CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 491 results for author: <span class="mathjax">Yang, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Yang%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yang, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yang%2C+W&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yang, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19034">arXiv:2502.19034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.19034">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhanced deep-freezing magneto- and elasto-caloric effects by modifying lattice anharmonicity and electronic structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiao-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Ying Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+X">Xiaowen Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+H">Hua-You Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jin-Han Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chin-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenyun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cuiping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+B">Binru Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zongbin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuang%2C+Y">Yafei Kuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+L">Liang Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+X">Xin Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hai-Le Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Q">Qingyong Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19034v1-abstract-short" style="display: inline;"> Designing the high performance magneto or elastocaloric effect in NiMnIn alloys with spin-lattice coupling in a deep freezing temperature range of 200 K to 255 K is challenging due to the limited lattice entropy change and large negative contribution of magnetic entropy change during phase transitions. In this work, we systematically study the first order magneto-structural transition in NiMnIn ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19034v1-abstract-full').style.display = 'inline'; document.getElementById('2502.19034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19034v1-abstract-full" style="display: none;"> Designing the high performance magneto or elastocaloric effect in NiMnIn alloys with spin-lattice coupling in a deep freezing temperature range of 200 K to 255 K is challenging due to the limited lattice entropy change and large negative contribution of magnetic entropy change during phase transitions. In this work, we systematically study the first order magneto-structural transition in NiMnIn based alloys by in-situ microstructural characterizations, physical property measurements, and first principles calculations. A multi element alloying strategy involving Cu and Ga co doping is proposed to manipulate the phase transition. The co doping reduces the lattice anharmonicity and thermal expansion coefficient of the martensitic phase, leading to an increase in the unit cell volume change and lattice entropy change. It also modifies the electronic density of states, causing a decrease in the magnetization change .The relief of the lattice mismatch reduces hysteresis losses in the refrigeration cycle. These synergetic effects yield excellent magneto and elastocaloric effects,with the effective magnetocaloric refrigeration capacity reaching up to 182 J/kg under the magnetic field of 5 T or an adiabatic temperature change of -4 K under a low field of 1.5 T and the elastocaloric coefficient of performance to 30 or an adiabatic temperature change of -7 K with the strain of 5% at 230 K, offering a potential solution for solid-state deep-freezing refrigeration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19034v1-abstract-full').style.display = 'none'; document.getElementById('2502.19034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18294">arXiv:2502.18294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.18294">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Imaging thick objects with deep-sub-angstrom resolution and deep-sub-picometer precision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+H">Haozhi Sha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18294v1-abstract-short" style="display: inline;"> Size effects are ubiquitous in the structural, mechanical, and physical properties of materials, making it highly desirable to study the intrinsic properties of thick objects through high-resolution structural analysis in transmission electron microscopy. Although deep-sub-angstrom resolution has been achieved with multislice electron ptychography, the sample thickness is typically very limited. B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18294v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18294v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18294v1-abstract-full" style="display: none;"> Size effects are ubiquitous in the structural, mechanical, and physical properties of materials, making it highly desirable to study the intrinsic properties of thick objects through high-resolution structural analysis in transmission electron microscopy. Although deep-sub-angstrom resolution has been achieved with multislice electron ptychography, the sample thickness is typically very limited. By combining energy filtering and extended local-orbital ptychography (eLOP) that retrieves varying aberrations during electron scanning, here we report ptychographic reconstructions for silicon as thick as 85 nm, approximately three times larger than usual thickness threshold for conventional multislice electron ptychography. The elimination of aberration variations contributes to accurate reconstructions with an information limit of 18 pm and atomic position precision of 0.39 pm. Accurate ptychographic reconstructions for thick objects can facilitate the discovery or interpretation of intrinsic structural and physical phenomena in solids, which is of great significance in physics, chemistry, materials science, and semiconductor device engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18294v1-abstract-full').style.display = 'none'; document.getElementById('2502.18294v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11479">arXiv:2502.11479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.11479">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> High Quality Single Crystal of Kitaev Spin Liquid Candidate Material RuBr3 Synthesized under High Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bowen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiangjun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Limin Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenbo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Nana Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianfa Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaobing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shun-Li Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhiwei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenge Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Runze Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11479v1-abstract-short" style="display: inline;"> Kitaev quantum spin liquids have attracted significant attention in condensed matter physics over the past decade. To understand their emergent quantum phenomena, high-quality single crystals of substantial size are essential. Here, we report the synthesis of single crystals of the Kitaev quantum spin liquid candidate RuBr3, achieving millimeter-sized crystals through a self-flux method under high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11479v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11479v1-abstract-full" style="display: none;"> Kitaev quantum spin liquids have attracted significant attention in condensed matter physics over the past decade. To understand their emergent quantum phenomena, high-quality single crystals of substantial size are essential. Here, we report the synthesis of single crystals of the Kitaev quantum spin liquid candidate RuBr3, achieving millimeter-sized crystals through a self-flux method under high pressure and high temperature conditions. The crystals exhibit well-defined cleavage planes with a lustrous appearance. Transport characterizations exhibit a narrow band-gap semiconducting behavior with 0.13 eV and 0.11 eV band-gap in ab plane and along c axis, respectively. Magnetic measurement shows a transition to antiferromagnetic (AFM) state at approximately 29 K both in ab plane and along c axis. Notably, the N茅el temperature increases to 34 K with an applied magnetic field of up to 7 T in the ab plane, but without any change along c axis. The large size and high quality of RuBr3 single crystals provide a valuable platform for investigating various interactions, particularly the Kitaev interaction, and for elucidating the intrinsic physical properties of Kitaev quantum spin liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11479v1-abstract-full').style.display = 'none'; document.getElementById('2502.11479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Chinese Physics Letters accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10962">arXiv:2502.10962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10962">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Orbital Signatures of Density Wave Transition in La3Ni2O7-delta and La2PrNi2O7-delta RP-Nickelates Probed via in-situ X-ray Absorption Near-edge Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingtao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+J">Jiayi Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Nana Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adama%2C+N">N-Diaye Adama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+Q">Qingyu Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenge Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10962v1-abstract-short" style="display: inline;"> The report of superconductivity (SC) with Tc~80 K in bilayer Ruddlesden-Popper (RP) nickelate La3Ni2O7-delta have sparked considerable investigations on its normal state properties and SC mechanism under pressure and at low temperature. It is believed that the density wave (DW) at ~150 K plays an important role in SC emergence, but its nature remains largely underexplored. Here, we utilized temper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10962v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10962v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10962v1-abstract-full" style="display: none;"> The report of superconductivity (SC) with Tc~80 K in bilayer Ruddlesden-Popper (RP) nickelate La3Ni2O7-delta have sparked considerable investigations on its normal state properties and SC mechanism under pressure and at low temperature. It is believed that the density wave (DW) at ~150 K plays an important role in SC emergence, but its nature remains largely underexplored. Here, we utilized temperature-dependent in-situ Ni K-edge X-ray Absorption Near-edge Spectroscopy (XANES) to probe the Ni-3d/4p electronic states of La3Ni2O7-delta and La2PrNi2O7-delta samples down to 4.8 K, enabling us to witness the evolution of both in-plane d_(x^2-y^2)/p_x (p_y) and out-of-plane d_(3z^2-r^2)/p_z orbitals of NiO6 octahedron across the DW transition. Main edge energy associated with Ni 4p orbital shows an anomalous decline near DW transition, signifying the occurrence of lattice distortions as a hallmark of charge density wave. Below DW transition, the enlarged crystal field splitting (CFS) indicates an enhanced NiO6 octahedral distortion. Intriguingly, magnetic Pr substituents could activate the mutual interplay of d_(x^2-y^2) and d_(3z^2-r^2) orbitals. We discussed its relevance to the favored bulk SC in the pressurized polycrystalline La2PrNi2O7-delta than pristine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10962v1-abstract-full').style.display = 'none'; document.getElementById('2502.10962v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07570">arXiv:2502.07570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07570">pdf</a>, <a href="https://arxiv.org/format/2502.07570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous Symmetry Breaking of Cavity Vacuum and Emergent Gyrotropic Effects in Embedded moir茅 Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zuzhang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+H">Hsun-Chi Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenqi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+Y">Yixin Sha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+C">Cong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07570v1-abstract-short" style="display: inline;"> In an electronic system, spontaneous symmetry breaking can arise from many-body interaction between electrons, leading to degenerate ground states distinguishable by emergent effects otherwise prohibited by the symmetry. Here we show that ultrastrong coupling of a mesoscopic electronic system to the vacuum of a cavity resonator can lead to another paradigm of spontaneous breaking of spatial symmet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07570v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07570v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07570v1-abstract-full" style="display: none;"> In an electronic system, spontaneous symmetry breaking can arise from many-body interaction between electrons, leading to degenerate ground states distinguishable by emergent effects otherwise prohibited by the symmetry. Here we show that ultrastrong coupling of a mesoscopic electronic system to the vacuum of a cavity resonator can lead to another paradigm of spontaneous breaking of spatial symmetries in both systems. As a pertinent example, we consider the orbital gyrotropic effects in a moir茅 superlattice embedded in a THz split ring cavity resonator. Our mean-field and exact diagonalization calculations consistently demonstrate a spontaneous parity symmetry breaking in both the electronic ground state and the cavity vacuum, leading to two degenerate hybrid ground states distinguished by their opposite orbital gyrotropic Hall and magnetic effects. These sizable responses in the cavity-embedded moir茅 superlattice are highly tunable by both the cavity field polarization and interlayer bias on the moir茅 superlattice, providing an advanced platform for manipulating gyrotropic effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07570v1-abstract-full').style.display = 'none'; document.getElementById('2502.07570v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06133">arXiv:2502.06133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.06133">pdf</a>, <a href="https://arxiv.org/format/2502.06133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Turbulence Across Dimensions: Crossover from two- to three-dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weican Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsubota%2C+M">Makoto Tsubota</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06133v2-abstract-short" style="display: inline;"> We investigate the dynamic transition of quantum turbulence (QT) in a confined potential field as the system evolves from purely two-dimensional (2D) to quasi-two-dimensional, and ultimately to three-dimensional (3D), by fixing the lateral dimensions of the trapping box while varying its height. In the 2DQT, distinct Onsager vortex cluster formation and inverse energy cascade are observed, while 3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06133v2-abstract-full').style.display = 'inline'; document.getElementById('2502.06133v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06133v2-abstract-full" style="display: none;"> We investigate the dynamic transition of quantum turbulence (QT) in a confined potential field as the system evolves from purely two-dimensional (2D) to quasi-two-dimensional, and ultimately to three-dimensional (3D), by fixing the lateral dimensions of the trapping box while varying its height. In the 2DQT, distinct Onsager vortex cluster formation and inverse energy cascade are observed, while 3DQT exhibits a direct energy cascade consistent with the Vinen turbulence decay rate, which display striking differences. By systematically altering the system height, we explore how dimensionality drives the differentiation of turbulence types and find that this transition is closely related to the excitation of Kelvin waves. Kelvin waves not only introduce additional dissipation mechanisms but also serve as mediators for direct energy transfer across scales. When the wavelength of the permitted Kelvin waves exceeds the critical size of vortex clusters, turbulence begins transitioning to 3D type, culminating in fully developed 3DQT at the characteristic scale. In the transitional region, we observe continuous variations in the decay rate and vortex cluster