CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 100 results for author: <span class="mathjax">Wei, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Wei%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wei, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wei%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wei, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Wei%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Wei%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Wei%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Wei%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14635">arXiv:2502.14635</a> <span> [<a href="https://arxiv.org/pdf/2502.14635">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum fluctuations-driven Melting Transitions in Two-dimensional Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+D">Dong Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yuting Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+D">Dongxing Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chenhui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Deju Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yuhang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Rao%2C+G">Gaofeng Rao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yuqiao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Jian%2C+X">Xian Jian</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haoran Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zhigang Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xixiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yanning Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Haiwen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+J">Jingbo Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yanrong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+J">Jie Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14635v1-abstract-short" style="display: inline;"> Quantum fluctuations are pivotal in driving quantum phase transitions, exemplified by the quantum melting of Wigner crystals into Fermi liquids in electron systems. However, their impact on superconducting systems near zero temperature, particularly in the superconductor-insulator/metal transition, remains poorly understood. In this study, through electric transport measurements on the two-dimensi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14635v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14635v1-abstract-full" style="display: none;"> Quantum fluctuations are pivotal in driving quantum phase transitions, exemplified by the quantum melting of Wigner crystals into Fermi liquids in electron systems. However, their impact on superconducting systems near zero temperature, particularly in the superconductor-insulator/metal transition, remains poorly understood. In this study, through electric transport measurements on the two-dimensional (2D) superconductor (SnS)1.17NbS2, we demonstrate that quantum fluctuations induce vortex displacement from their mean position, leading to the quantum melting of vortex solid near zero temperature. Quantitative analysis reveals the magnetic field-induced anomalous metal originates from this quantum melting transition, with energy dissipation governed by quantum fluctuations-driven vortex displacements. Remarkably, further extending this analysis to various 2D superconductors yields the same results, and many properties of anomalous metal can be qualitatively understood within the framework of quantum melting. The connection between the quantum melting of vortex solids and dissipative anomalous metal opens a novel pathway towards understanding quantum phase transitions through vortex dynamics, providing new insights on both fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14635v1-abstract-full').style.display = 'none'; document.getElementById('2502.14635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05865">arXiv:2502.05865</a> <span> [<a href="https://arxiv.org/pdf/2502.05865">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Exact solution of the relationship between the eigenvalue discreteness and the behavior of eigenstates in Su-Schrieffer-Heeger lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Huitong Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05865v1-abstract-short" style="display: inline;"> Eigenstate localization and bulk-boundary correspondence are fundamental phenomena in one-dimensional (1D) Su-Schrieffer-Heeger (SSH) lattices. The eigenvalues discreteness and the eigenstates localization exhibit a high degree of consistency as system information evolve. We explore the relationship between the eigenvalue discreteness and the eigenstates behavior in 1D SSH lattices. The discretene… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05865v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05865v1-abstract-full" style="display: none;"> Eigenstate localization and bulk-boundary correspondence are fundamental phenomena in one-dimensional (1D) Su-Schrieffer-Heeger (SSH) lattices. The eigenvalues discreteness and the eigenstates localization exhibit a high degree of consistency as system information evolve. We explore the relationship between the eigenvalue discreteness and the eigenstates behavior in 1D SSH lattices. The discreteness fraction and the inverse participation ratio (IPR) combined with a Taylor expansion are utilized to describe the relationship. In the Hermitian case, we employ the bulk-edge correspondence and the perturbation theory to derive an exact solution considering both zero and non-zero modes. We also extend our analysis to the non-Hermitian cases, assuming that eigenvalues remain purely real. Our findings reveal a logarithmic relationship between the degree of eigenvalue discreteness and eigenstates localization, which holds under both the Hermitian and non-Hermitian conditions. This result is fully consistent with the theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05865v1-abstract-full').style.display = 'none'; document.getElementById('2502.05865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18133">arXiv:2412.18133</a> <span> [<a href="https://arxiv.org/pdf/2412.18133">pdf</a>, <a href="https://arxiv.org/ps/2412.18133">ps</a>, <a href="https://arxiv.org/format/2412.18133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad9d6e">10.1088/1367-2630/ad9d6e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $N$-photon bundles emission in high-spin Jaynes-Cummings model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Huanhuan Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+J">Jing Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Y">Yuangang Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18133v1-abstract-short" style="display: inline;"> High-spin quantum systems, endowed with rich internal degrees of freedom, constitute a promising platform for manipulating high-quality $n$-photon states. In this study, we explore $n$-photon bundles emission by constructing a high-spin Jaynes-Cummings model (JCM) within a single-mode cavity interacting with a single spin-$3/2$ atom. Our analysis reveals that the $n$-photon dressed state splitting… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18133v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18133v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18133v1-abstract-full" style="display: none;"> High-spin quantum systems, endowed with rich internal degrees of freedom, constitute a promising platform for manipulating high-quality $n$-photon states. In this study, we explore $n$-photon bundles emission by constructing a high-spin Jaynes-Cummings model (JCM) within a single-mode cavity interacting with a single spin-$3/2$ atom. Our analysis reveals that the $n$-photon dressed state splittings can be significantly enhanced by adjusting the linear Zeeman shift inherent to the internal degrees of freedom in high-spin systems, thereby yielding well-resolved $n$-photon resonance. The markedly enhanced energy-spectrum anharmonicity, stemming from strong nonlinearities, enables the realization of high-quality $n$-photon bundles emission with large steady-state photon numbers, in contrast to conventional spin-1/2 JCM setups. Of particular interest is the realization of an optical multimode transducer capable of transitioning among single-photon blockade, two- to four-photon bundles emission, and photon-induced tunneling by tuning the light-cavity detuning in the presence of both cavity and atomic pump fields. This work unveils significant opportunities for diverse applications in nonclassical all-optical switching and high-quality multiphoton sources, deepening our understanding of creating specialized nonclassical states and fundamental physics in high-spin atom-cavity systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18133v1-abstract-full').style.display = 'none'; document.getElementById('2412.18133v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 26 (2024) 123024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04872">arXiv:2412.04872</a> <span> [<a href="https://arxiv.org/pdf/2412.04872">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching of room temperature two-dimensional van der Waals ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Heshuang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+J">Jinyu Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+D">Dongdong Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gou%2C+J">Jinlong Gou</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+J">Junxin Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K">Kun Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+Z">Zhiyan Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04872v1-abstract-short" style="display: inline;"> Efficiently manipulating the magnetization of van der Waals ferromagnets has attracted considerable interest in developing room-temperature two-dimensional material-based memory and logic devices. Here, taking advantage of the unique properties of the van der Waals ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switchi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04872v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04872v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04872v1-abstract-full" style="display: none;"> Efficiently manipulating the magnetization of van der Waals ferromagnets has attracted considerable interest in developing room-temperature two-dimensional material-based memory and logic devices. Here, taking advantage of the unique properties of the van der Waals ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switching of van der Waals ferromagnet Fe3GaTe2 through the orbital torque generated by the orbital Hall material, Titanium (Ti). The switching current density is estimated to be around 1.6 x 10^6 A/cm^2, comparable to that achieved in Fe3GaTe2 using spin-orbit torque from spin Hall materials. The efficient magnetization switching arises from the combined effects of the large orbital Hall conductivity of Ti and the strong spin-orbit correlation of the Fe3GaTe2, as confirmed through theoretical calculations. Our findings advance the understanding of orbital torque switching and pave the way for exploring material-based orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04872v1-abstract-full').style.display = 'none'; document.getElementById('2412.04872v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages,4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01679">arXiv:2412.01679</a> <span> [<a href="https://arxiv.org/pdf/2412.01679">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimisation and Loss Analyses of Pulsed Field Magnetisation in a Superconducting Motor with Cryocooled Iron Cores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+L">Luning Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongye Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+G">Guojin Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haigening Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yuyang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zhipeng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jintao Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Coombs%2C+T">Tim Coombs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01679v1-abstract-short" style="display: inline;"> A 2D electromagnetic-thermal coupled numerical model has been developed using the finite element method and validated against experimental data to investigate a superconducting machine featuring high-temperature superconducting (HTS) tape stacks and cryocooled iron cores. The HTS stacks are transformed into trapped field stacks (TFSs) through pulsed field magnetisation (PFM), generating rotor fiel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01679v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01679v1-abstract-full" style="display: none;"> A 2D electromagnetic-thermal coupled numerical model has been developed using the finite element method and validated against experimental data to investigate a superconducting machine featuring high-temperature superconducting (HTS) tape stacks and cryocooled iron cores. The HTS stacks are transformed into trapped field stacks (TFSs) through pulsed field magnetisation (PFM), generating rotor fields. After PFM, the superconducting motor operates on the same principle as permanent magnet synchronous motors. This study explores the behaviour of HTS stacks by altering the stack's layer number from one to nine and adjusting the pulsed current amplitude from 250 A to 1000 A. The primary objective of this paper is to identify the optimal combination of pulsed current amplitudes and TFS layer numbers for achieving maximum magnetisation fields. The secondary objective is to evaluate the overall losses in both superconducting and non-superconducting parts of the machine during magnetisation, including heat generated in various layers of the TFS, and losses in the motor's active materials (copper windings and iron cores). Two motor configurations were proposed, and two calculation methods using linear interpolation of iron losses and steel grades were introduced to estimate the iron losses for the studied iron material, M270-35A. This pioneering study is expected to serve as a valuable reference for loss analyses and structural design considerations in developing superconducting machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01679v1-abstract-full').style.display = 'none'; document.getElementById('2412.01679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19pages, 18 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01018">arXiv:2412.01018</a> <span> [<a href="https://arxiv.org/pdf/2412.01018">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Vertical Emission of Blue Light from a Symmetry Breaking Plasmonic Nanocavity-Emitter System Supporting Bound States in the Continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yongqi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jiayi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jiang Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+X">Xiumei Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yangzhe Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+N">Nan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhiguang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haonan Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Haoran Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenxin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+B">Bin Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+Y">Yurui Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01018v1-abstract-short" style="display: inline;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01018v1-abstract-full" style="display: none;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum emitters, due to the strong intrinsic Ohmic losses of metals. Here, we propose and realize a 蟽h symmetry-breaking plasmonic honeycomb nanocavities (PHC) that support quasi-BIC resonance modes with high-Q factors. Our anodic oxidation-engineered strategy breaks out-of-plane symmetry while preserving in-plane symmetry, enabling the PHC to exhibit collective plasmonic lattice resonances (PLR) couplings and achieve Q-factors exceeding 106. Experimentally, we couple perovskite quantum dots (PQDs) to the PHC, demonstrating effective tuning of their emission properties and beam quality in the blue spectral region, achieving a 32-fold emission enhancement by suppress Ohmic loss and the life time of quantum emitters, simultaneously realize vertical emission in the 2.556 - 2.638 eV region, with a far-field hexagonal beam shape and a full width at half maximum of 12.6 degree under optimal coupling conditions. Furthermore, we demonstrate topological band inversion characterized by Zak phase transitions by continuously tuning the system parameters, confirming that the PHC supports topologically non-trivial q-BIC due to PLR coupling. The PHC presents itself as a promising next-generation, high-brightness nanoscale light source matrix, which can be directly scaled up to cover a wide wavelength range from UV to IR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'none'; document.getElementById('2412.01018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09718">arXiv:2409.09718</a> <span> [<a href="https://arxiv.org/pdf/2409.09718">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evolution of structure, magnetism, and electronic/thermal-transports of Ti(Cr)-substituted Fe2CrV all-d-metal Heusler ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yiting Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Q">Qingqi Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Q">Qiusa Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09718v1-abstract-short" style="display: