CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 138 results for author: <span class="mathjax">Song, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Song%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Song, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Song%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Song, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Song%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11724">arXiv:2411.11724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11724">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale control over single vortex motion in an unconventional superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S+Y">Sang Yong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+C">Chengyun Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hal%C3%A1sz%2C+G+B">G谩bor B. Hal谩sz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ko%2C+W">Wonhee Ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawrie%2C+B+J">Benjamin J. Lawrie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maksymovych%2C+P">Petro Maksymovych</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11724v1-abstract-short" style="display: inline;"> To realize braiding of vortex lines and understand the basic properties of the energy landscape for vortex motion, precise manipulation of superconducting vortices on the nanoscale is required. Here, we reveal that a localized trapping potential powerful enough to pull in the vortex line can be created with nanoscale precision on the surface of an FeSe superconductor using the tip of a scanning tu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11724v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11724v1-abstract-full" style="display: none;"> To realize braiding of vortex lines and understand the basic properties of the energy landscape for vortex motion, precise manipulation of superconducting vortices on the nanoscale is required. Here, we reveal that a localized trapping potential powerful enough to pull in the vortex line can be created with nanoscale precision on the surface of an FeSe superconductor using the tip of a scanning tunneling microscope. The mechanism of tip-induced force is traced to local modification of electronic properties and reduction of the superconducting gap, most likely due to tip-induced strain. Intriguingly, the tip-induced trapping potential is much less pronounced along the twin boundaries, dramatically reducing the vortice&#39;s degree of motion relative to the surrounding lattice. By enabling nanoscale manipulation of single vortices in Fe-based superconductors, and likely similar materials with strong strain-susceptibility of the superconducting gap, our findings provide an important step toward further development of vortex-based quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11724v1-abstract-full').style.display = 'none'; document.getElementById('2411.11724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03198">arXiv:2411.03198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03198">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable SWCNT ferroelectric field-effect transistor arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rhee%2C+D">Dongjoon Rhee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kwan-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+J">Jeffrey Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Seunguk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+L">Lian-Mao Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olsson%2C+R+H">Roy H. Olsson III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Joohoon Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03198v1-abstract-short" style="display: inline;"> Reconfigurable devices have garnered significant attention for alleviating the scaling requirements of conventional CMOS technology, as they require fewer components to construct circuits with similar function. Prior works required continuous voltage application for programming gate terminal(s) in addition to the primary gate terminal, which undermines the advantages of reconfigurable devices in r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03198v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03198v1-abstract-full" style="display: none;"> Reconfigurable devices have garnered significant attention for alleviating the scaling requirements of conventional CMOS technology, as they require fewer components to construct circuits with similar function. Prior works required continuous voltage application for programming gate terminal(s) in addition to the primary gate terminal, which undermines the advantages of reconfigurable devices in realizing compact and power-efficient integrated circuits. Here, we realize reconfigurable devices based on a single-gate field-effect transistor (FET) architecture by integrating semiconducting channels consisting of a monolayer film of highly aligned SWCNTs with a ferroelectric AlScN gate dielectric, all compatible with CMOS back-end-of-line (BEOL) processing. We demonstrated these SWCNT ferroelectric FETs (FeFETs) in a centimeter-scale array (~1 cm^2) comprising ~735 devices, with high spatial uniformity in device characteristics across the array. The devices exhibited ambipolar transfer characteristics with high on-state currents and current on/off ratios exceeding 10^5, demonstrating an excellent balance between electron and hole conduction (~270 渭A/渭m at a drain voltage of 3 V. When functioning as a non-volatile memory, the SWCNT FeFETs demonstrated large memory windows of 0.26 V/nm and 0.08 V/nm in the hole and electron conduction regions, respectively, combined with excellent retention behavior for up to 10^4 s. Repeated reconfiguration between p-FET and n-FET modes was also enabled by switching the spontaneous polarization in AlScN and operating the transistor within a voltage range below the coercive voltage. We revealed through circuit simulations that reconfigurable SWCNT transistors can realize ternary content-addressable memory (TCAM) with far fewer devices compared to circuits based on silicon CMOS technology or based on resistive non-volatile devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03198v1-abstract-full').style.display = 'none'; document.getElementById('2411.03198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 16 figures (5 main and 11 supplementary figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15327">arXiv:2410.15327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15327">pdf</a>, <a href="https://arxiv.org/ps/2410.15327">ps</a>, <a href="https://arxiv.org/format/2410.15327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.155139">10.1103/PhysRevB.110.155139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inter-Cation Charge Transfer Mediated Antiferromagnetism in Co$_{1+x}$Ir$_{2-x}$S$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+L">Liang-Wen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Si-Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bai-Zhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wu-Zhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shi-Jie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15327v1-abstract-short" style="display: inline;"> The antiferromagnetism in transition metal compounds is mostly mediated by the bridging anions through a so-called superexchange mechanism. However, in materials like normal spinels $AB_2X_4$ with local moments only at the $A$ site, such an anion-mediated superexchange needs to be modified. Here we report a new spinel compound Co$_{1+x}$Ir$_{2-x}$S$_4$ ($x$ = 0.3). The physical property measuremen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15327v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15327v1-abstract-full" style="display: none;"> The antiferromagnetism in transition metal compounds is mostly mediated by the bridging anions through a so-called superexchange mechanism. However, in materials like normal spinels $AB_2X_4$ with local moments only at the $A$ site, such an anion-mediated superexchange needs to be modified. Here we report a new spinel compound Co$_{1+x}$Ir$_{2-x}$S$_4$ ($x$ = 0.3). The physical property measurements strongly suggest an antiferromagnetic-like transition at 292 K in the Co($A$) diamond sublattice. The first-principle calculations reveal that the nearest-neighbor Co($A$) spins align antiferromagnetically with an ordered magnetic moment of 1.67 $渭_\mathrm{B}$, smaller than the expected $S = 3/2$ for Co$^{2+}$. In the antiferromagnetic state, there exists an inter-cation charge-transfer gap between the non-bonding Ir-$t_\mathrm{2g}$ orbitals at the valence band maximum and the Co-S antibonding molecular orbitals at the conduction band minimum. The small charge transfer energy significantly enhances the virtual hopping between these two states, facilitating a robust long-range superexchange interaction between two neighboring CoS$_4$ complexes, which accounts for the high N茅el temperature in Co$_{1+x}$Ir$_{2-x}$S$_4$. This inter-cation charge transfer mediated magnetic interaction expands the traditional superexchange theory, which could be applicable in complex magnetic materials with multiple cations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15327v1-abstract-full').style.display = 'none'; document.getElementById('2410.15327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 155139 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04059">arXiv:2410.04059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04059">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> An atomic-scale view at Fe4N as hydrogen barrier material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Albrecht%2C+A">Aleksander Albrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S+Y">Sang Yoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chang-Gi Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+M">Mathias Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+S">Su-Hyun Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gault%2C+B">Baptiste Gault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+D">Dierk Raabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+S">Seok-Su Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghyuk Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Se-Ho Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04059v1-abstract-short" style="display: inline;"> Hydrogen, while a promising sustainable energy carrier, presents challenges such as the embrittlement of materials due to its ability to penetrate and weaken their crystal structures. Here we investigate Fe4N nitride layers, formed on iron through a cost-effective gas nitriding process, as an effective hydrogen permeation barrier. A combination of screening using advanced characterization, density&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04059v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04059v1-abstract-full" style="display: none;"> Hydrogen, while a promising sustainable energy carrier, presents challenges such as the embrittlement of materials due to its ability to penetrate and weaken their crystal structures. Here we investigate Fe4N nitride layers, formed on iron through a cost-effective gas nitriding process, as an effective hydrogen permeation barrier. A combination of screening using advanced characterization, density functional theory calculations, and hydrogen permeation analysis reveals that a nitride layer reduces hydrogen diffusion by a factor of 20 at room temperature. This reduction is achieved by creating energetically unfavorable states due to stronger H-binding at the surface and high energy barriers for diffusion. The findings demonstrate the potential of Fe4N as a cost-efficient and easy-to-process solution to protecting metallic materials exposed to hydrogen, with great advantages for large-scale applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04059v1-abstract-full').style.display = 'none'; document.getElementById('2410.04059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19736">arXiv:2409.19736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19736">pdf</a>, <a href="https://arxiv.org/format/2409.19736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopic Visualization of Hard Quasi-1D Superconductivity Induced in Nanowires Deposited on a Quasi-2D Indium film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+A">Ambikesh Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+P+K">Pranab Kumar Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiriati%2C+S">Shai Kiriati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Escribano%2C+S+D">Samuel D. Escribano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M+S">Man Suk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shtrikman%2C+H">Hadas Shtrikman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oreg%2C+Y">Yuval Oreg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avraham%2C+N">Nurit Avraham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beidenkopf%2C+H">Haim Beidenkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19736v1-abstract-short" style="display: inline;"> Following significant progress in the visualization and characterization of hybrid superconducting-semiconducting systems, greatly propelled by reports of Majorana zero modes in nanowire devices, considerable attention has been devoted to investigating the electronic structure at the buried superconducting-semiconducting interface and the nature of the induced superconducting correlations. The pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19736v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19736v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19736v1-abstract-full" style="display: none;"> Following significant progress in the visualization and characterization of hybrid superconducting-semiconducting systems, greatly propelled by reports of Majorana zero modes in nanowire devices, considerable attention has been devoted to investigating the electronic structure at the buried superconducting-semiconducting interface and the nature of the induced superconducting correlations. The properties of that interface and the structure of the electronic wave functions that occupy it determine the functionality and the topological nature of the induced superconducting state. Here, we introduce a novel hybrid platform for proximity-inducing superconductivity in InAs$_{0.6}$Sb$_{0.4}$ nanowires, leveraging a unique architecture and material combination. By dispersing these nanowires over a superconducting Indium film we exploit Indium&#39;s high critical temperature of 3.7~K and the anticipated high spin-orbit and Zeeman couplings of InAs$_{0.6}$Sb$_{0.4}$. This design preserves the pristine top facet of the nanowires, making it highly compatible with scanning tunneling spectroscopy. Using this architecture we demonstrate that the mechanical contact supports Cooper-pair transparency as high as 90\%, comparable with epitaxial interfaces. The anisotropic angular response to an applied magnetic field shows the quasi-two-dimensional nature of the parent superconductivity in the Indium film and the quasi-one-dimensional nature of the induced superconductivity in the nanowires. Our platform offers robust and advantageous foundations for studying the emergence of topological superconductivity and the interplay of superconductivity and magnetism using atomic-scale spectroscopic tools. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19736v1-abstract-full').style.display = 'none'; document.getElementById('2409.19736v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06337">arXiv:2409.06337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06337">pdf</a>, <a href="https://arxiv.org/ps/2409.06337">ps</a>, <a href="https://arxiv.org/format/2409.06337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.094405">10.1103/PhysRevMaterials.8.094405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of itinerant ferromagnetism in a cobalt-based oxypnictide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hua-Xun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yi-Qiang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jia-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shi-Jie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qin-Qing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06337v1-abstract-short" style="display: inline;"> We report a layered transition-metal-ordered oxypnictide Sr$_{2}$CrCoAsO$_{3}$. The new material was synthesized by solid-state reactions under vacuum. It has an intergrowth structure with a perovskite-like Sr$_3$Cr$_2$O$_6$ unit and ThCr$_2$Si$_2$-type SrCo$_2$As$_2$ block stacking coherently along the crystallographic $c$ axis. The measurements of electrical resistivity, magnetic susceptibility,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06337v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06337v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06337v1-abstract-full" style="display: none;"> We report a layered transition-metal-ordered oxypnictide Sr$_{2}$CrCoAsO$_{3}$. The new material was synthesized by solid-state reactions under vacuum. It has an intergrowth structure with a perovskite-like Sr$_3$Cr$_2$O$_6$ unit and ThCr$_2$Si$_2$-type SrCo$_2$As$_2$ block stacking coherently along the crystallographic $c$ axis. The measurements of electrical resistivity, magnetic susceptibility, and specific heat indicate metallic conductivity from the CoAs layers and short-range antiferromagnetic ordering in the CrO$_{2}$ planes. No itinerant-electron ferromagnetism expected in CoAs layers is observed. This result, combined with the first-principles calculations and the previous reports of other CoAs-layer-based materials, suggests that the Co$-$Co bondlength plays a crucial role in the emergence of itinerant ferromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06337v1-abstract-full').style.display = 'none'; document.getElementById('2409.06337v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 8, 094405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10050">arXiv:2408.10050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10050">pdf</a>, <a href="https://arxiv.org/format/2408.10050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Imaging ultrafast electronic domain fluctuations with X-ray speckle visibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">N. Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+P">P. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">N. Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoychev%2C+B+K">B. K. Stoychev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamb%2C+E+S">E. S. Lamb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madhavi%2C+M">M. Madhavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botu%2C+S+T">S. T. Botu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeppson%2C+S">S. Jeppson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cl%C3%A9mence%2C+M">M. Cl茅mence</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McConnell%2C+A+G">A. G. McConnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+-">S. -W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zerdane%2C+S">S. Zerdane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankowsky%2C+R">R. Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemke%2C+H+T">H. T. Lemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sander%2C+M">M. Sander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+P">P. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">T. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">O. G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">R. Kukreja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10050v1-abstract-short" style="display: inline;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection du&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10050v1-abstract-full" style="display: none;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection due to experimental limitations, such as insufficient X-ray coherent flux. Here we demonstrate a nonequilibrium speckle visibility experiment using a split-and-delay setup at an X-ray free-electron laser. Photoinduced electronic domain fluctuations of the magnetic model material Fe$_{3}$O$_{4}$ reveal changes of the trimeron network configuration due to charge dynamics that exhibit liquid-like fluctuations, analogous to a supercooled liquid phase. This suggests that ultrafast dynamics of electronic heterogeneities under optical stimuli are fundamentally different from thermally-driven ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'none'; document.getElementById('2408.10050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04438">arXiv:2408.04438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04438">pdf</a>, <a href="https://arxiv.org/format/2408.04438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unconventional Hall effects in a quasi-kagome Kondo Weyl semimetal candidate Ce$_3$TiSb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xiaobo He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Ying Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+Y">Yongheng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H">Hai Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shi-Jie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+S">Shuo Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuke Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+W">Wenxin Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Jianhui Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiao-Xiao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yongkang Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04438v1-abstract-short" style="display: inline;"> It is generally believed that electronic correlation, geometric frustration, and topology, \textit{individually}, can facilitate the emergence of various intriguing properties that have attracted a broad audience for both fundamental research and potential applications. Here, we report a systematic investigation on a quasi-kagome Kondo Weyl semimetal candidate Ce$_3$TiSb$_5$. A series of unconvent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04438v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04438v1-abstract-full" style="display: none;"> It is generally believed that electronic correlation, geometric frustration, and topology, \textit{individually}, can facilitate the emergence of various intriguing properties that have attracted a broad audience for both fundamental research and potential applications. Here, we report a systematic investigation on a quasi-kagome Kondo Weyl semimetal candidate Ce$_3$TiSb$_5$. A series of unconventional Hall effects are observed. In the paramagnetic phase, signature of dynamic $c$-$f$ hybridization is revealed by a reduction of anomalous Hall effect and is connected to frustration-promoted incoherent Kondo scattering. A large topological Hall effect exceeding 0.2 $渭惟$ cm is found at low temperatures, which should be ascribed to the noncolinear magnetic structures of the frustrated quasi-kagome lattice. In addition, a peculiar loop-shaped Hall effect with switching chirality is also seen, which is inferred to be associated with magnetic domain walls that pin history-dependent spin chirality and / or Fermi-arc surface states projected from the in-gap Weyl nodes. These exotic results place Ce$_3$TiSb$_5$ in a regime of highly-frustrated antiferromagnetic dense Kondo lattice with a nontrivial topology on an ``extended&#34; global phase diagram, and highlight the interplay among electronic correlation, geometric frustration and topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04438v1-abstract-full').style.display = 'none'; document.getElementById('2408.04438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13+3 pages, 6+3 figures, 2+1 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10505">arXiv:2407.10505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10505">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of Nanoscale Phase Decomposition in Laser Ablation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yanwen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chaobo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+T+J">Thies J. Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Haoyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arefev%2C+M+I">Mikhail I. Arefev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunne%2C+M">Mike Dunne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+M">Matthias Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hurley%2C+M+J">Matthew J. Hurley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+M">Mianzhen Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+Q+L">Quynh L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">Takahiro Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sanghoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+P">Peihao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutton%2C+M">Mark Sutton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teitelbaum%2C+S">Samuel Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valavanis%2C+A+S">Antonios S. Valavanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhigilei%2C+L+V">Leonid V. Zhigilei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolowski-Tinten%2C+K">Klaus Sokolowski-Tinten</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10505v1-abstract-short" style="display: inline;"> Femtosecond laser ablation is a process that bears both fundamental physics interest and has wide industrial applications. For decades, the lack of probes on the relevant time and length scales has prevented access to the highly nonequilibrium phase decomposition processes triggered by laser excitation. Enabled by the unprecedented intense femtosecond X-ray pulses delivered by an X-ray free electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10505v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10505v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10505v1-abstract-full" style="display: none;"> Femtosecond laser ablation is a process that bears both fundamental physics interest and has wide industrial applications. For decades, the lack of probes on the relevant time and length scales has prevented access to the highly nonequilibrium phase decomposition processes triggered by laser excitation. Enabled by the unprecedented intense femtosecond X-ray pulses delivered by an X-ray free electron laser, we report here results of time-resolved small angle scattering measurements on the dynamics of nanoscale phase decomposition in thin gold films upon femtosecond laser-induced ablation. By analyzing the features imprinted onto the small angle diffraction patterns, the transient heterogeneous density distributions within the ablation plume as obtained from molecular dynamics simulations get direct experimental confirmation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10505v1-abstract-full').style.display = 'none'; document.getElementById('2407.10505v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main manuscript with 32 pages incl. 9 figures + supplementary materials with 16 pages incl. 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09153">arXiv:2407.09153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09153">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-49841-6">10.1038/s41467-024-49841-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Fermi-arc surface state covered by floating electrons on a two-dimensional electride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+C">Chan-young Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Min-Seok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+D+C">Dong Cheol Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sunghun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yeonghoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cha%2C+J">Jaehoon Cha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+G">Gyubin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S+Y">Sang Yong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thapa%2C+D">Dinesh Thapa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Seong-Gon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S+W">Sung Wng Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Jungpil Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yeongkwan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09153v1-abstract-short" style="display: inline;"> Two-dimensional electrides can acquire topologically non-trivial phases due to intriguing interplay between the cationic atomic layers and anionic electron layers. However, experimental evidence of topological surface states has yet to be verified. Here, via angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM), we probe the magnetic Weyl states of the ferromag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09153v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09153v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09153v1-abstract-full" style="display: none;"> Two-dimensional electrides can acquire topologically non-trivial phases due to intriguing interplay between the cationic atomic layers and anionic electron layers. However, experimental evidence of topological surface states has yet to be verified. Here, via angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM), we probe the magnetic Weyl states of the ferromagnetic electride $[Gd_{2}$C]^{2+}\cdot2e^{-}$. In particular, the presence of Weyl cones and Fermi-arc states is demonstrated through photon energy-dependent ARPES measurements, agreeing with theoretical band structure calculations. Notably, the STM measurements reveal that the Fermi-arc states exist underneath a floating quantum electron liquid on the top Gd layer, forming double-stacked surface states in a heterostructure. Our work thus not only unveils the non-trivial topology of the $[Gd_{2}$C]^{2+}\cdot2e^{-}$ electride but also realizes a surface heterostructure that can host phenomena distinct from the bulk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09153v1-abstract-full').style.display = 'none'; document.getElementById('2407.09153v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15 (2024) 5615 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03231">arXiv:2407.03231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03231">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01536">10.1021/acs.nanolett.4c01536 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimensionality Engineering of Magnetic Anisotropy from Anomalous Hall Effect in Synthetic SrRuO3 Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+S+W">Seong Won Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+Y">Jin Young Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+D+G">Do Gyeom Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+G">Gyeongtak Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+H+Y">Hu Young Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohamed%2C+A+Y">Ahmed Yousef Mohamed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+W">Woo-suk Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+S">Jong Seok Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Suyoun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-Min Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03231v1-abstract-short" style="display: inline;"> Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here, we investigate the impact of dimensionality of epitaxially-grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03231v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03231v1-abstract-full" style="display: none;"> Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here, we investigate the impact of dimensionality of epitaxially-grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designing oxide superlattices with a correlated ferromagnetic SrRuO3 and nonmagnetic SrTiO3 layers, we observed modulated ferromagnetic behavior with the change of the SrRuO3 thickness. Especially, for three-unit-cell-thick layers, we observe a significant 1,500% improvement of coercive field in the anomalous Hall effect, which cannot be solely attributed to the dimensional crossover in ferromagnetism. The atomic-scale heterostructures further reveal the systematic modulation of anisotropy for the lattice structure and orbital hybridization, explaining the enhanced magnetic anisotropy. Our findings provide valuable insights into engineering the anisotropic hybridization of synthetic magnetic crystals, offering a tunable spin order for various applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03231v1-abstract-full').style.display = 'none'; document.getElementById('2407.03231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18956">arXiv:2406.18956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18956">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-024-01762-7">10.1038/s41565-024-01762-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topotaxial Mutual-Exchange Growth of Magnetic Zintl Eu$_3$In$_2$As$_4$ Nanowires with Axion Insulator Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M+S">Man Suk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Houben%2C+L">Lothar Houben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yufei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bae%2C+H">Hyeonhu Bae</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rothem%2C+N">Nadav Rothem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+A">Ambikesh Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalisky%2C+B">Beena Kalisky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaluska-Kotur%2C+M">Magdalena Zaluska-Kotur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kacman%2C+P">Perla Kacman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shtrikman%2C+H">Hadas Shtrikman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beidenkopf%2C+H">Haim Beidenkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18956v1-abstract-short" style="display: inline;"> Nanomaterials bring to expression unique electronic properties that promote advanced functionality and technologies. Albeit, nanoscale growth presents paramount challenges for synthesis limiting the diversity in structures and compositions. Here, we demonstrate solid-state topotactic exchange that converts Wurtzite InAs nanowires into Zintl phase Eu$_3$In$_2$As$_4$ nanowires. In situ evaporation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18956v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18956v1-abstract-full" style="display: none;"> Nanomaterials bring to expression unique electronic properties that promote advanced functionality and technologies. Albeit, nanoscale growth presents paramount challenges for synthesis limiting the diversity in structures and compositions. Here, we demonstrate solid-state topotactic exchange that converts Wurtzite InAs nanowires into Zintl phase Eu$_3$In$_2$As$_4$ nanowires. In situ evaporation of Eu and As over InAs nanowire cores in molecular beam epitaxy results in mutual exchange of Eu from the shell and In from the core. A continuous Eu$_3$In$_2$As$_4$ shell thereby grows that gradually consumes the InAs core and converts it into a single phase Eu$_3$In$_2$As$_4$ nanowire. Topotaxy, which facilitates the mutual exchange, is supported by the substructure of the As matrix which is similar across the Wurtzite InAs and Zintl Eu$_3$In$_2$As$_4$. We provide initial evidence of an antiferromagnetic transition at T$_N$ $\sim$ 6.5 K in the Zintl phase Eu$_3$In$_2$As$_4$ nanowires. Ab initio calculation confirms the antiferromagnetic state and classifies Eu$_3$In$_2$As$_4$ as a $C_2 T$ axion insulator hosting both chiral hinge modes and unpinned Dirac surface states. The topotactic mutual-exchange growth of Zintl Eu$_3$In$_2$As$_4$ nanowires thus enables the exploration of intricate magneto-topological states of nanomaterials. Moreover, it may open the path for topotactic mutual-exchange synthesis of nanowires made of other exotic compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18956v1-abstract-full').style.display = 'none'; document.getElementById('2406.18956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05608">arXiv:2406.05608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05608">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Janus graphene nanoribbons with a single ferromagnetic zigzag edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shaotang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teng%2C+Y">Yu Teng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+W">Weichen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhen Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yuanyuan He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+J">Jiawei Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kojima%2C+T">Takahiro Kojima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wenping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giessibl%2C+F+J">Franz J Giessibl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakaguchi%2C+H">Hiroshi Sakaguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louie%2C+S+G">Steven G Louie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05608v2-abstract-short" style="display: inline;"> Topological design of pi-electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically exhibit antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a new class of ferromagnetic quantum spin chains, enabling the explor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05608v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05608v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05608v2-abstract-full" style="display: none;"> Topological design of pi-electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically exhibit antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a new class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the 1D limit, but also establishes a long-sought carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics. However, designing such GNRs entails overcoming daunting challenges, including simultaneous breaking of structural and spin symmetries, and designing elegant precursors for asymmetric fabrication of reactive zigzag edges. Here, we report a general approach for designing and fabricating such ferromagnetic GNRs in the form of Janus GNRs with two distinct edge configurations. Guided by Lieb&#39;s theorem and topological classification theory, we devised two JGNRs by asymmetrically introduced a topological defect array of benzene motifs to one zigzag edge, while keeping the opposing zigzag edge unchanged. This breaks structural symmetry and creates a sublattice imbalance within each unit cell, initiating a spin symmetry breaking. Three Z-shape precursors are designed to fabricate one parent ZGNR and two JGNRs with an optimal lattice spacing of the defect array for a complete quench of the magnetic edge states at the defective edge. Characterization via scanning probe microscopy/spectroscopy and first-principles density functional theory confirms the successful fabrication of Janus GNRs with ferromagnetic ground state delocalised along the pristine zigzag edge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05608v2-abstract-full').style.display = 'none'; document.getElementById('2406.05608v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05432">arXiv:2405.05432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05432">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> 2D ferroelectrics and ferroelectrics with 2D: materials and device prospects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Leblanc%2C+C">Chloe Leblanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Seunguk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05432v1-abstract-short" style="display: inline;"> Ferroelectric and two-dimensional materials are both heavily investigated classes of electronic materials. This is unsurprising since they both have superlative fundamental properties and high-value applications in computing, sensing etc. In this Perspective, we investigate the research topics where 2D semiconductors and ferroelectric materials both in 2D or 3D form come together. 