correlation functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06133v2-abstract-full').style.display = 'none'; document.getElementById('2502.06133v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00391">arXiv:2502.00391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.00391">pdf</a>, <a href="https://arxiv.org/format/2502.00391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> First-principles study of dielectric properties of ferroelectric perovskite oxides with on-site and inter-site Hubbard interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+M+C">Min Chul Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wooil Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+Y">Young-Woo Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S+Y">Se Young Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00391v1-abstract-short" style="display: inline;"> We study the atomic and electronic structures of ferroelectric perovskite oxides, BaTiO$_3$, LiNbO$_3$, and PbTiO$_3$ using ab initio extended Hubbard functionals in which the on-site and inter-site Hubbard interactions are determined self-consistently, adapted from the pseudohybrid density functional proposed by Agapito-Curtarolo-Buongiorno Nardelli. Band structures, ferroelectric distortions, po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00391v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00391v1-abstract-full" style="display: none;"> We study the atomic and electronic structures of ferroelectric perovskite oxides, BaTiO$_3$, LiNbO$_3$, and PbTiO$_3$ using ab initio extended Hubbard functionals in which the on-site and inter-site Hubbard interactions are determined self-consistently, adapted from the pseudohybrid density functional proposed by Agapito-Curtarolo-Buongiorno Nardelli. Band structures, ferroelectric distortions, polarization, Born effective charges, and switching barriers are calculated with extended Hubbard functionals, that are compared with those using local density approximation (LDA), generalized gradient approximation (GGA), and Hybrid (HSE06) functionals. The properties of all three compounds calculated by extended Hubbard functionals are in good agreement with experimental data. We find a substantial increase in band gaps due to the inter-site Coulomb interactions, which show better agreement with $GW$ results compared to those from LDA and GGA functionals. The crucial role of the inter-site Coulomb interactions in restoring the suppressed polar instability, which is computed when only the on-site Hubbard interactions are considered, is also highlighted. Overall, we find that the properties calculated using our extended Hubbard functionals exhibit trends similar to those obtained with the HSE06 functional, while reducing computational costs by over an order of magnitude. Thus, we propose that the current method is well-suited for high-throughput calculations for perovskite oxides, offering significantly improved accuracy in computing band gap and other related physical properties such as the shift current photovoltaic effect and band alignments in ferroelectric heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00391v1-abstract-full').style.display = 'none'; document.getElementById('2502.00391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13588">arXiv:2501.13588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13588">pdf</a>, <a href="https://arxiv.org/format/2501.13588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin-polarized STM measurement scheme for quantum geometric tensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jia-Ji Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+W">Wen-Long You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+K">Kai Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13588v1-abstract-short" style="display: inline;"> Quantum geometric tensor (QGT) reflects the geometry of the eigenstates of a system&#39;s Hamiltonian. The full characterization of QGT is essential for various quantum systems. However, it is challenging to characterize the QGT of the solid-state systems. Here we present a scheme by using spin-polarized STM to measure QGT of two-dimensional solid-state systems, in which the spin texture is extracted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13588v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13588v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13588v1-abstract-full" style="display: none;"> Quantum geometric tensor (QGT) reflects the geometry of the eigenstates of a system&#39;s Hamiltonian. The full characterization of QGT is essential for various quantum systems. However, it is challenging to characterize the QGT of the solid-state systems. Here we present a scheme by using spin-polarized STM to measure QGT of two-dimensional solid-state systems, in which the spin texture is extracted from geometric amplitudes of Friedel oscillations induced by the intentionally introduced magnetic impurity and then the QGT is derived from the momentum differential of spin texture. The surface states of topological insulator (TISS), as a model spin system, is promising to demonstrate the scheme. In a TI slab, the gapped TISS host finite quantum metric and Berry curvature as the symmetric real part and the antisymmetric imaginary part of QGT, respectively. Thus, a detailed calculations guide the use of the developed scheme to measure the QGT of gapped TISS with or without an external in-plane magnetic field. This study provides a feasible scheme for measuring QGT of two-dimensional solid-state systems, and hints at the great potential of the information extraction from the geometric amplitudes of STM and other measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13588v1-abstract-full').style.display = 'none'; document.getElementById('2501.13588v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12936">arXiv:2501.12936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12936">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal Catalyst Design Framework for Electrochemical Hydrogen Peroxide Synthesis Facilitated by Local Atomic Environment Descriptors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhijian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bingqian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuqi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+T">Tianxiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingzhe Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xue Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Heng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+X">Xuqiang Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+L">Li Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weijie Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12936v1-abstract-short" style="display: inline;"> Developing a universal and precise design framework is crucial to search high-performance catalysts, but it remains a giant challenge due to the diverse structures and sites across various types of catalysts. To address this challenge, herein, we developed a novel framework by the refined local atomic environment descriptors (i.e., weighted Atomic Center Symmetry Function, wACSF) combined with mac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12936v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12936v1-abstract-full" style="display: none;"> Developing a universal and precise design framework is crucial to search high-performance catalysts, but it remains a giant challenge due to the diverse structures and sites across various types of catalysts. To address this challenge, herein, we developed a novel framework by the refined local atomic environment descriptors (i.e., weighted Atomic Center Symmetry Function, wACSF) combined with machine learning (ML), microkinetic modeling, and computational high-throughput screening. This framework is successfully integrated into the Digital Catalysis Database (DigCat), enabling efficient screening for 2e- water oxidation reaction (2e- WOR) catalysts across four material categories (i.e., metal alloys, metal oxides and perovskites, and single-atom catalysts) within a ML model. The proposed wACSF descriptors integrating both geometric and chemical features are proven effective in predicting the adsorption free energies with ML. Excitingly, based on the wACSF descriptors, the ML models accurately predict the adsorption free energies of hydroxyl (螖GOH*) and oxygen (螖GO*) for such a wide range of catalysts, achieving R2 values of 0.84 and 0.91, respectively. Through density functional theory calculations and microkinetic modeling, a universal 2e- WOR microkinetic volcano model was derived with excellent agreement with experimental observations reported to date, which was further used to rapidly screen high-performance catalysts with the input of ML-predicted 螖GOH*. Most importantly, this universal framework can significantly improve the efficiency of catalyst design by considering multiple types of materials at the same time, which can dramatically accelerate the screening of high-performance catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12936v1-abstract-full').style.display = 'none'; document.getElementById('2501.12936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08919">arXiv:2501.08919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08919">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Revealing Local Structures through Machine-Learning- Fused Multimodal Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+H">Haili Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiming Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+G">Gi-Hyeok Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+J">Jacob Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+M">Miaofang Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wanli Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+M+K+Y">Maria K. Y. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08919v1-abstract-short" style="display: inline;"> Atomistic structures of materials offer valuable insights into their functionality. Determining these structures remains a fundamental challenge in materials science, especially for systems with defects. While both experimental and computational methods exist, each has limitations in resolving nanoscale structures. Core-level spectroscopies, such as x-ray absorption (XAS) or electron energy-loss s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08919v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08919v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08919v1-abstract-full" style="display: none;"> Atomistic structures of materials offer valuable insights into their functionality. Determining these structures remains a fundamental challenge in materials science, especially for systems with defects. While both experimental and computational methods exist, each has limitations in resolving nanoscale structures. Core-level spectroscopies, such as x-ray absorption (XAS) or electron energy-loss spectroscopies (EELS), have been used to determine the local bonding environment and structure of materials. Recently, machine learning (ML) methods have been applied to extract structural and bonding information from XAS/EELS, but most of these frameworks rely on a single data stream, which is often insufficient. In this work, we address this challenge by integrating multimodal ab initio simulations, experimental data acquisition, and ML techniques for structure characterization. Our goal is to determine local structures and properties using EELS and XAS data from multiple elements and edges. To showcase our approach, we use various lithium nickel manganese cobalt (NMC) oxide compounds which are used for lithium ion batteries, including those with oxygen vacancies and antisite defects, as the sample material system. We successfully inferred local element content, ranging from lithium to transition metals, with quantitative agreement with experimental data. Beyond improving prediction accuracy, we find that ML model based on multimodal spectroscopic data is able to determine whether local defects such as oxygen vacancy and antisites are present, a task which is impossible for single mode spectra or other experimental techniques. Furthermore, our framework is able to provide physical interpretability, bridging spectroscopy with the local atomic and electronic structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08919v1-abstract-full').style.display = 'none'; document.getElementById('2501.08919v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06460">arXiv:2501.06460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06460">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Probing electric field tunable multiband superconductivity in alternating twisted quadralayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+Y">Yu Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chengping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Jingwei Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">Kam Tuen Law</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06460v1-abstract-short" style="display: inline;"> Alternating twisted multilayer graphene presents a compelling multiband system for exploring superconductivity. Here we investigate robust superconductivity in alternating twisted quadralayer graphene, elucidating carrier contributions from both flat and dispersive bands. The superconductivity is robust, with a strong electrical field tunability, a maximum BKT transition temperature of 1.6 K, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06460v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06460v1-abstract-full" style="display: none;"> Alternating twisted multilayer graphene presents a compelling multiband system for exploring superconductivity. Here we investigate robust superconductivity in alternating twisted quadralayer graphene, elucidating carrier contributions from both flat and dispersive bands. The superconductivity is robust, with a strong electrical field tunability, a maximum BKT transition temperature of 1.6 K, and high critical magnetic fields beyond the Pauli limit. We disentangle the carrier density of Dirac bands and flat bands from the Landau fan diagram. Moreover, we could estimate the flatband Fermi velocity from the obtained high critical current near half filling when superconductivity is killed at finite magnetic fields, and further quantify the superfluid stiffness from the low critical current in the superconducting regime. Our results exhibit the electric field tunable coupling strength within the superconducting phase, revealing unconventional properties with vanishing Fermi velocity and large superfluid stiffness. These phenomena, attributed to substantial quantum metric contributions, offer new insights into the mechanisms underlying unconventional superconductivity in moire systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06460v1-abstract-full').style.display = 'none'; document.getElementById('2501.06460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00388">arXiv:2501.00388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00388">pdf</a>, <a href="https://arxiv.org/format/2501.00388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Topic Review: Hatsugai-Kohmoto models: Exactly solvable playground for Mottness and Non-Fermi Liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Miaomiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei-Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yin Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00388v1-abstract-short" style="display: inline;"> This pedagogic review aims to give a gentle introduction to an exactly solvable model, the Hatsugai-Kohmoto (HK) model, which has infinite-ranged interaction but conserves the center of mass. Although this model is invented in 1992, intensive studies on its properties ranging from unconventional superconductivity, topological ordered states to non-Fermi liquid behaviors are made since 2020. We foc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00388v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00388v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00388v1-abstract-full" style="display: none;"> This pedagogic review aims to give a gentle introduction to an exactly solvable model, the Hatsugai-Kohmoto (HK) model, which has infinite-ranged interaction but conserves the center of mass. Although this model is invented in 1992, intensive studies on its properties ranging from unconventional superconductivity, topological ordered states to non-Fermi liquid behaviors are made since 2020. We focus on its emergent non-Fermi liquid behavior and provide discussion on its thermodynamics, single-particle and two-particle correlation functions. Perturbation around solvable limit has also been explored with the help of perturbation theory, renormalization group and exact diagonalization