Ruxin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuo%2C+H">Hongbin Zhuo</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+M">Mingyang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08048v1-abstract-short" style="display: inline;"> We experimentally demonstrate a novel scheme for efficiently generating intense terahertz (THz) surface plasmon polaritons (SPPs) on a sub-wavelength-diameter meter-long metal wire. Driven by a subrelativistic femtosecond laser (a0=0.3, 3 mJ) focused at the wire&#39;s midpoint, single-cycle ten-megawatt THz SPPs are excited and propagating bidirectionally along it over 25 cm. The measured laser-to-SPP&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08048v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08048v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08048v1-abstract-full" style="display: none;"> We experimentally demonstrate a novel scheme for efficiently generating intense terahertz (THz) surface plasmon polaritons (SPPs) on a sub-wavelength-diameter meter-long metal wire. Driven by a subrelativistic femtosecond laser (a0=0.3, 3 mJ) focused at the wire&#39;s midpoint, single-cycle ten-megawatt THz SPPs are excited and propagating bidirectionally along it over 25 cm. The measured laser-to-SPPs energy conversion efficiency is reaching up to ~2.4%, which is the highest value at present. It is proved that the THz SPPs are excited by coherent transition radiation of the subrelativistic laser produced escaping electrons. Particle-in-cell together with CST simulations confirm the experimental observations. Our scheme of using readily available subrelativistic laser should thus be useful to applications requiring terawatt level single-cycle THz SPPs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08048v1-abstract-full').style.display = 'none'; document.getElementById('2502.08048v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05492">arXiv:2502.05492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05492">pdf</a>, <a href="https://arxiv.org/format/2502.05492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.549572">10.1364/OE.549572 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraction of power transmission parameters from PT-symmetric waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+C">Chengnian Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+Z">Zhihao Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+L+N">Menglin L. N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Sha%2C+W+E+I">Wei E. I. Sha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05492v1-abstract-short" style="display: inline;"> The PT-symmetric waveguides have been frequently discussed in the photonics community due to their extraordinary properties. Especially, the study of power transmission is significant for switching applications. The aim of this study is to extract the mode power transmission parameters based on the coupled mode equations and analyze the power properties of the PT-symmetric system. The equations re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05492v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05492v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05492v1-abstract-full" style="display: none;"> The PT-symmetric waveguides have been frequently discussed in the photonics community due to their extraordinary properties. Especially, the study of power transmission is significant for switching applications. The aim of this study is to extract the mode power transmission parameters based on the coupled mode equations and analyze the power properties of the PT-symmetric system. The equations relying on the coupled mode theory are constructed according to the two different orthogonality relations between the original and adjoint system. The results matching well with the finite difference simulations demonstrate the validity of our method, while the conventional coupled mode theory fails. The power properties in the PT-symmetric and PT-broken phases are also observed. Furthermore, a new integration is implemented from which the conserved quantity is defined and extracted, which reflects the Hamiltonian invariant of the system. Our method fully incorporates the properties of complex modes and allows the study of the power transmission properties based on the orthogonality relations, which is also applicable to other types of non-Hermitian optical systems. This work provides a new perspective for the power analysis of PT-symmetric waveguides and is helpful to design the switching devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05492v1-abstract-full').style.display = 'none'; document.getElementById('2502.05492v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures, published to Optics Express</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express, vol. 33, no. 2, pp. 3162-3176, Jan. 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15532">arXiv:2501.15532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15532">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.024102">10.1103/PhysRevB.111.024102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure induced Structure Change and Anomalies in Thermodynamic Quantities and Transport Properties in Liquid Lithium Hydride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X+Z">X. Z. Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+M">Y. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+H+Y">Hua Y. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y+F">Y. F. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L+L">L. L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y+L">Y. L. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15532v1-abstract-short" style="display: inline;"> Understand the nature of liquid structure and its evolution under different conditions is a major challenge in condensed physics and materials science. Here, we report a pressure-induced structure change spanning a wide pressure range in liquid-state lithium hydride (LiH) by first-principles molecular dynamic simulations. This behavior can be described as a continuous crossover from low pressure l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15532v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15532v1-abstract-full" style="display: none;"> Understand the nature of liquid structure and its evolution under different conditions is a major challenge in condensed physics and materials science. Here, we report a pressure-induced structure change spanning a wide pressure range in liquid-state lithium hydride (LiH) by first-principles molecular dynamic simulations. This behavior can be described as a continuous crossover from low pressure liquid with Li$^+$-H$^-$ duality symmetry to high pressure one with broken of duality symmetry. The thermodynamic quantities such as heat capacity and ionic transport properties such as diffusivity are also saliently impacted. It is important to stress that such behavior is firstly predicted for this category of materials, which is ubiquitous in universe as well as in industry applications. Lastly, a comprehensive high-pressure high-temperature phase diagram of LiH is constructed, which embodies rich physics in this previously-thought-simple ionic compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15532v1-abstract-full').style.display = 'none'; document.getElementById('2501.15532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures, with Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, 024102 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08787">arXiv:2501.08787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08787">pdf</a>, <a href="https://arxiv.org/format/2501.08787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Electric Field Manipulation of Rydberg States for Very Low Frequency Fields Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minze Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Haonan Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+G">Ge Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Z">Zhiao Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhongxiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhonghuai Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+W">Wei Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W">WeiDong Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+P">Peng Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+D">Dezhi Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08787v1-abstract-short" style="display: inline;"> The very low frequency(VLF) band is widely used in submarine communication and geophysical exploration for its strong penetration and long-distance propagation. This paper theoretically and experimentally investigates Rydberg EIT in 133Cs vapor under VLF and DC fields. A model is established to describe the EIT spectral response under dual-field conditions, with theoretical predictions showing agr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08787v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08787v1-abstract-full" style="display: none;"> The very low frequency(VLF) band is widely used in submarine communication and geophysical exploration for its strong penetration and long-distance propagation. This paper theoretically and experimentally investigates Rydberg EIT in 133Cs vapor under VLF and DC fields. A model is established to describe the EIT spectral response under dual-field conditions, with theoretical predictions showing agreement with experimental results. We propose a novel calibration-free method to measure VLF electric fields, bypassing traditional Stark shift measurements. This method detects additional splitting intervals of Stark sublevels, separated from the degenerate energy level under a DC field. This phenomenon arises from the averaging effect of sublevel sinusoidal oscillations in the spectrum induced by the VLF field. The splitting interval is proportionally dependent on the VLF field amplitude. The VLF electric field sensor is enhanced by increasing the strength of the DC field, extending the traceable measurement limit for weak VLF electric fields by more than an order of magnitude. This work highlights the potential for precise VLF electric field measurements, significantly advancing the calibration-free detection capabilities of Rydberg atom sensors for low-frequency applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08787v1-abstract-full').style.display = 'none'; document.getElementById('2501.08787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15706">arXiv:2412.15706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15706">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> High-efficiency fast pinching radiation of electron beams in nonuniform plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xing-Long Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+Z">Zheng-Ming Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15706v1-abstract-short" style="display: inline;"> The continuous development of bright x/gamma-ray sources has opened up new frontiers of science and advanced applications. Currently, there is still a lack of efficient approaches to produce gamma-rays with photon energies up to GeV and with high peak brilliance comparable to modern free-electron lasers. Here we report a novel mechanism called beam fast pinching radiation burst to generate such ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15706v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15706v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15706v1-abstract-full" style="display: none;"> The continuous development of bright x/gamma-ray sources has opened up new frontiers of science and advanced applications. Currently, there is still a lack of efficient approaches to produce gamma-rays with photon energies up to GeV and with high peak brilliance comparable to modern free-electron lasers. Here we report a novel mechanism called beam fast pinching radiation burst to generate such gamma-ray sources. It is achieved by injecting a GeV electron beam into a submillimeter plasma with an upramp density profile, enabling violent beam pinching to occur rapidly. During this process, a burst of collimated gamma-rays is efficiently produced with photon energy up to GeV, energy conversion efficiency exceeding $30\%$, and peak brilliance exceeding $10^{28}$ photons s$^{-1}$ mm$^{-2}$ mrad$^{-2}$ per $0.1\%$ bandwidth. All of these are several orders of magnitude higher than existing gamma-ray sources. This opens a novel avenue for the development of extremely bright gamma-ray sources for both fundamental research and cutting-edge applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15706v1-abstract-full').style.display = 'none'; document.getElementById('2412.15706v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14647">arXiv:2412.14647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14647">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> AI-Enabled Rapid Assembly of Thousands of Defect-Free Neutral Atom Arrays with Constant-time-overhead </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+R">Rui Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+H">Han-Sen Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">You Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zhang-Rui Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+L">Le-Tian Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+T">Tai-Ran Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Hong-Ming Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+W">Wei-Jie Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi-Kang Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+Z">Zhao-Feng Su</a>, <a href="/search/physics?searchtype=author&amp;query=Ouyang%2C+W">Wan-Li Ouyang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yu-Chen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Rui%2C+J">Jun Rui</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14647v1-abstract-short" style="display: inline;"> Assembling increasingly larger-scale defect-free optical tweezer-trapped atom arrays is essential for quantum computation and quantum simulations based on atoms. Here, we propose an AI-enabled, rapid, constant-time-overhead rearrangement protocol, and we experimentally assemble defect-free 2D and 3D atom arrays with up to 2024 atoms with a constant time cost of 60 ms. The AI model calculates the h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14647v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14647v1-abstract-full" style="display: none;"> Assembling increasingly larger-scale defect-free optical tweezer-trapped atom arrays is essential for quantum computation and quantum simulations based on atoms. Here, we propose an AI-enabled, rapid, constant-time-overhead rearrangement protocol, and we experimentally assemble defect-free 2D and 3D atom arrays with up to 2024 atoms with a constant time cost of 60 ms. The AI model calculates the holograms for real-time atom rearrangement. With precise controls over both position and phase, a high-speed spatial light modulator moves all the atoms simultaneously. This