inline;"> All-d-metal full-Heusler alloys possess superior mechanical properties and high spin polarization, which would play an important role in spintronic applications. Despite this, their electrical and thermal transport properties have not been comprehensively investigated till now. In this work, we present an analysis on the evolution of structural, magnetic and transport properties of Cr- and Ti-subs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09718v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09718v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09718v1-abstract-full" style="display: none;"> All-d-metal full-Heusler alloys possess superior mechanical properties and high spin polarization, which would play an important role in spintronic applications. Despite this, their electrical and thermal transport properties have not been comprehensively investigated till now. In this work, we present an analysis on the evolution of structural, magnetic and transport properties of Cr- and Ti-substituted Fe2CrV all-d-metal Heusler alloys by combining theoretical calculations and experiments. Both series of alloys crystallize in Hg2CuTi-type structure. With increasing Ti doping, the calculated total magnetic moments of Fe50Cr25V25-xTix decrease linearly. The experimental saturation magnetization is highly consistent with theoretical calculations and Slater-Pauling rule when x < 4, indicating the highly ordered atomic occupation. The magnetization and Curie temperature can be significantly tuned by altering spin polarizations and exchange interactions. The introduction of the foreign atom, Ti, results in a linear increase in residual resistivity, while electron-phonon scattering keeps relatively constant. The maximum values for electrical and thermal transport properties are observed in the stoichiometric Fe2CrV composition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09718v1-abstract-full').style.display = 'none'; document.getElementById('2409.09718v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figs and 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09712">arXiv:2409.09712</a> <span> [<a href="https://arxiv.org/pdf/2409.09712">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Nodal Chains and Transverse Transports in Ferromagnetic Centrosymmetric Semimetal FeIn2S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shouguo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">Baogen Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09712v1-abstract-short" style="display: inline;"> Nodal chain semimetals protected by nonsymmorphic symmetries are distinct from Dirac and Weyl semimetals, featuring unconventional topological surface states and resulting in anomalous magnetotransport properties. Here, we reveal that the ferromagnetic FeIn2S4 is a suitable nodal chain candidate in theory. Centrosymmetric FeIn2S4 with nonsymmorphic symmetries shows half-metallicity and clean band-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09712v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09712v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09712v1-abstract-full" style="display: none;"> Nodal chain semimetals protected by nonsymmorphic symmetries are distinct from Dirac and Weyl semimetals, featuring unconventional topological surface states and resulting in anomalous magnetotransport properties. Here, we reveal that the ferromagnetic FeIn2S4 is a suitable nodal chain candidate in theory. Centrosymmetric FeIn2S4 with nonsymmorphic symmetries shows half-metallicity and clean band-crossings with hourglass-type dispersion tracing out nodal lines. Owing to glide mirror symmetries, the nontrivial nodal loops form nodal chain, which is associated with the perpendicular glide mirror planes. These nodal chains are robust against spin-orbital interaction, giving rise to the coexistence of drumhead-type surface states and closed surface Fermi arcs. Moreover, the nodal loops protected by nonsymmorphic symmetry contribute to large anomalous Hall conductivity and the anomalous Nernst conductivity. Our results provide a platform to explore the intriguing topological state and transverse transport properties in magnetic system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09712v1-abstract-full').style.display = 'none'; document.getElementById('2409.09712v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figs and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09709">arXiv:2409.09709</a> <span> [<a href="https://arxiv.org/pdf/2409.09709">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Scaling the topological transport based on an effective Weyl model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenqing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">Baogen Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09709v1-abstract-short" style="display: inline;"> Magnetic topological semimetals are increasingly fueling interests in exotic electronic-thermal physics including thermoelectrics and spintronics. To control the transports of topological carriers in such materials becomes a central issue. However, the topological bands in real materials are normally intricate, leaving obstacles to understand the transports in a physically clear way. Parallel to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09709v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09709v1-abstract-full" style="display: none;"> Magnetic topological semimetals are increasingly fueling interests in exotic electronic-thermal physics including thermoelectrics and spintronics. To control the transports of topological carriers in such materials becomes a central issue. However, the topological bands in real materials are normally intricate, leaving obstacles to understand the transports in a physically clear way. Parallel to the renowned effective two-band model in magnetic field scale for semiconductors, here, an effective Weyl-band model in temperature scale was developed with pure Weyl state and a few meaningful parameters for topological semimetals. Based on the model, a universal scaling was established and subsequently verified by reported experimental transports. The essential sign regularity of anomalous Hall and Nernst transports was revealed with connection to chiralities of Weyl nodes and carrier types. Upon a double-Weyl model, a concept of Berry-curvature ferrimagnetic structure, as an analogy to the real-space magnetic structure, was further proposed and well described the emerging sign reversal of Nernst thermoelectric transports in temperature scale. Our study offers a convenient tool for scaling the Weyl-fermion-related transport physics, and promotes the modulations and applications of magnetic topological materials in future topological quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09709v1-abstract-full').style.display = 'none'; document.getElementById('2409.09709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Five figs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10377">arXiv:2408.10377</a> <span> [<a href="https://arxiv.org/pdf/2408.10377">pdf</a>, <a href="https://arxiv.org/format/2408.10377">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Approaching the Physical Limits of Specific Absorption Rate in Hyperthermia Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Scheibler%2C+S">S. Scheibler</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">H. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Ackers%2C+J">J. Ackers</a>, <a href="/search/cond-mat?searchtype=author&query=Helbig%2C+S">S. Helbig</a>, <a href="/search/cond-mat?searchtype=author&query=Koraltan%2C+S">S. Koraltan</a>, <a href="/search/cond-mat?searchtype=author&query=Peremadathil-Pradeep%2C+R">R. Peremadathil-Pradeep</a>, <a href="/search/cond-mat?searchtype=author&query=Krupi%C5%84ski%2C+M">M. Krupi艅ski</a>, <a href="/search/cond-mat?searchtype=author&query=Graeser%2C+M">M. Graeser</a>, <a href="/search/cond-mat?searchtype=author&query=Suess%2C+D">D. Suess</a>, <a href="/search/cond-mat?searchtype=author&query=Herrmann%2C+I+K">I. K. Herrmann</a>, <a href="/search/cond-mat?searchtype=author&query=Hug%2C+H+J">H. J. Hug</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10377v1-abstract-short" style="display: inline;"> Magnetic nanoparticle-based hyperthermia has emerged as a promising therapeutic modality for treating malignant solid tumors that exhibit resistance to conventional cancer treatments, including chemotherapy and radiation. Despite the clinical approval of superparamagnetic iron oxide nanoparticles (SPIONs) for the adjunct treatment of recurrent glioblastoma, their therapeutic potential is undercut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10377v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10377v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10377v1-abstract-full" style="display: none;"> Magnetic nanoparticle-based hyperthermia has emerged as a promising therapeutic modality for treating malignant solid tumors that exhibit resistance to conventional cancer treatments, including chemotherapy and radiation. Despite the clinical approval of superparamagnetic iron oxide nanoparticles (SPIONs) for the adjunct treatment of recurrent glioblastoma, their therapeutic potential is undercut by chemical synthesis-inherent limitations such as low saturation magnetization, superparamagnetic characteristics, and a wide nanoparticle size distribution. Here, we introduce an micromagnetic modelling-based SAF-MDP design with in-plane magnetization, optimized through specific uniaxial anisotropy adjustments to avert the spin-flop phenomenon and eliminate hysteresis-free hard-axis magnetization loops, paired with a mechanofluidic modeling approach to assess the alignment of the SAF-MDP to the applied alternating magnetic field (AMF). Magnetic Force Microscopy characterization provides unprecedented insights into the particle switching behaviour on a single particle scale. This comprehensive strategy spanning micromagnetics and advanced magnetic characterization enables the design of particles with heating efficiencies to approach the theoretical maximum, dictated by the saturation magnetization of the utilized materials and limited solely by the biologically acceptable frequencies and amplitudes of the oscillating magnetic field. Our work not only addresses the limitations encountered by previous methodologies but also sets the stage for the development of advanced SAF-MDP designs and alignment techniques. This opens a new avenue to hyperthermia-based cancer therapy, delineated only by the boundaries of physical laws and biological safety standards. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10377v1-abstract-full').style.display = 'none'; document.getElementById('2408.10377v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 3 pages Methods</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16532">arXiv:2407.16532</a> <span> [<a href="https://arxiv.org/pdf/2407.16532">pdf</a>, <a href="https://arxiv.org/format/2407.16532">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Propulsion Contribution from Individual Filament in Flagellar Bundle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiao%2C+Y">Yateng Qiao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+L">Lingchun Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Y">Yan Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yibo Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Bian%2C+H">Hongyi Bian</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yidi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+Y">Yuxin Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yingyue Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+R+H+C">Russell Hii Ching Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Teng%2C+Y">Yinuo Teng</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yunlong Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Gaojin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+Z">Zijie Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16532v1-abstract-short" style="display: inline;"> Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16532v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16532v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16532v1-abstract-full" style="display: none;"> Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-functional macroscopic experimental system and employ advanced numerical simulations for verification. Flagella arrangements and phase differences between helices are investigated, revealing the variation in propulsion contribution from the individual helix. Numerically, we build a time-dependent model to match the bundling process and study the influence of hydrodynamic interactions. Surprisingly, it is found that the total propulsion generated by a bundle of two filaments is constant at various phase differences between the helices. However, the difference between the propulsion from each helix is significantly affected by the phase difference, and only one of the helices is responsible for the total propulsion at a phase difference equals to pi. Through our experimental and computational results, we provide a new model considering the propulsion contribution of each filament to better understand microbial locomotion mechanisms, especially on the wobbling behavior of the cell. Our work also sheds light on the design and control of artificial microswimmers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16532v1-abstract-full').style.display = 'none'; document.getElementById('2407.16532v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09384">arXiv:2403.09384</a> <span> [<a href="https://arxiv.org/pdf/2403.09384">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous thermal transport and high thermoelectric performance of Cu-based vanadate CuVO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Q">Qiling Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haoran Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xiaolong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+X">Xuewei Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+P">Peng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09384v1-abstract-short" style="display: inline;"> Thermoelectric (TE) conversion technology, capable of transforming heat into electricity, is critical for sustainable energy solutions. Many promising TE materials contain rare or toxic elements, so the development of cost-effective and eco-friendly high-performance TE materials is highly urgent. Herein, we explore the thermal transport and TE properties of transition metal vanadate CuVO3 by using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09384v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09384v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09384v1-abstract-full" style="display: none;"> Thermoelectric (TE) conversion technology, capable of transforming heat into electricity, is critical for sustainable energy solutions. Many promising TE materials contain rare or toxic elements, so the development of cost-effective and eco-friendly high-performance TE materials is highly urgent. Herein, we explore the thermal transport and TE properties of transition metal vanadate CuVO3 by using first-principles calculation. On the basis of unified theory of heat conduction, we uncover the hierarchical thermal transport feature in CuVO3, where wave-like tunneling makes a significant contribution to the lattice thermal conductivity (\k{appa}l) and result in the anomalously weak temperature dependence of \k{appa}l. This is primarily attributable to the complex phononic band structure caused by the heterogeneity of Cu-O and V-O bonds. Simultaneously, we report a high power factor of 5.45 mW K-2 m-1 realized in hole-doped CuVO3, which arises from a high electrical conductivity and a large Seebeck coefficient enabled by the multiple valleys and large electronic density of states near the valence band edge. Impressively, the low \k{appa}l and the high power factor make p-typed CuVO3 have ZT of up to 1.39, with the excellent average ZT above 1.0 from 300 to 600 K, which is superior to most reported Cu-based TE materials. Our findings suggest that CuVO3 compound is promising candidate for energy conversion applications in innovative TE devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09384v1-abstract-full').style.display = 'none'; document.getElementById('2403.09384v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02157">arXiv:2403.02157</a> <span> [<a href="https://arxiv.org/pdf/2403.02157">pdf</a>, <a href="https://arxiv.org/format/2403.02157">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Half-Metallic Ferromagnetic Weyl Fermions Related to Dynamic Correlations in the Zinc-blende Compound VAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haoran Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+R">Ruixiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+X">Xiaoliang Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xiaozhi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02157v2-abstract-short" style="display: inline;"> The realization of 100\% polarized topological Weyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications. Here, we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs, which was deemed as a half-metallic ferromagnet related to dynamic correlations. Based on the combination of density… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02157v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02157v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02157v2-abstract-full" style="display: none;"> The realization of 100\% polarized topological Weyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications. Here, we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs, which was deemed as a half-metallic ferromagnet related to dynamic correlations. Based on the combination of density functional theory and dynamical mean field theory, we uncover that the half-metallic ferromagnet VAs exhibit attractive Weyl semimetallic behaviors with twelve pairs of Weyl points, which are very close to the Fermi level. Meanwhile, we also investigate the magnetization-dependent topological properties; the results show that the change of magnetization directions only slightly affects the positions of Weyl points, which is attributed to the weak spin-orbital coupling effects. The topological surface states of VAs projected on semi-infinite (001) and (111) surfaces are investigated. The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces. Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02157v2-abstract-full').style.display = 'none'; document.getElementById('2403.02157v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01873">arXiv:2401.01873</a> <span> [<a href="https://arxiv.org/pdf/2401.01873">pdf</a>, <a href="https://arxiv.org/format/2401.01873">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Observation of the Magnonic Dicke Superradiant Phase Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Dasom Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Dasgupta%2C+S">Sohail Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiaoxuan Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+J">Joong-Mok Park</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hao-Tian Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+L">Liang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Doumani%2C+J">Jacques Doumani</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xinwei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wanting Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+D">Di Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+R+H+J">Richard H. J. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Everitt%2C+H+O">Henry O. Everitt</a>, <a href="/search/cond-mat?searchtype=author&query=Kimura%2C+S">Shojiro Kimura</a>, <a href="/search/cond-mat?searchtype=author&query=Nojiri%2C+H">Hiroyuki Nojiri</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jigang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+S">Shixun Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Bamba%2C+M">Motoaki Bamba</a>, <a href="/search/cond-mat?searchtype=author&query=Hazzard%2C+K+R+A">Kaden R. A. Hazzard</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01873v1-abstract-short" style="display: inline;"> Two-level atoms coupled with single-mode cavity photons are predicted to exhibit a quantum phase transition when the coupling strength exceeds a critical value, entering a phase in which atomic polarization and photonic field are finite even at zero temperature and without external driving. However, this phenomenon, the superradiant phase transition (SRPT), is forbidden by a no-go theorem due to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01873v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01873v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01873v1-abstract-full" style="display: none;"> Two-level atoms coupled with single-mode cavity photons are predicted to exhibit a quantum phase transition when the coupling strength exceeds a critical value, entering a phase in which atomic polarization and photonic field are finite even at zero temperature and without external driving. However, this phenomenon, the superradiant phase transition (SRPT), is forbidden by a no-go theorem due to the existence of the diamagnetic term in the Hamiltonian. Here, we present spectroscopic evidence for a magnonic SRPT in ErFeO$_3$, where the role of the photonic mode (two-level atoms) in the photonic SRPT is played by an Fe$^{3+}$ magnon mode (Er$^{3+}$ spins). The absence of the diamagnetic term in the Fe$^{3+}$-Er$^{3+}$ exchange coupling ensures that the no-go theorem does not apply. Terahertz and gigahertz magnetospectroscopy experiments revealed the signatures of the SRPT -- a kink and a softening, respectively, of two spin-magnon hybridized modes at the critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01873v1-abstract-full').style.display = 'none'; document.getElementById('2401.01873v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09070">arXiv:2311.09070</a> <span> [<a href="https://arxiv.org/pdf/2311.09070">pdf</a>, <a href="https://arxiv.org/format/2311.09070">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single pair of charge-two high-fold fermions with type-II van Hove singularities on the surface of ultralight chiral crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+X">Xiaoliang Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Y">Yuanjun Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haoran Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xiaozhi Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09070v2-abstract-short" style="display: inline;"> The realization of single-pair chiral fermions in Weyl systems remains challenging in topology physics, especially for the systems with higher chiral charges $C$. In this work, based on the symmetry analysis, low-energy effective model, and first-principles calculations, we identify the single-pair high-fold fermions in chiral cubic lattices. We first derive the minimal lattice model that exhibits… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09070v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09070v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09070v2-abstract-full" style="display: none;"> The realization of single-pair chiral fermions in Weyl systems remains challenging in topology physics, especially for the systems with higher chiral charges $C$. In this work, based on the symmetry analysis, low-energy effective model, and first-principles calculations, we identify the single-pair high-fold fermions in chiral cubic lattices. We first derive the minimal lattice model that exhibits a single pair of Weyl points with the opposite chiral charges of $C$ = $\pm{2}$. Furthermore, we show the ultralight chiral crystal P4$_3$32-type LiC$_2$ and its mirror enantiomer as high-quality candidate materials, which exhibit large energy windows to surmount the interruption of irrelevant bands. Since two enantiomers are connected by the mirror symmetry, we observe the opposite chiral charges $C$ and the reversal of the Fermi arc velocities, showing the correspondence of chirality in the momentum space and the real space. In addition, we also reveal type-II van Hove singularities on the helicoid surfaces, which may induce chirality-locked charge density waves on the crystal surface. Our work not only provides a promising platform for controlling the sign of topological charge through the structural chirality but also facilitates the exploration of electronic correlations on the surface of ultralight chiral crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09070v2-abstract-full').style.display = 'none'; document.getElementById('2311.09070v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00762">arXiv:2307.00762</a> <span> [<a href="https://arxiv.org/pdf/2307.00762">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological design and synthesis of high-spin aza-triangulenes without Jahn-Teller distortions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lawrence%2C+J">James Lawrence</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yuanyuan He</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haipeng Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+J">Jie Su</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+S">Shaotang Song</a>, <a href="/search/cond-mat?searchtype=author&query=Rodrigues%2C+A+W">Alina Wania Rodrigues</a>, <a href="/search/cond-mat?searchtype=author&query=Miravet%2C+D">Daniel Miravet</a>, <a href="/search/cond-mat?searchtype=author&query=Hawrylak%2C+P">Pawel Hawrylak</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jianwei Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Jishan Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00762v2-abstract-short" style="display: inline;"> The atomic doping of open-shell nanographenes enables the precise tuning of their electronic and magnetic state, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00762v2-abstract-full').style.display = 'inline'; document.getElementById('2307.00762v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00762v2-abstract-full" style="display: none;"> The atomic doping of open-shell nanographenes enables the precise tuning of their electronic and magnetic state, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms and functional groups. However, the occurrence of Jahn-Teller distortions in such systems can have a crucial impact on their total spin and requires further theoretical and experimental investigation. In this study, we examine the nitrogen-doped aza-triangulene series via a combination of density functional theory and on-surface synthesis. We identify a general trend in the calculated spin states of aza-[n]triangulenes of various sizes, separating them into two symmetry classes, one of which features molecules that are predicted to undergo Jahn-Teller distortions that reduce their symmetry and thus their total spin. We link this behavior to the location of the central nitrogen atom relative to the two underlying carbon sublattices of the molecules. Consequently, our findings reveal that centrally-doped aza-triangulenes have one less radical than their undoped counterparts, irrespective of their predicted symmetry. We follow this by demonstrating the on-surface synthesis of 蟺-extended aza-[5]triangulene, a large member of the higher symmetry class without Jahn-Teller distortions, via a simple one-step annealing process on Cu(111) and Au(111). Using scanning probe microscopy and spectroscopy combined with theoretical calculations, we prove that the molecule is positively charged on the Au(111) substrate, with a high-spin quintet state of S = 2, the same total spin as undoped neutral [5]triangulene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00762v2-abstract-full').style.display = 'none'; document.getElementById('2307.00762v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper 18 pages, 5 figures. Removed hyphen from author name, addded funding information for one author</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03019">arXiv:2306.03019</a> <span> [<a href="https://arxiv.org/pdf/2306.03019">pdf</a>, <a href="https://arxiv.org/format/2306.03019">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.013318">10.1103/PhysRevA.109.013318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hubbard parameters for programmable tweezer arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hao-Tian Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Ibarra-Garc%C3%ADa-Padilla%2C+E">Eduardo Ibarra-Garc铆a-Padilla</a>, <a href="/search/cond-mat?searchtype=author&query=Wall%2C+M+L">Michael L. Wall</a>, <a href="/search/cond-mat?searchtype=author&query=Hazzard%2C+K+R+A">Kaden R. A. Hazzard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03019v3-abstract-short" style="display: inline;"> The experimental realization of Fermi-Hubbard tweezer arrays opens a new stage for engineering fermionic matter, where programmable lattice geometries and Hubbard model parameters are combined with single-site imaging. In order to use these versatile experimental Fermi-Hubbard models as quantum simulators, it is crucial to know the Hubbard parameters describing them. Here we develop methods to cal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03019v3-abstract-full').style.display = 'inline'; document.getElementById('2306.03019v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03019v3-abstract-full" style="display: none;"> The experimental realization of Fermi-Hubbard tweezer arrays opens a new stage for engineering fermionic matter, where programmable lattice geometries and Hubbard model parameters are combined with single-site imaging. In order to use these versatile experimental Fermi-Hubbard models as quantum simulators, it is crucial to know the Hubbard parameters describing them. Here we develop methods to calculate the Hubbard model parameters of arbitrary two-dimensional lattice geometries: the tunneling $t$, on-site potential $V$, and interaction $U$, for multiple bands and for both fermions and bosons. We show several examples. One notable finding is that a finite array of equally strong and separated individual tweezer potentials actually sums to give a non-periodic total potential and thus spatially non-uniform Hubbard parameters. We demonstrate procedures to find trap configurations that equalize these parameters. More generally, these procedures solve the inverse problem of calculating Hubbard parameters: given desired Hubbard parameters, find trap configurations to realize them. These methods will be critical tools for using tunnel-coupled tweezer arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03019v3-abstract-full').style.display = 'none'; document.getElementById('2306.03019v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109, 013318 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12638">arXiv:2212.12638</a> <span> [<a href="https://arxiv.org/pdf/2212.12638">pdf</a>, <a href="https://arxiv.org/format/2212.12638">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Dimensionality-confined superconductivity within SrNbO3-SrTiO3 heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haoran Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yuting Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">Meng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+E">Er-Jia Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z+G">Zhi Gang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12638v1-abstract-short" style="display: inline;"> Interfaces between transition-metal oxides are able to host two-dimensional electron gases (2DEGs) and exhibit exotic quantum phenomena. Here we report the observation of superconductivity below 230 mK for the heterostructure composed of SrNbO3 (SNO) and SrTiO3 (STO). Different from some other counterparts with two insulators, the metallic SNO provides a novel mechanism to form a quasi 2DEG by cha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12638v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12638v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12638v1-abstract-full" style="display: none;"> Interfaces between transition-metal oxides are able to host two-dimensional electron gases (2DEGs) and exhibit exotic quantum phenomena. Here we report the observation of superconductivity below 230 mK for the heterostructure composed of SrNbO3 (SNO) and SrTiO3 (STO). Different from some other counterparts with two insulators, the metallic SNO provides a novel mechanism to form a quasi 2DEG by charge transfer from bulk towards interface under strain. The superconductivity, residing within the strained SNO layer near the interface, is contributed by an electron system with record-low carrier density. Notably, although embedded in a normal metallic layer with a carrier density 4 to 5 orders higher, the electron system is still uniquely well-protected to retain high mobility and lies deep in extreme quantum regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12638v1-abstract-full').style.display = 'none'; document.getElementById('2212.12638v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02363">arXiv:2209.02363</a> <span> [<a href="https://arxiv.org/pdf/2209.02363">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0129290">10.1063/5.0129290 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry-enforced planar nodal chain phonons in non-symmorphic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Hong-Ao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hao-Yu Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+B">Bing-Yang Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02363v1-abstract-short" style="display: inline;"> Topological semimetal states which are constrained by symmetries and give birth to innovative excitations are the frontiers of topological quantum matter. Nodal chains in which two nodal rings connect at one point were first discovered in non-symmorphic electronic systems and then generalized to symmorphic phononic systems. In this work, we identify a new class of planar nodal chains in non-symmor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02363v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02363v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02363v1-abstract-full" style="display: none;"> Topological semimetal states which are constrained by symmetries and give birth to innovative excitations are the frontiers of topological quantum matter. Nodal chains in which two nodal rings connect at one point were first discovered in non-symmorphic electronic systems and then generalized to symmorphic phononic systems. In this work, we identify a new class of planar nodal chains in non-symmorphic phononic systems, where the connecting rings lie in the same plane. The constituting nodal rings are protected by mirror symmetry, their intersection is guaranteed by the combination of time-reversal and non-symmorphic two-fold screw symmetry. In addition, the connecting points are four-fold degenerate while those in previous works are two-fold degenerate. We searched all 230 space groups and found 8 space groups that can host the proposed planar nodal chain phonons. Taking wurtzite GaN (space group No.186) as an example, the planar nodal chain is confirmed by first-principles calculations. The planar nodal chains result in two distinct classes of drumhead surface. The first category lies on the [10(-1)0] surface Brillouin zone and the second lies on the [0001] surface Brillouin zone. Our finding reveals a class of planar nodal chains in non-symmorphic phononic systems, expands the catalog of topological nodal chains, and enriches the family of topological surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02363v1-abstract-full').style.display = 'none'; document.getElementById('2209.02363v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14083">arXiv:2206.14083</a> <span> [<a href="https://arxiv.org/pdf/2206.14083">pdf</a>, <a href="https://arxiv.org/format/2206.14083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.047001">10.1103/PhysRevLett.129.047001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gapped collective charge excitations and interlayer hopping in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&query=Bejas%2C+M">M. Bejas</a>, <a href="/search/cond-mat?searchtype=author&query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&query=Yamase%2C+H">H. Yamase</a>, <a href="/search/cond-mat?searchtype=author&query=Coppola%2C+N">N. Coppola</a>, <a href="/search/cond-mat?searchtype=author&query=Betto%2C+D">D. Betto</a>, <a href="/search/cond-mat?searchtype=author&query=Falter%2C+C">C. Falter</a>, <a href="/search/cond-mat?searchtype=author&query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&query=Sacco%2C+C">C. Sacco</a>, <a href="/search/cond-mat?searchtype=author&query=Maritato%2C+L">L. Maritato</a>, <a href="/search/cond-mat?searchtype=author&query=Orgiani%2C+P">P. Orgiani</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H+I">H. I. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&query=Galdi%2C+A">A. Galdi</a>, <a href="/search/cond-mat?searchtype=author&query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14083v1-abstract-short" style="display: inline;"> We use resonant inelastic x-ray scattering (RIXS) to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ (SLCO). We detect a plasmon gap of $\sim$~120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in SLCO are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by laye… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14083v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14083v1-abstract-full" style="display: none;"> We use resonant inelastic x-ray scattering (RIXS) to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ (SLCO). We detect a plasmon gap of $\sim$~120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in SLCO are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by layered $t$-$J$-$V$ model calculations. A similar analysis performed on recent RIXS data from other cuprates suggests that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping $t_z$. Our work signifies the three-dimensionality of the charge dynamics in layered cuprates and provides a new method to determine $t_z$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14083v1-abstract-full').style.display = 'none'; document.getElementById('2206.14083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, includes Supplemental Material. Accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 047001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.00389">arXiv:2205.00389</a> <span> [<a href="https://arxiv.org/pdf/2205.00389">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2208505119">10.1073/pnas.2208505119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling of Berry-curvature monopole dominated large linear positive magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Q">Qingqi Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jianlei Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+X">Xinqi Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhaosheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+M">Min Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+R">Rongjin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yuan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shouguo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">Baogen Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.00389v2-abstract-short" style="display: inline;"> The linear positive magnetoresistance (LPMR) is a widely observed phenomenon in topological materials, which is promising for potential applications on topological spintronics. However, its mechanism remains ambiguous yet and the effect is thus uncontrollable. Here, we report a quantitative scaling model that correlates the LPMR with the Berry curvature, based on a ferromagnetic Weyl semimetal CoS… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00389v2-abstract-full').style.display = 'inline'; document.getElementById('2205.00389v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.00389v2-abstract-full" style="display: none;"> The linear positive magnetoresistance (LPMR) is a widely observed phenomenon in topological materials, which is promising for potential applications on topological spintronics. However, its mechanism remains ambiguous yet and the effect is thus uncontrollable. Here, we report a quantitative scaling model that correlates the LPMR with the Berry curvature, based on a ferromagnetic Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 Kelvin and 9 Tesla, among known magnetic topological semimetals. In this system, masses of Weyl nodes existing near the Fermi level, revealed by theoretical calculations, serve as Berry-curvature monopoles and low-effective-mass carriers. Based on the Weyl picture, we propose a relation \[\text{MR}=\frac{e}{\hbar }B{{惟}_{\text{F}}}\], with B being the applied magnetic field and \[{{惟}_{\text{F}}}\] the average Berry curvature near the Fermi surface, and further introduce temperature factor to both MR/B slope (MR per unit field) and anomalous Hall conductivity, which establishes the connection between the model and experimental measurements. A clear picture of the linearly slowing down of carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the k-space Berry curvature and real-space magnetic field. Our study not only provides an experimental evidence of Berry curvature induced LPMR for the first time, but also promotes the common understanding and functional designing of the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic sensing or information storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00389v2-abstract-full').style.display = 'none'; document.getElementById('2205.00389v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15023">arXiv:2203.15023</a> <span> [<a href="https://arxiv.org/pdf/2203.15023">pdf</a>, <a href="https://arxiv.org/format/2203.15023">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.123201">10.1103/PhysRevLett.129.123201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A two-dimensional programmable tweezer array of fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z+Z">Zoe. Z. Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Spar%2C+B+M">Benjamin M. Spar</a>, <a href="/search/cond-mat?searchtype=author&query=Prichard%2C+M+L">Max L. Prichard</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+S">Sungjae Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hao-Tian Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Ibarra-Garc%C3%ADa-Padilla%2C+E">Eduardo Ibarra-Garc铆a-Padilla</a>, <a href="/search/cond-mat?searchtype=author&query=Hazzard%2C+K+R+A">Kaden R. A. Hazzard</a>, <a href="/search/cond-mat?searchtype=author&query=Bakr%2C+W+S">Waseem S. Bakr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15023v1-abstract-short" style="display: inline;"> We prepare high-filling two-component arrays of up to fifty fermionic atoms in optical tweezers, with the atoms in the ground motional state of each tweezer. Using a stroboscopic technique, we configure the arrays in various two-dimensional geometries with negligible Floquet heating. Full spin- and density-resolved readout of individual sites allows us to post-select near-zero entropy initial stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15023v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15023v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15023v1-abstract-full" style="display: none;"> We prepare high-filling two-component arrays of up to fifty fermionic atoms in optical tweezers, with the atoms in the ground motional state of each tweezer. Using a stroboscopic technique, we configure the arrays in various two-dimensional geometries with negligible Floquet heating. Full spin- and density-resolved readout of individual sites allows us to post-select near-zero entropy initial states for fermionic quantum simulation. We prepare a correlated state in a two-by-two tunnel-coupled Hubbard plaquette, demonstrating all the building blocks for realizing a programmable fermionic quantum simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15023v1-abstract-full').style.display = 'none'; document.getElementById('2203.15023v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 123201 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07112">arXiv:2112.07112</a> <span> [<a href="https://arxiv.org/pdf/2112.07112">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202100149">10.1002/qute.202100149 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-Driven Magneto-Topological Phase Transition in a magnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Q">Qingqi Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+H">Hongyi Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jianlei Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Q">Qiushi Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+N">Nana Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiao%2C+L">Lin Jiao</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yonggang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qihang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07112v1-abstract-short" style="display: inline;"> The co-occurrence of phase transitions with local and global order parameters, such as the entangled magnetization and topological invariant, is attractive but has been seldom realized experimentally. Here, by using high-pressure in-situ X-ray diffraction, high-pressure electric transport measurements and high-pressure first-principles calculations, we report a magneto-topological phase transition… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07112v1-abstract-full').style.display = 'inline'; document.getElementById('2112.07112v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07112v1-abstract-full" style="display: none;"> The co-occurrence of phase transitions with local and global order parameters, such as the entangled magnetization and topological invariant, is attractive but has been seldom realized experimentally. Here, by using high-pressure in-situ X-ray diffraction, high-pressure electric transport measurements and high-pressure first-principles calculations, we report a magneto-topological phase transition, i.e., the phenomenon of magnetic materials undergoing different magnetic and topological phases during the process of pressure loading, in a recently discovered magnetic Weyl semimetal Co3Sn2S2. By considering both out-of-plane ferromagnetic and in-plane anti-ferromagnetic components, the calculated results can well fit the experimental data. The calculation results furtherly reveal a pristine Weyl phase with four more pairs of Weyl nodes under low pressures, and a generally-defined Z2 topological insulator phase after the restoration of time-reversal symmetry. Remarkably, the present magneto-topological phase transition involves a pair of crossing bands of two spin channels becoming degenerate. Thus, all the chiral Weyl nodes annihilate with their counterparts from another spin channel, in contrast to the typical annihilation of Weyl pairs from the same bands in inversion-asymmetric systems. Our experiments and theoretical calculations uncover a manner to modulate the diverse topological states by controlling the internal exchange splitting via external physical knobs in topological magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07112v1-abstract-full').style.display = 'none'; document.getElementById('2112.07112v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Quantum Technologies 5 (2022) 2100149 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04717">arXiv:2112.04717</a> <span> [<a href="https://arxiv.org/pdf/2112.04717">pdf</a>, <a href="https://arxiv.org/format/2112.04717">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXEnergy.3.013014">10.1103/PRXEnergy.3.013014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiple lattice instabilities and complex ground state in Cs$_2$AgBiBr$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+X">Xing He</a>, <a href="/search/cond-mat?searchtype=author&query=Krogstad%2C+M">Matthew Krogstad</a>, <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+M+K">Mayanak K Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=Lanigan-Atkins%2C+T">Tyson Lanigan-Atkins</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+C">Chengjie Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yaohua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+T">Tao Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haotong Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jinsong Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenkranz%2C+S">Stephan Rosenkranz</a>, <a href="/search/cond-mat?searchtype=author&query=Osborn%2C+R">Raymond Osborn</a>, <a href="/search/cond-mat?searchtype=author&query=Delaire%2C+O">Olivier Delaire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04717v3-abstract-short" style="display: inline;"> Metal halides perovskites (MHPs) are attracting considerable interest for optoelectronic applications, with Cs$_2$AgBiBr$_6$ one of the main contenders among lead-free systems. Cs$_2$AgBiBr$_6$ crystallizes in a nominally double-perovskite structure, but exhibits a soft lattice with large atomic fluctuations characteristic of MHPs. While crucial to understand electron-phonon and phonon-phonon coup… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04717v3-abstract-full').style.display = 'inline'; document.getElementById('2112.04717v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04717v3-abstract-full" style="display: none;"> Metal halides perovskites (MHPs) are attracting considerable interest for optoelectronic applications, with Cs$_2$AgBiBr$_6$ one of the main contenders among lead-free systems. Cs$_2$AgBiBr$_6$ crystallizes in a nominally double-perovskite structure, but exhibits a soft lattice with large atomic fluctuations characteristic of MHPs. While crucial to understand electron-phonon and phonon-phonon couplings, the spatio-temporal correlations of these fluctuations remain largely unknown. Here, we reveal these correlations using comprehensive neutron and x-ray scattering measurements on Cs$_2$AgBiBr$_6$ single-crystals, complemented with first-principles simulations augmented with machine-learned neural-network potentials. We report the discovery of an unexpected complex modulated ground state structure containing several hundred atoms, arising from a soft-phonon instability of the low-temperature tetragonal phase. Further, our experiments and simulations both reveal extensive correlated 2D fluctuations of Br octahedra at finite temperature, arising from soft anharmonic optic phonons, reflecting very shallow potential wells. These results provide new insights into the atomic structure and fluctuations in MHPs, critical to understand and control their thermal and optoelectronic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04717v3-abstract-full').style.display = 'none'; document.getElementById('2112.04717v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.04153">arXiv:2108.04153</a> <span> [<a href="https://arxiv.org/pdf/2108.04153">pdf</a>, <a href="https://arxiv.org/format/2108.04153">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.043316">10.1103/PhysRevA.104.043316 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal thermodynamics of an SU($N$) Fermi-Hubbard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ibarra-Garc%C3%ADa-Padilla%2C+E">Eduardo Ibarra-Garc铆a-Padilla</a>, <a href="/search/cond-mat?searchtype=author&query=Dasgupta%2C+S">Sohail Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hao-Tian Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Taie%2C+S">Shintaro Taie</a>, <a href="/search/cond-mat?searchtype=author&query=Takahashi%2C+Y">Yoshiro Takahashi</a>, <a href="/search/cond-mat?searchtype=author&query=Scalettar%2C+R+T">Richard T. Scalettar</a>, <a href="/search/cond-mat?searchtype=author&query=Hazzard%2C+K+R+A">Kaden R. A. Hazzard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.04153v2-abstract-short" style="display: inline;"> The SU(2) symmetric Fermi-Hubbard model (FHM) plays an essential role in strongly correlated fermionic many-body systems. In the one particle per site and strongly interacting limit ${U/t \gg 1}$, it is effectively described by the Heisenberg Hamiltonian. In this limit, enlarging the spin and extending the typical SU(2) symmetry to SU($N$) has been predicted to give exotic phases of matter in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04153v2-abstract-full').style.display = 'inline'; document.getElementById('2108.04153v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.04153v2-abstract-full" style="display: none;"> The SU(2) symmetric Fermi-Hubbard model (FHM) plays an essential role in strongly correlated fermionic many-body systems. In the one particle per site and