2D semiconductor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05432v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05432v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05432v1-abstract-full" style="display: none;"> Ferroelectric and two-dimensional materials are both heavily investigated classes of electronic materials. This is unsurprising since they both have superlative fundamental properties and high-value applications in computing, sensing etc. In this Perspective, we investigate the research topics where 2D semiconductors and ferroelectric materials both in 2D or 3D form come together. 2D semiconductors have unique attributes due to their van der Waals nature that permits their facile integration with any other electronic or optical materials. In addition, the emergence of ferroelectricity in 2D monolayers, multilayers, and artificial structures offers further advantages since traditionally ferroelectricity has been difficult to achieve in extremely thickness scaled materials. In this perspective, we elaborate on the applications of 2D materials + ferroelectricity in non-volatile memory devices highlighting their potential for in-memory computing, neuromorphic computing, optoelectronics, and spintronics. We also suggest the challenges posed by both ferroelectrics and 2D materials, including material/device preparation, and reliable characterizations to drive further investigations at the interface of these important classes of electronic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05432v1-abstract-full').style.display = 'none'; document.getElementById('2405.05432v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08908">arXiv:2403.08908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08908">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202311287">10.1002/adfm.202311287 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrically Tunable Spin Exchange Splitting in Graphene Hybrid Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+D">Dongwon Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyeonbeom Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+J">Sung Ju Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Yeongju Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Youngkuk Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suh%2C+D">Dongseok Suh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08908v1-abstract-short" style="display: inline;"> Graphene, with spin and valley degrees of freedom, fosters unexpected physical and chemical properties for the realization of next-generation quantum devices. However, the spin symmetry of graphene is rather robustly protected, hampering manipulation of the spin degrees of freedom for the application of spintronic devices such as electric gate tunable spin filters. We demonstrate that a hybrid het&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08908v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08908v1-abstract-full" style="display: none;"> Graphene, with spin and valley degrees of freedom, fosters unexpected physical and chemical properties for the realization of next-generation quantum devices. However, the spin symmetry of graphene is rather robustly protected, hampering manipulation of the spin degrees of freedom for the application of spintronic devices such as electric gate tunable spin filters. We demonstrate that a hybrid heterostructure composed of graphene and LaCoO3 epitaxial thin film exhibits an electrically tunable spin exchange splitting. The large and adjustable spin exchange splitting of 155.9 - 306.5 meV was obtained by the characteristic shifts in both the spin symmetry broken quantum Hall states and the Shubnikov-de-Haas oscillations. Strong hybridization induced charge transfer across the hybrid heterointerface has been identified for the observed spin exchange splitting. The substantial and facile controllability of the spin exchange splitting provides an opportunity for spintronics applications with the electrically-tunable spin polarization in hybrid heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08908v1-abstract-full').style.display = 'none'; document.getElementById('2403.08908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Funct. Mater. 34, 2311287 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04962">arXiv:2402.04962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04962">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hidden domain boundary dynamics towards crystalline perfection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mangu%2C+A">A. Mangu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoica%2C+V+A">V. A. Stoica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">T. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+Q+L">Q. L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meisenheimer%2C+P">P. Meisenheimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donoway%2C+E">E. Donoway</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">M. Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">J. J. Turner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freeland%2C+J+W">J. W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H">H. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+L+W">L. W. Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+-">L. -Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gopalan%2C+V">V. Gopalan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindenberg%2C+A+M">A. M. Lindenberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04962v2-abstract-short" style="display: inline;"> A central paradigm of non-equilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04962v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04962v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04962v2-abstract-full" style="display: none;"> A central paradigm of non-equilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which non-equilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous non-equilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies. Here, we apply ultrafast single shot x-ray photon correlation spectroscopy to resolve the non-equilibrium, heterogeneous, and irreversible mesoscale dynamics during a light-induced phase transition. This approach defines a new way of capturing the nucleation of the induced phase, the formation of transient mesoscale defects at the boundaries of the nuclei, and the eventual annihilation of these defects, even in systems with complex polarization topologies. A non-equilibrium response spanning &gt;10 orders of magnitude in timescales is observed, with multistep behavior similar to the plateaus observed in supercooled liquids and glasses. We show how the observed time-dependent long-time correlations can be understood in terms of the stochastic dynamics of domain walls, encoded in effective waiting-time distributions with power-law tails. This work defines new possibilities for probing the non-equilibrium and correlated dynamics of disordered and heterogeneous media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04962v2-abstract-full').style.display = 'none'; document.getElementById('2402.04962v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13297">arXiv:2401.13297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13297">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cap.2023.06.015">10.1016/j.cap.2023.06.015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable electron scattering mechanism in plasmonic SrMoO$_3$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Prasetiyawati%2C+R+D">Rahma Dhani Prasetiyawati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+C">Chan-Koo Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+T">Tuson Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13297v1-abstract-short" style="display: inline;"> 4d transition metal perovskite oxides serve as suitable testbeds for the study of strongly correlated metallic properties. Among these, $SrMoO_{3}$ (SMO) exhibits remarkable electrical conductivity at room temperature. The temperature-dependent resistivity $(蟻(T))$ exhibits a Fermi-liquid behavior below the transition temperature $T^{*}$, reflecting the dominant electron-electron interaction. Abov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13297v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13297v1-abstract-full" style="display: none;"> 4d transition metal perovskite oxides serve as suitable testbeds for the study of strongly correlated metallic properties. Among these, $SrMoO_{3}$ (SMO) exhibits remarkable electrical conductivity at room temperature. The temperature-dependent resistivity $(蟻(T))$ exhibits a Fermi-liquid behavior below the transition temperature $T^{*}$, reflecting the dominant electron-electron interaction. Above $T^{*}$, electron-phonon interaction becomes more appreciable. In this study, we employed the power-law scaling of $蟻(T)$ to rigorously determine the $T^{*}$. We further demonstrate that the $T^{*}$ can be modified substantially by ~40 K in epitaxial thin films. It turns out that the structural quality determines $T^{*}$. Whereas the plasma frequency could be tuned by the change in the electron-electron interaction via the effective mass enhancement, we show that the plasmonic properties are more directly governed by the electron-impurity scattering. The facile control of the electron scattering mechanism through structural quality modulation can be useful for plasmonic sensing applications in the visible region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13297v1-abstract-full').style.display = 'none'; document.getElementById('2401.13297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06103">arXiv:2401.06103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06103">pdf</a>, <a href="https://arxiv.org/ps/2401.06103">ps</a>, <a href="https://arxiv.org/format/2401.06103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.023119">10.1103/PhysRevResearch.6.023119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In situ coherent X-ray scattering reveals polycrystalline structure and discrete annealing events in strongly-coupled nanocrystal superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hurley%2C+M+J">Matthew J. Hurley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanner%2C+C+P+N">Christian P. N. Tanner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Portner%2C+J">Joshua Portner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Utterback%2C+J+K">James K. Utterback</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coropceanu%2C+I">Igor Coropceanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+G+J">Garth J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+A">Avishek Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fluerasu%2C+A">Andrei Fluerasu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yanwen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sanghoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamerlynck%2C+L+M">Leo M. Hamerlynck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+A+H">Alexander H. Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharyya%2C+P">Priyadarshini Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Talapin%2C+D+V">Dmitri V. Talapin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ginsberg%2C+N+S">Naomi S. Ginsberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teitelbaum%2C+S+W">Samuel W. Teitelbaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06103v2-abstract-short" style="display: inline;"> Solution-phase bottom up self-assembly of nanocrystals into superstructures such as ordered superlattices is an attractive strategy to generate functional materials of increasing complexity, including very recent advances that incorporate strong interparticle electronic coupling. While the self-assembly kinetics in these systems have been elucidated and related to the product characteristics, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06103v2-abstract-full').style.display = 'inline'; document.getElementById('2401.06103v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06103v2-abstract-full" style="display: none;"> Solution-phase bottom up self-assembly of nanocrystals into superstructures such as ordered superlattices is an attractive strategy to generate functional materials of increasing complexity, including very recent advances that incorporate strong interparticle electronic coupling. While the self-assembly kinetics in these systems have been elucidated and related to the product characteristics, the weak interparticle bonding interactions suggest the superstructures formed could continue to order within the solution long after the primary nucleation and growth have occurred, even though the mechanism of annealing remains to be elucidated. Here, we use a combination of Bragg coherent diffractive imaging and X-ray photon correlation spectroscopy to create real-space maps of supercrystalline order along with a real-time view of the strain fluctuations in aging strongly coupled nanocrystal superlattices while they remain suspended and immobilized in solution. By combining the results, we deduce that the self-assembled superstructures are polycrystalline, initially comprising multiple nucleation sites, and that shear avalanches at grain boundaries continue to increase crystallinity long after growth has substantially slowed. This multimodal approach should be generalizable to characterize a breadth of materials in situ in their native chemical environments, thus extending the reach of high-resolution coherent X-ray characterization to the benefit of a much wider range of physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06103v2-abstract-full').style.display = 'none'; document.getElementById('2401.06103v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16453">arXiv:2312.16453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16453">pdf</a>, <a href="https://arxiv.org/format/2312.16453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Hard X-ray Generation and Detection of Nanometer-Scale Localized Coherent Acoustic Wave Packets in SrTiO$_3$ and KTaO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+P">Peihao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teitelbaum%2C+S+W">Samuel W. Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Haoyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yanwen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sanghoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">Takahiro Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osaka%2C+T">Taito Osaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inoue%2C+I">Ichiro Inoue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H+D">Hyun D. Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haber%2C+J">Johann Haber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jinjian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernardi%2C+M">Marco Bernardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+M">Mingqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rondinelli%2C+J+M">James M. Rondinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trigo%2C+M">Mariano Trigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yabashi%2C+M">Makina Yabashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maznev%2C+A+A">Alexei A. Maznev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+K+A">Keith A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reis%2C+D+A">David A. Reis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16453v2-abstract-short" style="display: inline;"> We demonstrate that the absorption of femtosecond x-ray pulses can excite quasi-spherical high-wavevector coherent acoustic phonon wavepackets using an all x-ray pump and probe scattering experiment. The time- and momentum-resolved diffuse scattering signal is consistent with strain pulses induced by the rapid electron cascade dynamics following photoionization at uncorrelated excitation centers.