calculation. We hope the present review will be helpful for graduate students or researchers interested in HK-like models or more generic strongly correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00388v1-abstract-full').style.display = 'none'; document.getElementById('2501.00388v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18343">arXiv:2412.18343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18343">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Low-temperature mean valence of nickel ions in pressurized La$_3$Ni$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hualei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nataf%2C+L">Lucie Nataf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenge Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+Q">Qingyu Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Ho-kwang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18343v1-abstract-short" style="display: inline;"> The discovery of high critical temperature (Tc) superconductivity in pressurized La$_3$Ni$_2$O$_7$ has ignited renewed excitement in the search of novel high-Tc superconducting compounds with 3d transition metals. Compared to other ambient-pressure superconductors, such as copper-oxide and iron-oxypnictides, unraveling the mechanisms of the pressure-induced superconductivity poses significant and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18343v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18343v1-abstract-full" style="display: none;"> The discovery of high critical temperature (Tc) superconductivity in pressurized La$_3$Ni$_2$O$_7$ has ignited renewed excitement in the search of novel high-Tc superconducting compounds with 3d transition metals. Compared to other ambient-pressure superconductors, such as copper-oxide and iron-oxypnictides, unraveling the mechanisms of the pressure-induced superconductivity poses significant and unique challenges. A critical factor in this phenomenon seems to be related to the electronic configuration of 3d orbitals, which may play a fundamental role in driving high-Tc superconductivity. However, the pressure effects on the mixed-valence states of 3d-orbital cations and their influence on the emergence of high-Tc superconductivity remain poorly understood. Here, we use high-pressure (P) and low-temperature synchrotron X-ray absorption spectroscopy to investigate the influence of pressure on the mean valence change of Ni ions in La$_3$Ni$_2$O$_7$. Our results demonstrate that at a low-temperature of 20 K, the mean valence remains relatively stable across the pressures range from 1 atm to 40 GPa. Based on analyzing the absorption data, we find that, at a critical pressure, the ambient-pressure ordered phases disappear and both the structural and the superconducting phase transition occur. The pressure-induced structural phase transition revealed by our absorption results is consistent with that determined by X-ray diffraction, offering new information for a comprehensive understanding on the pressure-induced superconductivity in La$_3$Ni$_2$O$_7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18343v1-abstract-full').style.display = 'none'; document.getElementById('2412.18343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages and 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02213">arXiv:2412.02213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02213">pdf</a>, <a href="https://arxiv.org/ps/2412.02213">ps</a>, <a href="https://arxiv.org/format/2412.02213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.205138">10.1103/PhysRevB.110.205138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental electronic phase diagram in a diamond-lattice antiferromagnetic system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+L">Liang-Wen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wu-Zhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yi-Ming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jia-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02213v1-abstract-short" style="display: inline;"> We report Ni-doping effect on the magnetic and electronic properties of thiospinel Co$_{1-x}$Ni$_x$[Co$_{0.3}$Ir$_{1.7}$]S$_4$ (0 $\leq x \leq$ 1). The parent compound Co[Co$_{0.3}$Ir$_{1.7}$]S$_4$ exhibits antiferromagnetic order below $T_\mathrm{N} \sim$ 292 K within the $A$-site diamond sublattice, along with a narrow charge-transfer gap. Upon Ni doping, an insulator-to-metal crossover occurs a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02213v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02213v1-abstract-full" style="display: none;"> We report Ni-doping effect on the magnetic and electronic properties of thiospinel Co$_{1-x}$Ni$_x$[Co$_{0.3}$Ir$_{1.7}$]S$_4$ (0 $\leq x \leq$ 1). The parent compound Co[Co$_{0.3}$Ir$_{1.7}$]S$_4$ exhibits antiferromagnetic order below $T_\mathrm{N} \sim$ 292 K within the $A$-site diamond sublattice, along with a narrow charge-transfer gap. Upon Ni doping, an insulator-to-metal crossover occurs at $x \sim$ 0.35, and the antiferromagnetism is gradually suppressed, with $T_\mathrm{N}$ decreasing to 23 K at $x =$ 0.7. In the metallic state, a spin-glass-like transition emerges at low temperatures. The antiferromagnetic transition is completely suppressed at $x_\mathrm{c} \sim$ 0.95, around which a non-Fermi-liquid behavior emerges, evident from the $T^伪$ temperature dependence with $伪\approx$ 1.2-1.3 in resistivity and divergent behavior of $C/T$ in specific heat at low temperatures. Meanwhile, the electronic specific heat coefficient $纬$ increases substantially, signifying an enhancement of the quasiparticle effective mass. The magnetic phase diagram has been established, in which an antiferromagnetic quantum critical point is avoided at $x_\mathrm{c}$. Conversely, the observed glass-like tail above the critical concentration aligns more closely with theoretical predictions for an extended region of quantum Griffiths phase in the presence of strong disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02213v1-abstract-full').style.display = 'none'; document.getElementById('2412.02213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 205138 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16287">arXiv:2411.16287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16287">pdf</a>, <a href="https://arxiv.org/format/2411.16287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantized vortex in an atomic Bose-Einstein condensate at Dirac point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yunda Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+W">Wei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z">Zengming Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chin%2C+C">Cheng Chin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16287v2-abstract-short" style="display: inline;"> When two or more energy bands become degenerate at a singular point in the momentum space, such singularity, or ``Dirac points&#34;, gives rise to intriguing quantum phenomena as well as unusual material properties. Systems at the Dirac points can possess topological charges and their unique properties can be probed by various methods, such as transport measurement, interferometry and momentum spectro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16287v2-abstract-full').style.display = 'inline'; document.getElementById('2411.16287v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16287v2-abstract-full" style="display: none;"> When two or more energy bands become degenerate at a singular point in the momentum space, such singularity, or ``Dirac points&#34;, gives rise to intriguing quantum phenomena as well as unusual material properties. Systems at the Dirac points can possess topological charges and their unique properties can be probed by various methods, such as transport measurement, interferometry and momentum spectroscopy. While the topology of Dirac point in the momentum space is well studied theoretically, observation of topological defects in a many-body quantum systems at Dirac point remain an elusive goal. Based on atomic Bose-Einstein condensate in a graphene-like optical honeycomb lattice, we directly observe emergence of quantized vortices at the Dirac point. The phase diagram of lattice bosons at the Dirac point is revealed. Our work provides a new way of generating vortices in a quantum gas, and the method is generic and can be applied to different types of optical lattices with topological singularity, especially twisted bilayer optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16287v2-abstract-full').style.display = 'none'; document.getElementById('2411.16287v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12200">arXiv:2411.12200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12200">pdf</a>, <a href="https://arxiv.org/ps/2411.12200">ps</a>, <a href="https://arxiv.org/format/2411.12200">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2025)086">10.1007/JHEP02(2025)086 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact physical quantities of the XYZ spin chain in the thermodynamic limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+Z">Zhirong Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Junpeng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen-Li Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yupeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12200v1-abstract-short" style="display: inline;"> The thermodynamic limits of the XYZ spin chain with periodic or twisted boundary conditions are studied. By using the technique of characterizing the eigenvalue of the transfer matrix by the $T-Q$ relation and by the zeros of the associated polynomial, we obtain the constraints of the Bethe roots and the zeros for the eigenvalues. With the help of structure of Bethe roots, we obtain the distributi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12200v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12200v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12200v1-abstract-full" style="display: none;"> The thermodynamic limits of the XYZ spin chain with periodic or twisted boundary conditions are studied. By using the technique of characterizing the eigenvalue of the transfer matrix by the $T-Q$ relation and by the zeros of the associated polynomial, we obtain the constraints of the Bethe roots and the zeros for the eigenvalues. With the help of structure of Bethe roots, we obtain the distribution patterns of zeros. Based on them, the physical quantities such as the surface energy and excitation energy are calculated. We find that both of them depend on the parity of sites number due to the topological long-range Neel order on the Mobius manifold in the spin space. We also check our results with those obtaining by the density matrix renormalization group. The method provided in this paper can be applied to study the thermodynamic properties at the thermal equilibrium state with finite temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12200v1-abstract-full').style.display = 'none'; document.getElementById('2411.12200v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 02, 086 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08677">arXiv:2411.08677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08677">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-Induced Superconductivity in Pr4Ni3O10 Single Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+D">Di Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huangfu%2C+S">Shangxiong Huangfu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Shihao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Juefei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Z">Zhenfang Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lili Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinkui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenge Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suo%2C+H">Hongli Suo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hanjie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Q">Qiaoshi Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08677v1-abstract-short" style="display: inline;"> The recent discovery of superconductivity in pressurized Ruddlesden-Popper (RP) of nickelates has potential similarities with cuprate superconductors, which may provide unique perspectives on the mechanisms of high-temperature superconductivity. Up to now, most of high-pressure experiments concentrated on the lanthanum-related RP phase. Therefore, the discovery of new superconducting nickelate com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08677v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08677v1-abstract-full" style="display: none;"> The recent discovery of superconductivity in pressurized Ruddlesden-Popper (RP) of nickelates has potential similarities with cuprate superconductors, which may provide unique perspectives on the mechanisms of high-temperature superconductivity. Up to now, most of high-pressure experiments concentrated on the lanthanum-related RP phase. Therefore, the discovery of new superconducting nickelate compounds is highly desired to explore the generality of pressure-induced superconductivity in RP nickelates. Here, we grow high-quality Pr4Ni3O10 single crystal with an optical floating zone furnace under high oxygen pressure and conduct high-pressure transport measurements with various pressure transmitting mediums. The density wave in Pr4Ni3O10 single crystal was suppressed by pressure, accompanying the arising of superconducting state beyond 10 GPa. The maximum and unsaturated Tc of 39 K is obtained within our research pressure. Although zero resistivity was not achieved in our experiments, the pressure and temperature-dependent diamagnetism along with the systematic evolution of resistivity with applied magnetic field, corroborate the superconductivity in Pr4Ni3O10 single crystals. Our findings provide a new platform for the investigation of the relationship among structural evolution, magnetism, correlation, and superconductivity in Ruddlesden-Popper nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08677v1-abstract-full').style.display = 'none'; document.getElementById('2411.08677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06734">arXiv:2411.06734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06734">pdf</a>, <a href="https://arxiv.org/ps/2411.06734">ps</a>, <a href="https://arxiv.org/format/2411.06734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Cocktail effect on superconductivity in hexagonal high-entropy alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06734v1-abstract-short" style="display: inline;"> We report the study of the cocktail effect on superconductivity in high-entropy alloys (HEAs),using hexagonal close-packed HEAs as a prototype system. Compared with the compositional averages of the constituent elements, the superconducting transition temperature Tc is enhanced by from a factor of about 2 to over one order of magnitude. This Tc enhancement correlates with the reduction in the Deby&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06734v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06734v1-abstract-full" style="display: none;"> We report the study of the cocktail effect on superconductivity in high-entropy alloys (HEAs),using hexagonal close-packed HEAs as a prototype system. Compared with the compositional averages of the constituent elements, the superconducting transition temperature Tc is enhanced by from a factor of about 2 to over one order of magnitude. This Tc enhancement correlates with the reduction in the Debye temperature, underlining the importance of phonon softening in triggering the cocktail effect. Furthermore, we show that the Tc in these HEAs is governed by the average phonon frequency and electron-phonon coupling strength, the latter of which scales linearly with the inverse HEA molecular weight and is progressively weakened with increasing mixing entropy. Our study paves the way toward quantitative understanding of the superconductivity in HEAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06734v1-abstract-full').style.display = 'none'; document.getElementById('2411.06734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04375">arXiv:2411.04375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04375">pdf</a>, <a href="https://arxiv.org/format/2411.04375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.245145">10.1103/PhysRevB.108.245145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak antilocalization in the transition metal telluride Ta$_2$Pd$_3$Te$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+W">Wen-He Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+H">Hang-Qiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+J">Jin-Ke Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+S">Shaozhu Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuke Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04375v1-abstract-short" style="display: inline;"> We report transport studies on the layered van der Waals topological crystalline insulator Ta$_2$Pd$_3$Te$_5$. The temperature-dependent resistance at high temperature is dominated by a bulk insulating gap and tend to saturate at low temperatures. Low temperature magnetotransport shows that Ta$_2$Pd$_3$Te$_5$ exhibits weak antilocatization (WAL) effect in both perpendicular orientation and paralle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04375v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04375v1-abstract-full" style="display: none;"> We report transport studies on the layered van der Waals topological crystalline insulator Ta$_2$Pd$_3$Te$_5$. The temperature-dependent resistance at high temperature is dominated by a bulk insulating gap and tend to saturate at low temperatures. Low temperature magnetotransport shows that Ta$_2$Pd$_3$Te$_5$ exhibits weak antilocatization (WAL) effect in both perpendicular orientation and parallel orientation, suggesting an contribution of the WAL effect from both topological edge states and bulk states. By measuring the anisotropic magnetoconductance and then subtracting the contribution of bulk states, the WAL effect associated with topological edge states can be revealed and analyzed quantitatively based on the two-dimensional Hikami-Larkin-Nagaoka model. Our results have important implications in understanding the WAL phenomena in Ta$_2$Pd$_3$Te$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04375v1-abstract-full').style.display = 'none'; document.getElementById('2411.04375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB 108 (2023) 8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20447">arXiv:2410.20447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20447">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Revealing Molecular Mechanism of Nonmonotonic Relationship between Antifreeze Activity and Chain Length in Polyprolines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wentao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Y">Yucong Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhaoru Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20447v1-abstract-short" style="display: inline;"> Ice recrystallization inhibition (IRI) activity of polymers generally increases with chain length. However, for polyproline (PPro), a highly potent cryoprotectant, the IRI activity varies nonmonotonically with the degree of polymerization (DP), i.e., DP=8 (P8) &gt; DP=15 (P15) &gt; DP=3 (P3). Herein, we employ molecular dynamics simulations to reveal the microscopic mechanism behind this nonmonotonic ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20447v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20447v1-abstract-full" style="display: none;"> Ice recrystallization inhibition (IRI) activity of polymers generally increases with chain length. However, for polyproline (PPro), a highly potent cryoprotectant, the IRI activity varies nonmonotonically with the degree of polymerization (DP), i.e., DP=8 (P8) &gt; DP=15 (P15) &gt; DP=3 (P3). Herein, we employ molecular dynamics simulations to reveal the microscopic mechanism behind this nonmonotonic effect in PPro. Our findings indicate that the population of the PPII helix structure, which increases with DP, is not the primary reason for this effect. Instead, both single-molecule conformation and multi-molecule aggregation play critical roles. At the single-molecule level, PPro exhibits two types of thermodynamically stable conformations:linear (L) and coil (C), with the latter demonstrating enhanced IRI potency due to its stronger hydrophobicity and ice-binding capability. Notably, P8 has a higher content of the C conformation compared to P15, accounting for its superior IRI activity. Aligning with the conventional understandings, P3&#39;s lowest activity stems from its excessively small volume/coverage area on the ice surface. At the multi-molecule level, P15 shows a significantly higher tendency to aggregate than P8, which limits the ability of PPro molecules to fully spread at the ice-water interface and reduces their effective coverage of the ice surface, thereby diminishing its effectiveness. And P15&#39;s aggregation becomes significantly pronounced at high concentrations, amplifying the nonmonotonic effect. This work provides an atomistic insight into the nonmonotonic relationship between IRI activity and DP in PPro, offering valuable insights for the rational design of novel biocompatible antifreeze polymers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20447v1-abstract-full').style.display = 'none'; document.getElementById('2410.20447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15327">arXiv:2410.15327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15327">pdf</a>, <a href="https://arxiv.org/ps/2410.15327">ps</a>, <a href="https://arxiv.org/format/2410.15327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.155139">10.1103/PhysRevB.110.155139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inter-Cation Charge Transfer Mediated Antiferromagnetism in Co$_{1+x}$Ir$_{2-x}$S$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+L">Liang-Wen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Si-Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bai-Zhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wu-Zhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shi-Jie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15327v1-abstract-short" style="display: inline;"> The antiferromagnetism in transition metal compounds is mostly mediated by the bridging anions through a so-called superexchange mechanism. However, in materials like normal spinels $AB_2X_4$ with local moments only at the $A$ site, such an anion-mediated superexchange needs to be modified. Here we report a new spinel compound Co$_{1+x}$Ir$_{2-x}$S$_4$ ($x$ = 0.3). The physical property measuremen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15327v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15327v1-abstract-full" style="display: none;"> The antiferromagnetism in transition metal compounds is mostly mediated by the bridging anions through a so-called superexchange mechanism. However, in materials like normal spinels $AB_2X_4$ with local moments only at the $A$ site, such an anion-mediated superexchange needs to be modified. Here we report a new spinel compound Co$_{1+x}$Ir$_{2-x}$S$_4$ ($x$ = 0.3). The physical property measurements strongly suggest an antiferromagnetic-like transition at 292 K in the Co($A$) diamond sublattice. The first-principle calculations reveal that the nearest-neighbor Co($A$) spins align antiferromagnetically with an ordered magnetic moment of 1.67 $渭_\mathrm{B}$, smaller than the expected $S = 3/2$ for Co$^{2+}$. In the antiferromagnetic state, there exists an inter-cation charge-transfer gap between the non-bonding Ir-$t_\mathrm{2g}$ orbitals at the valence band maximum and the Co-S antibonding molecular orbitals at the conduction band minimum. The small charge transfer energy significantly enhances the virtual hopping between these two states, facilitating a robust long-range superexchange interaction between two neighboring CoS$_4$ complexes, which accounts for the high N茅el temperature in Co$_{1+x}$Ir$_{2-x}$S$_4$. This inter-cation charge transfer mediated magnetic interaction expands the traditional superexchange theory, which could be applicable in complex magnetic materials with multiple cations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15327v1-abstract-full').style.display = 'none'; document.getElementById('2410.15327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 155139 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04230">arXiv:2410.04230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04230">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Distinguishing Electronic Band Structure of Single-layer and Bilayer Ruddlesden-Popper Nickelates Probed by in-situ High Pressure X-ray Absorption Near-edge Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingtao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Nana Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+J">Jiayi Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amboage%2C+M">Monica Amboage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adama%2C+N">N-Diaye Adama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+Q">Qingyu Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenge Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04230v1-abstract-short" style="display: inline;"> We report a comprehensive study of electronic band structure for single-layer (SL) and bilayer (BL) RP-nickelates probed by in-situ HP X-ray absorption near edge spectroscopy (XANES). At ambient pressure (AP), the energy splitting delta_E of d_3z^2-r^2 and d_x^2-y^2 bands are directly observed in La3Ni2O7 (BL-La327) but not in La2NiO4 (SL-La214) above E_F, underlining the critical role of inner ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04230v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04230v1-abstract-full" style="display: none;"> We report a comprehensive study of electronic band structure for single-layer (SL) and bilayer (BL) RP-nickelates probed by in-situ HP X-ray absorption near edge spectroscopy (XANES). At ambient pressure (AP), the energy splitting delta_E of d_3z^2-r^2 and d_x^2-y^2 bands are directly observed in La3Ni2O7 (BL-La327) but not in La2NiO4 (SL-La214) above E_F, underlining the critical role of inner apical O atoms. A combination of DFT-based electronic band structure and projected density of states (PDOS) calculations with simulated XANES enables us to explain the observed main XANES features labelled by a, A, B&#39;, B and C when considering the orbital hybridizations, crystal field splitting (CFS) and core-hole screening of different 3d configurations for SL-La214 and BL-La327 nickelates. At high pressure (HP), the delta_E values of pre-edge peak form a dome-like evolution above 7.7 GPa with the maximum locating at around 20 GPa for metallic BL-La327. Analysis of its integrated area and FWHM provides strong evidence that the bonding d_3z^2-r^2 band crosses E_F above about 7.7 GPa for the metallic BL-La327. Growth of integrated area of pre-edge peak and C peak further evidences pressure-induced hole doping effect. Meanwhile, the pressure dependent FWHM of pre-edge peak implies a nonmonotonic evolution of orbital-selective electronic correlation above 7.7 GPa with extrema emerging at about 20 GPa. Moreover, we estimate the relative hole doping level using the energy shift of pre-edge peak, yielding 0.074 hole per Ni site or equivalently 1.1*10^21 cm^-3 at 20 GPa for the metallic BL-La327, which is comparable to cuprates. Our results have timely examined the electronic band structures as obtained from theoretical calculations, emphasizing the essential role of both d_3z^2-r^2 and d_x^2-y^2 bands as well as the electronic correlation in superconducting pairing for pressurized La3Ni2O7. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04230v1-abstract-full').style.display = 'none'; document.getElementById('2410.04230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16250">arXiv:2409.16250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16250">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ijengsci.2024.104137">10.1016/j.ijengsci.2024.104137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacial performance evolution of ceramics-in-polymer composite electrolyte in solid-state lithium metal batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+A">Ao Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Linlin Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menga%2C+N">Nicola Menga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wanyou Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16250v1-abstract-short" style="display: inline;"> The incorporation of ceramics into polymers, forming solid composite electrolytes (SCEs) leads to enhanced electrical performance of all-solid-state lithium metal batteries. This is because the dispersed ceramics particles increase the ionic conductivity, while the polymer matrix leads to better contact performance between the electrolyte and the electrode. In this study, we present a model, based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16250v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16250v1-abstract-full" style="display: none;"> The incorporation of ceramics into polymers, forming solid composite electrolytes (SCEs) leads to enhanced electrical performance of all-solid-state lithium metal batteries. This is because the dispersed ceramics particles increase the ionic conductivity, while the polymer matrix leads to better contact performance between the electrolyte and the electrode. In this study, we present a model, based on Hybrid Elements Methods, for the time-dependent Li metal and SCE rough interface mechanics, taking into account for the oxide (ceramics) inclusions (using the Equivalent Inclusion method), and the viscoelasticity of the matrix. We study the effect of LLTO particle size, weight concentration, and spatial distribution on the interface mechanical and electrical response. Moreover, considering the viscoelastic spectrum of a real PEO matrix, under a given stack pressure, we investigate the evolution over time of the mechanical and electrical performance of the interface. The presented theoretical/numerical model might be pivotal in tailoring the development of advanced solid state batteries with superior performance; indeed, we found that conditions in the SCE mixture which optimize both the contact resistivity and the interface stability in time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16250v1-abstract-full').style.display = 'none'; document.getElementById('2409.16250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Engineering Science 204 (2024) 104137 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11023">arXiv:2409.11023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11023">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing band topology in ABAB and ABBA stacked twisted double bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Yalong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Jinwei Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11023v1-abstract-short" style="display: inline;"> Twisted graphene moire superlattice has been demonstrated as an exotic platform for investigating correlated states and nontrivial topology. Among the moire family, twisted double bilayer graphene (TDBG) is a tunable flat band system expected to show stacking-dependent topological properties. However, electron correlations and the band topology are usually intertwined in the flat band limit, rende&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11023v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11023v1-abstract-full" style="display: none;"> Twisted graphene moire superlattice has been demonstrated as an exotic platform for investigating correlated states and nontrivial topology. Among the moire family, twisted double bilayer graphene (TDBG) is a tunable flat band system expected to show stacking-dependent topological properties. However, electron correlations and the band topology are usually intertwined in the flat band limit, rendering the unique topological property due to stacking still elusive. Focusing on a large-angle TDBG with weak electron correlations, here we probe the Landau level (LL) spectra in two differently stacked TDBG, i.e. ABBA- and ABAB-TDBG, to unveil their distinct topological properties. For ABBA-TDBG, we observe non-trivial topology at zero electric displacement filed, evident from both the emergence of Chern bands from half fillings and the closure of gap at CNP above a critical magnetic field. For ABAB-TDBG, by contrast, we find that the moire band is topologically trivial, supported by the absence of LLs from half fillings and the persistence of the gap at CNP above the critical magnetic fields. In addition, we also observe an evolution of the trivial-to-nontrivial topological transition at finite D fields, confirmed by the emerged Landau fans originating from quarter filling v = 1. Our result demonstrates, for the first time, the unique stacking-dependent topology in TDBG, offering a promising avenue for future investigations on topological states in correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11023v1-abstract-full').style.display = 'none'; document.getElementById('2409.11023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10254">arXiv:2409.10254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10254">pdf</a>, <a href="https://arxiv.org/format/2409.10254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.042205">10.1103/PhysRevA.110.042205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Multifractal Critical Phases in Two-Dimensional Quasiperiodic Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weizhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongjian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10254v2-abstract-short" style="display: inline;"> The multifractal critical phase (MCP) fundamentally differs from extended and localized phases, exhibiting delocalized distributions in both position and momentum spaces. The investigation on the MCP has largely focused on one-dimensional quasiperiodic systems. Here, we introduce a two-dimensional (2D) quasiperiodic model with a MCP. We present its phase diagram and investigate the characteristics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10254v2-abstract-full').style.display = 'inline'; document.getElementById('2409.10254v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10254v2-abstract-full" style="display: none;"> The multifractal critical phase (MCP) fundamentally differs from extended and localized phases, exhibiting delocalized distributions in both position and momentum spaces. The investigation on the MCP has largely focused on one-dimensional quasiperiodic systems. Here, we introduce a two-dimensional (2D) quasiperiodic model with a MCP. We present its phase diagram and investigate the characteristics of the 2D system&#39;s MCP in terms of wave packet diffusion and transport based on this model. We further investigate the movement of the phase boundary induced by the introduction of next-nearest-neighbor hopping by calculating the fidelity susceptibility. Finally, we consider how to realize our studied model in superconducting circuits. Our work opens the door to exploring MCP in 2D systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10254v2-abstract-full').style.display = 'none'; document.getElementById('2409.10254v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Phys. Rev. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 042205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07727">arXiv:2409.07727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07727">pdf</a>, <a href="https://arxiv.org/format/2409.07727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ada50a">10.1088/1361-648X/ada50a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic topological Weyl fermions in half-metallic In$_2$CoSe$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+X">Xiaosong Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenwen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qiunan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wenjian Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07727v2-abstract-short" style="display: inline;"> Magnetic Weyl semimetals (WSM) have recently attracted much attention due to their potential in realizing strong anomalous Hall effects. Yet, how to design such systems remains unclear. Based on first-principles calculations, we show here that the ferromagnetic half-metallic compound In$_2$CoSe$_4$ has several pairs of Weyl points and is hence a good candidate for magnetic WSM. These Weyl points w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07727v2-abstract-full').style.display = 'inline'; document.getElementById('2409.07727v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07727v2-abstract-full" style="display: none;"> Magnetic Weyl semimetals (WSM) have recently attracted much attention due to their potential in realizing strong anomalous Hall effects. Yet, how to design such systems remains unclear. Based on first-principles calculations, we show here that the ferromagnetic half-metallic compound In$_2$CoSe$_4$ has several pairs of Weyl points and is hence a good candidate for magnetic WSM. These Weyl points would approach the Fermi level gradually as the Hubbard $U$ increases, and finally disappear after a critical value $U_c$. The range of the Hubbard $U$ that can realize the magnetic WSM state can be expanded by pressure, manifesting the practical utility of the present prediction. Moreover, by generating two surface terminations at Co or In atom after cleaving the compound at the Co-Se bonds, the nontrivial Fermi arcs connecting one pair of Weyl points with opposite chirality are discovered in surface states. Furthermore, it is possible to observe the nontrivial surface state experimentally, e.g., angle-resolved photoemission spectroscopy (ARPES) measurements. As such, the present findings imply strongly a new magnetic WSM which may host a large anomalous Hall conductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07727v2-abstract-full').style.display = 'none'; document.getElementById('2409.07727v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 37, 115701 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01795">arXiv:2409.01795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01795">pdf</a>, <a href="https://arxiv.org/format/2409.01795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A DFT+$U$+$V$ study of pristine and oxygen-deficient HfO$_2$ with self-consistent Hubbard parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yudi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wooil Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+Y">Young-Woo Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01795v2-abstract-short" style="display: inline;"> HfO$_2$-based ferroelectrics have emerged as promising materials for advanced nanoelectronics, with their robust polarization and silicon compatibility making them ideal for high-density, non-volatile memory applications. Oxygen vacancies, particularly in positively charged states, are suggested to profoundly impact the polymorphism kinetics and phase stability of hafnia, thereby affecting its fer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01795v2-abstract-full').style.display = 'inline'; document.getElementById('2409.01795v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01795v2-abstract-full" style="display: none;"> HfO$_2$-based ferroelectrics have emerged as promising materials for advanced nanoelectronics, with their robust polarization and silicon compatibility making them ideal for high-density, non-volatile memory applications. Oxygen vacancies, particularly in positively charged states, are suggested to profoundly impact the polymorphism kinetics and phase stability of hafnia, thereby affecting its ferroelectric behavior. The electronic structures of pristine and oxygen-deficient hafnia polymorph have been extensively studied using density functional theory, primarily employing (semi-)local exchange-correlation functionals. However, these methods often underestimate band gaps and may not accurately capture the localized nature of $d$-electrons. In this work, we investigate hafnia in various phases using DFT + $U$ + $V$, with onsite $U$ and intersite $V$ Hubbard parameters computed self-consistently via the pseudohybrid Hubbard density functional, ACBN0, and its extended version eACBN0. We find that the self-consistent DFT + $U$ method provides comparable accuracy to the computationally more expensive Heyd-Scuseria-Ernzerhof (HSE) hybrid density functional in predicting relative thermodynamic stability, band gaps, and density of states. Furthermore, it is a cost-effective approach for estimating the formation energies of oxygen vacancies. Additionally, we demonstrate that environmentally dependent Hubbard parameters serve as useful indicators for analyzing bond strengths and electronic structures in real space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01795v2-abstract-full').style.display = 'none'; document.getElementById('2409.01795v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15684">arXiv:2408.15684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15684">pdf</a>, <a href="https://arxiv.org/format/2408.15684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A quasi-ohmic back contact achieved by inserting single-crystal graphene in flexible Kesterite solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yixiong Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wentong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Di Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+W">Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jialu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Shi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+J">Jintao Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bullock%2C+J">James Bullock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M">Mei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhancheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xingzhan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+H">Haofei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fangyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mulvaney%2C+P">Paul Mulvaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15684v1-abstract-short" style="display: inline;"> Flexible photovoltaics with a lightweight and adaptable nature that allows for deployment on curved surfaces and in building facades have always been a goal vigorously pursued by researchers in thin-film solar cell technology. The recent strides made in improving the sunlight-to-electricity conversion efficiency of kesterite Cu$_{2}$ZnSn(S, Se)$_{4}$ (CZTSSe) suggest it to be a perfect candidate.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15684v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15684v1-abstract-full" style="display: none;"> Flexible photovoltaics with a lightweight and adaptable nature that allows for deployment on curved surfaces and in building facades have always been a goal vigorously pursued by researchers in thin-film solar cell technology. The recent strides made in improving the sunlight-to-electricity conversion efficiency of kesterite Cu$_{2}$ZnSn(S, Se)$_{4}$ (CZTSSe) suggest it to be a perfect candidate. However, making use of rare Mo foil in CZTSSe solar cells causes severe problems in thermal expansion matching, uneven grain growth, and severe problems at the back contact of the devices. Herein, a strategy utilizing single-crystal graphene to modify the back interface of flexible CZTSSe solar cells is proposed. It will be shown that the insertion of graphene at the Mo foil/CZTSSe interface provides strong physical support for the subsequent deposition of the CZTSSe absorber layer, improving the adhesion between the absorber layer and the Mo foil substrate. Additionally, the graphene passivates the rough sites on the surface of the Mo foil, enhancing the chemical homogeneity of the substrate, and resulting in a more crystalline and homogeneous CZTSSe absorber layer on the Mo foil substrate. The detrimental reaction between Mo and CZTSSe has also been eliminated. Through an analysis of the electrical properties, it is found that the introduction of graphene at the back interface promotes the formation of a quasi-ohmic contact at the back contact, decreasing the back contact barrier of the solar cell, and leading to efficient collection of charges at the back interface. This investigation demonstrates that solution-based CZTSSe photovoltaic devices could form the basis of cheap and flexible solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15684v1-abstract-full').style.display = 'none'; document.getElementById('2408.15684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11332">arXiv:2408.11332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11332">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-quality imaging of large areas through path-difference ptychography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+H">Haozhi Sha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11332v1-abstract-short" style="display: inline;"> Tilting planar samples for multi-zone-axes observation is a routine procedure in electron microscopy. However, this process invariably introduces optical path differences in the electron beam across different sample positions, significantly compromising image quality, particularly over large fields of view. To address this challenge, we developed path difference ptychography (PDP), a method capabl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11332v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11332v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11332v1-abstract-full" style="display: none;"> Tilting planar samples for multi-zone-axes observation is a routine procedure in electron microscopy. However, this process invariably introduces optical path differences in the electron beam across different sample positions, significantly compromising image quality, particularly over large fields of view. To address this challenge, we developed path difference ptychography (PDP), a method capable of decoupling path differences from the four-dimensional data during reconstruction. This enables the acquisition of high-quality, large-scale images, facilitating a more comprehensive understanding and analysis of materials microstructure. Moreover, PDP has the potential to promote the widespread application of ptychographic tomography in the analysis of planar samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11332v1-abstract-full').style.display = 'none'; document.getElementById('2408.11332v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09741">arXiv:2408.09741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09741">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of electrical high-harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zan%2C+X">Xiaozhou Zan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Z">Zitian Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haiwen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Jingwei Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xin-Cheng Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09741v1-abstract-short" style="display: inline;"> High-harmonic generation (HHG), an extreme nonlinear effect, introduces an unprecedented paradigm to detect emergent quantum phases and electron dynamics inconceivable in the framework of linear and low-order nonlinear processes. As an important manifestation, the optical HHG (o-HHG) enables extraordinary opportunities to underpin attosecond physics. In addition to nonlinear optics, emerging nonli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09741v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09741v1-abstract-full" style="display: none;"> High-harmonic generation (HHG), an extreme nonlinear effect, introduces an unprecedented paradigm to detect emergent quantum phases and electron dynamics inconceivable in the framework of linear and low-order nonlinear processes. As an important manifestation, the optical HHG (o-HHG) enables extraordinary opportunities to underpin attosecond physics. In addition to nonlinear optics, emerging nonlinear electric transport has been demonstrated recently and opens new paradigms to probe quantum phase transition, symmetry breaking, band geometrical and topological properties. Thus far, only electrical second-/third-harmonic generation in perturbative regime has been elucidated, while the electrical HHG (e-HHG) that can advance to extreme non-perturbative physics remains elusive. Here we report the observation of e-HHG up to 300th-order. Remarkably, the e-HHG shows a clear non-perturbative character and exhibits periodic oscillations with the reciprocal of driving current. Further, theoretical simulations corroborate the experiments, suggesting the contribution of singular distribution of Berry curvature near band edges. Our results demonstrate e-HHG in extreme nonlinear regime and may shed light on a plethora of exotic physics and applications, such as extreme non-equilibrium quantum phenomena, ultra-fast and coherent electrical signal generations and detections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09741v1-abstract-full').style.display = 'none'; document.getElementById('2408.09741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07968">arXiv:2408.07968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07968">pdf</a>, <a href="https://arxiv.org/format/2408.07968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Left-left-right-right magnetic order in spin-1/2 Kitaev-Heisenberg chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nocera%2C+A">Alberto Nocera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Affleck%2C+I">Ian Affleck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07968v1-abstract-short" style="display: inline;"> In this work, we perform a combination of analytical and numerical studies on the phase diagram of the spin-1/2 Kitaev-Heisenberg chain in the region of negative Kitaev and positive Heisenberg couplings. Apart from the antiferromagnetic phase, we find a magnetically ordered phase with left-left-right-right order and a gapless phase with central charge value $c=1$, resolving the existing