strongly interacting limit ${U/t \gg 1}$, it is effectively described by the Heisenberg Hamiltonian. In this limit, enlarging the spin and extending the typical SU(2) symmetry to SU($N$) has been predicted to give exotic phases of matter in the ground state, with a complicated dependence on $N$. This raises the question of what -- if any -- are the finite-temperature signatures of these phases, especially in the currently experimentally relevant regime near or above the superexchange energy. We explore this question for thermodynamic observables by numerically calculating the thermodynamics of the SU($N$) FHM in the two-dimensional square lattice near densities of one particle per site, using determinant Quantum Monte Carlo and Numerical Linked Cluster Expansion. Interestingly, we find that for temperatures above the superexchange energy, where the correlation length is short, the energy, number of on-site pairs, and kinetic energy are universal functions of $N$. Although the physics in the regime studied is well beyond what can be captured by low-order high-temperature series, we show that an analytic description of the scaling is possible in terms of only one- and two-site calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04153v2-abstract-full').style.display = 'none'; document.getElementById('2108.04153v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 043316 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02904">arXiv:2106.02904</a> <span> [<a href="https://arxiv.org/pdf/2106.02904">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.xinn.2023.100399">10.1016/j.xinn.2023.100399 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field modulation of topological electronic states and emergent magneto-transport in a magnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jianlei Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jiacheng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Meng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Q">Qingqi Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+M">Min Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+R">Rongjin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Geng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhijun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaohong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">Hongjun Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">Baogen Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02904v2-abstract-short" style="display: inline;"> The modulation of topological electronic states by an external magnetic field is highly desired for condensed matter physics. Schemes to achieve this have been proposed theoretically, but few can be realized experimentally. Here, combining transverse transport, theoretical calculations, and scanning tunneling microscopy/spectroscopy (STM/S) investigations, we provide an observation that the topolo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02904v2-abstract-full').style.display = 'inline'; document.getElementById('2106.02904v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02904v2-abstract-full" style="display: none;"> The modulation of topological electronic states by an external magnetic field is highly desired for condensed matter physics. Schemes to achieve this have been proposed theoretically, but few can be realized experimentally. Here, combining transverse transport, theoretical calculations, and scanning tunneling microscopy/spectroscopy (STM/S) investigations, we provide an observation that the topological electronic states, accompanied by an emergent magneto-transport phenomenon, were modulated by applying magnetic fields through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6. A giant unconventional anomalous Hall effect (UAHE) is found during the magnetisation re-orientation from easy axis to hard ones in magnetic fields, with a UAHE peak around the low field of 5 kOe. Under the reasonable spin-canting effect, the folding of the topological anti-crossing bands occurs, generating a strong Berry curvature that accounts for the observed UAHE. Field-dependent STM/S reveals a highly synchronous evolution of electronic density of states, with a dI/dV peak around the same field of 5 kOe, which provides evidence to the folded bands and excited UAHE by external magnetic fields. This finding elucidates the connection between the real-space non-collinear magnetism and the k-space topological electronic states and establishes a novel manner to engineer the magneto-transport behaviours of correlated electrons for future topological spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02904v2-abstract-full').style.display = 'none'; document.getElementById('2106.02904v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Innovation 4, 2023, 100399 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02433">arXiv:2105.02433</a> <span> [<a href="https://arxiv.org/pdf/2105.02433">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of the selective localization of carbon nanotubes and phase domain in immiscible blends on tunable microwave dielectric properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+L">Liping Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Y">Yu Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+P">Peng Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Huijie Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuhan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+H">Hua-Xin Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+F">Faxiang Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02433v1-abstract-short" style="display: inline;"> In recent years, the immiscible polymer blend system has attracted much attention as the matrix of nanocomposites. Herein, from the perspective of dynamics, the control of the carbon nanotubes (CNTs) migration aided with the interface of polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends was achieved through a facile melt mixing method. Thus, we revealed a comprehensive relationship betw… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02433v1-abstract-full').style.display = 'inline'; document.getElementById('2105.02433v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02433v1-abstract-full" style="display: none;"> In recent years, the immiscible polymer blend system has attracted much attention as the matrix of nanocomposites. Herein, from the perspective of dynamics, the control of the carbon nanotubes (CNTs) migration aided with the interface of polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends was achieved through a facile melt mixing method. Thus, we revealed a comprehensive relationship between several typical CNTs migrating scenarios and the microwave dielectric properties of their nanocomposites. Based on the unique morphologies and phase domain structures of the immiscible matrix, we further investigated the multiple microwave dielectric relaxation processes and shed new light on the relation between relaxation peak position and the phase domain size distribution. Moreover, by integrating the CNTs interface localization control with the matrix co-continuous structure construction, we found that the interface promotes double percolation effect to achieve conductive percolation at low CNTs loading (~1.06 vol%). Overall, the present study provides a unique nanocomposite material design symphonizing both functional fillers dispersion and location as well as the matrix architecture optimization for microwave applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02433v1-abstract-full').style.display = 'none'; document.getElementById('2105.02433v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01790">arXiv:2104.01790</a> <span> [<a href="https://arxiv.org/pdf/2104.01790">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Competing ferromagnetic and antiferromagnetic interactions drive the magnetocaloric tunability in Gd55Co30NixAl15-x microwires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yunfei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Duc%2C+N+T+M">Nguyen Thi My Duc</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+T">Tangfeng Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Huijie Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+F">Faxiang Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Phan%2C+M">Manh-Huong Phan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01790v1-abstract-short" style="display: inline;"> We have employed Gd55Co30NixAl15-x (x = 10, 5 and 0) amorphous microwires as a model system to unravel the impact of multiple magnetic interactions on the magnetism and the magnetocaloric behavior in Gd-alloy microwire systems. Our study shows that in addition to the RKKY ferromagnetic (FM) interaction (Gd-Gd), antiferromagnetic (AFM) interactions (Gd-Co, Gd-Ni) coexist and contribute to the magne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01790v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01790v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01790v1-abstract-full" style="display: none;"> We have employed Gd55Co30NixAl15-x (x = 10, 5 and 0) amorphous microwires as a model system to unravel the impact of multiple magnetic interactions on the magnetism and the magnetocaloric behavior in Gd-alloy microwire systems. Our study shows that in addition to the RKKY ferromagnetic (FM) interaction (Gd-Gd), antiferromagnetic (AFM) interactions (Gd-Co, Gd-Ni) coexist and contribute to the magnetic and magnetocaloric response of the system. The dilution effect of Al element on the FM Gd-Gd interaction is responsible for the decrease of the Curie temperature (TC), whereas the increase of the saturation magnetization (MS) is originated from the reduced AFM Gd-Ni interaction. A thorough analysis of critical exponents suggests that the presence of the AFM interactions hinders the system to exhibit a long-range FM order below the TC. Adjusting these interactions is shown to preserve the large refrigerant capacity (RC) while tuning the TC over a wide temperature range, which is desirable for active magnetic refrigeration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01790v1-abstract-full').style.display = 'none'; document.getElementById('2104.01790v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Melt-extraction; Microwire; Magnetocaloric effect; Magnetic refrigeration</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07320">arXiv:2102.07320</a> <span> [<a href="https://arxiv.org/pdf/2102.07320">pdf</a>, <a href="https://arxiv.org/format/2102.07320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0CP05595F">10.1039/D0CP05595F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Data-driven analysis of the electronic-structure factors controlling the work functions of perovskite oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+Y">Yihuang Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Weinan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+W">Wenbo Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hua Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Dabo%2C+I">Ismaila Dabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07320v1-abstract-short" style="display: inline;"> Tuning the work functions of materials is of practical interest for maximizing the performance of microelectronic and (photo)electrochemical devices, as the efficiency of these systems depends on the ability to control electronic levels at surfaces and across interfaces. Perovskites are promising compounds to achieve such control. In this work, we examine the work functions of more than 1,000 pero… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07320v1-abstract-full').style.display = 'inline'; document.getElementById('2102.07320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07320v1-abstract-full" style="display: none;"> Tuning the work functions of materials is of practical interest for maximizing the performance of microelectronic and (photo)electrochemical devices, as the efficiency of these systems depends on the ability to control electronic levels at surfaces and across interfaces. Perovskites are promising compounds to achieve such control. In this work, we examine the work functions of more than 1,000 perovskite oxide surfaces (ABO$_3$) by data-driven (machine-learning) analysis and identify the factors that determine their magnitude. While the work functions of BO$_2$-terminated surfaces are sensitive to the energy of the hybridized oxygen p bands, the work functions of AO-terminated surfaces exhibit a much less trivial dependence with respect to the filling of the d bands of the B-site atom and of its electronic affinity. This study shows the utility of interpretable data-driven models in analyzing the work functions of cubic perovskites from a limited number of electronic-structure descriptors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07320v1-abstract-full').style.display = 'none'; document.getElementById('2102.07320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11610">arXiv:2101.11610</a> <span> [<a href="https://arxiv.org/pdf/2101.11610">pdf</a>, <a href="https://arxiv.org/format/2101.11610">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.104416">10.1103/PhysRevB.103.104416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase Diagram of Triangular Lattice Quantum Ising Model under External Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Da+Liao%2C+Y">Yuan Da Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z">Zheng Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hao-Tian Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11610v2-abstract-short" style="display: inline;"> Quantum Ising model on a triangular lattice hosts a finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase with emergent U(1) symmetry, and it will transit into an up-up-down (UUD) phase with $C_3$ symmetry breaking upon an infinitesimal external field along the longitudinal direction, but the overall phase diagram spanned by the axes of external field and temperature remains opaque due to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11610v2-abstract-full').style.display = 'inline'; document.getElementById('2101.11610v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11610v2-abstract-full" style="display: none;"> Quantum Ising model on a triangular lattice hosts a finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase with emergent U(1) symmetry, and it will transit into an up-up-down (UUD) phase with $C_3$ symmetry breaking upon an infinitesimal external field along the longitudinal direction, but the overall phase diagram spanned by the axes of external field and temperature remains opaque due to the lack of systematic invesitgations with controlled methodologies. By means of quantum Monte Carlo at finite temperature and ground state density matrix renormalization group simulations, we map out the phase diagram of triangular quantum Ising model. Stemming from the upper BKT temperature at zero field, we obtain the phase boundary between the UUD and paramagnetic phases with its 2D $q=3$ Potts universality at weak field and weakly first order transition at strong field. Originated from the lower BKT temperature at zero field, we analyze the low temperature phase boundary between the clock phase and the UUD phase with Ising symmetry breaking at weak fields and the quantum phase transition between the UUD and fully polarized phases at strong fields. The accurate many-body numerical results are consistent with our field theoretical analysis. The experimental relevance towards the BKT magnet TmMgGaO$_4$ and programmable quantum simulators are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11610v2-abstract-full').style.display = 'none'; document.getElementById('2101.11610v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 104416 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08450">arXiv:2012.08450</a> <span> [<a href="https://arxiv.org/pdf/2012.08450">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2106881118">10.1073/pnas.2106881118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vanishing nematic order beyond the pseudogap phase in overdoped cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+N+K">Naman K. Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=McMahon%2C+C">C. McMahon</a>, <a href="/search/cond-mat?searchtype=author&query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+T">T. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+R">R. Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H+I">Haofei I. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Q">Q. Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Dragomir%2C+M">M. Dragomir</a>, <a href="/search/cond-mat?searchtype=author&query=Gaulin%2C+B+D">B. D. Gaulin</a>, <a href="/search/cond-mat?searchtype=author&query=Hawthorn%2C+D+G">D. G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08450v2-abstract-short" style="display: inline;"> During the last decade, translational and rotational symmetry-breaking phases -- density wave order and electronic nematicity -- have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08450v2-abstract-full').style.display = 'inline'; document.getElementById('2012.08450v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08450v2-abstract-full" style="display: none;"> During the last decade, translational and rotational symmetry-breaking phases -- density wave order and electronic nematicity -- have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant x-ray scattering in a cuprate high-temperature superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_{4}$ (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3$d$ orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature $T^{*}$ or increasing doping through the pseudogap critical point, $p^{*}$. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08450v2-abstract-full').style.display = 'none'; document.getElementById('2012.08450v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 9 figures, Main text and Supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 118(34), e2106881118 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02262">arXiv:2011.02262</a> <span> [<a href="https://arxiv.org/pdf/2011.02262">pdf</a>, <a href="https://arxiv.org/ps/2011.02262">ps</a>, <a href="https://arxiv.org/format/2011.02262">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Materials design principles towards high hole mobility learning from an abnormally low hole mobility of silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Q+L">Q. L. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H+X">H. X. Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+S+H">S. H. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S+S">S. S. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+W">J. W. Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02262v1-abstract-short" style="display: inline;"> Si dominates the semiconductor industry material but possesses an abnormally low room temperature hole mobility (505 cm^2/Vs), which is four times lower than that of Diamond and Ge (2000 cm^2/Vs), two adjacent neighbours in the group IV column in the Periodic Table. In the past half-century, extensive efforts have been made to overcome the challenges of Si technology caused by low mobility in Si.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02262v1-abstract-full').style.display = 'inline'; document.getElementById('2011.02262v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02262v1-abstract-full" style="display: none;"> Si dominates the semiconductor industry material but possesses an abnormally low room temperature hole mobility (505 cm^2/Vs), which is four times lower than that of Diamond and Ge (2000 cm^2/Vs), two adjacent neighbours in the group IV column in the Periodic Table. In the past half-century, extensive efforts have been made to overcome the challenges of Si technology caused by low mobility in Si. However, the fundamental understanding of the underlying mechanisms remains lacking. Here, we theoretically reproduce the experimental data for conventional group IV and III-V semiconductors without involving adjustable parameters by curing the shortcoming of classical models. We uncover that the abnormally low hole mobility in Si originating from a combination of the strong interband scattering resulting from its weak spin-orbit coupling and the intensive participation of optical phonons in hole-phonon scattering. In contrast, the strong spin-orbit coupling in Ge leads to a negligible interband scattering; the strong bond and light atom mass in diamond give rise to high optical phonons frequency, preventing their participation in scattering. Based on these understandings rooted into the fundamental atomic properties, we present design principles for semiconducting materials towards high hole mobility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02262v1-abstract-full').style.display = 'none'; document.getElementById('2011.02262v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.07730">arXiv:2010.07730</a> <span> [<a href="https://arxiv.org/pdf/2010.07730">pdf</a>, <a href="https://arxiv.org/format/2010.07730">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01725-6">10.1038/s41567-022-01725-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of antiferromagnetic correlations in an ultracold SU($N$) Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Taie%2C+S">Shintaro Taie</a>, <a href="/search/cond-mat?searchtype=author&query=Ibarra-Garc%C3%ADa-Padilla%2C+E">Eduardo Ibarra-Garc铆a-Padilla</a>, <a href="/search/cond-mat?searchtype=author&query=Nishizawa%2C+N">Naoki Nishizawa</a>, <a href="/search/cond-mat?searchtype=author&query=Takasu%2C+Y">Yosuke Takasu</a>, <a href="/search/cond-mat?searchtype=author&query=Kuno%2C+Y">Yoshihito Kuno</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hao-Tian Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Scalettar%2C+R+T">Richard T. Scalettar</a>, <a href="/search/cond-mat?searchtype=author&query=Hazzard%2C+K+R+A">Kaden R. A. Hazzard</a>, <a href="/search/cond-mat?searchtype=author&query=Takahashi%2C+Y">Yoshiro Takahashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.07730v1-abstract-short" style="display: inline;"> Mott insulators are paradigms of strongly correlated physics, giving rise to phases of matter with novel and hard-to-explain properties. Extending the typical SU(2) symmetry of Mott insulators to SU($N$) is predicted to give exotic quantum magnetism at low temperatures, but understanding the effect of strong quantum fluctuations for large $N$ remains an open challenge. In this work, we experimenta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.07730v1-abstract-full').style.display = 'inline'; document.getElementById('2010.07730v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.07730v1-abstract-full" style="display: none;"> Mott insulators are paradigms of strongly correlated physics, giving rise to phases of matter with novel and hard-to-explain properties. Extending the typical SU(2) symmetry of Mott insulators to SU($N$) is predicted to give exotic quantum magnetism at low temperatures, but understanding the effect of strong quantum fluctuations for large $N$ remains an open challenge. In this work, we experimentally observe nearest-neighbor spin correlations in the SU(6) Hubbard model realized by ytterbium atoms in optical lattices. We study one-dimensional, two-dimensional square, and three-dimensional cubic lattice geometries. The measured SU(6) spin correlations are dramatically enhanced compared to the SU(2) correlations, due to strong Pomeranchuk cooling. We also present numerical calculations based on exact diagonalization and determinantal quantum Monte Carlo. The experimental data for a one-dimensional lattice agree with theory, without any fitting parameters. The detailed comparison between theory and experiment allows us to infer from the measured correlations a lowest temperature of $\left[{0.096 \pm 0.054 \, \rm{(theory)} \pm 0.030 \, \rm{(experiment)}}\right]/k_{\rm B}$ times the tunneling amplitude. For two- and three-dimensional lattices, experiments reach entropies below where our calculations converge, highlighting the experiments as quantum simulations. These results open the door for the study of long-sought SU($N$) quantum magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.07730v1-abstract-full').style.display = 'none'; document.getElementById('2010.07730v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01940">arXiv:2010.01940</a> <span> [<a href="https://arxiv.org/pdf/2010.01940">pdf</a>, <a href="https://arxiv.org/ps/2010.01940">ps</a>, <a href="https://arxiv.org/format/2010.01940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.184501">10.1103/PhysRevB.103.184501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Worm quantum Monte-Carlo study of phase diagram of extended Jaynes-Cummings-Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Huanhuan Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Greschner%2C+S">Sebastian Greschner</a>, <a href="/search/cond-mat?searchtype=author&query=Scott%2C+T+C">Tony C Scott</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wanzhou Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01940v1-abstract-short" style="display: inline;"> Herein, we study the extended Jaynes-Cummings-Hubbard model mainly by the large-scale worm quantum Monte-Carlo method to check whether or not a light supersolid phase exists in various geometries, such as the one-dimensional chain, square lattices and triangular lattices. To achieve our purpose, the ground state phase diagrams are investigated. For the one-dimensional chain and square lattices, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01940v1-abstract-full').style.display = 'inline'; document.getElementById('2010.01940v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01940v1-abstract-full" style="display: none;"> Herein, we study the extended Jaynes-Cummings-Hubbard model mainly by the large-scale worm quantum Monte-Carlo method to check whether or not a light supersolid phase exists in various geometries, such as the one-dimensional chain, square lattices and triangular lattices. To achieve our purpose, the ground state phase diagrams are investigated. For the one-dimensional chain and square lattices, a first-order transition occurs between the superfluid phase and the solid phase and therefore there is no stable supersolid phase existing in these geometries. Interestingly, soliton/beats of the local densities arise if the chemical potential is adjusted in the finite-size chain. However, this soliton-superfluid coexistence can not be considered as a supersolid in the thermodynamic limit. Searching for a light supersolid, we also studied the Jaynes-Cummings-Hubbard model on triangular lattices, and the phase diagrams are obtained. Through measurement of the structural factor, momentum distribution and superfluid stiffness for various system sizes, a supersolid phase exists stably in the triangular lattices geometry and the regime of the supersolid phase is smaller than that of the mean field results. The light supersolid in the Jaynes-Cummings-Hubbard model is attractive because it has superreliance, which is absent in the pure Bose-Hubbard model. We believe the results in this paper could help search for new novel phases in cold-atom experiments <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01940v1-abstract-full').style.display = 'none'; document.getElementById('2010.01940v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 184501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03931">arXiv:1905.03931</a> <span> [<a href="https://arxiv.org/pdf/1905.03931">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Plainified Composite Absorber Enabled by Vertical Interphase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuhan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+F">Faxiang Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Quan%2C+L">Le Quan</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Huijie Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Huan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+H">Hua-Xin Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03931v2-abstract-short" style="display: inline;"> Interface constitutes a significant volume fraction in nanocomposites, and it requires the ability to tune and tailor interfaces to tap the full potential of nanocomposites. However, the development and optimization of nanocomposites is currently restricted by the limited exploration and utilization of interfaces at different length scales. In this research, we have designed and introduced a relat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03931v2-abstract-full').style.display = 'inline'; document.getElementById('1905.03931v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03931v2-abstract-full" style="display: none;"> Interface constitutes a significant volume fraction in nanocomposites, and it requires the ability to tune and tailor interfaces to tap the full potential of nanocomposites. However, the development and optimization of nanocomposites is currently restricted by the limited exploration and utilization of interfaces at different length scales. In this research, we have designed and introduced a relatively large-scale vertical interphase into carbon nanocomposites, in which the dielectric response and dispersion features in microwave frequency range are successfully adjusted. A remarkable relaxation process has been observed in vertical-interphase nanocomposites, showing sensitivity to both filler loading and the discrepancy in polarization ability across the interphase. Together with our analyses on dielectric spectra and relaxation processes, it is suggested that the intrinsic effect of vertical interphase lies in its ability to constrain and localize heterogeneous charges under external fields. Following this logic, systematic research is presented in this article affording to realize tunable frequency-dependent dielectric functionality by means of vertical interphase engineering. Overall, this study provides a novel method to utilize interfacial effects rationally. The research approach demonstrated here has great potential in developing microwave dielectric nanocomposites and devices with targeted or unique performance such as tunable broadband absorbers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03931v2-abstract-full').style.display = 'none'; document.getElementById('1905.03931v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05794">arXiv:1902.05794</a> <span> [<a href="https://arxiv.org/pdf/1902.05794">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+X">Xiuxin Xia</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+C">Congli He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yizhou Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+C">Caihua Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+C">Chi Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+C">Chenyang Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wenlong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Guang%2C+Y">Yao Guang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaomin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+H">Hongjun Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+J">Jinwu Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+M">Mengzhou Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xiaobo Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+J">Jiafeng Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaoxi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yong Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xixiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Z">Zheng Han</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhidong Zhang</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05794v1-abstract-short" style="display: inline;"> The recent discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials holds promises for novel spintronic devices with exceptional performances. However, in order to utilize 2D vdW magnets for building spintronic nanodevices such as magnetic memories, key challenges remain in terms of effectively switching the magnetization from one state to the other electrically. Here, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05794v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05794v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05794v1-abstract-full" style="display: none;"> The recent discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials holds promises for novel spintronic devices with exceptional performances. However, in order to utilize 2D vdW magnets for building spintronic nanodevices such as magnetic memories, key challenges remain in terms of effectively switching the magnetization from one state to the other electrically. Here, we devise a bilayer structure of Fe3GeTe2/Pt, in which the magnetization of few-layered Fe3GeTe2 can be effectively switched by the spin-orbit torques (SOTs) originated from the current flowing in the Pt layer. The effective magnetic fields corresponding to the SOTs are further quantitatively characterized using harmonic measurements. Our demonstration of the SOT-driven magnetization switching in a 2D vdW magnet could pave the way for implementing low-dimensional materials in the next-generation spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05794v1-abstract-full').style.display = 'none'; document.getElementById('1902.05794v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09523">arXiv:1812.09523</a> <span> [<a href="https://arxiv.org/pdf/1812.09523">pdf</a>, <a href="https://arxiv.org/format/1812.09523">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2019.02.047">10.1016/j.jcp.2019.02.047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A finite element method of the self-consistent field theory on general curved surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Huayi Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+M">Ming Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+W">Wei Si</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kai Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09523v1-abstract-short" style="display: inline;"> Block copolymers provide a wonderful platform in studying the soft condensed matter systems. Many fascinating ordered structures have been discovered in bulk and confined systems. Among various theories, the self-consistent field theory (SCFT) has been proven to be a powerful tool for studying the equilibrium ordered structures. Many numerical methods have been developed to solve the SCFT model. H… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09523v1-abstract-full').style.display = 'inline'; document.getElementById('1812.09523v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09523v1-abstract-full" style="display: none;"> Block copolymers provide a wonderful platform in studying the soft condensed matter systems. Many fascinating ordered structures have been discovered in bulk and confined systems. Among various theories, the self-consistent field theory (SCFT) has been proven to be a powerful tool for studying the equilibrium ordered structures. Many numerical methods have been developed to solve the SCFT model. However, most of these focus on the bulk systems, and little work on the confined systems, especially on general curved surfaces. In this work, we developed a linear surface finite element method, which has a rigorous mathematical theory to guarantee numerical precsion, to study the self-assembled phases of block copolymers on general curved surfaces based on the SCFT. Furthermore, to capture the consistent surface for a given self-assembled pattern, an adaptive approach to optimize the size of the general curved surface has been proposed. To demonstrate the power of this approach, we investigate the self-assembled patterns of diblock copolymers on several distinct curved surfaces, including five closed surfaces and an unclosed surface. Numerical results illustrate the efficiency of the proposed method. The obtained ordered structures are consistent with the previous results on standard surfaces, such as sphere and torus. Certainly, the proposed numerical framework has the capability of studying the phase behaviors on general surfaces precisely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09523v1-abstract-full').style.display = 'none'; document.getElementById('1812.09523v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.02543">arXiv:1810.02543</a> <span> [<a href="https://arxiv.org/pdf/1810.02543">pdf</a>, <a href="https://arxiv.org/ps/1810.02543">ps</a>, <a href="https://arxiv.org/format/1810.02543">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural and optoelectronic properties of the inorganic perovskites AGeX3 (A = Cs, Rb; X = I, Br, Cl) for solar cell application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jonga%2C+U">Un-Gi Jonga</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+C">Chol-Jun Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Kye%2C+Y">Yun-Hyok Kye</a>, <a href="/search/cond-mat?searchtype=author&query=Choe%2C+Y">Yong-Guk Choe</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hao Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuzhou Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.02543v1-abstract-short" style="display: inline;"> We predict the structural, electronic and optic properties of the inorganic Ge-based halide perovskites AGeX3 (A = Cs, Rb; X = I, Br, Cl) by using first-principles method. In particular, absolute electronic energy band levels are calculated using two different surface terminations of each compound, reproducing the experimental band alignment. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.02543v1-abstract-full" style="display: none;"> We predict the structural, electronic and optic properties of the inorganic Ge-based halide perovskites AGeX3 (A = Cs, Rb; X = I, Br, Cl) by using first-principles method. In particular, absolute electronic energy band levels are calculated using two different surface terminations of each compound, reproducing the experimental band alignment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02543v1-abstract-full').style.display = 'none'; document.getElementById('1810.02543v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.08778">arXiv:1806.08778</a> <span> [<a href="https://arxiv.org/pdf/1806.08778">pdf</a>, <a href="https://arxiv.org/format/1806.08778">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5047207">10.1063/1.5047207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reduced Scaling Hilbert Space Variational Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haochuan Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Neuscamman%2C+E">Eric Neuscamman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.08778v1-abstract-short" style="display: inline;"> We show that for both single-Slater-Jastrow and Jastrow geminal power wave functions, the formal cost scaling of Hilbert space variational Monte Carlo can be reduced from fifth to fourth order in the system size, thus bringing it in line with the long-standing scaling of its real space counterpart. While traditional quantum chemistry methods can reduce costs related to the two-electron integral te… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08778v1-abstract-full').style.display = 'inline'; document.getElementById('1806.08778v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.08778v1-abstract-full" style="display: none;"> We show that for both single-Slater-Jastrow and Jastrow geminal power wave functions, the formal cost scaling of Hilbert space variational Monte Carlo can be reduced from fifth to fourth order in the system size, thus bringing it in line with the long-standing scaling of its real space counterpart. While traditional quantum chemistry methods can reduce costs related to the two-electron integral tensor through resolution of the identity and Cholesky decomposition approaches, we show that such approaches are ineffective in the presence of Hilbert space Jastrow factors. Instead, we develop a simple semi-stochastic approach that can take similar advantage of the near-sparsity of this four-index tensor. Through demonstrations on alkanes of increasing length, we show that accuracy and overall statistical uncertainty are not meaningfully affected and that a total cost crossover is reached as early as 50 electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08778v1-abstract-full').style.display = 'none'; document.getElementById('1806.08778v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.07173">arXiv:1805.07173</a> <span> [<a href="https://arxiv.org/pdf/1805.07173">pdf</a>, <a href="https://arxiv.org/ps/1805.07173">ps</a>, <a href="https://arxiv.org/format/1805.07173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-08664-6">10.1038/s41467-019-08664-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-Engineering Mott-Insulating La$_2$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ivashko%2C+O">O. Ivashko</a>, <a href="/search/cond-mat?searchtype=author&query=Horio%2C+M">M. Horio</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+W">W. Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&query=McNally%2C+D+E">D. E. McNally</a>, <a href="/search/cond-mat?searchtype=author&query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&query=Tseng%2C+Y">Y. Tseng</a>, <a href="/search/cond-mat?searchtype=author&query=Shaik%2C+N+E">N. E. Shaik</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H+I">H. I. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Adamo%2C+C">C. Adamo</a>, <a href="/search/cond-mat?searchtype=author&query=Lichtensteiger%2C+C">C. Lichtensteiger</a>, <a href="/search/cond-mat?searchtype=author&query=Gibert%2C+M">M. Gibert</a>, <a href="/search/cond-mat?searchtype=author&query=Beasley%2C+M+R">M. R. Beasley</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Tomczak%2C+J+M">J. M. Tomczak</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.07173v3-abstract-short" style="display: inline;"> The transition temperature $T_\textrm{c}$ of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La$_{2-\mathrm{x}}$Sr$_\mathrm{x}$CuO$_4$ thin films, such substrates are sub-optimal and the highest $T_\textrm{c}$ is instead obtained using LaSrAlO$_4$. An outstanding challenge is thu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07173v3-abstract-full').style.display = 'inline'; document.getElementById('1805.07173v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.07173v3-abstract-full" style="display: none;"> The transition temperature $T_\textrm{c}$ of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La$_{2-\mathrm{x}}$Sr$_\mathrm{x}$CuO$_4$ thin films, such substrates are sub-optimal and the highest $T_\textrm{c}$ is instead obtained using LaSrAlO$_4$. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in $T_\mathrm{c}$ and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La$_2$CuO$_4$ thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest $T_\textrm{c}$ under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07173v3-abstract-full').style.display = 'none'; document.getElementById('1805.07173v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures and 2 tables (including Supplementary Information)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 786 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.01647">arXiv:1803.01647</a> <span> [<a href="https://arxiv.org/pdf/1803.01647">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-018-28374-1">10.1038/s41598-018-28374-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+H+G">Henrique G. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H+Y">Ho Yi Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Verzhbitskiy%2C+I">Ivan Verzhbitskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Rodrigues%2C+M+J+F+L">Manuel J. F. L. Rodrigues</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Eda%2C+G">Goki Eda</a>, <a href="/search/cond-mat?searchtype=author&query=Pereira%2C+V+M">Vitor M. Pereira</a>, <a href="/search/cond-mat?searchtype=author&query=Gomes%2C+J+C+V">Jose C. V. Gomes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.01647v3-abstract-short" style="display: inline;"> We report the first detailed characterization of the sheet third-harmonic optical susceptibility, $蠂_{s}^{(3)}$, of tungsten diselenide (WSe$_{2}$). With a home-built confocal microscope setup developed to study harmonics generation, we map the second- and third-harmonic intensities as a function of position in the sample, pump power and polarization angle, for single and few layers flakes of WSe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.01647v3-abstract-full').style.display = 'inline'; document.getElementById('1803.01647v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.01647v3-abstract-full" style="display: none;"> We report the first detailed characterization of the sheet third-harmonic optical susceptibility, $蠂_{s}^{(3)}$, of tungsten diselenide (WSe$_{2}$). With a home-built confocal microscope setup developed to study harmonics generation, we map the second- and third-harmonic intensities as a function of position in the sample, pump power and polarization angle, for single and few layers flakes of WSe$_{2}$. We register a value of $|蠂_{s}^{(3)}| \approx$ 0.91 $\times$ 10$^{-28}$ m$^{3}$ V$^{-2}$ at a fundamental excitation frequency of $\hbar蠅$ = 0.8 eV, which is comparable in magnitude to the third-harmonic susceptibility of other group-VI transition metal dichalcogenides. The simultaneously recorded second-harmonic susceptibility is found to be $|蠂_{s}^{(2)}| \approx$ 0.70 $\times$ 10$^{-19}$ m$^{2}$ V$^{-1}$ in very good agreement on the order of magnitude with recent reports for WSe$_{2}$, which asserts the robustness of our values for $|蠂_{s}^{(3)}|$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.01647v3-abstract-full').style.display = 'none'; document.getElementById('1803.01647v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reportsvolume 8, Article number: 10035 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.06617">arXiv:1801.06617</a> <span> [<a href="https://arxiv.org/pdf/1801.06617">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.097205">10.1103/PhysRevLett.120.097205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnon Valve Effect Between Two Magnetic Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+L">L. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+C">C. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+B+S">B. S. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+C+H">C. H. Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+G+Q">G. Q. Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+J+F">J. F. Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H+X">H. X. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+X+F">X. F. Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.06617v2-abstract-short" style="display: inline;"> The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06617v2-abstract-full').style.display = 'inline'; document.getElementById('1801.06617v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.06617v2-abstract-full" style="display: none;"> The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06617v2-abstract-full').style.display = 'none'; document.getElementById('1801.06617v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.03731">arXiv:1801.03731</a> <span> [<a href="https://arxiv.org/pdf/1801.03731">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of a phonon avalanche in highly photoexcited hybrid perovskite single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vanacore%2C+G+M">G. M. Vanacore</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">J. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Baldini%2C+E">E. Baldini</a>, <a href="/search/cond-mat?searchtype=author&query=Rozzi%2C+C+A">C. A. Rozzi</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+M">M. Amato</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">H. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">J. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Polishchuk%2C+S">S. Polishchuk</a>, <a href="/search/cond-mat?searchtype=author&query=Puppin%2C+M">M. Puppin</a>, <a href="/search/cond-mat?searchtype=author&query=Crepaldi%2C+A">A. Crepaldi</a>, <a href="/search/cond-mat?searchtype=author&query=Grioni%2C+M">M. Grioni</a>, <a href="/search/cond-mat?searchtype=author&query=Chergui%2C+M">M. Chergui</a>, <a href="/search/cond-mat?searchtype=author&query=Carbone%2C+F">F. Carbone</a>, <a href="/search/cond-mat?searchtype=author&query=Zewail%2C+A+H">A. H. Zewail</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.03731v2-abstract-short" style="display: inline;"> In hybrid lead halide perovskites, the coupling between photogenerated charges and the ionic degrees of freedom plays a crucial role in defining the intrinsic limit of carrier mobility and lifetime. However, direct investigation of this fundamental interaction remains challenging because its relevant dynamics occur on ultrashort spatial and ultrafast temporal scales. Here, we unveil the coupled el… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03731v2-abstract-full').style.display = 'inline'; document.getElementById('1801.03731v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.03731v2-abstract-full" style="display: none;"> In hybrid lead halide perovskites, the coupling between photogenerated charges and the ionic degrees of freedom plays a crucial role in defining the intrinsic limit of carrier mobility and lifetime. However, direct investigation of this fundamental interaction remains challenging because its relevant dynamics occur on ultrashort spatial and ultrafast temporal scales. Here, we unveil the coupled electron-lattice dynamics of a CH3NH3PbI3 single crystal upon intense photoexcitation through a unique combination of ultrafast electron diffraction, time-resolved photoelectron spectroscopy, and time-dependent ab initio calculations. We observe the structural signature of a hot-phonon bottleneck effect that prevents rapid carrier relaxation, and we uncover a phonon avalanche mechanism responsible for breaking the bottleneck. The avalanche involves a collective emission of low-energy phonons - mainly associated with the organic sub-lattice - that proceeds in a regenerative manner and correlates with the accumulation and confinement of photocarriers at the crystal surface. Our results indicate that in hybrid perovskites carrier transport and spatial confinement are key to controlling the electron-phonon interaction and their rational engineering is relevant for future applications in optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03731v2-abstract-full').style.display = 'none'; document.getElementById('1801.03731v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript: 25 pages, 4 figures. Supporting Information: 13 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07651">arXiv:1710.07651</a> <span> [<a href="https://arxiv.org/pdf/1710.07651">pdf</a>, <a href="https://arxiv.org/format/1710.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-00946-1">10.1038/s41467-017-00946-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lifshitz transition from valence fluctuations in YbAl3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+S">Shouvik Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&query=Ruf%2C+J+P">Jacob. P. Ruf</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H+I">Haofei. I. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Finkelstein%2C+K+D">Kenneth D. Finkelstein</a>, <a href="/search/cond-mat?searchtype=author&query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+K+M">Kyle M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07651v1-abstract-short" style="display: inline;"> In Kondo lattice systems with mixed valence, such as YbAl3, interactions between localized electrons in a partially filled f shell and delocalized conduction electrons can lead to fluctuations between two different valence configurations with changing temperature or pressure. The impact of this change on the momentum-space electronic structure and Fermi surface topology is essential for understand… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07651v1-abstract-full').style.display = 'inline'; document.getElementById('1710.