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16453v2-abstract-full').style.display = 'inline'; document.getElementById('2312.16453v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16453v2-abstract-full" style="display: none;"> We demonstrate that the absorption of femtosecond x-ray pulses can excite quasi-spherical high-wavevector coherent acoustic phonon wavepackets using an all x-ray pump and probe scattering experiment. The time- and momentum-resolved diffuse scattering signal is consistent with strain pulses induced by the rapid electron cascade dynamics following photoionization at uncorrelated excitation centers. We quantify key parameters of this process, including the localization size of the strain wavepacket and the energy absorption efficiency, which are determined by the photoelectron and Auger electron cascade dynamics, as well as the electron-phonon interaction. In particular, we obtain the localization size of the observed strain wave packet to be 1.5 and 2.5 nm for bulk SrTiO$_3$ and KTaO$_3$ single crystals, even though there are no nanoscale structures or light-intensity patterns that would ordinarily be required to generate acoustic waves of wavelengths much shorter than the penetration depth. Whereas in GaAs and GaP we do not observe a signal above background. The results provide crucial information on x-ray matter interactions, which sheds light on the mechanism of x-ray energy deposition, and the study of high wavevector acoustic phonons and thermal transport at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16453v2-abstract-full').style.display = 'none'; document.getElementById('2312.16453v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08613">arXiv:2312.08613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08613">pdf</a>, <a href="https://arxiv.org/format/2312.08613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Directly observing atomic-scale relaxations of a glass forming liquid using femtosecond X-ray photon correlation spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+T">Tomoki Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yanwen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Haoyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+T+J">Thies J. Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sanghoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">Takahiro Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moesgaard%2C+J">Jens Moesgaard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cornet%2C+A">Antoine Cornet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+P">Peihao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+M">Mianzhen Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amini%2C+N">Narges Amini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Makareviciute%2C+A">Arune Makareviciute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coleman%2C+G">Garrett Coleman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lucas%2C+P">Pierre Lucas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Embs%2C+J+P">Jan Peter Embs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esposito%2C+V">Vincent Esposito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vila-Comamala%2C+J">Joan Vila-Comamala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mamyrbayev%2C+T">Talgat Mamyrbayev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=David%2C+C">Christian David</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hastings%2C+J">Jerome Hastings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruta%2C+B">Beatrice Ruta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuoss%2C+P">Paul Fuoss</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08613v2-abstract-short" style="display: inline;"> Glass forming liquids exhibit structural relaxation behaviors, reflecting underlying atomic rearrangements on a wide range of timescales. These behaviors play a crucial role in determining many material properties. However, the relaxation processes on the atomic scale are not well understood due to the experimental difficulties in directly characterizing the evolving correlations of atomic order i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08613v2-abstract-full').style.display = 'inline'; document.getElementById('2312.08613v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08613v2-abstract-full" style="display: none;"> Glass forming liquids exhibit structural relaxation behaviors, reflecting underlying atomic rearrangements on a wide range of timescales. These behaviors play a crucial role in determining many material properties. However, the relaxation processes on the atomic scale are not well understood due to the experimental difficulties in directly characterizing the evolving correlations of atomic order in disordered systems. Here, taking the model system Ge15Te85, we demonstrate an experimental approach that probes the relaxation dynamics by scattering the coherent X-ray pulses with femtosecond duration produced by X-ray free electron lasers (XFELs). By collecting the summed speckle patterns from two rapidly successive, nearly identical X-ray pulses generated using a split-delay system, we can extract the contrast decay of speckle patterns originating from sample dynamics and observe the full decorrelation of local order on the sub-picosecond timescale. This provides the direct atomic-level evidence of fragile liquid behavior of Ge15Te85. Our results demonstrate the strategy for XFEL-based X-ray photon correlation spectroscopy (XPCS), attaining femtosecond temporal and atomic-scale spatial resolutions. This twelve orders of magnitude extension from the millisecond regime of synchrotron-based XPCS opens a new avenue of experimental studies of relaxation dynamics in liquids, glasses, and other highly disordered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08613v2-abstract-full').style.display = 'none'; document.getElementById('2312.08613v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09322">arXiv:2311.09322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09322">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/smll.202303176">10.1002/smll.202303176 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exotic magnetic anisotropy near digitized dimensional Mott boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jihyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+T">Taewon Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+Y">Jin Young Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+W">Woo-suk Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+T">Tuson Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ok%2C+J+M">Jong Mok Ok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jaekwang Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09322v1-abstract-short" style="display: inline;"> The magnetic anisotropy of low-dimensional Mott systems exhibits unexpected magnetotransport behavior useful for spin-based quantum electronics. Yet, the anisotropy of natural materials is inherently determined by the crystal structure, highly limiting its engineering. We demonstrate the magnetic anisotropy modulation near a digitized dimensional Mott boundary in artificial superlattices composed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09322v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09322v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09322v1-abstract-full" style="display: none;"> The magnetic anisotropy of low-dimensional Mott systems exhibits unexpected magnetotransport behavior useful for spin-based quantum electronics. Yet, the anisotropy of natural materials is inherently determined by the crystal structure, highly limiting its engineering. We demonstrate the magnetic anisotropy modulation near a digitized dimensional Mott boundary in artificial superlattices composed of a correlated magnetic monolayer SrRuO3 and nonmagnetic SrTiO3. The magnetic anisotropy is initially engineered by modulating the interlayer coupling strength between the magnetic monolayers. Interestingly, when the interlayer coupling strength is maximized, a nearly degenerate state is realized, in which the anisotropic magnetotransport is strongly influenced by both the thermal and magnetic energy scales. Our results offer a new digitized control for magnetic anisotropy in low-dimensional Mott systems, inspiring promising integration of Mottronics and spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09322v1-abstract-full').style.display = 'none'; document.getElementById('2311.09322v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Small 19, 2303176 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15753">arXiv:2309.15753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Optical detection of bond-dependent and frustrated spin in the two-dimensional cobalt-based honeycomb antiferromagnet Cu3Co2SbO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Baekjune Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+U">Uksam Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+T+S">Taek Sun Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+S">Seunghyeon Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gye-Hyeon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+U">UiHyeon Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M">Miju Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jin-Hyun Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minjae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+G">GwangCheol Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+H">Hyesung Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seokjo Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duong%2C+N+X">Nguyen Xuan Duong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+H">Tae Heon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yongsoo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ok%2C+J+M">Jong Mok Ok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+J">Jung-Woo Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+H">Jae Hoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15753v1-abstract-short" style="display: inline;"> Two-dimensional honeycomb antiferromagnet becomes an important class of materials as it can provide a route to Kitaev quantum spin liquid, characterized by massive quantum entanglement and fractional excitations. The signatures of its proximity to Kitaev quantum spin liquid in the honeycomb antiferromagnet includes anisotropic bond-dependent magnetic responses and persistent fluctuation by frustra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15753v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15753v1-abstract-full" style="display: none;"> Two-dimensional honeycomb antiferromagnet becomes an important class of materials as it can provide a route to Kitaev quantum spin liquid, characterized by massive quantum entanglement and fractional excitations. The signatures of its proximity to Kitaev quantum spin liquid in the honeycomb antiferromagnet includes anisotropic bond-dependent magnetic responses and persistent fluctuation by frustration in paramagnetic regime. Here, we propose Cu3Co2SbO6 heterostructures as an intriguing honeycomb antiferromagnet for quantum spin liquid, wherein bond-dependent and frustrated spins interact with optical excitons. This system exhibits antiferromagnetism at 16 K with different spin-flip magnetic fields between a bond-parallel and bond-perpendicular directions, aligning more closely with the generalized Heisenberg-Kitaev than the XXZ model. Optical spectroscopy reveals a strong excitonic transition coupled to the antiferromagnetism, enabling optical detection of its spin states. Particularly, such spin-exciton coupling presents anisotropic responses between bond-parallel and bond-perpendicular magnetic field as well as a finite spin-spin correlation function around 40 K, higher than twice its N茅el temperature. The characteristic temperature that remains barely changed even under strong magnetic fields highlights the robustness of the spin-fluctuation region. Our results demonstrate Cu3Co2SbO6 as a unique candidate for the quantum spin liquid phase, where the spin Hamiltonian and quasiparticle excitations can be probed and potentially controlled by light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15753v1-abstract-full').style.display = 'none'; document.getElementById('2309.15753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08524">arXiv:2309.08524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.08524">pdf</a>, <a href="https://arxiv.org/format/2309.08524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multi-orbital Kondo screening in strongly correlated polyradical nanographenes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Calvo-Fern%C3%A1ndez%2C+A">Aitor Calvo-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soler-Polo%2C+D">Diego Soler-Polo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sol%C3%A9%2C+A+P">Andr茅s Pinar Sol茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shaotang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stetsovych%2C+O">Oleksander Stetsovych</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+M">Manish Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guangwu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jishan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eiguren%2C+A">Asier Eiguren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Rey%2C+M">Mar铆a Blanco-Rey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jel%C3%ADnek%2C+P">Pavel Jel铆nek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08524v1-abstract-short" style="display: inline;"> We discuss coexistence of Kondo and spin excitation signals in tunneling spectroscopy in strongly correlated polyradical $蟺$-magnetic nanographenes on a metal surface. The Kondo signal is rationalized by a multi-orbital Kondo screening of the unpaired electrons. The fundamental processes are spin-flips of antiferromagnetic (AFM) order involving charged molecular multiplets. We introduce a~perturba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08524v1-abstract-full').style.display = 'inline'; document.getElementById('2309.08524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08524v1-abstract-full" style="display: none;"> We discuss coexistence of Kondo and spin excitation signals in tunneling spectroscopy in strongly correlated polyradical $蟺$-magnetic nanographenes on a metal surface. The Kondo signal is rationalized by a multi-orbital Kondo screening of the unpaired electrons. The fundamental processes are spin-flips of antiferromagnetic (AFM) order involving charged molecular multiplets. We introduce a~perturbative model, which provides simple rules to identify the presence of AFM channels responsible for Kondo screening. The Kondo regime is confirmed by numerical renormalization group calculations. This framework can be applied to similar strongly correlated open-shell systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08524v1-abstract-full').style.display = 'none'; document.getElementById('2309.08524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages (14 in main, 29 in SM), 20 figures (3 in main, 17 in SM)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15640">arXiv:2308.15640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15640">pdf</a>, <a href="https://arxiv.org/format/2308.15640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Identifying Constitutive Parameters for Complex Hyperelastic Materials using Physics-Informed Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Siyuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+H">Hanxun Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15640v4-abstract-short" style="display: inline;"> Identifying constitutive parameters in engineering and biological materials, particularly those with intricate geometries and mechanical behaviors, remains a longstanding challenge. The recent advent of Physics-Informed Neural Networks (PINNs) offers promising solutions, but current frameworks are often limited to basic constitutive laws and encounter practical constraints when combined with exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15640v4-abstract-full').style.display = 'inline'; document.getElementById('2308.15640v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15640v4-abstract-full" style="display: none;"> Identifying constitutive parameters in engineering and biological materials, particularly those with intricate geometries and mechanical behaviors, remains a longstanding challenge. The recent advent of Physics-Informed Neural Networks (PINNs) offers promising solutions, but current frameworks are often limited to basic constitutive laws and encounter practical constraints when combined with experimental data. In this paper, we introduce a robust PINN-based framework designed to identify material parameters for soft materials, specifically those exhibiting complex constitutive behaviors, under large deformation in plane stress conditions. Distinctively, our model emphasizes training PINNs with multi-modal synthetic experimental datasets consisting of full-field deformation and loading history, ensuring algorithm robustness even with noisy data. Our results reveal that the PINNs framework can accurately identify constitutive parameters of the incompressible Arruda-Boyce model for samples with intricate geometries, maintaining an error below 5%, even with an experimental noise level of 5%. We believe our framework provides a robust modulus identification approach for complex solids, especially for those with geometrical and constitutive complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15640v4-abstract-full').style.display = 'none'; document.getElementById('2308.15640v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05495">arXiv:2308.05495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05495">pdf</a>, <a href="https://arxiv.org/format/2308.05495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological soliton molecule in quasi 1D charge density wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+T">Taehwan Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S+K">Sun Kyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+W">Jae Whan Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+H+W">Han Woong Yeom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05495v1-abstract-short" style="display: inline;"> Soliton molecules, bound states of two solitons, can be important for the informatics using solitons and the quest for exotic particles in a wide range of physical systems from unconventional superconductors to nuclear matter and Higgs field, but have been observed only in temporal dimension for classical wave optical systems. Here, we identify a topological soliton molecule