protocol can be readily used to generate defect-free arrays of tens of thousands of atoms with current technologies, and become a useful toolbox for quantum error correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14647v1-abstract-full').style.display = 'none'; document.getElementById('2412.14647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06339">arXiv:2412.06339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Filamentation-Assisted Isolated Attosecond Pulse Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chien%2C+Y">Yu-En Chien</a>, <a href="/search/physics?searchtype=author&amp;query=Fern%C3%A1ndez-Gal%C3%A1n%2C+M">Marina Fern谩ndez-Gal谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Tsai%2C+M">Ming-Shian Tsai</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+A">An-Yuan Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Conejero-Jarque%2C+E">Enrique Conejero-Jarque</a>, <a href="/search/physics?searchtype=author&amp;query=Serrano%2C+J">Javier Serrano</a>, <a href="/search/physics?searchtype=author&amp;query=Rom%C3%A1n%2C+J+S">Julio San Rom谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Hern%C3%A1ndez-Garc%C3%ADa%2C+C">Carlos Hern谩ndez-Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Ming-Chang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06339v1-abstract-short" style="display: inline;"> Isolated attosecond pulses (IAPs) generated by few-cycle femtosecond lasers are essential for capturing ultrafast dynamics in atoms, molecules, and solids. Nonetheless, the advancement of attosecond science critically depends on achieving stable, high-temporal-contrast IAPs. Our study reveals a universal scenario in which self-compression of the infrared driver in high harmonic generation in exten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06339v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06339v1-abstract-full" style="display: none;"> Isolated attosecond pulses (IAPs) generated by few-cycle femtosecond lasers are essential for capturing ultrafast dynamics in atoms, molecules, and solids. Nonetheless, the advancement of attosecond science critically depends on achieving stable, high-temporal-contrast IAPs. Our study reveals a universal scenario in which self-compression of the infrared driver in high harmonic generation in extended gas media leads to high-contrast high-frequency IAP generation. Our experimental and theoretical results reveal that filamentation in a semi-infinite gas cell not only shapes the infrared driving pulse spatially and temporally, but also creates a stable propagation region where high harmonic generation is phase-matched, leading to the production of bright IAPs. In an argon-filled gas cell, filamentation notably reduces the pulse duration of Yb-based 1030 nm pulses from 4.7 fs to 3.5 fs, while simultaneously generating high-contrast 200-attosecond IAPs at 70 eV. We demonstrate the universality of filamentation-assisted IAP generation, showing that post-compressed Yb-based laser filaments in neon and helium yield even shorter IAPs: 69-attoseconds at 100 eV, and 65-attoseconds IAPs at 135 eV, respectively. This spatiotemporal reshaping of few-cycle pulses through filamentation possesses immediate impacts on both post-compression techniques and attosecond-based technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06339v1-abstract-full').style.display = 'none'; document.getElementById('2412.06339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04442">arXiv:2412.04442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04442">pdf</a>, <a href="https://arxiv.org/format/2412.04442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> PDMD: Potential-free Data-driven Molecular Dynamics for Variable-sized Water Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+H">Hongyu Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+Q">Qi Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minghan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hanning Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04442v1-abstract-short" style="display: inline;"> Conventional molecular dynamics (MD) simulation approaches, such as ab initio MD and empirical force field MD, face significant trade-offs between physical accuracy and computational efficiency. This work presents a novel Potential-free Data-driven Molecular Dynamics (PDMD) framework for predicting system energy and atomic forces of variable-sized water clusters. Specifically, PDMD employs the smo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04442v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04442v1-abstract-full" style="display: none;"> Conventional molecular dynamics (MD) simulation approaches, such as ab initio MD and empirical force field MD, face significant trade-offs between physical accuracy and computational efficiency. This work presents a novel Potential-free Data-driven Molecular Dynamics (PDMD) framework for predicting system energy and atomic forces of variable-sized water clusters. Specifically, PDMD employs the smooth overlap of atomic positions descriptor to generate high-dimensional, equivariant features before leveraging ChemGNN, a graph neural network model that adaptively learns the atomic chemical environments without requiring a priori knowledge. Through an iterative self-consistent training approach, the converged PDMD achieves a mean absolute error of 7.1 meV/atom for energy and 59.8 meV/angstrom for forces, outperforming the state-of-the-art DeepMD by ~80% in energy accuracy and ~200% in force prediction. As a result, PDMD can reproduce the ab initio MD properties of water clusters at a tiny fraction of its computational cost. These results demonstrate that the proposed PDMD offers multiple-phase predictive power, enabling ultra-fast, general-purpose MD simulations while retaining ab initio accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04442v1-abstract-full').style.display = 'none'; document.getElementById('2412.04442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14780">arXiv:2411.14780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14780">pdf</a>, <a href="https://arxiv.org/format/2411.14780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Higher-order dark solitons and oscillatory dynamics in microcavity polariton condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jinming Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Manna Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Schumacher%2C+S">Stefan Schumacher</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+W">Wei Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xuekai Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14780v1-abstract-short" style="display: inline;"> Dark solitons carrying quantized phase information arouse great interest in different nonlinear systems. A dark soliton in 1D can be stabilized in microcavity polariton condensates as a confinement is imposed on it to prevent its decay. Such a confinement can be realized by optical manners, i.e., by using optically induced potential traps. Under nonresonant excitation with spatially periodically m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14780v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14780v1-abstract-full" style="display: none;"> Dark solitons carrying quantized phase information arouse great interest in different nonlinear systems. A dark soliton in 1D can be stabilized in microcavity polariton condensates as a confinement is imposed on it to prevent its decay. Such a confinement can be realized by optical manners, i.e., by using optically induced potential traps. Under nonresonant excitation with spatially periodically modulated optical beams, we numerically demonstrate that besides fundamental dark solitons, higher-order dark solitons with multiple density minima and $蟺$-phase jumps can also stably survive in the potential (pump) valleys. Simultaneously exciting several orders of dark soliton states by properly choosing the lattice constant of the optical pump gives rise to dark oscillators. In some cases, the stably trapped dark solitons in adjacent pump valleys squeeze the condensate density between them and generate another type of density dips in the pump peak area. Surprisingly, such a density dip supports another stable dark soliton with a larger size which is essentially composed of two counter-propagating gray solitons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14780v1-abstract-full').style.display = 'none'; document.getElementById('2411.14780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10721">arXiv:2411.10721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10721">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-gain optical parametric amplification with continuous-wave pump using domain-engineered thin film lithium niobate waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mengwen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+X">Xiao-Hui Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jie Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+C">Chunxi Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+X">Xiaowen Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zexing Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zikang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Z">Zhilin Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Ji Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Z">Zhong Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+G">Guang Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+B">Biaobing Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenlin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-Ning Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10721v1-abstract-short" style="display: inline;"> While thin film lithium niobate (TFLN) is known for efficient signal generation, on-chip signal amplification remains challenging from fully integrated optical communication circuits. Here we demonstrate the first continuous-wave-pump optical parametric amplification (OPA) using an x-cut domain-engineered TFLN waveguide, with high gain over the telecom band up to 13.9 dB, and test it for high sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10721v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10721v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10721v1-abstract-full" style="display: none;"> While thin film lithium niobate (TFLN) is known for efficient signal generation, on-chip signal amplification remains challenging from fully integrated optical communication circuits. Here we demonstrate the first continuous-wave-pump optical parametric amplification (OPA) using an x-cut domain-engineered TFLN waveguide, with high gain over the telecom band up to 13.9 dB, and test it for high signal-to-noise ratio signal amplification using a commercial optical communication module pair. Fabricated in wafer scale using common process as devices including modulators, this OPA device marks an important step in TFLN photonic integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10721v1-abstract-full').style.display = 'none'; document.getElementById('2411.10721v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08304">arXiv:2411.08304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08304">pdf</a>, <a href="https://arxiv.org/format/2411.08304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Hearing carrier-envelope offset frequency and phase in air </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Han%2C+M">Meng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Ming-Chang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tsai%2C+M">Ming-Shian Tsai</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Hao Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08304v2-abstract-short" style="display: inline;"> Attosecond science and frequency metrology rely on the precise measurement and control of the laser pulse waveform, a feat traditionally achieved using optoelectronic techniques. In this study, we conducted a laser-induced acoustic experiment in air ionized by carrier-envelope phase (CEP)-stabilized sub-4 femtosecond pulses. Our results reveal that the acoustic signal exhibits CEP dependence in fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08304v2-abstract-full').style.display = 'inline'; document.getElementById('2411.08304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08304v2-abstract-full" style="display: none;"> Attosecond science and frequency metrology rely on the precise measurement and control of the laser pulse waveform, a feat traditionally achieved using optoelectronic techniques. In this study, we conducted a laser-induced acoustic experiment in air ionized by carrier-envelope phase (CEP)-stabilized sub-4 femtosecond pulses. Our results reveal that the acoustic signal exhibits CEP dependence in few-cycle pulses, primarily through amplitude modulation from laser-driven ionization. This novel optoacoustic phenomenon enables not only the measurement of the carrier-envelope offset frequency but also the direct characterization of the waveform of optical pulses through a microphone. Our study highlights the potential of laser-induced acoustic waves for advancing frequency metrology and ultrafast science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08304v2-abstract-full').style.display = 'none'; document.getElementById('2411.08304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23938">arXiv:2410.23938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23938">pdf</a>, <a href="https://arxiv.org/format/2410.23938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Learning Macroscopic Dynamics from Partial Microscopic Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mengyi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qianxiao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23938v2-abstract-short" style="display: inline;"> Macroscopic observables of a system are of keen interest in real applications such as the design of novel materials. Current methods rely on microscopic trajectory simulations, where the forces on all microscopic coordinates need to be computed or measured. However, this can be computationally prohibitive for realistic systems. In this paper, we propose a method to learn macroscopic dynamics requi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23938v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23938v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23938v2-abstract-full" style="display: none;"> Macroscopic observables of a system are of keen interest in real applications such as the design of novel materials. Current methods rely on microscopic trajectory simulations, where the forces on all microscopic coordinates need to be computed or measured. However, this can be computationally prohibitive for realistic systems. In this paper, we propose a method to learn macroscopic dynamics requiring only force computations on a subset of the microscopic coordinates. Our method relies on a sparsity assumption: the force on each microscopic coordinate relies only on a small number of other