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07651v1-abstract-full" style="display: none;"> In Kondo lattice systems with mixed valence, such as YbAl3, interactions between localized electrons in a partially filled f shell and delocalized conduction electrons can lead to fluctuations between two different valence configurations with changing temperature or pressure. The impact of this change on the momentum-space electronic structure and Fermi surface topology is essential for understanding their emergent properties, but has remained enigmatic due to a lack of appropriate experimental probes. Here by employing a combination of molecular beam epitaxy (MBE) and in situ angle-resolved photoemission spectroscopy (ARPES) we show that valence fluctuations can lead to dramatic changes in the Fermi surface topology, even resulting in a Lifshitz transition. As the temperature is lowered, a small electron pocket in YbAl3 becomes completely unoccupied while the low-energy ytterbium (Yb) 4f states become increasingly itinerant, acquiring additional spectral weight, longer lifetimes, and well-defined dispersions. Our work presents the first unified picture of how local valence fluctuations connect to momentum space concepts including band filling and Fermi surface topology in the longstanding problem of mixed-valence systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07651v1-abstract-full').style.display = 'none'; document.getElementById('1710.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 8, 852, 1-7 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00687">arXiv:1709.00687</a> <span> [<a href="https://arxiv.org/pdf/1709.00687">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.9.044034">10.1103/PhysRevApplied.9.044034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant tunnel magnetoresistance with a single magnetic phase-transition electrode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+Z">X. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+C">C. Song</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+J+F">J. F. Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H+X">H. X. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=L%C3%BC%2C+J">Jing-Tao L眉</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00687v2-abstract-short" style="display: inline;"> Magnetic phase transition tunnel magnetoresistance (MPT-TMR) effect with a single magnetic electrode has been investigated by first-principles calculations. The calculations show that the MPT-TMR of FeRh/MgO/Cu tunnel junction can be as high as hundreds of percent when the magnetic structure of FeRh changes from G-type antiferromagnetic (GAFM) to ferromagnetic order. This new type of MPT-TMR may b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00687v2-abstract-full').style.display = 'inline'; document.getElementById('1709.00687v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00687v2-abstract-full" style="display: none;"> Magnetic phase transition tunnel magnetoresistance (MPT-TMR) effect with a single magnetic electrode has been investigated by first-principles calculations. The calculations show that the MPT-TMR of FeRh/MgO/Cu tunnel junction can be as high as hundreds of percent when the magnetic structure of FeRh changes from G-type antiferromagnetic (GAFM) to ferromagnetic order. This new type of MPT-TMR may be superior to the tunnel anisotropic magnetoresistance because of its huge magneto-resistance effect and similar structural simplicity. The main mechanism for the giant MPT-TMR can be attributed to the formation of interface resonant states at GAFM-FeRh/MgO interface. A direct FeRh/MgO interface is found to be necessary for achieving high MPT-TMR experimentally. Moreover, we find the FeRh/MgO interface with FeRh in ferromagnetic phase has nearly full spin-polarization due to the negligible majority transmission and significantly different Fermi surface of two spin channels. Thus, it may act as a highly efficient and tunable spin-injector. In addition, electric field driven MPT of FeRh-based hetero-magnetic nanostructures can be utilized to design various energy efficient tunnel junction structures and the corresponding lower power consumption devices. Our results will stimulate further experimental investigations of MPT-TMR and other fascinating phenomenon of FeRh-based tunnel junctions that may be promising in antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00687v2-abstract-full').style.display = 'none'; document.getElementById('1709.00687v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 9, 044034 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07502">arXiv:1703.07502</a> <span> [<a href="https://arxiv.org/pdf/1703.07502">pdf</a>, <a href="https://arxiv.org/format/1703.07502">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.041601">10.1103/PhysRevA.96.041601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a Modulational Instability in Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Everitt%2C+P+J">P. J. Everitt</a>, <a href="/search/cond-mat?searchtype=author&query=Sooriyabandara%2C+M+A">M. A. Sooriyabandara</a>, <a href="/search/cond-mat?searchtype=author&query=Guasoni%2C+M">M. Guasoni</a>, <a href="/search/cond-mat?searchtype=author&query=Wigley%2C+P+B">P. B. Wigley</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+C+H">C. H. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=McDonald%2C+G+D">G. D. McDonald</a>, <a href="/search/cond-mat?searchtype=author&query=Hardman%2C+K+S">K. S. Hardman</a>, <a href="/search/cond-mat?searchtype=author&query=Manju%2C+P">P. Manju</a>, <a href="/search/cond-mat?searchtype=author&query=Close%2C+J+D">J. D. Close</a>, <a href="/search/cond-mat?searchtype=author&query=Kuhn%2C+C+C+N">C. C. N. Kuhn</a>, <a href="/search/cond-mat?searchtype=author&query=Szigeti%2C+S+S">S. S. Szigeti</a>, <a href="/search/cond-mat?searchtype=author&query=Kivshar%2C+Y+S">Y. S. Kivshar</a>, <a href="/search/cond-mat?searchtype=author&query=Robins%2C+N+P">N. P. Robins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07502v2-abstract-short" style="display: inline;"> We observe the breakup dynamics of an elongated cloud of condensed $^{85}$Rb atoms placed in an optical waveguide. The number of localized spatial components observed in the breakup is compared with the number of solitons predicted by a plane-wave stability analysis of the nonpolynomial nonlinear Schr枚dinger equation, an effective one-dimensional approximation of the Gross-Pitaevskii equation for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07502v2-abstract-full').style.display = 'inline'; document.getElementById('1703.07502v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07502v2-abstract-full" style="display: none;"> We observe the breakup dynamics of an elongated cloud of condensed $^{85}$Rb atoms placed in an optical waveguide. The number of localized spatial components observed in the breakup is compared with the number of solitons predicted by a plane-wave stability analysis of the nonpolynomial nonlinear Schr枚dinger equation, an effective one-dimensional approximation of the Gross-Pitaevskii equation for cigar-shaped condensates. It is shown that the numbers predicted from the fastest growing sidebands are consistent with the experimental data, suggesting that modulational instability is the key underlying physical mechanism driving the breakup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07502v2-abstract-full').style.display = 'none'; document.getElementById('1703.07502v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 041601 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.09431">arXiv:1612.09431</a> <span> [<a href="https://arxiv.org/pdf/1612.09431">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.6b04017">10.1021/acs.nanolett.6b04017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lithographyically defined, room temperature low threshold subwavelength red-emitting hybrid plasmonic lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+N">Ning Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gocalinska%2C+A">Agnieszka Gocalinska</a>, <a href="/search/cond-mat?searchtype=author&query=Justice%2C+J">John Justice</a>, <a href="/search/cond-mat?searchtype=author&query=Gity%2C+F">Farzan Gity</a>, <a href="/search/cond-mat?searchtype=author&query=Povey%2C+I">Ian Povey</a>, <a href="/search/cond-mat?searchtype=author&query=McCarthy%2C+B">Brendan McCarthy</a>, <a href="/search/cond-mat?searchtype=author&query=Pemble%2C+M">Martyn Pemble</a>, <a href="/search/cond-mat?searchtype=author&query=Pelucchi%2C+E">Emanuele Pelucchi</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hong Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Silien%2C+C">Christophe Silien</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+H">Hongxing Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Corbett%2C+B">Brian Corbett</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.09431v1-abstract-short" style="display: inline;"> Hybrid plasmonic lasers provide deep subwavelength optical confinement, strongly enhanced light-matter interaction and together with nanoscale footprint promise new applications in optical communication, bio-sensing and photolithography. The subwavelength hybrid plasmonic lasers reported so far often use bottom up grown nanowires, nanorods and nanosquares, making it difficult to integrate these de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.09431v1-abstract-full').style.display = 'inline'; document.getElementById('1612.09431v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.09431v1-abstract-full" style="display: none;"> Hybrid plasmonic lasers provide deep subwavelength optical confinement, strongly enhanced light-matter interaction and together with nanoscale footprint promise new applications in optical communication, bio-sensing and photolithography. The subwavelength hybrid plasmonic lasers reported so far often use bottom up grown nanowires, nanorods and nanosquares, making it difficult to integrate these devices into industry-relevant high density plasmonic circuits. Here, we report the first experimental demonstration of AlGaInP based, red-emitting hybrid plasmonic lasers at room temperature using lithography based fabrication processes. Resonant cavities with deep subwavelength 2D and 3D mode confinement of lambda square/56 and lambda cube/199, respectively are demonstrated. A range of cavity geometries (waveguides, rings, squares and disks) show very low lasing thresholds of 0.6-1.8 mJ/cm square with wide gain bandwidth (610 nm-685 nm), which are attributed to the heterogeneous geometry of the gain material, the optimized etching technique, and the strong overlap of the gain material with the plasmonic modes. Most importantly, we establish the connection between mode confinements and enhanced absorption and stimulated emission, which play a critical role in maintaining low lasing thresholds at extremely small hybrid plasmonic cavities. Our results pave the way for the further integration of dense arrays of hybrid plasmonic lasers with optical and electronic technology platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.09431v1-abstract-full').style.display = 'none'; document.getElementById('1612.09431v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 16, 7822 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04700">arXiv:1612.04700</a> <span> [<a href="https://arxiv.org/pdf/1612.04700">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C6CP07176G">10.1039/C6CP07176G <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Valence Band Dispersion Measurements of Perovskite Single Crystal with Angle-resolved Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Congcong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ecker%2C+B+R">Benjamin R. Ecker</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yongli Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haotong Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jinsong Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+J">Jian-Qiao Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04700v1-abstract-short" style="display: inline;"> The electronic structure of the cleaved perovskite (CH3NH3PbBr3) single crystal was studied in an ultra-high vacuum (UHV) system by angle-resolved photoemission spectroscopy (ARPES) and inverse photoelectron spectroscopy (IPES). Highly reproducible dispersive features of the valence bands were observed with nice symmetry about the Brillouin zone center and boundaries. The largest dispersion width… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04700v1-abstract-full').style.display = 'inline'; document.getElementById('1612.04700v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04700v1-abstract-full" style="display: none;"> The electronic structure of the cleaved perovskite (CH3NH3PbBr3) single crystal was studied in an ultra-high vacuum (UHV) system by angle-resolved photoemission spectroscopy (ARPES) and inverse photoelectron spectroscopy (IPES). Highly reproducible dispersive features of the valence bands were observed with nice symmetry about the Brillouin zone center and boundaries. The largest dispersion width was found to be ~0.73 eV and ~0.98 eV along the 螕X and 螕M directions, respectively. The effective mass of the holes was estimated to be ~0.59 m0. The quality of the surface was verified by atomic force microscopy (AFM) and scanning electron microscope (SEM). The elemental composition was investigated by high resolution x-ray photoelectron spectroscopy (XPS). The experimental electronic structure shows a good agreement with the theoretical calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04700v1-abstract-full').style.display = 'none'; document.getElementById('1612.04700v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.00096">arXiv:1606.00096</a> <span> [<a href="https://arxiv.org/pdf/1606.00096">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface Orientation Strengthening in Metallic Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Haojie Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Y">Yueguang Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.00096v1-abstract-short" style="display: inline;"> Due to the large free surface and strong anisotropy, the mechanical property of nanowire differs from its bulk counterpart. In this paper, the strong dependence of NW's strength on its surface orientation is revealed, and two modes of dislocation nucleation have been identified: the corner nucleation and the surface nucleation. The activation energy and activation volume of surface nucleation are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00096v1-abstract-full').style.display = 'inline'; document.getElementById('1606.00096v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.00096v1-abstract-full" style="display: none;"> Due to the large free surface and strong anisotropy, the mechanical property of nanowire differs from its bulk counterpart. In this paper, the strong dependence of NW's strength on its surface orientation is revealed, and two modes of dislocation nucleation have been identified: the corner nucleation and the surface nucleation. The activation energy and activation volume of surface nucleation are much larger than those of the corner nucleation. The intersection line between lateral surface and {111}-type slip plane causes the discrepancy of the nucleation modes for the first dislocation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00096v1-abstract-full').style.display = 'none'; document.getElementById('1606.00096v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06352">arXiv:1605.06352</a> <span> [<a href="https://arxiv.org/pdf/1605.06352">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetization reversal and negative volume thermal expansion in Fe doped Ca2RuO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+S+J">S. J. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+T+F">T. F. Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Terzic%2C+J">J. Terzic</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Zhao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hua Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Parkin%2C+S">S. Parkin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xuerong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+W+L">Wendy L. Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">G. Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06352v1-abstract-short" style="display: inline;"> We report physical and structural properties of single-crystal Ca2Ru1-xFexO4 (0<x<0.20) as functions of temperature, magnetic field and pressure. Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator (MI) transition at TMI = 357 K, which is well separated from antiferromagnetic order at TN = 110 K. Fe substitution for Ru in Ca2RuO4 causes a pronounced magnetization reversal and gi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06352v1-abstract-full').style.display = 'inline'; document.getElementById('1605.06352v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06352v1-abstract-full" style="display: none;"> We report physical and structural properties of single-crystal Ca2Ru1-xFexO4 (0<x<0.20) as functions of temperature, magnetic field and pressure. Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator (MI) transition at TMI = 357 K, which is well separated from antiferromagnetic order at TN = 110 K. Fe substitution for Ru in Ca2RuO4 causes a pronounced magnetization reversal and giant negative volume thermal expansion (NVTE). The magnetization reversal is a result of a field-induced antiferromagnetic coupling between the Ru- and Fe-magnetic sublattices that have different temperature dependence. The NVTE is closely associated with the orthorhombic distortion, and becomes smaller as the orthorhombicity weakens due to either Fe doping or application of pressure. The study highlights an intriguing interplay between lattice, orbital and spin degrees of freedom that is at the root of the novel phenomena in Ca2RuO4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06352v1-abstract-full').style.display = 'none'; document.getElementById('1605.06352v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Wei%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Wei%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Wei%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Wei%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>