formed spatially in an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05495v1-abstract-full').style.display = 'inline'; document.getElementById('2308.05495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05495v1-abstract-full" style="display: none;"> Soliton molecules, bound states of two solitons, can be important for the informatics using solitons and the quest for exotic particles in a wide range of physical systems from unconventional superconductors to nuclear matter and Higgs field, but have been observed only in temporal dimension for classical wave optical systems. Here, we identify a topological soliton molecule formed spatially in an electronic system, a quasi 1D charge density wave of indium atomic wires. This system is composed of two coupled Peierls chains, which are endowed with a Z$_4$ topology and three distinct, right-chiral, left-chiral, and non-chiral, solitons. Our scanning tunneling microscopy measurements identify a bound state of right- and left-chiral solitons with distinct in-gap states and net zero phase shift. Our density functional theory calculations reveal the attractive interaction of these solitons and the hybridization of their electronic states. This result initiates the study of the interaction between solitons in electronic systems, which can provide novel manybody electronic states and extra data-handling capacity beyond the given soliton topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05495v1-abstract-full').style.display = 'none'; document.getElementById('2308.05495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05267">arXiv:2308.05267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05267">pdf</a>, <a href="https://arxiv.org/format/2308.05267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.064503">10.1103/PhysRevB.108.064503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of superconductivity in electron-doped chromium pnictides ThCrAsN$_{1-x}$O$_x$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y">Ye-Ting Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yi-Qiang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shi-Jie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bai-Zhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+E">Er-Jian Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shi-Yan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qin-Qing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05267v1-abstract-short" style="display: inline;"> Theoretical studies predicted possible superconductivity in electron-doped chromium pnictides isostructural to their iron counterparts. Here, we report the synthesis and characterization of a new ZrCuSiAs-type Cr-based compound ThCrAsN, as well as its oxygen-doped variants. All samples of ThCrAsN$_{1-x}$O$_x$ show metallic conduction, but no superconductivity is observed above 30 mK even though th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05267v1-abstract-full').style.display = 'inline'; document.getElementById('2308.05267v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05267v1-abstract-full" style="display: none;"> Theoretical studies predicted possible superconductivity in electron-doped chromium pnictides isostructural to their iron counterparts. Here, we report the synthesis and characterization of a new ZrCuSiAs-type Cr-based compound ThCrAsN, as well as its oxygen-doped variants. All samples of ThCrAsN$_{1-x}$O$_x$ show metallic conduction, but no superconductivity is observed above 30 mK even though the oxygen substitution reaches 75\%. The magnetic structure of ThCrAsN is determined to be G-type antiferromagnetic by magnetization measurements and first-principles calculations jointly. The calculations also indicate that the in-plane Cr--Cr direct interaction of ThCrAsN is robust against the heavy electron doping. The calculated density of states of the orbital occupations of Cr for ThCrAs(N,O) is strongly spin-polarized. Our results suggest the similarities between chromium pnictides and iron-based superconductors shouldn&#39;t be overestimated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05267v1-abstract-full').style.display = 'none'; document.getElementById('2308.05267v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 064503 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00067">arXiv:2308.00067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00067">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> MoS$_{2}$/Al$_{0.68}$Sc$_{0.32}$N negative capacitance field-effect transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Seunguk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kwan-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakravarthi%2C+S">Srikrishna Chakravarthi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zirun Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gwangwoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+K+Y">Kyung Yeol Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H+S">Hyeon Suk Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olsson%2C+R+H">Roy H. Olsson III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00067v1-abstract-short" style="display: inline;"> Al$_{0.68}$Sc$_{0.32}$N (AlScN) has gained attention for its outstanding ferroelectric properties, including a high coercive field and high remnant polarization. Although AlScN-based ferroelectric field-effect transistors (FETs) for memory applications have been demonstrated, a device for logic applications with minimal hysteresis has not been reported. This study reports on the transport characte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00067v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00067v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00067v1-abstract-full" style="display: none;"> Al$_{0.68}$Sc$_{0.32}$N (AlScN) has gained attention for its outstanding ferroelectric properties, including a high coercive field and high remnant polarization. Although AlScN-based ferroelectric field-effect transistors (FETs) for memory applications have been demonstrated, a device for logic applications with minimal hysteresis has not been reported. This study reports on the transport characteristics of a MoS$_{2}$ negative capacitance FET (NCFET) based on an AlScN ferroelectric material. We experimentally demonstrate the effect of a dielectric layer in the gate stack on the memory window and subthreshold swing (SS) of the NCFET. We show that the hysteresis behavior of transfer characteristics in the NCFET can be minimized with the inclusion of a non-ferroelectric dielectric layer, which fulfills the capacitance-matching condition. Remarkably, we also observe the NC effect in MoS$_{2}$/AlScN NCFETs arrays based on large-area monolayer MoS$_{2}$ synthesized by chemical vapor deposition, showing the SS values smaller than its thermionic limit (~36-60 mV/dec) and minimal variation in threshold voltages (&lt; 20 mV). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00067v1-abstract-full').style.display = 'none'; document.getElementById('2308.00067v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MS + SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00762">arXiv:2307.00762</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00762">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological design and synthesis of high-spin aza-triangulenes without Jahn-Teller distortions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lawrence%2C+J">James Lawrence</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yuanyuan He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Haipeng Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+J">Jie Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shaotang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodrigues%2C+A+W">Alina Wania Rodrigues</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miravet%2C+D">Daniel Miravet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawrylak%2C+P">Pawel Hawrylak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianwei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jishan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00762v2-abstract-short" style="display: inline;"> The atomic doping of open-shell nanographenes enables the precise tuning of their electronic and magnetic state, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00762v2-abstract-full').style.display = 'inline'; document.getElementById('2307.00762v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00762v2-abstract-full" style="display: none;"> The atomic doping of open-shell nanographenes enables the precise tuning of their electronic and magnetic state, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms and functional groups. However, the occurrence of Jahn-Teller distortions in such systems can have a crucial impact on their total spin and requires further theoretical and experimental investigation. In this study, we examine the nitrogen-doped aza-triangulene series via a combination of density functional theory and on-surface synthesis. We identify a general trend in the calculated spin states of aza-[n]triangulenes of various sizes, separating them into two symmetry classes, one of which features molecules that are predicted to undergo Jahn-Teller distortions that reduce their symmetry and thus their total spin. We link this behavior to the location of the central nitrogen atom relative to the two underlying carbon sublattices of the molecules. Consequently, our findings reveal that centrally-doped aza-triangulenes have one less radical than their undoped counterparts, irrespective of their predicted symmetry. We follow this by demonstrating the on-surface synthesis of 蟺-extended aza-[5]triangulene, a large member of the higher symmetry class without Jahn-Teller distortions, via a simple one-step annealing process on Cu(111) and Au(111). Using scanning probe microscopy and spectroscopy combined with theoretical calculations, we prove that the molecule is positively charged on the Au(111) substrate, with a high-spin quintet state of S = 2, the same total spin as undoped neutral [5]triangulene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00762v2-abstract-full').style.display = 'none'; document.getElementById('2307.00762v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper 18 pages, 5 figures. Removed hyphen from author name, addded funding information for one author</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12197">arXiv:2306.12197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.12197">pdf</a>, <a href="https://arxiv.org/format/2306.12197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.3c02348">10.1021/acsnano.3c02348 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Organic molecules as origin of visible-range single photon emission from hexagonal boron nitride and mica </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neumann%2C+M">Michael Neumann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales-Inostroza%2C+L">Luis Morales-Inostroza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Seunghyun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sung-Gyu Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%B6tzinger%2C+S">Stephan G枚tzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+H">Young Hee Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12197v1-abstract-short" style="display: inline;"> The discovery of room-temperature single-photon emitters (SPEs) hosted by two-dimensional hexagonal boron nitride (2D hBN) has sparked intense research interest. Although emitters in the vicinity of 2 eV have been studied extensively, their microscopic identity has remained elusive. The discussion of this class of SPEs has centered on point defects in the hBN crystal lattice, but none of the candi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12197v1-abstract-full').style.display = 'inline'; document.getElementById('2306.12197v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12197v1-abstract-full" style="display: none;"> The discovery of room-temperature single-photon emitters (SPEs) hosted by two-dimensional hexagonal boron nitride (2D hBN) has sparked intense research interest. Although emitters in the vicinity of 2 eV have been studied extensively, their microscopic identity has remained elusive. The discussion of this class of SPEs has centered on point defects in the hBN crystal lattice, but none of the candidate defect structures have been able to capture the great heterogeneity in emitter properties that is observed experimentally. Employing a widely used sample preparation protocol but disentangling several confounding factors, we demonstrate conclusively that heterogeneous single-photon emission ~2 eV associated with hBN originates from organic molecules, presumably aromatic fluorophores. The appearance of those SPEs depends critically on the presence of organic processing residues during sample preparation, and emitters formed during heat treatment are not located within the hBN crystal as previously thought, but at the hBN/substrate interface. We further demonstrate that the same class of SPEs can be observed in a different 2D insulator, fluorophlogopite mica. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12197v1-abstract-full').style.display = 'none'; document.getElementById('2306.12197v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited Author&#39;s version of a Submitted Work that was subsequently accepted for publication in ACS Nano, copyright 漏 2023 American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsnano.3c02348</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06337">arXiv:2306.06337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06337">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Tailoring Exciton Dynamics in TMDC Heterobilayers in the Quantum Plasmonic Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rahaman%2C+M">Mahfujur Rahaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gwangwoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+K+Y">Kyung Yeol Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Seunguk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H+S">Hyeon Suk Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06337v1-abstract-short" style="display: inline;"> Control of excitons in transition metal dichalcogenides (TMDCs) and their heterostructures is fundamentally interesting for tailoring light-matter interactions and exploring their potential applications in high-efficiency optoelectronic and nonlinear photonic devices. While both intra- and interlayer excitons in TMDCs have been heavily studied, their behavior in the quantum tunneling regime, in wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06337v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06337v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06337v1-abstract-full" style="display: none;"> Control of excitons in transition metal dichalcogenides (TMDCs) and their heterostructures is fundamentally interesting for tailoring light-matter interactions and exploring their potential applications in high-efficiency optoelectronic and nonlinear photonic devices. While both intra- and interlayer excitons in TMDCs have been heavily studied, their behavior in the quantum tunneling regime, in which the TMDC or its heterostructure is optically excited and concurrently serves as a tunnel junction barrier, remains unexplored. Here, using the degree of freedom of a metallic probe in an atomic force microscope, we investigated both intralayer and interlayer excitons dynamics in TMDC heterobilayers via locally controlled junction current in a finely tuned sub-nanometer tip-sample cavity. Our tip-enhanced photoluminescence measurements reveal a significantly different exciton-quantum plasmon coupling for intralayer and interlayer excitons due to different orientation of the dipoles of the respective e-h pairs. Using a steady-state rate equation fit, we extracted field gradients, radiative and nonradiative relaxation rates for excitons in the quantum tunneling regime with and without junction current. Our results show that tip-induced radiative (nonradiative) relaxation of intralayer (interlayer) excitons becomes dominant in the quantum tunneling regime due to the Purcell effect. These findings have important implications for near-field probing of excitonic materials in the strong-coupling regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06337v1-abstract-full').style.display = 'none'; document.getElementById('2306.06337v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">manuscript + supporting information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08669">arXiv:2305.08669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.08669">pdf</a>, <a href="https://arxiv.org/format/2305.08669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.084404">10.1103/PhysRevMaterials.7.084404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesis and physical properties of Ce$_2$Rh$_{3+未}$Sb$_4$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+K">Kangqiao Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+S">Shuo Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bu%2C+H">Huanpeng Bu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiawen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shijie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hanjie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Huiqiu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yongkang Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08669v2-abstract-short" style="display: inline;"> Millimeter-sized Ce$_2$Rh$_{3+未}$Sb$_4$ ($未\approx 1/8$) single crystals were synthesized by a Bi-flux method and their physical properties were studied by a combination of electrical transport, magnetic and thermodynamic measurements. The resistivity anisotropy $蟻_{a,b}/蟻_{c}\sim2$, manifesting a quasi-one-dimensional electronic character. Magnetic susceptibility measurements confirm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08669v2-abstract-full').style.display = 'inline'; document.getElementById('2305.08669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08669v2-abstract-full" style="display: none;"> Millimeter-sized Ce$_2$Rh$_{3+未}$Sb$_4$ ($未\approx 1/8$) single crystals were synthesized by a Bi-flux method and their physical properties were studied by a combination of electrical transport, magnetic and thermodynamic measurements. The resistivity anisotropy $蟻_{a,b}/蟻_{c}\sim2$, manifesting a quasi-one-dimensional electronic character. Magnetic susceptibility measurements confirm $\mathbf{ab}$ as the magnetic easy plane. A long-range antiferromagnetic transition occurs at $T_N=1.4$ K, while clear short-range ordering can be detected well above $T_N$. The low ordering temperature is ascribed to the large Ce-Ce distance as well as the geometric frustration. Kondo scale is estimated to be about 2.4 K, comparable to the strength of magnetic exchange. Ce$_2$Rh$_{3+未}$Sb$_4$, therefore, represents a rare example of dense Kondo lattice whose Ruderman-Kittel-Kasuya-Yosida exchange and Kondo coupling are both weak but competing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08669v2-abstract-full').style.display = 'none'; document.getElementById('2305.08669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 7. 