coordinates. The main idea of our approach is to map the training procedure on the macroscopic coordinates back to the microscopic coordinates, on which partial force computations can be used as stochastic estimation to update model parameters. We provide a theoretical justification of this under suitable conditions. We demonstrate the accuracy, force computation efficiency, and robustness of our method on learning macroscopic closure models from a variety of microscopic systems, including those modeled by partial differential equations or molecular dynamics simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23938v2-abstract-full').style.display = 'none'; document.getElementById('2410.23938v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13145">arXiv:2410.13145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13145">pdf</a>, <a href="https://arxiv.org/format/2410.13145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Multihyperuniformity in high entropy MXenes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mohan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13145v1-abstract-short" style="display: inline;"> MXenes are a large family of two-dimensional transition metal carbides and nitrides that possess excellent electrical conductivity, high volumetric capacitance, great mechanical properties, and hydrophilicity. In this work, we generalize the concept of multihyperuniformity (MH), an exotic state that can exist in a disordered multi-component system, to two-dimensional materials MXenes. Disordered h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13145v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13145v1-abstract-full" style="display: none;"> MXenes are a large family of two-dimensional transition metal carbides and nitrides that possess excellent electrical conductivity, high volumetric capacitance, great mechanical properties, and hydrophilicity. In this work, we generalize the concept of multihyperuniformity (MH), an exotic state that can exist in a disordered multi-component system, to two-dimensional materials MXenes. Disordered hyperuniform systems possess an isotropic local structure that lacks traditional translational and orientational order, yet they completely suppress infinite-wavelength density fluctuations as in perfect crystals and, in this sense, possess a hidden long-range order. In particular, we evaluate the static structure factor of the individual components present in the high entropy (HE) MXene experimental sample TiVCMoCr based on high-solution SEM imaging data, which suggests this HE MXene system is at least effectively multihyperuniform. We then devise a packing algorithm to generate multihyperuniform models of HE MXene systems. The MH HE MXenes are predicted to be energetically more stable compared to the prevailing (quasi)random models of the HE MXenes due to the hidden long-range order. Moreover, the MH structure exhibits a distinctly smaller lattice distortion, which has a vital effect on the electronic properties of HE MXenes, such as the density of states and charge distribution. This systematic study of HE MXenes strengthens our fundamental understanding of these systems, and suggests possible exotic physical properties, as endowed by the multihyperuniformity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13145v1-abstract-full').style.display = 'none'; document.getElementById('2410.13145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10910">arXiv:2410.10910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10910">pdf</a>, <a href="https://arxiv.org/format/2410.10910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> KPROJ: A Program for Unfolding Electronic and Phononic Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mingxing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10910v1-abstract-short" style="display: inline;"> We introduce a program named KPROJ that unfolds the electronic and phononic band structure of materials modeled by supercells. The program is based on the $\textit{k}$-projection method, which projects the wavefunction of the supercell onto the ${\textbf{k}}$-points in the Brillouin zone of the artificial primitive cell. It allows for obtaining an effective &#34;local&#34; band structure by performing par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10910v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10910v1-abstract-full" style="display: none;"> We introduce a program named KPROJ that unfolds the electronic and phononic band structure of materials modeled by supercells. The program is based on the $\textit{k}$-projection method, which projects the wavefunction of the supercell onto the ${\textbf{k}}$-points in the Brillouin zone of the artificial primitive cell. It allows for obtaining an effective &#34;local&#34; band structure by performing partial integration over the wavefunctions, e.g., the unfolded band structure with layer-projection for interfaces and the weighted band structure in the vacuum for slabs. The layer projection is accelerated by a scheme that combines the Fast Fourier Transform (FFT) and the inverse FFT algorithms. It is now interfaced with a few first-principles codes based on plane waves such as VASP, Quantum Espresso, and ABINIT. In addition, it also has interfaces with ABACUS, a first-principles simulation package based on numerical atomic basis sets, and PHONOPY, a program for phonon calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10910v1-abstract-full').style.display = 'none'; document.getElementById('2410.10910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7.5 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10664">arXiv:2410.10664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10664">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> </div> </div> <p class="title is-5 mathjax"> Tunable Einstein-Bohr recoiling-slit gedankenexperiment at the quantum limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yu-Chen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+H">Hao-Wen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zengxu%2C+Z">Zhao-Qiu Zengxu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+R">Rui Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+Y">Yu-Cheng Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Rui%2C+J">Jun Rui</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10664v1-abstract-short" style="display: inline;"> In 1927, during the fifth Solvay Conference, Einstein and Bohr described a double-slit interferometer with a &#34;movable slit&#34; that can detect the momentum recoil of one photon. Here, we report a faithful realization of the Einstein-Bohr interferometer using a single atom in an optical tweezer, cooled to the motional ground state in three dimensions. The single atom has an intrinsic momentum uncertai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10664v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10664v1-abstract-full" style="display: none;"> In 1927, during the fifth Solvay Conference, Einstein and Bohr described a double-slit interferometer with a &#34;movable slit&#34; that can detect the momentum recoil of one photon. Here, we report a faithful realization of the Einstein-Bohr interferometer using a single atom in an optical tweezer, cooled to the motional ground state in three dimensions. The single atom has an intrinsic momentum uncertainty comparable to a single photon, which serves as a movable slit obeying the minimum Heisenberg uncertainty principle. The atom&#39;s momentum wavefunction is dynamically tunable by the tweezer laser power, which enables observation of an interferometric visibility reduction at a shallower trap, demonstrating the quantum nature of this interferometer. We further identify classical noise due to atom heating and precession, illustrating a quantum-to-classical transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10664v1-abstract-full').style.display = 'none'; document.getElementById('2410.10664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10331">arXiv:2410.10331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10331">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Enhanced TM-Mode 3D Coupled Wave Theory for Photonic Crystal Surface-Emitting Terahertz Quantum Cascade Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mingxi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+T">Tsung-Tse Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Li Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hirayama%2C+H">Hideki Hirayama</a>, <a href="/search/physics?searchtype=author&amp;query=Otani%2C+C">Chiko Otani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10331v1-abstract-short" style="display: inline;"> In this study, we propose and develop an enhanced three-dimensional coupled wave theory (3D CWT) to investigate the optical field behavior in photonic crystal surface-emitting terahertz quantum cascade lasers (THz-QCLs). By incorporating an effective permittivity enhancement (EP) model and a self-consistent iteration (SCI) method, we successfully address the numerical dispersion issues encountered&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10331v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10331v1-abstract-full" style="display: none;"> In this study, we propose and develop an enhanced three-dimensional coupled wave theory (3D CWT) to investigate the optical field behavior in photonic crystal surface-emitting terahertz quantum cascade lasers (THz-QCLs). By incorporating an effective permittivity enhancement (EP) model and a self-consistent iteration (SCI) method, we successfully address the numerical dispersion issues encountered in analytical methods when dealing with metallic waveguide structures. The results demonstrate that the EP and SCI-enhanced 3D TM mode CWT achieves computational accuracy comparable to traditional numerical simulation methods such as finite-difference time-domain (FDTD), while significantly reducing the required computational resources, including time and memory, to just tens of minutes. Moreover, this method provides a clear physical insight, revealing the reasons behind the current low extraction efficiency in surface-emitting THz-QCLs. Our study showcases the potential of the EP and SCI-enhanced 3D CWT as a powerful simulation tool in the research of photonic crystal surface-emitting lasers, offering a new theoretical foundation and optimization direction for future laser designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10331v1-abstract-full').style.display = 'none'; document.getElementById('2410.10331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10214">arXiv:2410.10214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10214">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gaseous Scissor-mediated Electrochemical Exfoliation of Halogenated MXenes and its Boosting in Wear-Resisting Tribovoltaic Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Q">Qi Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minghua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Longyi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Minghui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+C">Chuanxiao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+T">Tianci Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+L">Long Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+N">Ningning Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Q">Qing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+L">Laipan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Naguib%2C+M">Michael Naguib</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+K">Kun Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10214v1-abstract-short" style="display: inline;"> Two-dimensional transition metal carbides (MXenes), especially their few-layered nanosheets, have triggered burgeoning research attentions owing to their superiorities including extraordinary conductivity, accessible active surface, and adjustable processability. Molten salts etching route further achieves their controllable surface chemistry. However, the method encounters challenges in achieving&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10214v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10214v1-abstract-full" style="display: none;"> Two-dimensional transition metal carbides (MXenes), especially their few-layered nanosheets, have triggered burgeoning research attentions owing to their superiorities including extraordinary conductivity, accessible active surface, and adjustable processability. Molten salts etching route further achieves their controllable surface chemistry. However, the method encounters challenges in achieving few-layer structures due to more complex delamination behaviors. Herein, we present an efficient strategy to fabricate Cl- or Br-terminated MXene nanoflakes with few-layers, achieved by electrochemical intercalation of Li ions and concomitant solvent molecules in the electrolyte solution, with gaseous scissors (propylene molecules) to break up interlayer forces. By controlling cut-off voltages, the optimal protocol results in nanosheets with an ultrahigh yield (~93%) and preserved surface chemistry. The resultant MXenes dispersions were employed as lubricants to enhance tribovoltaic nanogenerators, where Ti3C2Br2 displayed superior electrical output. These findings facilitate the understanding of MXenes&#39; intrinsic physical properties and enable the nanoengineering of advanced electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10214v1-abstract-full').style.display = 'none'; document.getElementById('2410.10214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05541">arXiv:2410.05541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05541">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dilated space-and-wavelength selective crosspoint optical switch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Ziyao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minjia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+B">Bohao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wonfor%2C+A">Adrian Wonfor</a>, <a href="/search/physics?searchtype=author&amp;query=Penty%2C+R">Richard Penty</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qixiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05541v2-abstract-short" style="display: inline;"> Photonic integrated switches that are both space and wavelength selective are a highly promising technology for data-intensive applications as they benefit from multi-dimensional manipulation of optical signals. However, scaling these switches normally poses stringent challenges such as increased fabrication complexity and control difficulties, due to the growing number of switching elements. In t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05541v2-abstract-full').style.display = 'inline'; document.getElementById('2410.05541v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05541v2-abstract-full" style="display: none;"> Photonic integrated switches that are both space and wavelength selective are a highly