contradict&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07968v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07968v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07968v1-abstract-full" style="display: none;"> In this work, we perform a combination of analytical and numerical studies on the phase diagram of the spin-1/2 Kitaev-Heisenberg chain in the region of negative Kitaev and positive Heisenberg couplings. Apart from the antiferromagnetic phase, we find a magnetically ordered phase with left-left-right-right order and a gapless phase with central charge value $c=1$, resolving the existing contradictory results in literature regarding this parameter region. In particular, the origin of the left-left-right-right phase is clarified based on a perturbative Luttinger liquid analysis. Using a coupled-chain method, we further show that the one-dimensional (1D) left-left-right-right order is able to give a quasi-1D explanation for the 2D stripy order of the same model on the honeycomb lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07968v1-abstract-full').style.display = 'none'; document.getElementById('2408.07968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00363">arXiv:2408.00363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00363">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coexistence of large anomalous Hall effect and topological magnetic skyrmions in a Weyl nodal ring ferromagnet Mn5Ge3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+F">Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+B">Bei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+L">Linxuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenyun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+Y">Yong-Chang Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jinbo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00363v2-abstract-short" style="display: inline;"> Topological magnetic materials are expected to show multiple transport responses because of their unusual bulk electronic topology in momentum space and topological spin texture in real space. However, such multiple topological properties-hosting materials are rare in nature. In this work, we reveal the coexistence of a large tunable anomalous Hall effect and topological magnetic skyrmions in a We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00363v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00363v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00363v2-abstract-full" style="display: none;"> Topological magnetic materials are expected to show multiple transport responses because of their unusual bulk electronic topology in momentum space and topological spin texture in real space. However, such multiple topological properties-hosting materials are rare in nature. In this work, we reveal the coexistence of a large tunable anomalous Hall effect and topological magnetic skyrmions in a Weyl nodal ring ferromagnet Mn5Ge3, by using electrical transport and Lorentz transmission electronic microscope (TEM) measurements. It was found that the intrinsic anomalous Hall conductivity (AHC) can reach up to 979.7 S/cm with current along [120] and magnetic field along [001] of the Mn5Ge3 single crystals. Our theoretical calculations reveal that the large AHC is closely related with two Weyl nodal rings in band structure near the Fermi level and is strongly modified by the content of Ge. Moreover, our Lorentz-TEM images and micromagnetic simulation results, together with the sizable topological Hall effect clearly point to the robust formation of magnetic skyrmions over a wide temperature-magnetic field region. These results prove Mn5Ge3 as a rare magnetic topological nodal-line semimetal with great significance to explore novel multiple topological phenomena, which facilitates the development of spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00363v2-abstract-full').style.display = 'none'; document.getElementById('2408.00363v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21092">arXiv:2407.21092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21092">pdf</a>, <a href="https://arxiv.org/ps/2407.21092">ps</a>, <a href="https://arxiv.org/format/2407.21092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> </div> </div> <p class="title is-5 mathjax"> Entropy, Thermodynamics and the Geometrization of the Language Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenzhe Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21092v1-abstract-short" style="display: inline;"> In this paper, we discuss how pure mathematics and theoretical physics can be applied to the study of language models. Using set theory and analysis, we formulate mathematically rigorous definitions of language models, and introduce the concept of the moduli space of distributions for a language model. We formulate a generalized distributional hypothesis using functional analysis and topology. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21092v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21092v1-abstract-full" style="display: none;"> In this paper, we discuss how pure mathematics and theoretical physics can be applied to the study of language models. Using set theory and analysis, we formulate mathematically rigorous definitions of language models, and introduce the concept of the moduli space of distributions for a language model. We formulate a generalized distributional hypothesis using functional analysis and topology. We define the entropy function associated with a language model and show how it allows us to understand many interesting phenomena in languages. We argue that the zero points of the entropy function and the points where the entropy is close to 0 are the key obstacles for an LLM to approximate an intelligent language model, which explains why good LLMs need billions of parameters. Using the entropy function, we formulate a conjecture about AGI. Then, we show how thermodynamics gives us an immediate interpretation to language models. In particular we will define the concepts of partition function, internal energy and free energy for a language model, which offer insights into how language models work. Based on these results, we introduce a general concept of the geometrization of language models and define what is called the Boltzmann manifold. While the current LLMs are the special cases of the Boltzmann manifold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21092v1-abstract-full').style.display = 'none'; document.getElementById('2407.21092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T01 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05220">arXiv:2407.05220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05220">pdf</a>, <a href="https://arxiv.org/format/2407.05220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.085145">10.1103/PhysRevB.111.085145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Altermagnetism in Heavy Fermion Systems: Mean-Field study on Kondo Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Miaomiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei-Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xueming Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hong-Gang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yin Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05220v2-abstract-short" style="display: inline;"> Recently, a novel collinear magnet, i.e. the altermagnet (AM), with spin-splitting energy band and zero net magnetization have attracted great interest due to its potential spintronic applications. Here, we demonstrate AM-like phases in a microscopic Kondo lattice (KL) model with an alternating next-nearest-neighbor-hopping (NNNH). Such alternating NNNH take nonmagnetic atoms, neglected in usual a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05220v2-abstract-full').style.display = 'inline'; document.getElementById('2407.05220v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05220v2-abstract-full" style="display: none;"> Recently, a novel collinear magnet, i.e. the altermagnet (AM), with spin-splitting energy band and zero net magnetization have attracted great interest due to its potential spintronic applications. Here, we demonstrate AM-like phases in a microscopic Kondo lattice (KL) model with an alternating next-nearest-neighbor-hopping (NNNH). Such alternating NNNH take nonmagnetic atoms, neglected in usual antiferromagnetism study, into account when encountering real-life candidate AM materials. With the framework of fermionic parton mean-field theory, we find three different ground-states for the half-filling KL: 1) a $d$-wave AM state; 2) a coexistent phase with both $d$-wave AM and intrinsic Kondo screening effect; 3) a Kondo insulator. The AM-like states are characterized by their spin-splitting quasiparticle bands, Fermi surface, spin-resolved distribution function and conductivity. It is suggested that the magnetic quantum oscillation, scanning tunneling microscopy and charge transport measurement can detect those AM-like phases. We hope the present work may be useful for exploring AM-like phases in $f$-electron compounds such as CeNiAsO and Ce$_{4}$X$_{3}$(X=As,Sb,Bi). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05220v2-abstract-full').style.display = 'none'; document.getElementById('2407.05220v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 111,085145(2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18515">arXiv:2406.18515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18515">pdf</a>, <a href="https://arxiv.org/format/2406.18515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Particle-Particle Random Phase Approximation for Predicting Correlated Excited States of Point Defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiachen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yu Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jincheng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+T">Tianyu Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18515v1-abstract-short" style="display: inline;"> The particle-particle random phase approximation (ppRPA) within the hole-hole channel was recently proposed as an efficient tool for computing excitation energies of point defects in solids [J. Phys. Chem. Lett. 2024, 15, 2757-2764]. In this work, we investigate the application of ppRPA within the particle-particle channel for predicting correlated excited states of point defects, including the ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18515v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18515v1-abstract-full" style="display: none;"> The particle-particle random phase approximation (ppRPA) within the hole-hole channel was recently proposed as an efficient tool for computing excitation energies of point defects in solids [J. Phys. Chem. Lett. 2024, 15, 2757-2764]. In this work, we investigate the application of ppRPA within the particle-particle channel for predicting correlated excited states of point defects, including the carbon-vacancy (VC) in diamond, the oxygen-vacancy (VO) in magnesium oxide (MgO), and the carbon dimer defect (C$_{\text{B}}$C$_{\text{N}}$) in two-dimensional hexagonal boron nitride (h-BN). Starting from a density functional theory calculation of the ($N-2$)-electron ground state, vertical excitation energies of the $N$-electron system are obtained as the differences between the two-electron addition energies. We show that active-space ppRPA with the B3LYP functional yields accurate excitation energies, with errors mostly smaller than 0.1 eV for tested systems compared to available experimental values. We further develop a natural transition orbital scheme within ppRPA, which provides insights into the multireference character of defect states. This study, together with our previous work, establishes ppRPA as a low-cost and accurate method for investigating excited-state properties of point defect systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18515v1-abstract-full').style.display = 'none'; document.getElementById('2406.18515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17239">arXiv:2406.17239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17239">pdf</a>, <a href="https://arxiv.org/ps/2406.17239">ps</a>, <a href="https://arxiv.org/format/2406.17239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4QI01140F">10.1039/D4QI01140F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-step synthesis of Cu-doped Pb$_{10}$(PO$_{4}$)$_{6}$Cl$_{2}$ apatite: A wide-gap semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W+Z">W. Z. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+Z+H">Z. H. Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Z. Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17239v1-abstract-short" style="display: inline;"> The recent claim of potential room-temperature superconductivity in Pb$_{10-x}$Cu$_{x}$(PO$_{4}$)$_{6}$O has attracted widespread attention. However, the signature of superconductivity is later attributed to the Cu$_{2}$S impurity formed during the multiple-step synthesis procedure. Here we report a simple one-step approach to synthesize single-phase chloride analogue Cu-doped Pb$_{10}$(PO$_{4}$)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17239v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17239v1-abstract-full" style="display: none;"> The recent claim of potential room-temperature superconductivity in Pb$_{10-x}$Cu$_{x}$(PO$_{4}$)$_{6}$O has attracted widespread attention. However, the signature of superconductivity is later attributed to the Cu$_{2}$S impurity formed during the multiple-step synthesis procedure. Here we report a simple one-step approach to synthesize single-phase chloride analogue Cu-doped Pb$_{10}$(PO$_{4}$)$_{6}$Cl$_{2}$ using PbO, PbCl$_{2}$, CuCl$_{2}$, and NH$_{4}$H$_{2}$PO$_{4}$ as starting materials. Irrespective of the initial stoichiometry, the Cu doping always leads to a lattice expansion in Pb$_{10}$(PO$_{4}$)$_{6}$Cl$_{2}$. This indicates that Cu prefers to reside in the hexagonal channels rather than substitutes at the Pb site, and the chemical formula is expressed as Pb$_{10}$(PO$_{4}$)$_{6}$Cu$_{x}$Cl$_{2}$. All the Pb$_{10}$(PO$_{4}$)$_{6}$Cu$_{x}$Cl$_{2}$ (0 $\leq$ $x$ $\leq$ 1.0) samples are found to be semiconductors with wide band gaps of 4.46-4.59 eV, and the Cu-doped ones ($x$ = 0.5 and 1.0) exhibit a paramagnetic behavior without any phase transition between 400 and 1.8 K. Our study calls for a reinvestigation of the Cu location in Pb$_{10-x}$Cu$_{x}$(PO$_{4}$)$_{6}$O, and supports the absence of superconductivity in this oxyapatite. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17239v1-abstract-full').style.display = 'none'; document.getElementById('2406.17239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Inorganic Chemistry Frontiers 11, 5858 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12099">arXiv:2406.12099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12099">pdf</a>, <a href="https://arxiv.org/ps/2406.12099">ps</a>, <a href="https://arxiv.org/format/2406.12099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.155133">10.1103/PhysRevB.110.155133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of self-consistent extended Hubbard interactions and spin-orbit couplings on energy bands of semiconductors and topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wooil Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+Y">Young-Woo Son</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12099v1-abstract-short" style="display: inline;"> A first-principles computational method with self-consistent on-site and inter-site Hubbard functionals is able to treat local and non-local Coulomb interactions on an equal footing. To apply the method to understand solids with strong spin-orbit coupling (SOC), we have extended a psuedohybrid functional approach developed by Agapito-Curtarolo-Buongiorno Nardelli to implement self-consistent exten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12099v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12099v1-abstract-full" style="display: none;"> A first-principles computational method with self-consistent on-site and inter-site Hubbard functionals is able to treat local and non-local Coulomb interactions on an equal footing. To apply the method to understand solids with strong spin-orbit coupling (SOC), we have extended a psuedohybrid functional approach developed by Agapito-Curtarolo-Buongiorno Nardelli to implement self-consistent extended Hubbard energy functionals for noncollinear spin states. With this, energy bands of semiconductors with various SOC strengths such as Si, Ge, GaAs, GaSb, CdSe and PdO are obtained, agreeing with results from fully relativistic $GW$ approximation (FR-GWA) as well as experiments. We also compute energy gaps of HgTe, CuTlS$_2$, and CuTlSe$_2$ and assign them to be topological insulators correctly, unlike characteristic failures for judging topological properties from typical hybrid functionals. We demonstrate feasibility of our method to handle large systems by computing surface bands of topological insulators, Bi$_{\text{2}}$Se$_{\text{3}}$ and Bi$_2$Te$_3$ with varying thickness up to eight quintuple layers. Considering its low computational cost comparable to conventional {\it ab intio} methods and improved accuracy to FR-GWA, we expect that our method provides an opportunity to study large scale correlated systems with the strong SOC efficiently and reliably. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12099v1-abstract-full').style.display = 'none'; document.getElementById('2406.12099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 155133 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07351">arXiv:2406.07351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07351">pdf</a>, <a href="https://arxiv.org/format/2406.07351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Correcting Delocalization Error in Materials with Localized Orbitals and Linear-Response Screening </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+J+Z">Jacob Z. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weitao Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07351v3-abstract-short" style="display: inline;"> Delocalization error prevents density functional theory (DFT) from reaching its full potential, causing problems like systematically underestimated band gaps and misaligned energy levels at interfaces. We introduce lrLOSC to correct delocalization error in materials over a wide range of band gaps. We predict eleven materials&#39; fundamental gaps to within 0.28 eV, while offering a nonzero correction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07351v3-abstract-full').style.display = 'inline'; document.getElementById('2406.07351v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07351v3-abstract-full" style="display: none;"> Delocalization error prevents density functional theory (DFT) from reaching its full potential, causing problems like systematically underestimated band gaps and misaligned energy levels at interfaces. We introduce lrLOSC to correct delocalization error in materials over a wide range of band gaps. We predict eleven materials&#39; fundamental gaps to within 0.28 eV, while offering a nonzero correction to the total energy. Molecular properties are improved with the same theory (arXiv:2406.06345). lrLOSC is an essential step toward modeling molecules, materials, and their interfaces within the same DFT framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07351v3-abstract-full').style.display = 'none'; document.getElementById('2406.07351v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages (+ 10 supplemental), 3 (+1) figures. v3: modified title, abstract, formatting, and introductory section</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05823">arXiv:2406.05823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05823">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.224428">10.1103/PhysRevB.109.224428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating magnetism and transport properties of EuCd$_2$P$_2$ with a low carrier concentration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziwen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jia-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F">Fazel Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05823v1-abstract-short" style="display: inline;"> Materials that exhibit strongly coupled magnetic order and electronic properties are crucial for both fundamental research and technological applications. However, finding a material that not only shows remarkable magnetoresistive responses but also has an easily tunable ground state remains a challenge. Here, we report successful manipulation of the magnetic and transport properties of EuCd$_2$P&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05823v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05823v1-abstract-full" style="display: none;"> Materials that exhibit strongly coupled magnetic order and electronic properties are crucial for both fundamental research and technological applications. However, finding a material that not only shows remarkable magnetoresistive responses but also has an easily tunable ground state remains a challenge. Here, we report successful manipulation of the magnetic and transport properties of EuCd$_2$P$_2$, which is transformed from an A-type antiferromagnet ($T_\mathrm{N}$ = 11 K) exhibiting colossal magnetoresistance into a ferromagnet ($T_\mathrm{C}$ = 47 K) with metallic behavior. The dramatic alteration results from a low hole concentration of $10^{19}$ cm$^{-3}$ induced by changing the growth conditions. Electronic structure and total energy calculations confirm the tunability of magnetism with a small carrier concentration for EuCd$_2$P$_2$. It is feasible to switch between the magnetic states by using field-effect to control the carrier density, thereby changing the magneto-electronic response. The controllable magnetism and electrical transport of EuCd$_2$P$_2$ make it a potential candidate for spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05823v1-abstract-full').style.display = 'none'; document.getElementById('2406.05823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 224428 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05819">arXiv:2406.05819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05819">pdf</a>, <a href="https://arxiv.org/format/2406.05819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L180410">10.1103/PhysRevB.109.L180410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Carrier-induced transition from antiferromagnetic insulator to ferromagnetic metal in the layered phosphide EuZn$_2$P$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jia-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05819v1-abstract-short" style="display: inline;"> EuZn$_2$P$_2$ was reported to be an insulating antiferromagnet with $T_\mathrm{N}$ of 23.5 K. In this study, single crystals of EuZn$_2$P$_2$ exhibiting metallic behavior and a ferromagnetic order of 72 K ($T_\mathrm{C}$) are successfully synthesized via a salt flux method. The presence of hole carriers induced by the Eu vacancies in the lattice is found to be crucial for the drastic changes in ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05819v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05819v1-abstract-full" style="display: none;"> EuZn$_2$P$_2$ was reported to be an insulating antiferromagnet with $T_\mathrm{N}$ of 23.5 K. In this study, single crystals of EuZn$_2$P$_2$ exhibiting metallic behavior and a ferromagnetic order of 72 K ($T_\mathrm{C}$) are successfully synthesized via a salt flux method. The presence of hole carriers induced by the Eu vacancies in the lattice is found to be crucial for the drastic changes in magnetism and electrical transport. The carriers mediate the interlayer ferromagnetic interaction, and the coupling strength is directly related to $T_\mathrm{C}$, as evidenced by the linear dependence of $T_\mathrm{C}$ and the fitted Curie-Weiss temperatures on the Eu-layer distances for ferromagnetic Eu$M_2X_2$ ($M$ = Zn, Cd; $X$ = P, As). The ferromagnetic EuZn$_2$P$_2$ shows conspicuous negative magnetoresistance (MR) near $T_\mathrm{C}$, owing to strong magnetic scattering. The MR behavior is consistent with the Majumdar-Littlewood model, indicating that the MR can be enhanced by decreasing the carrier density. Our findings suggest that Eu$M_2X_2$ has highly tunable magnetism and charge transport, making it a promising material family for potential applications in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05819v1-abstract-full').style.display = 'none'; document.getElementById('2406.05819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, L180410 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20714">arXiv:2405.20714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20714">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Large low-field magnetocaloric response in a ferromagnetic gadolinium orthophosphate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z+W">Ziyu W. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+M">Maocai Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+X">Xubin Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+C">Chenxu Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+X">Xiaoliang Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+W">Wei Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+H">Hongzhi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yu-Jia Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+Y">Youwen Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20714v1-abstract-short" style="display: inline;"> Bulk magnetic and thermodynamic measurements, along with mean-field calculations, were conducted on the ferromagnetic K3Gd5(PO4)6 powders. No magnetic ordering was observed until 2 K, while the application of an external field B &gt; 1 T resulted in the splitting of the Gd3+ ground state multiplet and induced a non-cooperative Schottky effect. The average nearest-neighbor exchange strength |J1/kB| is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20714v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20714v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20714v1-abstract-full" style="display: none;"> Bulk magnetic and thermodynamic measurements, along with mean-field calculations, were conducted on the ferromagnetic K3Gd5(PO4)6 powders. No magnetic ordering was observed until 2 K, while the application of an external field B &gt; 1 T resulted in the splitting of the Gd3+ ground state multiplet and induced a non-cooperative Schottky effect. The average nearest-neighbor exchange strength |J1/kB| is determined to be 0.017 K, which leads to a remarkably large low field magnetic entropy change 螖Sm = 36.2 J kg-1 K-1 under applied field change B = 2 T at temperature T = 2 K, as well as a maximum adiabatic temperature change Tad = 10.9 K. We contend that ferromagnetic gadolinium orthophosphates serve as a promising reservoir for exploring advanced magnetic refrigerants applicable under low magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20714v1-abstract-full').style.display = 'none'; document.getElementById('2405.20714v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20695">arXiv:2405.20695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20695">pdf</a>, <a href="https://arxiv.org/format/2405.20695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Macroscopic Efimov effect of quantized vortex </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei-Can Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsubota%2C+M">Makoto Tsubota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nitta%2C+M">Muneto Nitta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H">Hua-Bi Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20695v1-abstract-short" style="display: inline;"> The three-body problem, from the chaotic motions of celestial bodies to complex microscopic particle interactions, has always been one of the most foundational yet intricate challenges in physics since its establishment. A key breakthrough in this domain is the Efimov effect, which represents a significant stride in what is now known as Efimov physics. Our study uncovers a macroscopic Efimov effec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20695v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20695v1-abstract-full" style="display: none;"> The three-body problem, from the chaotic motions of celestial bodies to complex microscopic particle interactions, has always been one of the most foundational yet intricate challenges in physics since its establishment. A key breakthrough in this domain is the Efimov effect, which represents a significant stride in what is now known as Efimov physics. Our study uncovers a macroscopic Efimov effect in a three-component Bose-Einstein Condensate (BEC) system. Through theoretical analysis and numerical simulation, it is verified that under certain conditions, three vortices form a bound state, while removing one vortex causes the others to unbind, demonstrating topological characteristics similar to the Borromean rings, hence termed the `vortex Efimov effect&#39;, signifying a novel topological phase transition. We propose several experimental approaches to realize this macroscopic Efimov effect, paving new paths not only in many-body physics but also in exploring quantum phase transitions and applications in quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20695v1-abstract-full').style.display = 'none'; document.getElementById('2405.20695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18164">arXiv:2405.18164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18164">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Imaging, counting, and positioning single interstitial atoms in solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+H">Haozhi Sha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+L">Liangze Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18164v1-abstract-short" style="display: inline;"> Interstitial atoms are ubiquitous in solids and they are widely incorporated into materials to tune their lattice structure, electronic transportation, and mechanical properties. Because the distribution of interstitial atoms in matrix materials is usually disordered and most of them are light atoms with weak scattering ability, it remains a challenge to directly image single interstitial atoms an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18164v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18164v1-abstract-full" style="display: none;"> Interstitial atoms are ubiquitous in solids and they are widely incorporated into materials to tune their lattice structure, electronic transportation, and mechanical properties. Because the distribution of interstitial atoms in matrix materials is usually disordered and most of them are light atoms with weak scattering ability, it remains a challenge to directly image single interstitial atoms and measure their geometrical positions. In this work, direct imaging and measuring of single interstitial atoms have been realized with adaptive-propagator ptychography. The measurement of their three-dimensional coordinates enables quantitative analysis of the pair distribution function of the interstitial atoms and reveals the anisotropic occupation of oxygen in the interstitial sites in titanium. The current work paves the way for the determination of interstitial atoms in materials, and for the correlation between the atomic-scale behavior of interstitial atoms and the physical properties of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18164v1-abstract-full').style.display = 'none'; document.getElementById('2405.18164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages and 8 figures; Jizhe Cui and Haozhi Sha contributed equally to this work. Rong Yu, corresponding author: ryu@tsinghua.edu.cn</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15742">arXiv:2405.15742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15742">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Correlated Charge Density Wave Insulators in Chirally Twisted Triple Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G">Gengdong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Zuo Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yijie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+M">Miao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zaizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Min Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jinhua Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zhida Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xiaobo Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15742v1-abstract-short" style="display: inline;"> Electrons residing in flat-band system can play a vital role in triggering spectacular phenomenology due to relatively large interactions and spontaneous breaking of different degeneracies. In this work we demonstrate chirally twisted triple bilayer graphene, a new moir茅 structure formed by three pieces of helically stacked Bernal bilayer graphene, as a highly tunable flat-band system. In addition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15742v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15742v1-abstract-full" style="display: none;"> Electrons residing in flat-band system can play a vital role in triggering spectacular phenomenology due to relatively large interactions and spontaneous breaking of different degeneracies. In this work we demonstrate chirally twisted triple bilayer graphene, a new moir茅 structure formed by three pieces of helically stacked Bernal bilayer graphene, as a highly tunable flat-band system. In addition to the correlated insulators showing at integer moir茅 fillings, commonly