084404 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01641">arXiv:2304.01641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01641">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Highly-Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shaotang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sol%C3%A9%2C+A+P">Andr茅s Pinar Sol茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mat%C4%9Bj%2C+A">Adam Mat臎j</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guangwu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stetsovych%2C+O">Oleksandr Stetsovych</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soler%2C+D">Diego Soler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huimin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telychko%2C+M">Mykola Telychko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+M">Manish Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brabec%2C+J">Jiri Brabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jishan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jelinek%2C+P">Pavel Jelinek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01641v1-abstract-short" style="display: inline;"> Open-shell benzenoid polycyclic aromatic hydrocarbons, known as magnetic nanographenes, exhibit unconventional p-magnetism arising from topological frustration or strong electronic-electron (e-e) interaction. Imprinting multiple strongly entangled spins into polyradical nanographenes creates a major paradigm shift in realizing non-trivial collective quantum behaviors and exotic quantum phases in o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01641v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01641v1-abstract-full" style="display: none;"> Open-shell benzenoid polycyclic aromatic hydrocarbons, known as magnetic nanographenes, exhibit unconventional p-magnetism arising from topological frustration or strong electronic-electron (e-e) interaction. Imprinting multiple strongly entangled spins into polyradical nanographenes creates a major paradigm shift in realizing non-trivial collective quantum behaviors and exotic quantum phases in organic quantum materials. However, conventional design approaches are limited by a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here, we present a novel design strategy combing topological frustration and e-e interactions to fabricate the largest fully-fused open-shell nanographene reported to date, a &#39;butterfly&#39;-shaped tetraradical on Au(111). We employed bond-resolved scanning tunneling microscopy and spin excitation spectroscopy to unambiguously resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harboring a many-body singlet ground state and strong multi-spin entanglement, which can be well described by many-body calculations. Furthermore, we demonstrate that the nickelocene magnetic probe can sense highly-correlated spin states in nanographene. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes not only presents exciting opportunities for realizing non-trivial quantum magnetism and phases in organic materials but also paves the way toward high-density ultrafast spintronic devices and quantum information technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01641v1-abstract-full').style.display = 'none'; document.getElementById('2304.01641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05301">arXiv:2303.05301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05301">pdf</a>, <a href="https://arxiv.org/format/2303.05301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c02658">10.1021/acs.nanolett.3c02658 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic scale imaging of sign-changing order parameter in superconducting FeSe with Tunneling Andreev Reflection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ko%2C+W">Wonhee Ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S+Y">Sang Yong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lado%2C+J+L">Jose L. Lado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maksymovych%2C+P">Petro Maksymovych</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05301v1-abstract-short" style="display: inline;"> The pairing symmetry of the superconducting order parameter in iron-based superconductors has been a subject of debate, with various models proposing s-wave, d-wave, and mixed combinations as possible candidates. Here we probe the pairing symmetry of FeSe utilizing the new methodology of Tunneling Andreev Reflection (TAR). TAR directly exploits the transparency-dependence of tunneling current to d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05301v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05301v1-abstract-full" style="display: none;"> The pairing symmetry of the superconducting order parameter in iron-based superconductors has been a subject of debate, with various models proposing s-wave, d-wave, and mixed combinations as possible candidates. Here we probe the pairing symmetry of FeSe utilizing the new methodology of Tunneling Andreev Reflection (TAR). TAR directly exploits the transparency-dependence of tunneling current to disentangle contributions of single-particle current and Andreev reflection. These measurements provided new direct evidence in favor of the sign-changing nature of the superconducting order in FeSe, in a distinctly complementary approach to nanoscale imaging of quasiparticle interference. Crucially TAR can also probe higher-order contributions to Andreev reflection. Quantitative comparison of the experimental signatures of higher-order Andreev reflections with those in concomitant tight-binding simulations revealed new evidence in support of the nodal gap structure of superconductivity in FeSe. Finally, the effect of structural topological defects can be directly probed with TAR owing to its atomic spatial resolution. In particular, we find that superconductivity is completely suppressed along the twin boundary while its electronic structure is characterized by a V-shaped signature of a pseudogap state. Our findings provide new insight into the pairing symmetry of an unconventional superconductor, demonstrating the potential of differential tunneling Andreev reflection to reveal microscopic properties of emerging quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05301v1-abstract-full').style.display = 'none'; document.getElementById('2303.05301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 23(17), 8310-8318 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02530">arXiv:2303.02530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.02530">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale growth of two-dimensional, phase-pure InSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Seunguk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeon%2C+S">Sungho Jeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahaman%2C+M">Mahfujur Rahaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lynch%2C+J">Jason Lynch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+P">Pawan Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakravarthi%2C+S">Srikrishna Chakravarthi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gwangwoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">Xingyu Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanton%2C+E">Eric Blanton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kisslinger%2C+K">Kim Kisslinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Snure%2C+M">Michael Snure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glavin%2C+N+R">Nicholas R. Glavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stach%2C+E+A">Eric A. Stach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olsson%2C+R+H">Roy H. Olsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02530v1-abstract-short" style="display: inline;"> Two-dimensional (2D) indium monoselenide (InSe) has attracted significant attention as a III-VI two-dimensional semiconductor (2D) with a combination of favorable attributes from III-V semiconductors as well as van der Waals 2D transition metal dichalcogenides. Nevertheless, the large-area synthesis of phase-pure 2D InSe remains unattained due to the complexity of the binary In-Se system and the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02530v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02530v1-abstract-full" style="display: none;"> Two-dimensional (2D) indium monoselenide (InSe) has attracted significant attention as a III-VI two-dimensional semiconductor (2D) with a combination of favorable attributes from III-V semiconductors as well as van der Waals 2D transition metal dichalcogenides. Nevertheless, the large-area synthesis of phase-pure 2D InSe remains unattained due to the complexity of the binary In-Se system and the difficulties in promoting lateral growth. Here, we report the first polymorph-selective synthesis of epitaxial 2D InSe by metal-organic chemical deposition (MOCVD) over 2 inch diameter sapphire wafers. We achieve thickness-controlled, layer-by-layer epitaxial growth of InSe on c-plane sapphire via dynamic pulse control of Se/In flux ratio. The layer-by-layer growth allows thickness control over wafer scale with tunable optical properties comparable to bulk crystals. Finally, the gate-tunable electrical transport suggests that MOCVD-grown InSe could be a potential channel material for back-end-of-line integration in logic transistors with field-effect mobility comparable to single-crystalline flakes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02530v1-abstract-full').style.display = 'none'; document.getElementById('2303.02530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MS + SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14272">arXiv:2302.14272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14272">pdf</a>, <a href="https://arxiv.org/ps/2302.14272">ps</a>, <a href="https://arxiv.org/format/2302.14272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of carbon doping on the structure and superconductivity in AlB$_{2}$-type (Mo$_{0.96}$Ti$_{0.04}$)$_{0.8}$B$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+G">Guorui Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qinqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shijie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14272v1-abstract-short" style="display: inline;"> We report the effect of carbon doping in Ti-stabilized nonstoichiometric molybdenum diboride (Mo$_{0.96}$Ti$_{0.04}$)$_{0.8}$B$_{2}$, which exhibits bulk superconductivity below $T_{\rm c}$ = 7.0 K. It is found that (Mo$_{0.96}$Ti$_{0.04}$)$_{0.8}$(B$_{1-x}$C$_{x}$)$_{2}$ maintains the AlB$_{2}$-type phase with a uniform elemental distribution for $x$ = 0.12 and 0.16. The substitution of carbon fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14272v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14272v1-abstract-full" style="display: none;"> We report the effect of carbon doping in Ti-stabilized nonstoichiometric molybdenum diboride (Mo$_{0.96}$Ti$_{0.04}$)$_{0.8}$B$_{2}$, which exhibits bulk superconductivity below $T_{\rm c}$ = 7.0 K. It is found that (Mo$_{0.96}$Ti$_{0.04}$)$_{0.8}$(B$_{1-x}$C$_{x}$)$_{2}$ maintains the AlB$_{2}$-type phase with a uniform elemental distribution for $x$ = 0.12 and 0.16. The substitution of carbon for boron leads to a slight increase in $a$-axis, a remarkable reduction in $c$-axis, the formation of planar defects along the (100) crystallographic planes, and a shift of the B 1$s$ peaks towards higher binding energies. Contrary to (Mo$_{0.96}$Ti$_{0.04}$)$_{0.8}$B$_{2}$, however, no superconductivity is observed down to 1.8 K for the C-doped samples, which is ascribed to the electron filling of boron $蟺$ bands resulting from the carbon doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14272v1-abstract-full').style.display = 'none'; document.getElementById('2302.14272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06036">arXiv:2302.06036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.06036">pdf</a>, <a href="https://arxiv.org/ps/2302.06036">ps</a>, <a href="https://arxiv.org/format/2302.06036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scriptamat.2022.115099">10.1016/j.scriptamat.2022.115099 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity with large upper critical field in noncentrosymmetric Cr-bearing high-entropy alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+G">Guorui Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qinqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shijie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06036v1-abstract-short" style="display: inline;"> A series of new Cr$_{5+x}$Mo$_{35-x}$W$_{12}$Re$_{35}$Ru$_{13}$C$_{20}$ high-entropy alloys (HEAs) have been synthesized and characterized by x-ray diffraction, scanning electron microscopy, electrical resistivity, magnetic susceptibility and specific heat measurements. It is found that the HEAs adopt a noncentrosymmetric cubic $尾$-Mn type structure and exhibit bulk superconductivity for 0 $\leq$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06036v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06036v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06036v1-abstract-full" style="display: none;"> A series of new Cr$_{5+x}$Mo$_{35-x}$W$_{12}$Re$_{35}$Ru$_{13}$C$_{20}$ high-entropy alloys (HEAs) have been synthesized and characterized by x-ray diffraction, scanning electron microscopy, electrical resistivity, magnetic susceptibility and specific heat measurements. It is found that the HEAs adopt a noncentrosymmetric cubic $尾$-Mn type structure and exhibit bulk superconductivity for 0 $\leq$ $x$ $\leq$ 9. With increasing $x$, the cubic lattice parameter decreases from 6.7940(3) 脜 to 6.7516(3) 脜. Meanwhile, the superconducting transition temperature $T_{\rm c}$ is suppressed from 5.49 K to 3.35 K due to the magnetic pair breaking caused by Cr moments. For all these noncentrosymmetric HEAs, the zero-temperature upper critical field $B_{\rm c2}$(0) is comparable to Pauli paramagnetic limit $B_{\rm P}$(0) = 1.86$T_{\rm c}$. In particular, the $B_{\rm c2}$(0)/$B_{\rm P}$(0) ratio reaches a maximum of $\sim$1.03 at $x$ = 6, which is among the highest for $尾$-Mn type superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06036v1-abstract-full').style.display = 'none'; document.getElementById('2302.06036v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scripta Materialia 223, 115099 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03944">arXiv:2302.03944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.03944">pdf</a>, <a href="https://arxiv.org/ps/2302.03944">ps</a>, <a href="https://arxiv.org/format/2302.03944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.inorgchem.2c02592">10.1021/acs.inorgchem.2c02592 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mo$_{3}$ReRuC: A noncentrosymmetric superconductor formed in the MoReRu-Mo$_{2}$C system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qinqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+G">Guorui Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shijie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03944v1-abstract-short" style="display: inline;"> A quaternary compound with the composition Mo$_{3}$ReRuC is obtained in a previously unexplored MoReRu-Mo$_{2}$C system. According to x-ray structural analysis, Mo$_{3}$ReRuC crystallizes in the noncentrosymmetric space group $P$4$_{1}$32 (cubic $尾$-Mn type structure, $a$ = 6.8107(1) 脜). Below 7.7 K, Mo$_{3}$ReRuC becomes a bulk type-II superconductor with an upper critical field close to the Paul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03944v1-abstract-full').style.display = 'inline'; document.getElementById('2302.03944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03944v1-abstract-full" style="display: none;"> A quaternary compound with the composition Mo$_{3}$ReRuC is obtained in a previously unexplored MoReRu-Mo$_{2}$C system. According to x-ray structural analysis, Mo$_{3}$ReRuC crystallizes in the noncentrosymmetric space group $P$4$_{1}$32 (cubic $尾$-Mn type structure, $a$ = 6.8107(1) 脜). Below 7.7 K, Mo$_{3}$ReRuC becomes a bulk type-II superconductor with an upper critical field close to the Pauli paramagnetic limit. The specific heat data gives a large normalized jump $螖$$C_{\rm p}$/$纬$$T_{\rm c}$ = 2.3 at $T_{\rm c}$, which points to a strongly coupled superconducting state. First principles calculations show that its electronic states at the Fermi level are mainly contributed by Mo, Re and Ru atoms and strongly increased by the spin-orbit coupling. Our finding suggests that the intermediate phase between alloys and carbides may be a good place to look for $尾$-Mn type noncentrosymmetric superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03944v1-abstract-full').style.display = 'none'; document.getElementById('2302.03944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Inorganic Chemistry 61, 17115 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00844">arXiv:2302.00844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.00844">pdf</a>, <a href="https://arxiv.org/ps/2302.00844">ps</a>, <a href="https://arxiv.org/format/2302.00844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.014805">10.1103/PhysRevMaterials.7.014805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-entropy silicide superconductors with W$_{5}$Si$_{3}$-type structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+G">Guorui Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qinqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shijie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00844v1-abstract-short" style="display: inline;"> We report the synthesis, crystal structure and physical properties of two new high-entropy silicides (HESs), namely (Nb$_{0.1}$Mo$_{0.3}$W$_{0.3}$Re$_{0.2}$Ru$_{0.1}$)$_{5}$Si$_{3}$ and (Nb$_{0.2}$Mo$_{0.3}$W$_{0.3}$Re$_{0.1}$Ru$_{0.1}$)$_{5}$Si$_{3}$. Structural analysis indicates that both HESs consist of a (nearly) single tetragonal W$_{5}$Si$_{3}$-type phase (space group $I$4/$mcm$) with a dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00844v1-abstract-full').style.display = 'inline'; document.getElementById('2302.00844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00844v1-abstract-full" style="display: none;"> We report the synthesis, crystal structure and physical properties of two new high-entropy silicides (HESs), namely (Nb$_{0.1}$Mo$_{0.3}$W$_{0.3}$Re$_{0.2}$Ru$_{0.1}$)$_{5}$Si$_{3}$ and (Nb$_{0.2}$Mo$_{0.3}$W$_{0.3}$Re$_{0.1}$Ru$_{0.1}$)$_{5}$Si$_{3}$. Structural analysis indicates that both HESs consist of a (nearly) single tetragonal W$_{5}$Si$_{3}$-type phase (space group $I$4/$mcm$) with a disordered cation distribution. Electrical resistivity, magnetic susceptibility and specific heat measurements show that (Nb$_{0.1}$Mo$_{0.3}$W$_{0.3}$Re$_{0.2}$Ru$_{0.1}$)$_{5}$Si$_{3}$ and (Nb$_{0.2}$Mo$_{0.3}$W$_{0.3}$Re$_{0.1}$Ru$_{0.1}$)$_{5}$Si$_{3}$ are weakly coupled bulk superconductors, which represent the first superconducting high-entropy nonoxide ceramics. In particular, these HESs have higher $T_{\rm c}$ values (3.2-3.3 K) compared with those of the binary counterparts, and their $B_{\rm c2}$(0)/$T_{\rm c}$ ratios are the largest among superconductors of the same structural type. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00844v1-abstract-full').style.display = 'none'; document.getElementById('2302.00844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Materials 7, 014805(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01403">arXiv:2301.01403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.01403">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/smtd.202201386">10.1002/smtd.202201386 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic-scale Modulation of Synthetic Magnetic Order in Oxide Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lauter%2C+V">Valeria Lauter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01403v1-abstract-short" style="display: inline;"> Atomic-scale precision control of magnetic interactions facilitates a synthetic spin order useful for spintronics, including advanced memory and quantum logic devices. Conventional modulation of synthetic spin order has been limited to metallic heterostructures that exploit RKKY interaction through a nonmagnetic metallic spacer; however, they face problems arising from Joule heating and/or electri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01403v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01403v1-abstract-full" style="display: none;"> Atomic-scale precision control of magnetic interactions facilitates a synthetic spin order useful for spintronics, including advanced memory and quantum logic devices. Conventional modulation of synthetic spin order has been limited to metallic heterostructures that exploit RKKY interaction through a nonmagnetic metallic spacer; however, they face problems arising from Joule heating and/or electric breakdown. The practical realization and observation of a synthetic spin order across a nonmagnetic insulating spacer would lead to the development of spin-related devices with a completely different concept. Herein, we report the atomic-scale modulation of the synthetic spiral spin order in oxide superlattices composed of ferromagnetic metal and nonmagnetic insulator layers. The atomically controlled superlattice exhibit an oscillatory magnetic behavior, representing the existence of a spiral spin structure. Depth-sensitive polarized neutron reflectometry evidences modulated spiral spin structures as a function of the nonmagnetic insulator layer thickness. Atomic-scale customization of the spin state could lead the field one step further to actual spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01403v1-abstract-full').style.display = 'none'; document.getElementById('2301.01403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published in 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05376">arXiv:2211.05376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05376">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.075103">10.1103/PhysRevB.107.075103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Honeycomb oxide heterostructure: a new platform for Kitaev quantum spin liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Baekjune Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M">Miju Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+S">Seunghyun Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Daeseong Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+M">Minsik Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minjae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+C">Choongwon Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ko%2C+E+K">Eun Kyo Ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+G">Gangsan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+J">Jung-woo Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ok%2C+J+M">Jong Mok Ok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05376v3-abstract-short" style="display: inline;"> Kitaev quantum spin liquid, massively quantum entangled states, is so scarce in nature that searching for new candidate systems remains a great challenge. Honeycomb heterostructure could be a promising route to realize and utilize such an exotic quantum phase by providing additional controllability of Hamiltonian and device compatibility, respectively. Here, we provide epitaxial honeycomb oxide th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05376v3-abstract-full').style.display = 'inline'; document.getElementById('2211.05376v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05376v3-abstract-full" style="display: none;"> Kitaev quantum spin liquid, massively quantum entangled states, is so scarce in nature that searching for new candidate systems remains a great challenge. Honeycomb heterostructure could be a promising route to realize and utilize such an exotic quantum phase by providing additional controllability of Hamiltonian and device compatibility, respectively. Here, we provide epitaxial honeycomb oxide thin film Na3Co2SbO6, a candidate of Kitaev quantum spin liquid proposed recently. We found a spin glass and antiferromagnetic ground states depending on Na stoichiometry, signifying not only the importance of Na vacancy control but also strong frustration in Na3Co2SbO6. Despite its classical ground state, the field-dependent magnetic susceptibility shows remarkable scaling collapse with a single critical exponent, which can be interpreted as evidence of quantum criticality. Its electronic ground state and derived spin Hamiltonian from spectroscopies are consistent with the predicted Kitaev model. Our work provides a unique route to the realization and utilization of Kitaev quantum spin liquid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05376v3-abstract-full').style.display = 'none'; document.getElementById('2211.05376v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17483">arXiv:2210.17483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.17483">pdf</a>, <a href="https://arxiv.org/format/2210.17483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast x-ray scattering reveals composite amplitude collective mode in the Weyl charge density wave material (TaSe$_4$)$_2$I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+Q+L">Quynh L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orenstein%2C+G">Gal Orenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krapivin%2C+V">Viktor Krapivin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+la+Pena%2C+G">Gilberto de la Pena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ornelas-Skarin%2C+C">Chance Ornelas-Skarin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reis%2C+D+A">David A. Reis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bettler%2C+S">Simon Bettler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hurley%2C+M">Matthew Hurley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Soyeun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirchmann%2C+P+S">Patrick S. Kirchmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubota%2C+Y">Yuya Kubota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahmood%2C+F">Fahad Mahmood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+A">Alexander Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osaka%2C+T">Taito Osaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+K">Kejian Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">Takahiro Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sirica%2C+N">Nicholas Sirica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sanghoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stanton%2C+J">Jade Stanton</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17483v2-abstract-short" style="display: inline;"> We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe$_4$)$_2$I following photoexcitation with femtosecond infrared laser pulses. From the time-dependent diffraction signal at the CDW sidebands we identify an amplitude mode derived primarily from the transverse acoustic component of the CDW static distortion. The dynamics of this acoustic amplitu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17483v2-abstract-full').style.display = 'inline'; document.getElementById('2210.17483v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17483v2-abstract-full" style="display: none;"> We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe$_4$)$_2$I following photoexcitation with femtosecond infrared laser pulses. From the time-dependent diffraction signal at the CDW sidebands we identify an amplitude mode derived primarily from the transverse acoustic component of the CDW static distortion. The dynamics of this acoustic amplitude mode are described well by a model of a displacive excitation, which we interpret as mediated through a coupling to the optical phonon component associated with the tetramerization of the Ta chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17483v2-abstract-full').style.display = 'none'; document.getElementById('2210.17483v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12608">arXiv:2210.12608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12608">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Tunable Localized Charge Transfer Excitons in a Mixed Dimensional van der Waals Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rahaman%2C+M">Mahfujur Rahaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marino%2C+E">Emanuele Marino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joly%2C+A+G">Alan G. Joly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Seunguk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhiqiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=OCallahan%2C+B+T">Brian T. OCallahan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosen%2C+D+J">Daniel J. Rosen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+K">Kiyoung Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gwangwoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=El-Khoury%2C+P+Z">Patrick Z. El-Khoury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murray%2C+C+B">Christopher B. Murray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12608v1-abstract-short" style="display: inline;"> Observation of interlayer, charge-transfer (CT) excitons in van der Waals heterostructures (vdWHs) based on 2D-2D systems has been well investigated. While conceptually interesting, these charge transfer excitons are highly delocalized and spatially localizing them requires twisting layers at very specific angles. This issue of localizing the CT excitons can be overcome via making mixed dimensiona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12608v1-abstract-full').style.display = 'inline'; document.getElementById('2210.12608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12608v1-abstract-full" style="display: none;"> Observation of interlayer, charge-transfer (CT) excitons in van der Waals heterostructures (vdWHs) based on 2D-2D systems has been well investigated. While conceptually interesting, these charge transfer excitons are highly delocalized and spatially localizing them requires twisting layers at very specific angles. This issue of localizing the CT excitons can be overcome via making mixed dimensional vdWHs (MDHs) where one of the components is a spatially quantum confined medium. Here, we demonstrate the formation of CT excitons in a 2D/quasi-2D system comprising MoSe2 and WSe2 monolayers and CdSe/CdS based core/shell nanoplates (NPLs). Spectral signatures of CT excitons in our MDHs were resolved locally at the 2D/single-NPL heterointerface using tip-enhanced photoluminescence (TEPL) at room temperature. By varying both the 2D material, the shell thickness of the NPLs, and applying out-of-plane electric field, the exciton resonance energy was tuned by up to 120 meV. Our finding is a significant step towards the realization of highly tunable MDH-based next generation photonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12608v1-abstract-full').style.display = 'none'; document.getElementById('2210.12608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 20 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.15297">arXiv:2209.15297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.15297">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-022-01353-8">10.1038/s41563-022-01353-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum electron liquid and its possible phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sunghun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bang%2C+J">Joonho Bang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+C">Chan-young Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+Y">Seung Yong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hyun%2C+J">Jounghoon Hyun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+G">Gyubin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yeonghoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huh%2C+S">Soonsang Huh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Changyoung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S+Y">Sang Yong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Junpil Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thapa%2C+D">Dinesh Thapa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Seong-Gon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+H">Young Hee Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yeongkwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S+W">Sung Wng Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.15297v1-abstract-short" style="display: inline;"> Purely quantum electron systems exhibit intriguing correlated electronic phases by virtue of quantum fluctuations in addition to electron-electron interactions. To realize such quantum electron systems, a key ingredient is dense electrons decoupled from other degrees of freedom. Here, we report the discovery of a pure quantum electron liquid, which spreads up to ~ 3 脜 in the vacuum on the surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15297v1-abstract-full').style.display = 'inline'; document.getElementById('2209.15297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.15297v1-abstract-full" style="display: none;"> Purely quantum electron systems exhibit intriguing correlated electronic phases by virtue of quantum fluctuations in addition to electron-electron interactions. To realize such quantum electron systems, a key ingredient is dense electrons decoupled from other degrees of freedom. Here, we report the discovery of a pure quantum electron liquid, which spreads up to ~ 3 脜 in the vacuum on the surface of electride crystal. An extremely high electron density and its weak hybridisation with buried atomic orbitals evidence the quantum and pure nature of electrons, that exhibit a polarized liquid phase as demonstrated by our spin-dependent measurement. Further, upon enhancing the electron correlation strength, the dynamics of quantum electrons changes to that of non-Fermi liquid along with an anomalous band deformation, suggestive of a transition to a hexatic liquid crystal phase. Our findings cultivate the frontier of quantum electron systems, and serve as a platform for exploring correlated electronic phases in a pure fashion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15297v1-abstract-full').style.display = 'none'; document.getElementById('2209.15297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures, 10 extended data figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Material (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13770">arXiv:2209.13770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13770">pdf</a>, <a href="https://arxiv.org/format/2209.13770">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.103403">10.1103/PhysRevMaterials.6.103403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual electric polarization behavior in elemental quasi-2D allotropes of selenium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D">Dan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+R">Ran Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shixin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+J">Jie Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomanek%2C+D">David Tomanek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13770v1-abstract-short" style="display: inline;"> We investigate tunable electric polarization and electronic structure of quasi-two-dimensional (quasi-2D) allotropes of selenium, which are formed from their constituent one-dimensional (1D) structures through an inter-chain interaction facilitated by the multi-valence nature of Se. Our em ab initio calculations reveal that different quasi-2D Se allotropes display different types of electric polar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13770v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13770v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13770v1-abstract-full" style="display: none;"> We investigate tunable electric polarization and electronic structure of quasi-two-dimensional (quasi-2D) allotropes of selenium, which are formed from their constituent one-dimensional (1D) structures through an inter-chain interaction facilitated by the multi-valence nature of Se. Our em ab initio calculations reveal that different quasi-2D Se allotropes display different types of electric polarization, including ferroelectric (FE) polarization normal to the chain direction in alpha and delta allotropes, non-collinear ferrielectric (FiE) polarization along the chain axis in tau-Se, and anti-ferroelectric (AFE) polarization in eta-Se. The magnitude and direction of the polarization can be changed by a previously unexplored rotation of the constituent chains. In that case, an in-plane polarization direction may change to out-of-plane in alpha-Se and delta-Se, flip its