promising technology for data-intensive applications as they benefit from multi-dimensional manipulation of optical signals. However, scaling these switches normally poses stringent challenges such as increased fabrication complexity and control difficulties, due to the growing number of switching elements. In this work, we propose a new type of dilated crosspoint topology, which efficiently handles both space and wavelength selective switching, while reducing the required switching element count by an order of magnitude compared to reported designs. To the best of our knowledge, our design requires the fewest switching elements for an equivalent routing paths number and it fully cancels the first-order in-band crosstalk. We demonstrate such an ultra-compact space-and-wavelength-selective switch (SWSS) at a scale of $4\times 4\times 4位$ on the silicon-on-insulator (SOI) platform. Experimental results reveal that the switch achieves an insertion loss ranging from 2.3 dB to 8.6 dB and crosstalk levels in between -35.3 dB and -59.7 dB. The add-drop microring-resonators (MRRs) are equipped with micro-heaters, exhibiting a rise and fall time of 46 $渭$s and 0.33 $渭$s, respectively. These performance characteristics highlight the switch&#39;s ultra-low element count and crosstalk with low insertion loss, making it a promising candidate for advanced data center applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05541v2-abstract-full').style.display = 'none'; document.getElementById('2410.05541v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03951">arXiv:2410.03951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03951">pdf</a>, <a href="https://arxiv.org/format/2410.03951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> UFLUX v2.0: A Process-Informed Machine Learning Framework for Efficient and Explainable Modelling of Terrestrial Carbon Uptake </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dong%2C+W">Wenquan Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Songyan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jian Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ryan%2C+C+M">Casey M. Ryan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Man Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+J">Jingya Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Hao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+C">Congfeng Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiancheng Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03951v1-abstract-short" style="display: inline;"> Gross Primary Productivity (GPP), the amount of carbon plants fixed by photosynthesis, is pivotal for understanding the global carbon cycle and ecosystem functioning. Process-based models built on the knowledge of ecological processes are susceptible to biases stemming from their assumptions and approximations. These limitations potentially result in considerable uncertainties in global GPP estima&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03951v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03951v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03951v1-abstract-full" style="display: none;"> Gross Primary Productivity (GPP), the amount of carbon plants fixed by photosynthesis, is pivotal for understanding the global carbon cycle and ecosystem functioning. Process-based models built on the knowledge of ecological processes are susceptible to biases stemming from their assumptions and approximations. These limitations potentially result in considerable uncertainties in global GPP estimation, which may pose significant challenges to our Net Zero goals. This study presents UFLUX v2.0, a process-informed model that integrates state-of-art ecological knowledge and advanced machine learning techniques to reduce uncertainties in GPP estimation by learning the biases between process-based models and eddy covariance (EC) measurements. In our findings, UFLUX v2.0 demonstrated a substantial improvement in model accuracy, achieving an R^2 of 0.79 with a reduced RMSE of 1.60 g C m^-2 d^-1, compared to the process-based model&#39;s R^2 of 0.51 and RMSE of 3.09 g C m^-2 d^-1. Our global GPP distribution analysis indicates that while UFLUX v2.0 and the process-based model achieved similar global total GPP (137.47 Pg C and 132.23 Pg C, respectively), they exhibited large differences in spatial distribution, particularly in latitudinal gradients. These differences are very likely due to systematic biases in the process-based model and differing sensitivities to climate and environmental conditions. This study offers improved adaptability for GPP modelling across diverse ecosystems, and further enhances our understanding of global carbon cycles and its responses to environmental changes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03951v1-abstract-full').style.display = 'none'; document.getElementById('2410.03951v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00592">arXiv:2410.00592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00592">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Ultra-low-crosstalk Silicon Switches Driven Thermally and Electrically </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bao%2C+P">Peng Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+C">Chunhui Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+C">Chenxi Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+A+Y">Alan Yilun Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minjia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Savory%2C+S+J">Seb J. Savory</a>, <a href="/search/physics?searchtype=author&amp;query=Penty%2C+R">Richard Penty</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qixiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00592v1-abstract-short" style="display: inline;"> Silicon photonic switches are widely considered as a cost-effective solution for addressing the ever-growing data traffic in datacenter networks, as they offer unique advantages such as low power consumption, low latency, small footprint and high bandwidth. Despite extensive research efforts, crosstalk in large-scale photonic circuits still poses a threat to the signal integrity. In this paper, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00592v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00592v1-abstract-full" style="display: none;"> Silicon photonic switches are widely considered as a cost-effective solution for addressing the ever-growing data traffic in datacenter networks, as they offer unique advantages such as low power consumption, low latency, small footprint and high bandwidth. Despite extensive research efforts, crosstalk in large-scale photonic circuits still poses a threat to the signal integrity. In this paper, we present two designs of silicon Mach-Zehnder Interferometer (MZI) switches achieving ultra-low-crosstalk, driven thermally and electrically. Each switch fabric is optimized at both the device and circuit level to suppress crosstalk and reduce system complexity. Notably, for the first time to the best of our knowledge, we harness the inherent self-heating effect in a carrier-injection-based MZI switch to create a pair of phase shifters that offer arbitrary phase differences. Such a pair of phase shifters induces matched insertion loss at each arm, thus minimizing crosstalk. Experimentally, an ultra-low crosstalk ratio below -40 dB is demonstrated for both thermo-optic (T-O) and electro-optic (E-O) switches. The T-O switch exhibits an on-chip loss of less than 5 dB with a switching time of 500 microseconds, whereas the E-O switch achieves an on-chip loss as low as 8.5 dB with a switching time of under 100 ns. In addition, data transmission of a 50 Gb/s on-off keying signal is demonstrated with high fidelity on the E-O switch, showing the great potential of the proposed switch designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00592v1-abstract-full').style.display = 'none'; document.getElementById('2410.00592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19153">arXiv:2409.19153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19153">pdf</a>, <a href="https://arxiv.org/format/2409.19153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JBO.30.S1.S13710">10.1117/1.JBO.30.S1.S13710 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Speckle-illumination spatial frequency domain imaging with a stereo laparoscope for profile-corrected optical property mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Song%2C+A+A">Anthony A. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+T">Mason T. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Bobrow%2C+T+L">Taylor L. Bobrow</a>, <a href="/search/physics?searchtype=author&amp;query=Durr%2C+N+J">Nicholas J. Durr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19153v1-abstract-short" style="display: inline;"> We introduce a compact, two-camera laparoscope that combines active stereo depth estimation and speckle-illumination spatial frequency domain imaging (si-SFDI) to map profile-corrected, pixel-level absorption and reduced scattering optical properties in tissues with complex geometries. Our approach uses multimode fiber-coupled laser illumination to generate high-contrast speckle patterns, requirin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19153v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19153v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19153v1-abstract-full" style="display: none;"> We introduce a compact, two-camera laparoscope that combines active stereo depth estimation and speckle-illumination spatial frequency domain imaging (si-SFDI) to map profile-corrected, pixel-level absorption and reduced scattering optical properties in tissues with complex geometries. Our approach uses multimode fiber-coupled laser illumination to generate high-contrast speckle patterns, requiring only two images for optical property estimation. We demonstrate 3D profilometry using active stereo from low-coherence RGB laser flood illumination, which corrects for measured intensity variations caused by object height and surface angle differences. Validation against conventional SFDI in phantoms and an in-vivo human finger study showed good agreement, with profile-correction improving accuracy for complex geometries. This stereo-laparoscopic implementation of si-SFDI provides a simple method to obtain accurate optical property maps through a laparoscope, potentially offering quantitative endogenous contrast for minimally invasive surgical guidance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19153v1-abstract-full').style.display = 'none'; document.getElementById('2409.19153v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Biomedical Optics, Vol. 30, Issue S1, S13710 (January 2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v3-abstract-short" style="display: inline;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy los&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v3-abstract-full" style="display: none;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm&#39;s energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'none'; document.getElementById('2409.18288v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09399">arXiv:2409.09399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09399">pdf</a>, <a href="https://arxiv.org/format/2409.09399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> GPU Acceleration of Numerical Atomic Orbitals-Based Density Functional Theory Algorithms within the ABACUS package </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Haochong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zichao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mohan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+S">Shi Yin</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">Lixin He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09399v3-abstract-short" style="display: inline;"> With the fast developments of high-performance computing, first-principles methods based on quantum mechanics play a significant role in materials research, serving as fundamental tools for predicting and analyzing various properties of materials. However, the inherent complexity and substantial computational demands of first-principles algorithms, such as density functional theory, limit their us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09399v3-abstract-full').style.display = 'inline'; document.getElementById('2409.09399v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09399v3-abstract-full" style="display: none;"> With the fast developments of high-performance computing, first-principles methods based on quantum mechanics play a significant role in materials research, serving as fundamental tools for predicting and analyzing various properties of materials. However, the inherent complexity and substantial computational demands of first-principles algorithms, such as density functional theory, limit their use in larger systems. The rapid development of heterogeneous computing, particularly General-Purpose Graphics Processing Units (GPGPUs), has heralded new prospects for enhancing the performance and cost-effectiveness of first-principles algorithms. We utilize GPGPUs to accelerate the electronic structure algorithms in Atomic-orbital Based Ab-initio Computation at USTC (ABACUS), a first-principles computational package based on the linear combination of atomic orbitals (LCAO) basis set. We design algorithms on GPGPU to efficiently construct and diagonalize the Hamiltonian of a given system, including the related force and stress calculations. The effectiveness of this computational acceleration has been demonstrated through calculations on twisted bilayer graphene with the system size up to 10,444 atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09399v3-abstract-full').style.display = 'none'; document.getElementById('2409.09399v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06732">arXiv:2409.06732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06732">pdf</a>, <a href="https://arxiv.org/format/2409.06732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LGRS.2024.3431099">10.1109/LGRS.2024.3431099 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LGRS.2024.3431099">10.1109/LGRS.2024.3431099 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LGRS.2024.3431099">10.1109/LGRS.2024.3431099 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STAA: Spatio-Temporal Alignment Attention for Short-Term Precipitation Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shaohan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+X">Xiaolin Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06732v1-abstract-short" style="display: inline;"> There is a great need to accurately predict short-term precipitation, which has socioeconomic effects such as agriculture and disaster prevention. Recently, the forecasting models have employed multi-source data as the multi-modality input, thus improving the prediction accuracy. However, the prevailing methods usually suffer from the desynchronization of multi-source variables, the