attributed to interaction induced symmetry broken isospin flavors in graphene, we observe abundant insulating states at half-integer moir茅 fillings, suggesting a longer-range interaction and the formation of charge density wave insulators which spontaneously break the moir茅 translation symmetry. With weak out-of-plane magnetic field applied, as observed half-integer filling states are enhanced and more quarter-integer filling states appear, pointing towards further quadrupling moir茅 unit cells. The insulating states at fractional fillings combined with Hartree-Fock calculations demonstrate the observation of a new type of correlated charge density wave insulators in graphene and points to a new accessible twist manner engineering correlated moir茅 electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15742v1-abstract-full').style.display = 'none'; document.getElementById('2405.15742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14160">arXiv:2405.14160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14160">pdf</a>, <a href="https://arxiv.org/format/2405.14160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2418-2">10.1007/s11433-024-2418-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Embedded Majorana Islands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jin-Xing Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weststr%C3%B6m%2C+A">Alex Weststr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen-Li Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14160v1-abstract-short" style="display: inline;"> Mesoscopic superconducting islands hosting Majorana zero modes (MZMs), or Majorana islands in short, offer a prototype of topological qubits. In this work we investigate theoretically the model of a generic Majorana island tunneling-coupled to a single-piece metallic substrate, hence an \textit{embedded Majorana island}. We show the crucial consequences of an interplay between the topological grou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14160v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14160v1-abstract-full" style="display: none;"> Mesoscopic superconducting islands hosting Majorana zero modes (MZMs), or Majorana islands in short, offer a prototype of topological qubits. In this work we investigate theoretically the model of a generic Majorana island tunneling-coupled to a single-piece metallic substrate, hence an \textit{embedded Majorana island}. We show the crucial consequences of an interplay between the topological ground states nonlocally addressed by the MZMs and the metallic bath with coherent electron propagation: on the one hand, the topological degeneracy on the Majorana island can be preserved, by virtue of the particle-hole symmetry, despite the apparent bath-induced coupling between MZMs; on the other hand, the electronic interference in the metallic bath may lead to profound alterations to the renormalization group behavior of the hybrid system towards low energy/temperature compared with conventional Kondo physics. This work serves to establish the model of embedded Majorana islands as an experimentally relevant and theoretically intriguing problem particularly in the direction of topological quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14160v1-abstract-full').style.display = 'none'; document.getElementById('2405.14160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 297212 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01829">arXiv:2405.01829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01829">pdf</a>, <a href="https://arxiv.org/format/2405.01829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Fractional quantum anomalous Hall effect in a singular flat band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenqi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+D">Dawei Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+T">Tixuan Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+F">Feng-Ren Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zuzhang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01829v2-abstract-short" style="display: inline;"> In the search of fractional quantum anomalous Hall (FQAH) effect, the conventional wisdom is to start from a flat Chern band isolated from the rest of the Hilbert space by band gaps, so that many-body interaction can be projected to a landscape that mimics a Landau level. Singular flat bands (SFB), which share protected touching points with other dispersive bands, represent another type of flat la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01829v2-abstract-full').style.display = 'inline'; document.getElementById('2405.01829v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01829v2-abstract-full" style="display: none;"> In the search of fractional quantum anomalous Hall (FQAH) effect, the conventional wisdom is to start from a flat Chern band isolated from the rest of the Hilbert space by band gaps, so that many-body interaction can be projected to a landscape that mimics a Landau level. Singular flat bands (SFB), which share protected touching points with other dispersive bands, represent another type of flat landscapes differing from Landau levels and Chern bands in topological and geometric properties. Here we report the finding of FQAH phases in a SFB, which emerges in the bipartite limit of the nearest-neighbor tight-binding model of twisted bilayer MoTe$_2$. At 1/3 and 2/3 filling of the SFB, FQAH effects are demonstrated using density matrix renormalisation group calculations with all bands, as well as exact diagonalization calculations with the two touching bands. Gapping the band touching can turn the SFB into a nearly flat Chern band, but counter-intuitively this suppresses the FQAH effect, as the gap opening introduces strong inhomogeneity to the quantum geometry. An optical scheme to realize such SFB for cold atoms is provided. Our findings uncover a new arena for the exploration of fractional quantum Hall physics beyond the Landau level and Chern insulator paradigms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01829v2-abstract-full').style.display = 'none'; document.getElementById('2405.01829v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added discussions of singular flat bands, results of exact diagonalization, and updated mean-field results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15542">arXiv:2404.15542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15542">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01764">10.1021/acs.nanolett.4c01764 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twisted MoSe2 Homobilayer Behaving as a Heterobilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karmakar%2C+A">Arka Karmakar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Mahboob%2C+A">Abdullah Al-Mahboob</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zawadzka%2C+N">Natalia Zawadzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raczy%C5%84ski%2C+M">Mateusz Raczy艅ski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weiguang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arfaoui%2C+M">Mehdi Arfaoui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gayatri"> Gayatri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kucharek%2C+J">Julia Kucharek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sadowski%2C+J+T">Jerzy T. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H+S">Hyeon Suk Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babi%C5%84ski%2C+A">Adam Babi艅ski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pacuski%2C+W">Wojciech Pacuski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kazimierczuk%2C+T">Tomasz Kazimierczuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Molas%2C+M+R">Maciej R Molas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15542v2-abstract-short" style="display: inline;"> Heterostructures (HSs) formed by the transition-metal dichalcogenides (TMDCs) materials have shown great promise in next-generation optoelectronic and photonic applications. An artificially twisted HS, allows us to manipulate the optical, and electronic properties. With this work, we introduce the understanding of the complex energy transfer (ET) process governed by the dipolar interaction in a tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15542v2-abstract-full').style.display = 'inline'; document.getElementById('2404.15542v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15542v2-abstract-full" style="display: none;"> Heterostructures (HSs) formed by the transition-metal dichalcogenides (TMDCs) materials have shown great promise in next-generation optoelectronic and photonic applications. An artificially twisted HS, allows us to manipulate the optical, and electronic properties. With this work, we introduce the understanding of the complex energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameters mismatch and indirect/direct (CVD/Exf.) bandgap nature. This effectively weaken the charge transfer (CT) process and allows the ET process to take over the carrier recombination channels. We utilize a series of optical and electron spectroscopy techniques complementing by the density functional theory calculations, to describe a massive photoluminescence enhancement from the HS area due to an efficient ET process. Our results show that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a &#39;true&#39; heterobilayer nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15542v2-abstract-full').style.display = 'none'; document.getElementById('2404.15542v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10249">arXiv:2404.10249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10249">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Picturing the Gap Between the Performance and US-DOE&#39;s Hydrogen Storage Target: A Data-Driven Model for MgH2 Dehydrogenation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chaoqun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weijie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+X">Xiujing Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhengyang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10249v2-abstract-short" style="display: inline;"> Developing solid-state hydrogen storage materials is as pressing as ever, which requires a comprehensive understanding of the dehydrogenation chemistry of a solid-state hydride. Transition state search and kinetics calculations are essential to understanding and designing high-performance solid-state hydrogen storage materials by filling in the knowledge gap that current experimental techniques ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10249v2-abstract-full').style.display = 'inline'; document.getElementById('2404.10249v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10249v2-abstract-full" style="display: none;"> Developing solid-state hydrogen storage materials is as pressing as ever, which requires a comprehensive understanding of the dehydrogenation chemistry of a solid-state hydride. Transition state search and kinetics calculations are essential to understanding and designing high-performance solid-state hydrogen storage materials by filling in the knowledge gap that current experimental techniques cannot measure. However, the ab initio analysis of these processes is computationally expensive and time-consuming. Searching for descriptors to accurately predict the energy barrier is urgently needed, to accelerate the prediction of hydrogen storage material properties and identify the opportunities and challenges in this field. Herein, we develop a data-driven model to describe and predict the dehydrogenation barriers of a typical solid-state hydrogen storage material, magnesium hydride (MgH2), based on the combination of the crystal Hamilton population orbital of Mg-H bond and the distance between atomic hydrogen. By deriving the distance energy ratio, this model elucidates the key chemistry of the reaction kinetics. All the parameters in this model can be directly calculated with significantly less computational cost than conventional transition state search, so that the dehydrogenation performance of hydrogen storage materials can be predicted efficiently. Finally, we found that this model leads to excellent agreement with typical experimental measurements reported to date and provides clear design guidelines on how to propel the performance of MgH2 closer to the target set by the United States Department of Energy (US-DOE). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10249v2-abstract-full').style.display = 'none'; document.getElementById('2404.10249v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08145">arXiv:2404.08145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08145">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Polar vortex hidden in twisted bilayers of paraelectric SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+H">Haozhi Sha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yixuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yunpeng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Houbing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08145v1-abstract-short" style="display: inline;"> Polar topologies, such as vortex and skyrmion, have attracted significant interest due to their unique physical properties and promising applications in high-density memory devices. Currently, most polar vortices are observed in heterostructures containing ferroelectric materials and constrained by substrates. In this study, we unravel arrays of polar vortices formed in twisted freestanding bilaye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08145v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08145v1-abstract-full" style="display: none;"> Polar topologies, such as vortex and skyrmion, have attracted significant interest due to their unique physical properties and promising applications in high-density memory devices. Currently, most polar vortices are observed in heterostructures containing ferroelectric materials and constrained by substrates. In this study, we unravel arrays of polar vortices formed in twisted freestanding bilayers composed of SrTiO3, a quantum-paraelectric material. Depth-resolved structures of the bilayers are measured with deep-sub-angstrom resolution and one picometer accuracy using multislice ptychography, enabling identification of the three-dimensional variations of polarization topology. Our findings reveal the evolution of the polar vortices in the twisted overlapping layers, demonstrating the reverse of rotation manner in the depth direction. Twisted freestanding bilayers provide a unique platform for exploration and modulation of novel polar topologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08145v1-abstract-full').style.display = 'none'; document.getElementById('2404.08145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06929">arXiv:2404.06929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06929">pdf</a>, <a href="https://arxiv.org/format/2404.06929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2024.116652">10.1016/j.nuclphysb.2024.116652 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact solution of a two-parameter extended Bariev model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+M">Mingchen Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Junpeng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen-li Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yupeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06929v2-abstract-short" style="display: inline;"> An exactly solvable strongly correlated electron model with two independent parameters is constructed in the frame of the quantum inverse scattering method, which can be seen as a generalization of the Bariev model. Through the Bethe ansatz method, a set of Bethe ansatz equations is derived. In the thermodynamic limit, to study the ground state of the model, we obtain the integral equations for th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06929v2-abstract-full').style.display = 'inline'; document.getElementById('2404.06929v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06929v2-abstract-full" style="display: none;"> An exactly solvable strongly correlated electron model with two independent parameters is constructed in the frame of the quantum inverse scattering method, which can be seen as a generalization of the Bariev model. Through the Bethe ansatz method, a set of Bethe ansatz equations is derived. In the thermodynamic limit, to study the ground state of the model, we obtain the integral equations for the density of Bethe roots. Numerical validation are done to confirm the accuracy of our analytic results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06929v2-abstract-full').style.display = 'none'; document.getElementById('2404.06929v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+W&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10