direction, and even disappear in tau-Se. Also, the band gap may be reduced and changed from indirect to direct by rotating the constituent chains about their axes in these quasi-2D Se allotropes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13770v1-abstract-full').style.display = 'none'; document.getElementById('2209.13770v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Physical Review Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 6, 103403 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10968">arXiv:2207.10968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10968">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202202222">10.1002/advs.202202222 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minimizing the programming power of phase change memory by using graphene nanoribbon edge-contact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiujun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sannian Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haomin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+T">Tianqi Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Y">Yuan Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruobing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">HuiShan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lingxiu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+C">Chengxin Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiyuan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tianru Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenxiong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sifan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zhitang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xiaoming Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10968v1-abstract-short" style="display: inline;"> Nonvolatile phase change random access memory (PCRAM) is regarded as one of promising candidates for emerging mass storage in the era of Big Data. However, relatively high programming energy hurdles the further reduction of power consumption in PCRAM. Utilizing narrow edge-contact of graphene can effectively reduce the active volume of phase change material in each cell, and therefore realize low-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10968v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10968v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10968v1-abstract-full" style="display: none;"> Nonvolatile phase change random access memory (PCRAM) is regarded as one of promising candidates for emerging mass storage in the era of Big Data. However, relatively high programming energy hurdles the further reduction of power consumption in PCRAM. Utilizing narrow edge-contact of graphene can effectively reduce the active volume of phase change material in each cell, and therefore realize low-power operation. Here, we demonstrate that a write energy can be reduced to about ~53.7 fJ in a cell with ~3 nm-wide graphene nanoribbon (GNR) as edge-contact, whose cross-sectional area is only ~1 nm2. It is found that the cycle endurance exhibits an obvious dependence on the bias polarity in the cell with structure asymmetry. If a positive bias was applied to graphene electrode, the endurance can be extended at least one order longer than the case with reversal of polarity. The work represents a great technological advance for the low power PCRAM and could benefit for in-memory computing in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10968v1-abstract-full').style.display = 'none'; document.getElementById('2207.10968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.08196">arXiv:2206.08196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.08196">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/admi.202200433">10.1002/admi.202200433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Ferromagnetism in LaCoO3 Epitaxial Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+D">Dongwon Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+S">Sangmoon Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+N">Ho Nyung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.08196v1-abstract-short" style="display: inline;"> Ferromagnetic insulators play a crucial role in the development of low-dissipation quantum magnetic devices for spintronics. Epitaxial LaCoO3 thin film is a prominent ferromagnetic insulator, in which the robust ferromagnetic ordering emerges owing to epitaxial strain. Whereas it is evident that strong spin-lattice coupling induces ferromagnetism, the reported ferromagnetic properties of epitaxial&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08196v1-abstract-full').style.display = 'inline'; document.getElementById('2206.08196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.08196v1-abstract-full" style="display: none;"> Ferromagnetic insulators play a crucial role in the development of low-dissipation quantum magnetic devices for spintronics. Epitaxial LaCoO3 thin film is a prominent ferromagnetic insulator, in which the robust ferromagnetic ordering emerges owing to epitaxial strain. Whereas it is evident that strong spin-lattice coupling induces ferromagnetism, the reported ferromagnetic properties of epitaxially strained LaCoO3 thin films were highly consistent. For example, even under largely modulated degree of strain, the reported Curie temperatures of epitaxially strained LaCoO3 thin films lie within 80-85 K, without much deviation. In this study, substantial enhancement (~18%) in the Curie temperature of epitaxial LaCoO3 thin films is demonstrated via crystallographic orientation dependence. By changing the crystallographic orientation of the films from (111) to (110), the crystal-field energy was reduced and the charge transfer between the Co and O orbitals was enhanced. These modifications led to a considerable enhancement of the ferromagnetic properties (including the Curie temperature and magnetization), despite the identical nominal degree of epitaxial strain. The findings of this study provide insights into facile tunability of ferromagnetic properties via structural symmetry control in LaCoO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08196v1-abstract-full').style.display = 'none'; document.getElementById('2206.08196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 Figures, 2 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. Interfaces Early View (2022) 2200433 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07186">arXiv:2206.07186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07186">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s40042-022-00589-6">10.1007/s40042-022-00589-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Preparation of large Cu3Sn single crystal by Czochralski method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+M">Minsik Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sang-Eon Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H+J">Hye Jung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+D">Dong-Choon Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Baekjune Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H+J">Hyun Jung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Youngwook Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+S">Sangmoon Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Go%2C+A">Ara Go</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeen%2C+H">Hyoungjeen Jeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S">Se-Young Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+C">Chang-Jong Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ok%2C+J+M">Jong Mok Ok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07186v1-abstract-short" style="display: inline;"> Cu3Sn was recently predicted to host topological Dirac fermions, but related research is still in its infancy. The growth of large and high-quality Cu3Sn single crystals is, therefore, highly desired to investigate the possible topological properties. In this work, we report the single crystal growth of Cu3Sn by Czochralski (CZ) method. Crystal structure, chemical composition, and transport proper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07186v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07186v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07186v1-abstract-full" style="display: none;"> Cu3Sn was recently predicted to host topological Dirac fermions, but related research is still in its infancy. The growth of large and high-quality Cu3Sn single crystals is, therefore, highly desired to investigate the possible topological properties. In this work, we report the single crystal growth of Cu3Sn by Czochralski (CZ) method. Crystal structure, chemical composition, and transport properties of Cu3Sn single crystals were analyzed to verify the crystal quality. Notably, compared to the mm-sized crystals from a molten Sn-flux, the cm-sized crystals obtained by the CZ method are free from contamination from flux materials, paving the way for the follow-up works. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07186v1-abstract-full').style.display = 'none'; document.getElementById('2206.07186v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02364">arXiv:2206.02364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.02364">pdf</a>, <a href="https://arxiv.org/ps/2206.02364">ps</a>, <a href="https://arxiv.org/format/2206.02364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-022-00464-4">10.1038/s41535-022-00464-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancement of superconductivity on the verge of a structural instability in isovalently doped $尾$-ThRh$_{1-x}$Ir$_{x}$Ge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+G">Guorui Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qinqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yanwei Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Baizhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shijie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02364v1-abstract-short" style="display: inline;"> $尾$-ThRhGe, the high-temperature polymorph of ThRhGe, is isostructural to the well-known ferromagnetic superconductor URhGe. However, contrary to URhGe, $尾&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02364v1-abstract-full').style.display = 'inline'; document.getElementById('2206.02364v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02364v1-abstract-full" style="display: none;"> $尾$-ThRhGe, the high-temperature polymorph of ThRhGe, is isostructural to the well-known ferromagnetic superconductor URhGe. However, contrary to URhGe, $尾$-ThRhGe is nonmagnetic and undergoes an incomplete structural phase transition at 244 K, followed by a superconducting transition below 3.36 K. Here we show that the isovalent substitution of Ir for Rh leads to a strong enhancement of superconductivity by suppressing the structural transition. At $x$ = 0.5, where the structural transition disappears, $T_{\rm c}$ reaches a maximum of 6.88 K. The enhancement of superconductivity is linked to the proximity to a structural quantum critical point at this Ir concentration, as suggested by the analysis of thermodynamic as well as resistivity data. First principles calculations indicate that the Ir doping has little effect on the electronic band dispersion near the Fermi level. $尾$-ThRh$_{1-x}$Ir$_{x}$Ge thus provides an excellent platform to study the interplay between superconductivity and structural quantum criticality in actinide-containing compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02364v1-abstract-full').style.display = 'none'; document.getElementById('2206.02364v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, 1 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials (2022) 7:57 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13748">arXiv:2204.13748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13748">pdf</a>, <a href="https://arxiv.org/format/2204.13748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac7629">10.1088/1361-648X/ac7629 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intermediate Valence State in $\mathrm{YbB_4}$ Revealed by Resonant X-ray Emission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Frontini%2C+F">Felix Frontini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lebert%2C+B+W">Blair W. Lebert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+K+K">K. K. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M+S">M. S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+B+K">B. K. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollock%2C+C+J">Christopher J. Pollock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-June Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13748v1-abstract-short" style="display: inline;"> We report the temperature dependence of the Yb valence in the geometrically frustrated compound $\mathrm{YbB_4}$ from 12 to 300 K using resonant X-ray emission spectroscopy at the Yb $L_{伪_1}$ transition. We find that the Yb valence, $v$, is hybridized between the $v=2$ and $v=3$ valence states, increasing from $v=2.61\pm0.01$ at 12 K to $v=2.67\pm0.01$ at 300 K, confirming that $\mathrm{YbB_4}$ i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13748v1-abstract-full').style.display = 'inline'; document.getElementById('2204.13748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13748v1-abstract-full" style="display: none;"> We report the temperature dependence of the Yb valence in the geometrically frustrated compound $\mathrm{YbB_4}$ from 12 to 300 K using resonant X-ray emission spectroscopy at the Yb $L_{伪_1}$ transition. We find that the Yb valence, $v$, is hybridized between the $v=2$ and $v=3$ valence states, increasing from $v=2.61\pm0.01$ at 12 K to $v=2.67\pm0.01$ at 300 K, confirming that $\mathrm{YbB_4}$ is a Kondo system in the intermediate valence regime. This result indicates that the Kondo interaction in $\mathrm{YbB_4}$ is substantial, and is likely to be the reason why $\mathrm{YbB_4}$ does not order magnetically at low temperature, rather than this being an effect of geometric frustration. Furthermore, the zero-point valence of the system is extracted from our data and compared with other Kondo lattice systems. The zero-point valence seems to be weakly dependent on the Kondo temperature scale, but not on the valence change temperature scale $T_v$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13748v1-abstract-full').style.display = 'none'; document.getElementById('2204.13748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.12880">arXiv:2204.12880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.12880">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Designer magnetic topological graphene nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shaotang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+P+W">Pei Wen Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edalatmanesh%2C+S">Shayan Edalatmanesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sol%C3%A9%2C+A+P">Andr茅s Pinar Sol茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xinnan Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koloren%C4%8D%2C+J">Jind艡ich Koloren膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sosnov%C3%A1%2C+Z">Zdenka Sosnov谩</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stetsovych%2C+O">Oleksander Stetsovych</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+J">Jie Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hongli Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liebig%2C+A">Alexander Liebig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+C">Chenliang Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jishan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giessibl%2C+F+J">Franz J. Giessibl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jelinek%2C+P">Pavel Jelinek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+C">Chunyan Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.12880v1-abstract-short" style="display: inline;"> The interplay of magnetism and topology lies at the heart of condensed matter physics, which offers great opportunities to design intrinsic magnetic topological materials hosting a variety of exotic topological quantum states including the quantum anomalous Hall effect (QAHE), axion insulator state, and Majorana bound states. Extending this concept to one-dimension (1D) systems offers additional r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12880v1-abstract-full').style.display = 'inline'; document.getElementById('2204.12880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.12880v1-abstract-full" style="display: none;"> The interplay of magnetism and topology lies at the heart of condensed matter physics, which offers great opportunities to design intrinsic magnetic topological materials hosting a variety of exotic topological quantum states including the quantum anomalous Hall effect (QAHE), axion insulator state, and Majorana bound states. Extending this concept to one-dimension (1D) systems offers additional rich quantum spin physics with great promise for molecular-scale spintronics. Despite recent progress in the discovery of symmetry-protected topological quantum phases in 1D graphene nanoribbons (GNRs), the rational design and realization of magnetic topological GNRs (MT-GNRs) represents a grand challenge, as one must tackle multiple dimensions of complexity including time-reversal symmetry (TRS), spatial symmetry (width, edge, end geometry) and many-electron correlations. Here, we devised a new route involving the real- and reciprocal-space descriptions by unifying the chemists and physicists perspectives, for the design of such MT-GNRs with non-trivial electronic topology and robust magnetic terminal. Classic Clar&#39;s rule offers a conceptually qualitative real-space picture to predict the transition from closed-shell to open-shell with terminal magnetism, and band gap reopening with possible non-trivial electronic topology in a series of wave-like GNRs, which are further verified by first principle calculations of band-structure topology in a momentum-space. With the advance of on-surface synthesis and careful design of molecular precursors, we have fabricated these MT-GNRs with observation of topological edge bands, whose terminal pi-magnetism can be directly captured using a single-nickelocene spin sensor. Moreover, the transition from strong anti-ferromagnetic to weak coupling (paramagnetism-like) between terminal spins can be controlled by tuning the length of MT-GNRs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12880v1-abstract-full').style.display = 'none'; document.getElementById('2204.12880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Song%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10