insufficient c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06732v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06732v1-abstract-full" style="display: none;"> There is a great need to accurately predict short-term precipitation, which has socioeconomic effects such as agriculture and disaster prevention. Recently, the forecasting models have employed multi-source data as the multi-modality input, thus improving the prediction accuracy. However, the prevailing methods usually suffer from the desynchronization of multi-source variables, the insufficient capability of capturing spatio-temporal dependency, and unsatisfactory performance in predicting extreme precipitation events. To fix these problems, we propose a short-term precipitation forecasting model based on spatio-temporal alignment attention, with SATA as the temporal alignment module and STAU as the spatio-temporal feature extractor to filter high-pass features from precipitation signals and capture multi-term temporal dependencies. Based on satellite and ERA5 data from the southwestern region of China, our model achieves improvements of 12.61\% in terms of RMSE, in comparison with the state-of-the-art methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06732v1-abstract-full').style.display = 'none'; document.getElementById('2409.06732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01931">arXiv:2409.01931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01931">pdf</a>, <a href="https://arxiv.org/format/2409.01931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> On the design space between molecular mechanics and machine learning force fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuanqing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Takaba%2C+K">Kenichiro Takaba</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+S">Michael S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wieder%2C+M">Marcus Wieder</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yuzhi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+T">Tong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+Z+H">John Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Nagle%2C+A">Arnav Nagle</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+K">Kuang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xinyan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cole%2C+D+J">Daniel J. Cole</a>, <a href="/search/physics?searchtype=author&amp;query=Rackers%2C+J+A">Joshua A. Rackers</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+K">Kyunghyun Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Greener%2C+J+G">Joe G. Greener</a>, <a href="/search/physics?searchtype=author&amp;query=Eastman%2C+P">Peter Eastman</a>, <a href="/search/physics?searchtype=author&amp;query=Martiniani%2C+S">Stefano Martiniani</a>, <a href="/search/physics?searchtype=author&amp;query=Tuckerman%2C+M+E">Mark E. Tuckerman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01931v2-abstract-short" style="display: inline;"> A force field as accurate as quantum mechanics (QM) and as fast as molecular mechanics (MM), with which one can simulate a biomolecular system efficiently enough and meaningfully enough to get quantitative insights, is among the most ardent dreams of biophysicists -- a dream, nevertheless, not to be fulfilled any time soon. Machine learning force fields (MLFFs) represent a meaningful endeavor towa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01931v2-abstract-full').style.display = 'inline'; document.getElementById('2409.01931v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01931v2-abstract-full" style="display: none;"> A force field as accurate as quantum mechanics (QM) and as fast as molecular mechanics (MM), with which one can simulate a biomolecular system efficiently enough and meaningfully enough to get quantitative insights, is among the most ardent dreams of biophysicists -- a dream, nevertheless, not to be fulfilled any time soon. Machine learning force fields (MLFFs) represent a meaningful endeavor towards this direction, where differentiable neural functions are parametrized to fit ab initio energies, and furthermore forces through automatic differentiation. We argue that, as of now, the utility of the MLFF models is no longer bottlenecked by accuracy but primarily by their speed (as well as stability and generalizability), as many recent variants, on limited chemical spaces, have long surpassed the chemical accuracy of $1$ kcal/mol -- the empirical threshold beyond which realistic chemical predictions are possible -- though still magnitudes slower than MM. Hoping to kindle explorations and designs of faster, albeit perhaps slightly less accurate MLFFs, in this review, we focus our attention on the design space (the speed-accuracy tradeoff) between MM and ML force fields. After a brief review of the building blocks of force fields of either kind, we discuss the desired properties and challenges now faced by the force field development community, survey the efforts to make MM force fields more accurate and ML force fields faster, envision what the next generation of MLFF might look like. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01931v2-abstract-full').style.display = 'none'; document.getElementById('2409.01931v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a &#34;Module of Opportunity&#34;, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&amp;D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE&#39;s Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11872">arXiv:2408.11872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11872">pdf</a>, <a href="https://arxiv.org/ps/2408.11872">ps</a>, <a href="https://arxiv.org/format/2408.11872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Two points are enough </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yanbin Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+H">Huarong Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xiulin Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zhihua Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mengchi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xingkai Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhiyang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Jianguo Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jian Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11872v1-abstract-short" style="display: inline;"> Prognosis and diagnosis play an important role in accelerating the development of lithium-ion batteries, as well as reliable and long-life operation. In this work, we answer an important question: What is the minimum amount of data required to extract features for accurate battery prognosis and diagnosis? Based on the first principle, we successfully extracted the best two-point feature (BTPF) for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11872v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11872v1-abstract-full" style="display: none;"> Prognosis and diagnosis play an important role in accelerating the development of lithium-ion batteries, as well as reliable and long-life operation. In this work, we answer an important question: What is the minimum amount of data required to extract features for accurate battery prognosis and diagnosis? Based on the first principle, we successfully extracted the best two-point feature (BTPF) for accurate battery prognosis and diagnosis using the fewest data points (only two) and the simplest feature selection method (Pearson correlation coefficient). The BTPF extraction method is tested on 820 cells from 6 open-source datasets (covering five different chemistry types, seven manufacturers, and three data types). It achieves comparable accuracy to state-of-the-art features in both prognosis and diagnosis tasks. This work challenges the cognition of existing studies on the difficulty of battery prognosis and diagnosis tasks, subverts the fixed pattern of establishing prognosis and diagnosis methods for complex dynamic systems through deliberate feature engineering, highlights the promise of data-driven methods for field battery prognosis and diagnosis applications, and provides a new benchmark for future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11872v1-abstract-full').style.display = 'none'; document.getElementById('2408.11872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09425">arXiv:2408.09425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09425">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Disordered Optical Metasurfaces: Basics, Properties, and Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lalanne%2C+P">P. Lalanne</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">M Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Rockstuhl%2C+C">C. Rockstuhl</a>, <a href="/search/physics?searchtype=author&amp;query=Sprafke%2C+A">A. Sprafke</a>, <a href="/search/physics?searchtype=author&amp;query=Dmitriev%2C+A">A. Dmitriev</a>, <a href="/search/physics?searchtype=author&amp;query=Vynck%2C+K">K. Vynck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09425v3-abstract-short" style="display: inline;"> Optical metasurfaces are conventionally viewed as organized flat arrays of photonic or plasmonic nanoresonators, also called metaatoms. These metasurfaces are typically highly ordered and fabricated with precision using expensive tools. However, the inherent imperfections in large-scale nanophotonic devices, along with recent advances in bottom-up nanofabrication techniques and design strategies,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09425v3-abstract-full').style.display = 'inline'; document.getElementById('2408.09425v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09425v3-abstract-full" style="display: none;"> Optical metasurfaces are conventionally viewed as organized flat arrays of photonic or plasmonic nanoresonators, also called metaatoms. These metasurfaces are typically highly ordered and fabricated with precision using expensive tools. However, the inherent imperfections in large-scale nanophotonic devices, along with recent advances in bottom-up nanofabrication techniques and design strategies, have highlighted the potential benefits of incorporating disorder to achieve specific optical functionalities. This review offers an overview of the key theoretical, numerical, and experimental aspects related to the exploration of disordered optical metasurfaces. It introduces fundamental concepts of light scattering by disordered metasurfaces and outlines theoretical and numerical methodologies for analyzing their optical behavior. Various fabrication techniques are discussed, highlighting the types of disorder they deliver and their achievable precision level. The review also explores critical applications of disordered optical metasurfaces, such as light manipulation in thin film materials and the design of structural colors and visual appearances. Finally, the article offers perspectives on the burgeoning future research in this field. Disordered optical metasurfaces offer a promising alternative to their ordered counterparts, often delivering unique functionalities or enhanced performance. They present a particularly exciting opportunity in applications demanding large-scale implementation, such as sustainable renewable energy systems, as well as aesthetically vibrant coatings for luxury goods and architectural designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09425v3-abstract-full').style.display = 'none'; document.getElementById('2408.09425v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">review article: 56 pages, 15 figures (accepted in Advances in Optics and Photonics)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08284">arXiv:2408.08284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08284">pdf</a>, <a href="https://arxiv.org/format/2408.08284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Accurate and efficient structure elucidation from routine one-dimensional NMR spectra using multitask machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+F">Frank Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+S">Michael S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Rotskoff%2C+G+M">Grant M. Rotskoff</a>, <a href="/search/physics?searchtype=author&amp;query=Kanan%2C+M+W">Matthew W. Kanan</a>, <a href="/search/physics?searchtype=author&amp;query=Markland%2C+T+E">Thomas E. Markland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08284v1-abstract-short" style="display: inline;"> Rapid determination of molecular structures can greatly accelerate workflows across many chemical disciplines. However, elucidating structure using only one-dimensional (1D) NMR spectra, the most readily accessible data, remains an extremely challenging problem because of the combinatorial explosion of the number of possible molecules as the number of constituent atoms is increased. Here, we intro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08284v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08284v1-abstract-full" style="display: none;"> Rapid determination of molecular structures can greatly accelerate workflows across many chemical disciplines. However, elucidating structure using only one-dimensional (1D) NMR spectra, the most readily accessible data, remains an extremely challenging problem because of the combinatorial explosion of the number of possible molecules as the number of constituent atoms is increased. Here, we introduce a multitask machine learning framework that predicts the molecular structure (formula and connectivity) of an unknown compound solely based on its 1D 1H and/or 13C NMR spectra. First, we show how a transformer architecture can be constructed to efficiently solve the task, traditionally performed by chemists, of assembling large numbers of molecular fragments into molecular structures. Integrating this capability with a convolutional neural network (CNN), we build an end-to-end model for predicting structure from spectra that is fast and accurate. We demonstrate the effectiveness of this framework on molecules with up to 19 heavy (non-hydrogen) atoms, a size for which there are trillions of possible structures. Without relying on any prior chemical knowledge such as the molecular formula, we show that our approach predicts the exact molecule 69.6% of the time within the first 15 predictions, reducing the search space by up to 11 orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08284v1-abstract-full').style.display = 'none'; document.getElementById('2408.08284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05768">arXiv:2408.05768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05768">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation of relativistic polarized electron beams via collective beam-target interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xing-Long Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei-Min Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+Z">Zheng-Ming Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05768v1-abstract-short" style="display: inline;"> Relativistic polarized electron beams can find applications in broad areas of fundamental physics. Here, we propose for the first time that electron spin polarization can be realized efficiently via collective beam-target interactions. When a relativistic unpolarized electron beam is incident onto the surface of a solid target with a grazing angle, strong magnetic fields are induced at the target&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05768v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05768v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05768v1-abstract-full" style="display: none;"> Relativistic polarized electron beams can find applications in broad areas of fundamental physics. Here, we propose for the first time that electron spin polarization can be realized efficiently via collective beam-target interactions. When a relativistic unpolarized electron beam is incident onto the surface of a solid target with a grazing angle, strong magnetic fields are induced at the target surface due to the formation of a high reflux of target electrons. This results in violent beam self-focusing and corresponding beam density increase via magnetic pinching. The pinched dense beam in turn further enhances the magnetic fields to the level of a few Giga-Gauss, which is high enough to trigger strong synchrotron radiation of ultrarelativistic electrons. During the interaction, electron spin polarization develops along the magnetic field direction, which is achieved via radiative spin flips in the quantum radiation-dominated regime. As a consequence, the incident electron beam can be effectively polarized via the spin-dependent radiation reaction, for example, the mean polarization of electrons with energy less than 2 GeV can reach above 50% for an initial 5GeV beam. This provides a robust way for the development of polarized electron sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05768v1-abstract-full').style.display = 'none'; document.getElementById('2408.05768v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03968">arXiv:2408.03968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03968">pdf</a>, <a href="https://arxiv.org/format/2408.03968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Report on the Advanced Linear Collider Study Group (ALEGRO) Workshop 2024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vieira%2C+J">J. Vieira</a>, <a href="/search/physics?searchtype=author&amp;query=Cros%2C+B">B. Cros</a>, <a href="/search/physics?searchtype=author&amp;query=Muggli%2C+P">P. Muggli</a>, <a href="/search/physics?searchtype=author&amp;query=Andriyash%2C+I+A">I. A. Andriyash</a>, <a href="/search/physics?searchtype=author&amp;query=Apsimon%2C+O">O. Apsimon</a>, <a href="/search/physics?searchtype=author&amp;query=Backhouse%2C+M">M. Backhouse</a>, <a href="/search/physics?searchtype=author&amp;query=Benedetti%2C+C">C. Benedetti</a>, <a href="/search/physics?searchtype=author&amp;query=Bulanov%2C+S+S">S. S. Bulanov</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cilento%2C+V">V. Cilento</a>, <a href="/search/physics?searchtype=author&amp;query=Corde%2C+S">S. Corde</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Arcy%2C+R">R. D&#39;Arcy</a>, <a href="/search/physics?searchtype=author&amp;query=Diederichs%2C+S">S. Diederichs</a>, <a href="/search/physics?searchtype=author&amp;query=Ericson%2C+E">E. Ericson</a>, <a href="/search/physics?searchtype=author&amp;query=Esarey%2C+E">E. Esarey</a>, <a href="/search/physics?searchtype=author&amp;query=Farmer%2C+J">J. Farmer</a>, <a href="/search/physics?searchtype=author&amp;query=Fedeli%2C+L">L. Fedeli</a>, <a href="/search/physics?searchtype=author&amp;query=Formenti%2C+A">A. Formenti</a>, <a href="/search/physics?searchtype=author&amp;query=Foster%2C+B">B. Foster</a>, <a href="/search/physics?searchtype=author&amp;query=Garten%2C+M">M. Garten</a>, <a href="/search/physics?searchtype=author&amp;query=Geddes%2C+C+G+R">C. G. R. Geddes</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">T. Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Hogan%2C+M+J">M. J. Hogan</a>, <a href="/search/physics?searchtype=author&amp;query=Hooker%2C+S">S. Hooker</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03968v2-abstract-short" style="display: inline;"> The workshop focused on the application of ANAs to particle physics keeping in mind the ultimate goal of a collider at the energy frontier (10\,TeV, e$^+$/e$^-$, e$^-$/e$^-$, or $纬纬$). The development of ANAs is conducted at universities and national laboratories worldwide. The community is thematically broad and diverse, in particular since lasers suitable for ANA research (multi-hundred-terawatt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03968v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03968v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03968v2-abstract-full" style="display: none;"> The workshop focused on the application of ANAs to particle physics keeping in mind the ultimate goal of a collider at the energy frontier (10\,TeV, e$^+$/e$^-$, e$^-$/e$^-$, or $纬纬$). The development of ANAs is conducted at universities and national laboratories worldwide. The community is thematically broad and diverse, in particular since lasers suitable for ANA research (multi-hundred-terawatt peak power, a few tens of femtosecond-long pulses) and acceleration of electrons to hundreds of mega electron volts to multi giga electron volts became commercially available. The community spans several continents (Europe, America, Asia), including more than 62 laboratories in more than 20 countries. It is among the missions of the ICFA-ANA panel to feature the amazing progress made with ANAs, to provide international coordination and to foster international collaborations towards a future HEP collider. The scope of this edition of the workshop was to discuss the recent progress and necessary steps towards realizing a linear collider for particle physics based on novel-accelerator technologies (laser or beam driven in plasma or structures). Updates on the relevant aspects of the European Strategy for Particle Physics (ESPP) Roadmap Process as well as of the P5 (in the US) were presented, and ample time was dedicated to discussions. The major outcome of the workshop is the decision for ALEGRO to coordinate efforts in Europe, in the US, and in Asia towards a pre-CDR for an ANA-based, 10\,TeV CM collider. This goal of this coordination is to lead to a funding proposal to be submitted to both EU and EU/US funding agencies. This document presents a summary of the workshop, as seen by the co-chairs, as well as short &#39;one-pagers&#39; written by the presenters at the workshop. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03968v2-abstract-full').style.display = 'none'; document.getElementById('2408.03968v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">72 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02693">arXiv:2408.02693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02693">pdf</a>, <a href="https://arxiv.org/format/2408.02693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Diff-PIC: Revolutionizing Particle-In-Cell Nuclear Fusion Simulation with Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chunshu Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S">Shihui Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mingkai Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+J+C">James Chenhao Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+M">Michael Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+C">Chuang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongfang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y+N">Ying Nian Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+T">Tong Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02693v3-abstract-short" style="display: inline;"> The rapid development of AI highlights the pressing need for sustainable energy, a critical global challenge for decades. Nuclear fusion, generally seen as an ultimate solution, has been the focus of intensive research for nearly a century, with investments reaching hundreds of billions of dollars. Recent advancements in Inertial Confinement Fusion have drawn significant attention to fusion resear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02693v3-abstract-full').style.display = 'inline'; document.getElementById('2408.02693v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02693v3-abstract-full" style="display: none;"> The rapid development of AI highlights the pressing need for sustainable energy, a critical global challenge for decades. Nuclear fusion, generally seen as an ultimate solution, has been the focus of intensive research for nearly a century, with investments reaching hundreds of billions of dollars. Recent advancements in Inertial Confinement Fusion have drawn significant attention to fusion research, in which Laser-Plasma Interaction (LPI) is critical for ensuring fusion stability and efficiency. However, the complexity of LPI upon fusion ignition makes analytical approaches impractical, leaving researchers depending on extremely computation-demanding Particle-in-Cell (PIC) simulations to generate data, presenting a significant bottleneck to advancing fusion research. In response, this work introduces Diff-PIC, a novel framework that leverages conditional diffusion models as a computationally efficient alternative to PIC simulations for generating high-fidelity scientific LPI data. In this work, physical patterns captured by PIC simulations are distilled into diffusion models associated with two tailored enhancements: (1) To effectively capture the complex relationships between physical parameters and corresponding outcomes, the parameters are encoded in a physically-informed manner. (2) To further enhance efficiency while maintaining high fidelity and physical validity, the rectified flow technique is employed to transform our model into a one-step conditional diffusion model. Experimental results show that Diff-PIC achieves 16,200$\times$ speedup compared to traditional PIC on a 100 picosecond simulation, with an average reduction in MAE / RMSE / FID of 59.21% / 57.15% / 39.46% with respect to two other SOTA data generation approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02693v3-abstract-full').style.display = 'none'; document.getElementById('2408.02693v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18172">arXiv:2407.18172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18172">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Chip-scale sensor for spectroscopic metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+C">Chunhui Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wanlu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+P">Peng Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuo%2C+W">Wei Zhuo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minjia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z">Zhitian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jingwen Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Y">Yuxiao Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Ming%2C+L">Liang Ming</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+T">Ting Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Penty%2C+R">Richard Penty</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qixiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18172v4-abstract-short" style="display: inline;"> Miniaturized spectrometers hold great promise for in situ, in vitro, and even in vivo sensing applications. However, their size reduction imposes vital performance constraints in meeting the rigorous demands of spectroscopy, including fine resolution, high accuracy, and ultra-wide observation window. The prevailing view in the community holds that miniaturized spectrometers are most suitable for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18172v4-abstract-full').style.display = 'inline'; document.getElementById('2407.18172v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18172v4-abstract-full" style="display: none;"> Miniaturized spectrometers hold great promise for in situ, in vitro, and even in vivo sensing applications. However, their size reduction imposes vital performance constraints in meeting the rigorous demands of spectroscopy, including fine resolution, high accuracy, and ultra-wide observation window. The prevailing view in the community holds that miniaturized spectrometers are most suitable for the coarse identification of signature peaks. In this paper, we present an integrated reconstructive spectrometer that enables near-infrared (NIR) spectroscopic metrology, and demonstrate a fully packaged sensor with auxiliary electronics. Such a sensor operates over a 520 nm bandwidth together with a resolution of less than 8 pm, which translates into a record-breaking bandwidth-to-resolution ratio of over 65,000. The classification of different types of solid substances and the concentration measurement of aqueous and organic solutions are performed, all achieving approximately 100% accuracy. Notably, the detection limit of our sensor matches that of the commercial benchtop counterparts, which is as low as 0.1% (i.e. 100 mg/dL) for identifying the concentration of glucose solution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18172v4-abstract-full').style.display = 'none'; document.getElementById('2407.18172v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13256">arXiv:2407.13256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13256">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.4c00964">10.1021/acs.jctc.4c00964 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minimum tracking linear response Hubbard and Hund corrected Density Functional Theory in CP2K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chai%2C+Z">Ziwei Chai</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+R">Rutong Si</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mingyang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Teobaldi%2C+G">Gilberto Teobaldi</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Regan%2C+D+D">David D. O&#39;Regan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Li-Min Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13256v2-abstract-short" style="display: inline;"> We present the implementation of the Hubbard ($U$) and Hund ($J$) corrected Density Functional Theory (DFT+$U$+$J$) functionality in the Quickstep program, which is part of the CP2K suite. The tensorial and L枚wdin subspace representations are implemented and compared. Full analytical DFT+$U$+$J$ forces are implemented and benchmarked for the tensorial and L枚wdin representations. We also present th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13256v2-abstract-full').style.display = 'inline'; document.getElementById('2407.13256v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13256v2-abstract-full" style="display: none;"> We present the implementation of the Hubbard ($U$) and Hund ($J$) corrected Density Functional Theory (DFT+$U$+$J$) functionality in the Quickstep program, which is part of the CP2K suite. The tensorial and L枚wdin subspace representations are implemented and compared. Full analytical DFT+$U$+$J$ forces are implemented and benchmarked for the tensorial and L枚wdin representations. We also present the implementation of the recently proposed minimum-tracking linear-response method that enables the $U$ and $J$ parameters to be calculated on first principles basis without reference to the Kohn-Sham eigensystem. These implementations are benchmarked against recent results for different materials properties including DFT+$U$ band gap opening in NiO, the relative stability of various polaron distributions in TiO$_2$, the dependence of the calculated TiO$_2$ band gap on +$J$ corrections, and, finally, the role of the +$U$ and +$J$ corrections for the computed properties of a series of the hexahydrated transition metals. Our implementation provides results consistent with those already reported in the literature from comparable methods. We conclude the contribution with tests on the influence of the L枚wdin orthonormalization on the occupancies, calculated parameters, and derived properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13256v2-abstract-full').style.display = 'none'; document.getElementById('2407.13256v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Theory Comput. 2024, 20, 20, 8984-9002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13152">arXiv:2407.13152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13152">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Composable Generation Strategy Framework Enabled Bidirectional Design on Topological Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jinyang Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Maoxin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Q">Qingyuan Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+M">Minggang Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13152v1-abstract-short" style="display: inline;"> Topological insulators show important properties, such as topological phase transitions and topological edge states. Although these properties and phenomena can be simulated by well-designed circuits, it is undoubtedly difficult to design such topological circuits due to the complex physical principles and calculations involved. Therefore, achieving a framework that can automatically to complete b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13152v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13152v1-abstract-full" style="display: none;"> Topological insulators show important properties, such as topological phase transitions and topological edge states. Although these properties and phenomena can be simulated by well-designed circuits, it is undoubtedly difficult to design such topological circuits due to the complex physical principles and calculations involved. Therefore, achieving a framework that can automatically to complete bidirectional design of topology circuits is very significant. Here, we propose an effective bidirectional collaborative design framework with strong task adaptability, which can automatically generate specific results according to our requirements. In the framework, a composable generation strategy is employed, which involves building a shared multimodal space by bridging alignment in the diffusion process. For simplicity, a series of two-dimensional (2D) Su-Schrieffer-Heeger (SSH) circuits are constructed with different structural parameters. The framework at first is applied to find the relationship between the structural information and topological features. Then, the correctness of the results through experimental measurements can be verified by the automatically generated circuit diagram following the manufacture of Printed Circuit Board (PCB). The framework is demonstrated by achieving good results in the reverse design of circuit structures and forward prediction of topological edge states, reaching an accuracy of 94%. Overall, our research demonstrates the enormous potential of the proposed bidirectional deep learning framework in complex tasks and provides insights for collaborative design tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13152v1-abstract-full').style.display = 'none'; document.getElementById('2407.13152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12556">arXiv:2407.12556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12556">pdf</a>, <a href="https://arxiv.org/ps/2407.12556">ps</a>, <a href="https://arxiv.org/format/2407.12556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppression and excitation condition of collision on instabilities of electrostatic plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Y+W">Y. W. Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+M+Y">M. Y. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J+F">J. F. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C+Y">C. Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+X">M. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+B">B. Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12556v1-abstract-short" style="display: inline;"> Two-stream (TS) and Bump-On-Tail (BOT) electron distributions can induce instabilities in collisionless plasmas, which is closely related to phenomena in space and fusion plasmas. Collisions can lead to unexpected plasma behavior, especially in dense and/or low temperature plasmas. In this work, the Vlasov-Poisson system with Krook collisions are used to study the effect of collisions. Normally, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12556v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12556v1-abstract-full" style="display: none;"> Two-stream (TS) and Bump-On-Tail (BOT) electron distributions can induce instabilities in collisionless plasmas, which is closely related to phenomena in space and fusion plasmas. Collisions can lead to unexpected plasma behavior, especially in dense and/or low temperature plasmas. In this work, the Vlasov-Poisson system with Krook collisions are used to study the effect of collisions. Normally, the collision can dissipate the system energy which causes the suppression of the instabilities. Against the traditional suppression effect of collision on the instability, it is found in our simulation that the collision can also excite the instability even in the forbidden beam velocity range predicted by the cold-beam theory. With collision, the beam velocity range can be divided into suppression area [vth/2, vc + vth], transition area [vc - vth, vc + vth], excitation area [vc + vth, 2vc] and forbidden area [2vc, +infinity] for TS instability. where vc is the critical velocity from cold-beam theory and vth is thermal velocity or the beam width in our simulation. The collision dissipation effect and the excitation of beam instability can compete with each other, which evoked the excitation of collision on TS instability. The collision can change the suppression and excitation condition from beam theory. However, for BOT instability, there is only suppression effect of collision on the instability. These results can expand the view of collision effect on instability of electrostatic plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12556v1-abstract-full').style.display = 'none'; document.getElementById('2407.12556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12261">arXiv:2407.12261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12261">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Voltage-Controlled Magnetoelectric Devices for Neuromorphic Diffusion Process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+Q">Qingyuan Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+A">Albert Lee</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">Haoran He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+I">Ivy Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Suhail%2C+H">Haris Suhail</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minzhang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Renhe Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zirui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hantao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chih-Yao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shan-Yi Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Hsin%2C+Y">Yu-Chen Hsin</a>, <a href="/search/physics?searchtype=author&amp;query=Shih%2C+C">Cheng-Yi Shih</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">Hsin-Han Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+R">Ran Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Pamarti%2C+S">Sudhakar Pamarti</a>, <a href="/search/physics?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12261v1-abstract-short" style="display: inline;"> Stochastic diffusion processes are pervasive in nature, from the seemingly erratic Brownian motion to the complex interactions of synaptically-coupled spiking neurons. Recently, drawing inspiration from Langevin dynamics, neuromorphic diffusion models were proposed and have become one of the major breakthroughs in the field of generative artificial intelligence. Unlike discriminative models that h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12261v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12261v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12261v1-abstract-full" style="display: none;"> Stochastic diffusion processes are pervasive in nature, from the seemingly erratic Brownian motion to the complex interactions of synaptically-coupled spiking neurons. Recently, drawing inspiration from Langevin dynamics, neuromorphic diffusion models were proposed and have become one of the major breakthroughs in the field of generative artificial intelligence. Unlike discriminative models that have been well developed to tackle classification or regression tasks, diffusion models as well as other generative models such as ChatGPT aim at creating content based upon contexts learned. However, the more complex algorithms of these models result in high computational costs using today&#39;s technologies, creating a bottleneck in their efficiency, and impeding further development. Here, we develop a spintronic voltage-controlled magnetoelectric memory hardware for the neuromorphic diffusion process. The in-memory computing capability of our spintronic devices goes beyond current Von Neumann architecture, where memory and computing units are separated. Together with the non-volatility of magnetic memory, we can achieve high-speed and low-cost computing, which is desirable for the increasing scale of generative models in the current era. We experimentally demonstrate that the hardware-based true random diffusion process can be implemented for image generation and achieve comparable image quality to software-based training as measured by the Frechet inception distance (FID) score, achieving ~10^3 better energy-per-bit-per-area over traditional hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12261v1-abstract-full').style.display = 'none'; document.getElementById('2407.12261v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11672">arXiv:2407.11672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11672">pdf</a>, <a href="https://arxiv.org/format/2407.11672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Walking through Hilbert Space with Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+T">Tong Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jinghong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Baumgarten%2C+M+K+A">Moritz K. A. Baumgarten</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Meng-Fu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Dinh%2C+H+Q">Hieu Q. Dinh</a>, <a href="/search/physics?searchtype=author&amp;query=Ganeshram%2C+A">Aadithya Ganeshram</a>, <a href="/search/physics?searchtype=author&amp;query=Maskara%2C+N">Nishad Maskara</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+A">Anton Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">Joonho Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11672v1-abstract-short" style="display: inline;"> Computations of chemical systems&#39; equilibrium properties and non-equilibrium dynamics have been suspected of being a &#34;killer app&#34; for quantum computers. This review highlights the recent advancements of quantum algorithms tackling complex sampling tasks in the key areas of computational chemistry: ground state, thermal state properties, and quantum dynamics calculations. We review a broad range of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11672v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11672v1-abstract-full" style="display: none;"> Computations of chemical systems&#39; equilibrium properties and non-equilibrium dynamics have been suspected of being a &#34;killer app&#34; for quantum computers. This review highlights the recent advancements of quantum algorithms tackling complex sampling tasks in the key areas of computational chemistry: ground state, thermal state properties, and quantum dynamics calculations. We review a broad range of quantum algorithms, from hybrid quantum-classical to fully quantum, focusing on the traditional Monte Carlo family, including Markov chain Monte Carlo, variational Monte Carlo, projector Monte Carlo, path integral Monte Carlo, etc. We also cover other relevant techniques involving complex sampling tasks, such as quantum-selected configuration interaction, minimally entangled typical thermal states, entanglement forging, and Monte Carlo-flavored Lindbladian dynamics. We provide a comprehensive overview of these algorithms&#39; classical and quantum counterparts, detailing their theoretical frameworks and discussing the potentials and challenges in achieving quantum computational advantages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11672v1-abstract-full').style.display = 'none'; document.getElementById('2407.11672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping&#39;&#39;, as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE&#39;s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19153">arXiv:2406.19153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19153">pdf</a>, <a href="https://arxiv.org/format/2406.19153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A Generalized Theory for Optical Cooling of a Trapped Atom with Spin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Phatak%2C+S+S">Saumitra S. Phatak</a>, <a href="/search/physics?searchtype=author&amp;query=Blodgett%2C+K+N">Karl N. Blodgett</a>, <a href="/search/physics?searchtype=author&amp;query=Peana%2C+D">David Peana</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+R">Meng Raymond Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hood%2C+J+D">Jonathan D. Hood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19153v3-abstract-short" style="display: inline;"> Cooling atoms to the ground-state of optical tweezers is becoming increasingly important for high-fidelity imaging, cooling, and molecular assembly. While extensive theoretical work has been conducted on cooling in free space, fewer studies have focused on cooling in bound states. In this work, we present a unified formalism for optical cooling mechanisms in neutral atom tweezers, including resolv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19153v3-abstract-full').style.display = 'inline'; document.getElementById('2406.19153v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19153v3-abstract-full" style="display: none;"> Cooling atoms to the ground-state of optical tweezers is becoming increasingly important for high-fidelity imaging, cooling, and molecular assembly. While extensive theoretical work has been conducted on cooling in free space, fewer studies have focused on cooling in bound states. In this work, we present a unified formalism for optical cooling mechanisms in neutral atom tweezers, including resolved and unresolved sideband cooling with different trapping potentials, polarization gradient cooling, gray molasses cooling, $螞$-enhanced gray molasses cooling, and Raman sideband cooling. We perform simulations and demonstrate good agreement with a simplified spin model. We derive and discuss the fundamental limits of each cooling mechanism and propose new strategies for achieving ground-state cooling in optical tweezers. Our findings provide valuable insights into optimizing cooling schemes for neutral atoms in optical tweezers, paving the way for minimizing thermal decoherence in Rydberg and molecular gates and improving efficiencies of molecular assembly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19153v3-abstract-full').style.display = 'none'; document.getElementById('2406.19153v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16796">arXiv:2406.16796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16796">pdf</a>, <a href="https://arxiv.org/format/2406.16796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0226159">10.1063/5.0226159 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling of axion and electromagnetic fields coupling in a particle-in-cell code </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+X">Xiangyan An</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jianglai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+Z">Zhengming Sheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16796v1-abstract-short" style="display: inline;"> Axions have aroused widespread research interest because they can solve the strong CP problem and serve as a possible candidate for dark matter. Currently, people have explored a lot of axion detection experiments, including passively detecting the existing axions in the universe, and actively generating axions in the laboratory. Recently, axion-coupled laser-plasma interactions have been discusse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16796v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16796v1-abstract-full" style="display: none;"> Axions have aroused widespread research interest because they can solve the strong CP problem and serve as a possible candidate for dark matter. Currently, people have explored a lot of axion detection experiments, including passively detecting the existing axions in the universe, and actively generating axions in the laboratory. Recently, axion-coupled laser-plasma interactions have been discussed as a novel method to detect axions. Petawatt (PW) lasers are considered as a powerful tool to study not only the vacuum polarization but also the axion coupling, due to their extreme fields. However, particle-in-cell (PIC) simulation is still missed in current studies, which limits the understanding of axion-coupled laser-plasma interactions. In this paper, we proposed the method to include the axion field and the coupling with electromagnetic (EM) fields in PIC codes. The axion wave equation and modified Maxwell&#39;s equations are numerically solved, while the EM field modulation from axions is considered as a first-order perturbation. Meanwhile, different axion field boundary conditions are considered to satisfy different simulation scenarios. The processes of conversions between axions and photons, and weak laser pulse propagation with axion effects are checked as benchmarks of the code. Such an extended PIC code may help researchers develop novel axion detection schemes based on laser-plasma interactions and provide a better understanding of axion-coupled astrophysical processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16796v1-abstract-full').style.display = 'none'; document.getElementById('2406.16796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08554">arXiv:2406.08554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08554">pdf</a>, <a href="https://arxiv.org/format/2406.08554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Hardware-Enabled Molecular Dynamics via Transfer Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A">Abid Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Vaish%2C+P">Prateek Vaish</a>, <a href="/search/physics?searchtype=author&amp;query=Pang%2C+Y">Yaoqi Pang</a>, <a href="/search/physics?searchtype=author&amp;query=Kowshik%2C+N">Nikhil Kowshik</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+S">Michael S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Batton%2C+C+H">Clay H. Batton</a>, <a href="/search/physics?searchtype=author&amp;query=Rotskoff%2C+G+M">Grant M. Rotskoff</a>, <a href="/search/physics?searchtype=author&amp;query=Mullinax%2C+J+W">J. Wayne Mullinax</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+B+K">Bryan K. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Rubenstein%2C+B+M">Brenda M. Rubenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Tubman%2C+N+M">Norm M. Tubman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08554v1-abstract-short" style="display: inline;"> The ability to perform ab initio molecular dynamics simulations using potential energies calculated on quantum computers would allow virtually exact dynamics for chemical and biochemical systems, with substantial impacts on the fields of catalysis and biophysics. However, noisy hardware, the costs of computing gradients, and the number of qubits required to simulate large systems present major cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08554v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08554v1-abstract-full" style="display: none;"> The ability to perform ab initio molecular dynamics simulations using potential energies calculated on quantum computers would allow virtually exact dynamics for chemical and biochemical systems, with substantial impacts on the fields of catalysis and biophysics. However, noisy hardware, the costs of computing gradients, and the number of qubits required to simulate large systems present major challenges to realizing the potential of dynamical simulations using quantum hardware. Here, we demonstrate that some of these issues can be mitigated by recent advances in machine learning. By combining transfer learning with techniques for building machine-learned potential energy surfaces, we propose a new path forward for molecular dynamics simulations on quantum hardware. We use transfer learning to reduce the number of energy evaluations that use quantum hardware by first training models on larger, less accurate classical datasets and then refining them on smaller, more accurate quantum datasets. We demonstrate this approach by training machine learning models to predict a molecule&#39;s potential energy using Behler-Parrinello neural networks. When successfully trained, the model enables energy gradient predictions necessary for dynamics simulations that cannot be readily obtained directly from quantum hardware. To reduce the quantum resources needed, the model is initially trained with data derived from low-cost techniques, such as Density Functional Theory, and subsequently refined with a smaller dataset obtained from the optimization of the Unitary Coupled Cluster ansatz. We show that this approach significantly reduces the size of the quantum training dataset while capturing the high accuracies needed for quantum chemistry simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08554v1-abstract-full').style.display = 'none'; document.getElementById('2406.08554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1- pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18458">arXiv:2405.18458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18458">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Asymmetrical estimator for training encapsulated deep photonic neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yizhi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minjia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+C">Chunhui Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+T">Ting Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Penty%2C+R">Richard Penty</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qixiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18458v4-abstract-short" style="display: inline;"> Photonic neural networks (PNNs) are fast in-propagation and high bandwidth paradigms that aim to popularize reproducible NN acceleration with higher efficiency and lower cost. However, the training of PNN is known to be challenging, where the device-to-device and system-to-system variations create imperfect knowledge of the PNN. Despite backpropagation (BP)-based training algorithms being the indu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18458v4-abstract-full').style.display = 'inline'; document.getElementById('2405.18458v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18458v4-abstract-full" style="display: none;"> Photonic neural networks (PNNs) are fast in-propagation and high bandwidth paradigms that aim to popularize reproducible NN acceleration with higher efficiency and lower cost. However, the training of PNN is known to be challenging, where the device-to-device and system-to-system variations create imperfect knowledge of the PNN. Despite backpropagation (BP)-based training algorithms being the industry standard for their robustness, generality, and fast gradient convergence for digital training, existing PNN-BP methods rely heavily on accurate intermediate state extraction or extensive computational resources for deep PNNs (DPNNs). The truncated photonic signal propagation and the computation overhead bottleneck DPNN&#39;s operation efficiency and increase system construction cost. Here, we introduce the asymmetrical training (AsyT) method, tailored for encapsulated DPNNs, where the signal is preserved in the analogue photonic domain for the entire structure. AsyT offers a lightweight solution for DPNNs with minimum readouts, fast and energy-efficient operation, and minimum system footprint. AsyT&#39;s ease of operation, error tolerance, and generality aim to promote PNN acceleration in a widened operational scenario despite the fabrication variations and imperfect controls. We demonstrated AsyT for encapsulated DPNN with integrated photonic chips, repeatably enhancing the performance from in-silico BP for different network structures and datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18458v4-abstract-full').style.display = 'none'; document.getElementById('2405.18458v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13278">arXiv:2405.13278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13278">pdf</a>, <a href="https://arxiv.org/format/2405.13278">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.compmedimag.2024.102468">10.1016/j.compmedimag.2024.102468 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single color digital H&amp;E staining with In-and-Out Net </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mengkun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yen-Tung Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+F+S">Fadeel Sher Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Fox%2C+M+C">Matthew C. Fox</a>, <a href="/search/physics?searchtype=author&amp;query=Reichenberg%2C+J+S">Jason S. Reichenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Lopes%2C+F+C+P+S">Fabiana C. P. S. Lopes</a>, <a href="/search/physics?searchtype=author&amp;query=Sebastian%2C+K+R">Katherine R. Sebastian</a>, <a href="/search/physics?searchtype=author&amp;query=Markey%2C+M+K">Mia K. Markey</a>, <a href="/search/physics?searchtype=author&amp;query=Tunnell%2C+J+W">James W. Tunnell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13278v2-abstract-short" style="display: inline;"> Virtual staining streamlines traditional staining procedures by digitally generating stained images from unstained or differently stained images. While conventional staining methods involve time-consuming chemical processes, virtual staining offers an efficient and low infrastructure alternative. Leveraging microscopy-based techniques, such as confocal microscopy, researchers can expedite tissue a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13278v2-abstract-full').style.display = 'inline'; document.getElementById('2405.13278v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13278v2-abstract-full" style="display: none;"> Virtual staining streamlines traditional staining procedures by digitally generating stained images from unstained or differently stained images. While conventional staining methods involve time-consuming chemical processes, virtual staining offers an efficient and low infrastructure alternative. Leveraging microscopy-based techniques, such as confocal microscopy, researchers can expedite tissue analysis without the need for physical sectioning. However, interpreting grayscale or pseudo-color microscopic images remains a challenge for pathologists and surgeons accustomed to traditional histologically stained images. To fill this gap, various studies explore digitally simulating staining to mimic targeted histological stains. This paper introduces a novel network, In-and-Out Net, specifically designed for virtual staining tasks. Based on Generative Adversarial Networks (GAN), our model efficiently transforms Reflectance Confocal Microscopy (RCM) images into Hematoxylin and Eosin (H&amp;E) stained images. We enhance nuclei contrast in RCM images using aluminum chloride preprocessing for skin tissues. Training the model with virtual H\&amp;E labels featuring two fluorescence channels eliminates the need for image registration and provides pixel-level ground truth. Our contributions include proposing an optimal training strategy, conducting a comparative analysis demonstrating state-of-the-art performance, validating the model through an ablation study, and collecting perfectly matched input and ground truth images without registration. In-and-Out Net showcases promising results, offering a valuable tool for virtual staining tasks and advancing the field of histological image analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13278v2-abstract-full').style.display = 'none'; document.getElementById('2405.13278v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Computerized Medical Imaging and Graphics, volume = {118}, pages = {102468}, year = {2024}, issn = {0895-6111}, </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10